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Instrumental Sets

CARLOS BRITO

1 Introduction

The research of Judea Pearl in the area of causality has been very much acclaimed.
Here we highlight his contributions for the use of graphical languages to represent
and reason about causal knowledge.!

The concept of causation seems to be fundamental to our understanding of the
world. Philosophers like J. Carroll put it in these terms: ”With regard to our total
conceptual apparatus, causation is the center of the center” [Carroll 1994]. Perhaps
more dramatically, David Hume states that causation together with resemblance
and contiguity are ”"the only ties of our thoughts, ... for us the cement of the
universe” [Hume 1978]. In view of these observations, the need for an adequate
language to talk about causation becomes clear and evident.

The use of graphical languages was present in the early times of causal modelling.
Already in 1934, Sewall Wright [Wright 1934] represented the causal relation among
several variables with diagrams formed by points and arrows (i.e., a directed graph),
and noted that the correlations observed between the variables could be associated
with the various paths between them in the diagram. From this observation he
obtained a method to estimate the strength of the causal connections known as
The Method of Path Coefficients, or simply Path Analysis.

With the development of the research in the field, the graphical representation
gave way to a mathematical language, in which causal relations are represented by
equations of the form Y = a+ X +e. This movement was probably motivated by an
increasing interest in the quantitative aspects of the model, or by the rigorous and
formal appearance offered by the mathematical language. However it may be, the
consequence was a progressive departure from our basic causal intuitions. Today
people ask whether such an equation represents a functional or a causal relation
[Reiss 2005]. Sewall Wright and Judea Pearl would presumably answer: ”Causal,
of course!”.

2 The Identification Problem

We explore the feasibility of inferring linear cause-effect relationships from various
combinations of data and theoretical assumptions. The assumptions are represented

1This contribution is a simplified version of a joint paper with Judea Pearl in UAI 2002. A
great deal of technicality was removed, and new discussion was added, in the hope that the reader
will be able to easily follow and enjoy the argument.
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Figure 1. (a) a bow-pattern; and (b) a bow-free model.

in the form of an acyclic causal diagram, which contains both arrows and bidirected
arcs [Pearl 1995; Pearl 2000a]. The arrows represent the potential existence of di-
rect causal relationships between the corresponding variables, and the bidirected
arcs represent spurious correlations due to unmeasured common causes. All inter-
actions among variables are assumed to be linear. Our task is to decide whether the
assumptions represented in the diagram are sufficient for assessing the strength of
causal effects from non-experimental data, and, if sufficiency is proven, to express
the target causal effect in terms of estimable quantities.

This decision problem has been tackled in the past half century, primarily by
econometricians and social scientists, under the rubric ”The Identification Prob-
lem” [Fisher 1966] - it is still unsolved. Certain restricted classes of models are
nevertheless known to be identifiable, and these are often assumed by social scien-
tists as a matter of convenience or convention [Duncan 1975]. A hierarchy of three
such classes is given in [McDonald 1997]: (1) no bidirected arcs, (2) bidirected arcs
restricted to root variables, and (3) bidirected arcs restricted to variables that are
not connected through directed paths.

In a further development [Brito and Pearl 2002], we have shown that the identifi-
cation of the entire model is ensured if variables standing in direct causal relationship
(i.e., variables connected by arrows in the diagram) do not have correlated errors;
no restrictions need to be imposed on errors associated with indirect causes. This
class of models was called ”bow-free”, since their associated causal diagrams are
free of any ”bow-pattern” [Pearl 2000a] (see Figure 1).

Most existing conditions for identification in general models are based on the
concept of Instrumental Variables (IV) [Pearl 2000b; Bowden and Turkington 1984].
IV methods take advantage of conditional independence relations implied by the
model to prove the identification of specific causal-effects. When the model is not
rich in conditional independence relations, these methods are not informative. In
[Brito and Pearl 2002] we proposed a new graphical criterion for identification which
does not make direct use of conditional independence, and thus can be successfully
applied to models in which the IV method would fail.

The result presented in this paper is a generalization of the graphical version
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of the method of instrumental variables, offered by Judea Pearl [Pearl 2000a], to
deal with several parameters of the model simultaneously. The traditional method
of instrumental variables involves conditions on the independence of the relevant
variables and on the rank of a certain matrix of correlations [McFadden ]. The first
of these is captured by the notion of d-separation. As for the second, since we know
from [Wright 1934] that correlations correspond to paths in the causal diagram,
we can investigate which structural properties of the model give rise to the proper
conditions of the IV method. The results are graphical criteria that allow us to
conclude the identification of some parameters from consideration of the qualitative
information represented in the causal diagram.

3 Linear Models and Identification

A linear model for the random variables Y7, ...,Y,, is defined by a set of equations
of the form:

(1) Y;=) ¢iVite, j=1....n

An equation Y = ¢X + e encodes two distinct assumptions: (1) the possible
existence of (direct) causal influence of X on Y; and, (2) the absence of causal
influence on Y of any variable that does not appear on the right-hand side of the
equation. The parameter ¢ quantifies the (direct) causal effect of X on Y. That
is, the equation claims that a unit increase in X would result in ¢ units increase
of Y, assuming that everything else remains the same. The variable e is called an
error or disturbance; it represents unobserved background factors that the modeler
decides to keep unexplained; this variable is assumed to have a normal distribution
with zero mean.

The specification of the equations and the pairs of error-terms (e;, e;) with non-
zero correlation defines the structure of the model. This structure can be represented
by a directed graph, called causal diagram, in which the set of nodes is defined by
the variables Y7,...,Y},, and there is a directed edge from Y; to Y; if Y; appears on
the right-hand side of the equation for Y;. Additionally, if error-terms e; and e; are
assumed to have non-zero correlation, we add a (dashed) bidirected edge between
Y; and Yj. Figure 2 shows a model with the respective causal diagram.

In this work, we consider only recursive models, which are defined by the restric-
tion that cj; = 0, for all ¢ > j. This simply means that the directed edges in the
causal diagram do not form cycles.

The set of parameters of the model, denoted by ©, is formed by the coefficients
¢;; and the non-zero entries of the error covariance matrix ¥, [¥;;] = cov(e;, ;).

Fixing the structure and assigning values to the parameters ©, the model deter-
mines a unique covariance matrix Y over the observed variables Yi,...,Y,, given
by (see [Bollen 1989], page 85):

(2) 2(O©)=I-O)" (-0
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Figure 2. A simple linear model and its causal diagram.

where C' is the matrix of coefficients c;;.

Conversely, in the Identification Problem, after fixing the structure of the model,
one attempts to solve for © in terms of the observed covariance . This is not
always possible. In some cases, no parametrization of the model is compatible with
a given Y. In other cases, the structure of the model may permit several distinct
solutions for the parameters. In these cases, the model is called non-identified.

However, even if the model is non-identified, some parameters may still be
uniquely determined by the given assumptions and data. Whenever this is the
case, the specific parameters are said to be identified.

Finally, since the conditions we seek involve the structure of the model alone,
and do not depend on the numerical values of the parameters ©, we insist only on
having identification almost everywhere, allowing few pathological exceptions. The
concept of identification almost everywhere can be formalized as follows.

Let h denote the total number of parameters in the model. Then, each vector
© € R" defines a parametrization of the model. For each parametrization ©, the
model G generates a unique covariance matrix 3(0). Let O(Aq, ..., A, ) denotes the
vector of values assigned by © to the parameters A\1,..., A,.

Parameters \q,..., A\, are identified almost everywhere if

¥(0) = X(0') implies O(A1,...,A\n) = 0" (A1,..., )
except when O resides on a subset of Lebesgue measure zero of R".

4 Graph Background
DEFINITION 1.

1. A path in a graph is a sequence of edges such that each pair of consecutive
edges share a common node, and each node appears only once along the path.

2. A directed path is a path composed only by directed edges, all of them oriented
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in the same direction. If there is a directed path going from X to Y we say
that Y is a descendant of X.

3. A path is closed if it has a pair of consecutive edges pointing to their common
node (e.g., ... > X «—...or... = X «— ...). In this case, the common node
is called a collider. A path is open if it is not closed.

DEFINITION 2. A path p is blocked by a set of nodes Z (possibly empty) if either
1. Z contains some non-collider node of p, or

2. at least one collider of p and all of its descendants are outside Z.

The idea is simple. If the path is closed, then it is naturally blocked by its colliders.
However, if a collider, or one of its descendants, belongs to Z, then it ceases to be
an obstruction. But if a non-collider of p belongs to Z, then the path is definitely
blocked.

DEFINITION 3. A set of nodes Z d-separates X and Y if Z simultaneously blocks
all the paths between X and Y. If Z is empty, then we simply say that X and Y
are d-separated.

The significance of this definition comes from a result showing that if X and Y
are d-separated by Z in the causal diagram of a linear model, then the variables X
and Y are conditionally independent given Z [Pearl 2000a]. It is this sort of result
that makes the connection between the mathematical and graphical languages, and
allows us to express our conditions for identification in graphical terms.

DEFINITION 4. Let py,...,p, be unblocked paths connecting the variables 71, ..., Z,
and the variables X, ..., X,,, respectively. We say that the set of paths p1,...,p, is
incompatible if we cannot rearrange their edges to form a different set of unblocked
paths pf,...,p) between the same variables.

A set of disjoint paths (i.e., paths with no common nodes) consists in a simple
example of an incompatible set of paths.

5 Instrumental Variable Methods

5.1 Identification of a Single Parameter

The method of Instrumental Variables (IV) for the identification of causal effects is
intended to address the situation where we cannot attribute the entire correlation
between two variables, say X and Y, to their causal connection. That is, part of the
correlation between X and Y is due to common causes and/or correlations between
disturbances. Figure 3 shows examples of this situation.

In the simplest cases, like in Figure 3a, we can find a conditioning set W such
that the partial correlation of X and Y given W can indeed be attributed to the
causal relation. In this example, if we take W = {W} we eliminate the source
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Figure 3. Models with spurious correlation between X and Y.

of spurious correlation. The causal effect of X on Y is identified and given by
C=0XYW-

There are cases, however, where this idea does not work, either because the
spurious correlation is originated by disturbances outside the model (Figure 3b),
or else because the conditioning itself introduces spurious correlations (Figure 3c).
In situations like these, the IV method asks us to look for a variable Z with the
following properties [Bowden and Turkington 1984]:

IV-1. Z is not independent of X.

IV-2. Z is independent of all error terms that have an influence on Y that is not
mediated by X.

The first condition simply states that there is a correlation between Z and X.
The second condition says that the only source of correlation between Z and Y
is due to a covariation bewteen Z and X that subsequently affects Y through the
causal connection X 5 V.

If we can find a variable Z with these properties, then the causal effect of X on
Y is identified and given by ¢ = ozy /ozx.

Using the notion of d-separation we can express the conditions (1) and (2) of
the IV method in graphical terms, thus obtaining a criterion for identification that
can be applied directly to the causal diagram of the model. Let G be the graph
representing the causal diagram of the model, and let G, be the graph obtained
after removing the edge X % Y from G (see Figure 4). Then, Z is an instrumental
variable relative to X = Y if:

1. Z is not d-separated from X in G..

2. Z is d-separated from Y in G..

Using this criterion, it is easy to verify that Z is an instrumental variable relative
to X =Y in the models of Figure 3b and c.
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Figure 4. The causal diagram G of a linear model and the graph G..

5.2 Conditional Instrumental Variables

A generalization of the method of instrumental variables is offered through the use
of conditioning. A conditional instrumental variable is a variable Z that may not
have the properties (IV-1) and (IV-2) above, but after conditioning on a subset W
these properties do hold. When such pair (Z, W) is found, the causal effect of X
on Y is identified and given by ¢ = ozyw/ozx.w-

Again, we obtain a graphical criterion for a conditional IV using the notion of
d-separation. Variable Z is a conditional instrumental variable relative to X — Y

given W if
1. W contains only non-descendants of Y.
2. W does not d-separate Z from X in G..

3. W d-separates Z from Y in G..

5.3 Identification of Multiple Parameters

So far we have been concerned with the identification of a single parameter of the

model, but in its full version the method of instrumental variables allows to prove

simultaneously the identification of several parameters in the same equation (i.e.,

the causal effects of several variables X1, ..., X} on the same variable Y).
Following [McFadden ], assume that we have the equation

Y261X1+...+C]€Xk+€
in our linear model. The variables Z,..., Z;, with j > k, are called instruments if

1. The matrix of correlations between the variables X1, ..., X} and the variables

Z1,...,Z; is of maximum possible rank (i.e., rank k).

2. The variables Z1,...,Z; are uncorrelated with the error term e.
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Figure 5. The causal diagram G of a linear model and the graph G.

Next, we develop our graphical intuition and obtain a graphical criterion for
identification that corresponds to the full version of the IV method.

Consider the model in Figure 5a. Here, the variables Z; and Zs do not qualify
as instrumental variables (or even conditional IVs) with respect to either X; <Y
or Xo 23 Y. But, following ideas similar to the ones developed in the previous
sections, in Figure 5b we show the graph obtained by removing edges X; — Y and
X5 — Y from the causal diagram. Observe that now both d-separation conditions
for an instrumental variable hold for Z; and Z5. This leads to the idea that Z; and
Z5 could be used together as instruments to prove the identification of parameters
c1 and cy. Indeed, next we give a graphical criterion that is sufficient to guarantee
the identification of a subset of parameters of the model.

Fix a variable Y, and consider the edges X; = Y,..., X} % Y in the causal
diagram G of the model. Let G be the graph obtained after removing the edges
Xy =Y, ....Xy — Y from G. The variables Z;, ..., Z; are instruments relative to
X13Y,.. X, By if

1. There exists an incompatible set of unblocked paths p1, ..., pr connecting the

variables 77, ..., Zy to the variables X1,..., X}.

2. The variables Z; are d-separated from Y in G.

3. Each variable Z; is not d-separated from the corresponding variable X; in G.
2

THEOREM 5. If we can find variables Zy, ..., Zy satisfying the conditions above,
then the parameters cy, ..., c are identified almost everywhere, and can be computed

by solving a system of linear equations.

2Notice that this condition is redundant, since it follows from the first condition.
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Figure 6. More examples of the new criterion.

Figure 6 shows more examples of application of the new graphical criterion.
Model (a) illustrates an interesting case, in which variable X, is used as the in-
strumental variable for X; — Y, while Z is the instrumental variable for Xy — Y.
Finally, in model (b) we have an example in which the parameter of edge X3 — Y
is non-identified, and still the graphical criterion allows to show the identfication of
c1 and cs.

6 Wright’s Method of Path Coefficients

Here, we describe an important result introduced by Sewall Wright [Wright 1934],
which is extensively explored in our proofs.

Given variables X and Y in a recursive linear model, the correlation coefficient
of X and Y, denoted by pxy, can be expressed as a polynomial on the parameters
of the model. More precisely,

(3) oxy=>_T(p)

where the summation ranges over all unblocked paths p between X and Y, and each
term T'(p) represents the contribution of the path p to the total correlation between
X and Y. The term T(p) is given by the product of the parameters of the edges
along the path p. We refer to Equation 3 as Wright’s equation for X and Y.

Wright’s method of path coefficients for identification consists in forming Wright’s
equations for each pair of variables in the model, and then solving for the parameters
in terms of the observed correlations. Whenever there is a unique solution for a
parameter c, this parameter is identified.

7 Proof of Theorem 1
7.1 Notation

Fix a variable Y in the model. Let X = {Xj,...,X,} be the set of all non-
descendants of Y which are connected to Y by an edge. Define the following set of
edges incoming Y:
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(4) Inc(Y)={(X,,Y): X; € X}

Note that for some X; € X there may be more than one edge between X; and Y
(one directed and one bidirected). Thus, |[Inc(Y)| > |X|. Let A1,..., A\pm, m >k,
denote the parameters of the edges in Inc(Y).

It follows that edges X; = Y,...,Xx 3 Y all belong to Inc(Y), because
X1,..., X} are clearly non-descendants of Y. We assume that \; = ¢;, for i =
1,...,k, while Ag11,..., A, are the parameters of the remaining edges of Inc(Y').

Let Z be any non-descendant of Y. Wright’s equation for the pair (Z,Y") is given

by:

(5) ozy = ZT(p)

where each term T'(p) corresponds to an unblocked path p between Z and Y. The
next lemma proves a property of such paths.

LEMMA 6. Any unblocked path between Y and one of its non-descendants Z must

include ezactly one edge from Inc(Y).

Lemma 6 allows us to write equation 4 as:
m
(6) ozy =) a; A
j=1

Thus, the correlation between Z and Y can be expressed as a linear function
of the parameters A1,..., A, with no constant term. In addition, we can say
something about the coeflicients a;. Each term in Equation 5 corresponds to an

A.
unblocked path that reaches Y through some egge, say X; = Y. When we group
the terms together according to the parameter A; and factor it out, we are, in a
sense, removing the edge X; — Y from those paths. Thus, each coefficient a; in
Equation 6 is a sum of terms associated with unblocked paths between Z and X;.
7.2 Basic Linear Equations

We have just seen that the correlations between the instrumental variables Z; and
Y can be written as a linear function of the parameters Ay, ..., Ap:

(1) pzy = Zaij " Aj
j=1

Next, we prove an important result

LEMMA 7. The coefficients a; p+1,...,Qim in Equation 7 are all identically zero.

Proof. The fact that Z; is d-separated from Y in G implies that pz;y = 0in
any probability distribution compatible with G. Hence, the expression for pz,y
must vanish when evaluated in the causal diagram G. But this implies that each
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coefficient a;; in Equation 7 is identically zero, when the expression is evaluated in

G.

Next, we show that the only difference between the expression for pz,y on the
causal diagrams G and G are the coefficients of the parameters Aj,. .., Ag.

Recall from the previous section that each coefficient a;; is a sum of terms asso-

ciated with paths which can be extended by the edge X Y to form an unblocked
path between Z and Y.

Fixing 7 > k, we observe that the insertion of edges ;1 — Y,..., X — Y in
G does not create any new such path (and clearly does not eliminate any existing
one). Hence, for j > k, the coefficients a,; in the expression for pz,y in the causal
diagrams G and G are exactly the same, namely, identically zero. O

The conclusion from Lemma 7 is that the expression for pz,y is a linear function
only of parameters Ay, ..., Ag:

k
(8) pzy = Zaij Y
j=1

7.3 System of Equations ®

Writing Equation 8 for each instrumental variable Z;, we obtain the following system
of linear equations on the parameters Aq,..., Ag:

PZiY = G11A1L + ..., Q1pg
©9) &=
Pz = Gk1AL + ..., QrpAk

Our goal now is to show that ® can be solved uniquely for the parameters \;, and
so prove the identification of A1,..., A\x. Next lemma proves an important result in
this direction.

Let A denote the matrix of coeflicients of ®.

LEMMA 8. Det(A) is a non-trivial polynomial on the parameters of the model.

Proof. The determinant of A is defined as the weighted sum, for all permutations
mof (1,...,k), of the product of the entries selected by 7. Entry a;,; is selected by a
permutation 7 if the i*" element of 7 is j. The weights are either 1 or -1, depending
on the parity of the permutation.

Now, observe that each diagonal entry a; is a sum of terms associated with
unblocked paths between Z; and X;. Since p; is one such path, we can write
ai;; = T(p;) + a4 From this, it is easy to see that the term

k

10) 7* = [[ 7))

j=1
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appears in the product of permutation 7 = (1, ..., n), which selects all the diagonal
entries of A.

We prove that det(A) does not vanish by showing that T* is not cancelled out
by any other term in the expression for det(A).

Let 7 be any other term appearing in the summation that defines the determinant
of A. This term appears in the product of some permutation 7, and has as factors
exactly one term from each entry a;; selected by 7. Thus, associated with such factor
there is an unblocked path between Z; and X;. Let p1, ..., pj;. be the unblocked paths
associated with the factors of 7.

We conclude the proof observing that, since pi,...,pr is an incompatible set,
its edges cannot be rearranged to form a different set of unblocked paths between
the same variables, and so 7 # T*. Hence, the term T* is not cancelled out in the
summation, and the expression for det(A) does not vanish. O

7.4 Identification of A\{,..., )\

Lemma 8 gives that det(Q) is a non-trivial polynomial on the parameters of the
model. Thus, det(Q) only vanishes on the roots of this polynomial. However,
[Okamoto 1973] has shown that the set of roots of a polynomial has Lebesgue
measure zero. Thus, the system ® has unique solution almost everywhere.

It just remains to show that we can estimate the entries of the matrix of coeffi-
cients A from the data. But this is implied by the following observation.

Once again, coefficient a;; is given by a sum of terms associated with unblocked
paths between Z; and X;. But, in principle, not every unblocked path between Z;
and X; would contribute with a term to the sum; just those which can be extended
by the edge X; — Y to form an unblocked path between Z; and Y. However, since
the edge X; — Y does not point to X;, every unblocked path between Z; and X;
can be extended by the edge X; — Y without creating a collider. Hence, the terms
of all unblocked paths between Z; and X; appear in the expression for a;;, and by
the method of path coefficients, we have a;; = pz, x, -

We conclude that each entry of matrix A can be estimated from data, and we

can solve the system of linear equations ® to obtain the parameters Ay, ..., \.
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Seeing and Doing: The Pearlian Synthesis

PHILIP DAWID

1 Introduction

It is relatively recently that much attention has focused on what, for want of a better term,
we might call “statistical causality”, and the subject has developed in a somewhat haphaz-
ard way, without a very clear logical basis. There is in fact a variety of current conceptions
and approaches [Campaner and Galavotti 2007; Hitchcock 2007; Galavotti 2008]—here we
shall distinguish in particular agency, graphical, probabilistic and modular conceptions of
causality—that tend to be mixed together in an informal and half-baked way, based on
“definitions” that often do not withstand detailed scrutiny. In this article I try to unpick this
tangle and expose the various different strands that contribute to it. Related points, with a
somewhat different emphasis, are made in a companion paper [Dawid 2009].

The approach of Judea Pearl [2009] cuts through this Gordian knot like the sword of
Alexander. Whereas other conceptions of causality may be philosophically questionable,
definitionally unclear, pragmatically unhelpful, theoretically skimpy, or simply confused,
Pearl’s theory is none of these. It provides a valuable framework, founded on a rich and
fruitful formal theory, by means of which causal assumptions about the world can be mean-
ingfully represented, and their implications developed. Here we will examine both the rela-
tionships of Pearl’s theory with the other conceptions considered, and its differences from
them. We extract the essence of Pearl’s approach as an assumption of “modularity”, the
transferability of certain probabilistic properties between observational and interventional
regimes: so, in particular, forging a synthesis between the very different activities of “see-
ing” and “doing”. And we describe a generalisation of this framework that releases it from
any necessary connexion to graphical models.

The plan of the paper is as follows. In § 2, I describe the agency, graphical and proba-
bilistic conceptions of causality, and their connexions and distinctions. Section 3 introduces
Pearl’s approach, showing its connexions with, and differences from, the other theories.
Finally, in §4, I present the generalisation of that approach, emphasising the modularity
assumptions that underlie it, and the usefulness of the theory of “extended conditional in-
dependence” for describing and manipulating these.

Disclaimer I have argued elsewhere [Dawid 2000, 2007a, 2010] that it is important to dis-
tinguish arguments about “Effects of Causes” (EoC, otherwise termed “type”, or “generic”
causality”), from those about “Causes of Effects” (CoE, also termed “token”, or “indi-
vidual” causality); and that these demand different formal frameworks and analyses. My
concern here will be entirely focused on problems of generic causality, EoC. A number of
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the current frameworks for statistical causality, such as Rubin’s “potential response mod-
els” [Rubin 1974, 1978], or Pearl’s “probabilistic causal models” [Pearl 2009, Chapter 7],
are more especially suited for handling CoE type problems, and will not be discussed fur-
ther here. There are also numerous other conceptions of causality, such as mechanistic
causality [Salmon 1984; Dowe 2000], that I shall not be considering here.

2 Some conceptions of causality

There is no generally agreed understanding of what “causality” is or how it should behave.
There are two conceptions in particular that are especially relevant for “statistical causal-
ity”: Agency Causality and Probabilistic Causality. The latter in turn is closely related to
what we might term Graphical Causality.

2.1 Agency causality

The “agency” or “manipulability” interpretation of causality [Price 1991; Hausman 1998;
Woodward 2003] depends on an assumed notion of external “manipulation” (or “interven-
tion”), that might itself be taken as a primitive—at any rate we shall not try and explicate it
further here. The basic idea is that causality is all about how an external manipulation that
sets the value of some variable (or set of variables) X will affect some other (unmanipu-
lated) “response variable” (or set of variables) Y. The emphasis is usually on comparison
of the responses ensuing from different settings = for X: a version of the “contrastive” or
“difference-making” understanding of causality. Much of Statistical Science—for exam-
ple, the whole subfield of Experimental Design—aims to address exactly these kinds of
questions about the comparative effects of interventions on a system, which are indeed a
major object of all scientific enquiry.

We can define certain causal terms quite naturally within the agency theory [Woodward
2003]. Thus we could interpret the statement

“X has no effect on Y!

as holding whenever, considering regimes that manipulate only X, the resulting value of Y’
(or some suitable codification of uncertainty about Y, such as its probability distribution)
does not depend on the value z assigned to X. When this fails, X has an effect on Y; we
might then go on to quantify this dependence in various ways.

We could likewise interpret

“X has no (direct) effect on'Y, after controlling for W

as the property that, considering regimes where we manipulate both W and X, when we
manipulate W to some value w and X to some value z, the ensuing value (or uncertainty)
for Y will depend only on w, and not further on x.

Now suppose that, explicitly or implicitly, we restrict consideration to some collection
V of manipulable variables. Then we might interpret the statement

!Just as “zero” is fundamental to arithmetic and “independence” is fundamental to probability, so the concept
of “no effect” is fundamental to causality.
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“X is a direct cause of Y (relative to V)”

(where V might be left unmentioned, but must be clearly understood) as the negation of
“X has no direct effect on Y, after controlling for V \ {X,Y}".2

It is important to bear in mind that all these assertions relate to properties of the real
world under the various regimes considered: in particular, they can not be given purely
mathematical definitions. And in real world problems there are typically various ways of
manipulating variables, so we must be very clear as to exactly what is intended.

EXAMPLE 1. Ideal gas law

Consider the “ideal gas law™:
(1) PV =EkNT

where P is the absolute pressure of the gas, V' is its volume, IV is the number of molecules
of gas present, k is Boltzmann’s constant, and 7" is the absolute temperature. For our
current purposes this will be supposed to be universally valid , no matter how the values of
the variables in (1) may have come to arise.

Taking a fixed quantity N of gas in an impermeable container, we might consider inter-
ventions on any of P, V and T'. (Note however that, because of the constraint (1), we can
not simultaneously and arbitrarily manipulate all three variables.)

An intervention that sets V' to v and T to ¢ will lead to the unique value p = kNt /v for
P. Because this depends on both v and ¢, we can say that there is a direct effect of each of
V and T on P (relative to V = {V, P,T}). Similarly, P has a direct effect on each of V'
and 7.

What if we wish to quantify, say, “the causal effect of V on P”? Any attempt to do
this must take account of the fact that the problem requires additional specification to be
well-defined. Suppose the volume of the container can be altered by applying a force to
a piston. Initially the gas has V' = vy, P = pg, T = ty. We wish to manipulate V' to a
new value v;. If we do this isothermally, i.e. by sufficiently slow movement of the piston
that, through flow of heat through the walls of the container, the temperature of the gas
always remains the same as that of the surrounding heat bath, we will end up with V' = vy,
P =p; =wvopo/v1, T = t1 = to. Butif we move the piston adiabatically, i.e. so fast that
no heat can pass through the walls of the container, the relevant law is PVY = constant,
where v = 5/3 for a monatomic gas. Then we get V. = vy, P = pj = po(vo/v1)7,
T =t =pivi/kN.

2.2 Graphical causality
By graphical causality we shall refer to an interpretation of causality in terms of an under-
lying directed acyclic graph (DAG) (noting in passing that other graphical representations

are also possible). As a basis for this, we suppose that there is a suitable “causal ambit™ A
of variables (not all necessarily observable) that we regard as relevant, and a “causal DAG”

2Neapolitan [2003, p. 56] has a different and more complex interpretation of “direct cause”.
3The importance of the causal ambit will become apparent later.
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D over a collection ¥V C A. These ingredients are “known to Nature”, though not neces-
sarily to us: D is “Nature’s DAG”. Given such a causal DAG D, for X, Y € V we interpret
“X is a direct cause of Y as synonymous with “X is a parent of Y in D”, and similarly
equate “cause” with “ancestor in D”. One can also use the causal DAG to introduce further
graphically defined causal terms, such as “causal chain”, “intermediate variable”, ...

The concepts of causal ambit and causal DAG might be regarded as primitive notions,
or attempts might be made to define them in terms of pre-existing understandings of causal
concepts. In either case, it would be good to have criteria to distinguish a putative causal
ambit from a non-causal ambit, and a causal DAG from a non-causal DAG.

For example, we typically read [Hern4dn and Robins 2006]:
“A causal DAG D is a DAG in which:

(i). the lack of an arrow from V; to V},, can be interpreted as the absence of a direct causal effect of V;
on V,, (relative to the other variables on the graph)

(ii). all common causes, even if unmeasured, of any pair of variables on the graph are themselves on the
y p grap
4
graph.

If we start with a DAG D over V that we accept as being a causal DAG, and interpret
“direct cause” efc. in terms of that, then conditions (i) and (ii) will be satisfied by definition.
However, this begs the question of how we are to tell a causal from a non-causal DAG.

More constructively, suppose we start with a prior understanding of the term “direct
cause” (relative to V)—for example, though by no means necessarily,” based on the agency
interpretation described in § 2.1 above. It appears that we could then use the above defini-
tion to check whether a proposed DAG D is indeed “causal”. But while this is essentially
straightforward so far as condition (i) is concerned (except that there is no obvious rea-
son to require a DAG representation), interpretation and implementation of condition (ii)
is more problematic. First, what is a “common cause”? Spirtes et al. [2000, p. 44] say
that a variable X is a common cause of variables Y and Z if and only if X is both a direct
cause of Y and a direct cause of Z — but in each case relative to the set {X,Y, Z}, so
that this definition is not dependent on the causal ambit V. Neapolitan [2003, p. 57] has
a different interpretation, which apparently is relative to an essentially arbitrary set V —
but then states that that problems can arise when at least one common cause is not in V, a
possibility that seems to be precluded by his definition.

As another attempt at clarification, Spirtes and Scheines [2004] require “that the set
of variables in the causal graph be causally sufficient, i.e. if V is the set of variables in
the causal graph, that there is no variable L not in V that is a direct cause (relative to
VU {L}) of two variables in V. If “L ¢ V is not a direct cause of V' € V” is interpreted
in agency terms, it would mean that V' would not respond to manipulations of L, when
holding fixed all the other variables in V. But whatever the interpretation of direct cause,
such a “definition” of causal sufficiency is ineffective when the range of possible choices

4The motivation for this requirement is not immediately obvious, but is related to the defensibility of the causal
Markov property described in § 2.3 below.
3See §2.2 below.
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for the additional variable L is entirely unrestricted—for then how could we ever be sure
that it holds, without conducting an infinite search over all unmentioned variables L? That
is why we posit an appropriate clearly-defined “causal ambit” .4: we can then restrict the
searchto L € A.

It seems to me that we should, realistically, allow that “causality” can operate, in parallel,
at several different levels of granularity. Thus while it may or may not be possible to
describe the medical effects of aspirin treatment in terms of quantum theory, even if we
could, it would be a category error to try and do so in the context of a clinical trial. So there
may be various different causal descriptions of the world, all operating at different levels,
each with its associated causal ambit A of variables and various causal DAGs D over sets
VY C A. The meaning of any causal terms used should then be understood in relation to the
appropriate level of description.

The obvious questions to ask about graphical causality, which are however not at all easy
to answer, are: “When can a collection A of variables be regarded as a causal ambit?”, and
“When can a DAG be regarded as a causal DAG?”.

In summary, so long as we start with a DAG D over V that we are willing to accept as a
causal DAG (taken as a primitive concept), we can take )V itself as our causal ambit, and use
the structure of D to define causal terms. Without having a prior primitive notion of what
constitutes a “causal DAG”, however, conditions such as (i) and (ii) are unsatisfactory as a
definition. At the very least, they require that we have specified (but how?) an appropriate
causal ambit .4, relevant to our desired level of description, and have a clear pre-existing
understanding (i.e. not based on the structure of D, since that would be logically circular)

CLINT3

of the terms “direct causal effect”, “common cause” (perhaps relative to a set V).

Agency causality and graphical causality

It is tempting to use the agency theory as a basis for such prior causal understanding. How-
ever, graphical causality does not really sit well with agency causality. For, as seen clearly
in Example 1, in the agency intepretation it is perfectly possible for two variables each to
have a direct effect on the other—which could not hold under any DAG representation.
Similarly [Halpern and Pearl 2005; Hall 2000] there is no obvious reason to expect agency
causality to be a transitive relation, which would again be a requirement under the graphical
conception. For better or worse, the agency theory does not currently seem to be endowed
with a sufficiently rich axiomatic structure to guide manipulations of its causal properties;
and however such a general axiomatic structure might look, it would seem unduly restric-
tive to relate it closely to DAG models.

2.3 Probabilistic causality

Probabilistic Causality [Reichenbach 1956; Suppes 1970; Spohn 2001] depends on the
existence and properties of a probability distribution P over quantities of interest. At its
(over-)simplest, it equates causality with probability raising: “A is a cause of B” (where
A and B are events) if P(B | A) > P(B). This is more usefully re-expressed in its null
form, and referred to random variables X and Y: X is not a cause of Y if the distribu-
tion of Y given X is the same as the marginal distribution of Y'; and this is equivalent to
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probabilistic independence of Y from X: Y 1L X. But this is clearly unsatisfactory as it
stands, since we could have dependence between X and Y, Y I X, with, at the same time,
conditional independence given some other variable (or set of variables) Z: Y Il X | Z. If
Z can be regarded as delimiting the context in which we are considering the relationship
between X and Y, we might still regard X and Y as “causally unrelated”. Thus probabilis-
tic causality is based on conditional (in)dependence properties of probability distributions.
However there remain obvious problems in simply equating the non-symmetrical relation
of cause-and-effect with the symmetrical relation of probabilistic (in)dependence, and with
clarifying what counts as an appropriate conditioning “context” variable Z, so that addi-
tional structure and assumptions (e.g. related to an assumed “causal order”, possibly but
not necessarily temporal) are required to complete the theory.

Most modern accounts locate probabilistic causality firmly within the graphical concep-
tion — so inheriting all the features and difficulties of that approach. It is assumed that
there is a DAG D, over a suitable collection ) of variables, such that

(i). D can be interpreted as a causal DAG; and, in addition,

(ii). the joint probability distribution P of the variables in V' is Markov over D, i.e. its
probabilistic conditional independence (CI) properties are represented by the same
DAG D, according to the “d-separation” semantics described by Pearl [1986], Verma
and Pearl [1990], Lauritzen et al. [1990].

In particular, from (ii), for any V' € V, V' is independent of its non-descendants, nd(V'), in
D, given its parents, pa(V'), in D. Given the further interpretation (i) of D as a causal DAG,
this can be expressed as “V’ is independent of its non-effects, given its direct causes in V"—
the so-called causal Markov assumption. Also, (ii) implies that, for any sets of variables X
andY in D, X L Y | an(X) Nan(Y) (where an(X) denotes the set of ancestors of X in
D, including X itself): again with D interpreted as causal, this can be read as saying “X and
Y are conditionally independent, given their common causes in V”. In particular, marginal
independence (where X L Y is represented in D) holds if and only if an(X)Nan(Y) = 0,
i.e. (using (1)) “X and Y have no common cause” (including each other) in V; in the
“if” direction, this has been termed the weak causal Markov assumption [Scheines and
Spirtes 2008]. Many workers regard the causal and weak causal Markov assumptions as
compelling—but this must depend on making the “right” choice for V' (essentially, through
appropriate delineation of the causal ambit.)

Note that this conception of causality involves, simultaneously, two very different ways
of interpreting the DAG D (see Dawid [2009] for more on this). The d-separation seman-
tics by means of which we relate D to conditional independence properties of the joint
distribution P, while clearly defined, are somewhat subtle: in particular, the arrows in D
are somewhat incidental “construction lines”, that only play a small r6le in the semantics.
But as soon as we also give D an interpretation as a “causal DAG” we are into a completely
different way of interpreting it, where the arrows themselves are regarded as directly car-
rying causal meaning. Probabilistic causality can thus be thought of as the progeny of a
shotgun wedding between two ill-matched parties.
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Causal discovery

The enterprise of Causal Discovery [Spirtes et al. 2000; Glymour and Cooper 1999;
Neapolitan 2003] is grounded in this probabilistic-cum-graphical conception of causality.
There are many variations, but all share the same basic philosophy. Essentially, one anal-
yses observational data in an attempt to identify conditional independencies (possibly in-
volving unobserved variables) in the distribution from which they arise. Some of these
might be discarded as “accidental” (perhaps because they are inconsistent with an a priori
causal order); those that remain might be represented by a DAG. The hope is that this dis-
covered conditional independence DAG can also be interpreted as a causal DAG. When,
as is often the case, there are several Markov equivalent DAG representations of the dis-
covered CI relationships, which, moreover, cannot be causally distinguished on a priori
grounds (e.g. in terms of an assumed causal order), this hope can not be fully realised; but
if we can assume that one of these, at least, is a causal DAG, then at least an arrow common
to all of them can be interpreted causally.

2.4 A spot of bother

Spirtes et al. [2000] and Pearl [2009], among others, have stressed the fundamental im-
portance of distinguishing between the activities of Seeing and Doing. Seeing involves
passive observation of a system in its natural state. Doing, on the other hand, relates to the
behaviour of the system in a disturbed state brought about by external intervention. As a
simple point of pure logic, there is no reason for there to be any relationship between these
two types of behaviour of a system.

The probabilistic interpretation of causality relates solely to the seeing regime, whereas
the agency account focuses entirely on what happens in doing regimes. As such these two
interpretations inhabit totally unrelated universes. There are non-trivial foundational diffi-
culties with the probabilistic (or other graphical) interpretations of causality (what exactly
is a causal DAG? how will we know when we have got one?); on the other hand agency
causality, while less obviously problematic and perhaps more naturally appealing, does not
currently appear to offer a rich enough theory to be very useful. Even at a purely technical
level, agency and probabilistic causality have very little in common. Probabilistic causality,
through its close ties with conditional independence, has at its disposal the well-developed
theoretical machinery of that concept, while the associated graphical structure allows for
ready interpretation of concepts such as “causal pathway”. Such considerations are how-
ever of marginal relevance to agency causality, which need not involve any probabilistic or
graphical connexions.

From the point of view of a statistician, this almost total disconnect between the causal
theories relating to the regimes of seeing and doing is particularly worrying. For one of
the major purposes of “causal inference” is to draw conclusions, from purely observational
“seeing” data on a system, about “doing”’: how would the system behave were we to inter-
vene in it in certain ways? But not only is there no necessary logical connexion between
the behaviours in the different regimes, the very concepts and representations by which we
try to understand causality in the different regimes are worlds apart.
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3 The Pearlian Synthesis

Building on ideas introduced by Spirtes et al. [2000], Pearl’s approach to causality, as laid
out for example in his book [Pearl 2009],° attempts to square this circle: it combines the two
apparently incommensurable approaches of agency causality and probabilistic causality’
in a way that tries to bring together the best features of both, while avoiding many of their
individual problems and pitfalls.

Pearl considers a type of stochastic model, described by a DAG D over a collection V of
variables, that can be simultaneously interpreted in terms of both agency and probabilistic
causality. We could, if we wished, think of V as a “causal ambit”, and D as a “causal
DAG”, but little is gained (or lost) by doing so, since the interpretations of any causal terms
we may employ are provided internally by the model, rather than built on any pre-existing
causal conceptions.

In its probabilistic interpretation, such a DAG D represents the conditional indepen-
dence properties of the undisturbed system, which is supposed Markov with respect to D.
In its agency interpretation, the same DAG D is used to describe precisely how the sys-
tem responds, probabilistically, to external interventions that set the values of (an arbitrary
collection of) its variables. Specifically, such a disturbed probability distribution is sup-
posed still Markov with respect to D, and the conditional distribution of any variable V' in
V), given its parents in D, is supposed the same in all regimes, seeing or doing (except of
course those that directly set the value of V itself, say at v, for which that distribution is
replaced by the 1-point distribution at v). The “parent-child” conditional distributions thus
constitute invariant “modular components” that (with the noted exception) can be trans-
ferred unchanged from one regime to another.

We term such a causal DAG model “Pearlian”. Whether or not a certain DAG D indeed
supplies a Pearlian DAG model for a given system can never be a purely syntactical ques-
tion about its graphical structure, but is, rather, a semantic question about its relationship
with the real world: do the various regimes actually have the probabilistic properties and
relationships asserted? This may be true or false, but at least it is a meaningful question,
and it is clear in principle how it can be addressed in purely empirical fashion: by observing
and comparing the behaviours of the system under the various regimes.® A Pearlian DAG

6We in fact shall deal only with Pearl’s earlier, fully stochastic, theory. More recently (see the second-half of
Pearl [2009], starting with Chapter 7), he has moved to an interpretation of DAG models based on deterministic
functional relationships, with stochasticity deriving solely from unobserved exogenous variables. That interpre-
tation does however imply all the properties of the stochastic theory, and can be regarded as a specialisation of it.
‘We shall not here be considering any features (such as the possibility of counterfactual analysis) dependent on the
additional structure of Pearl’s deterministic approach, since these only become relevant when analysing “causes
of effects”—see Dawid [2000, 2002] for more on this.

7We have already remarked that probabilistic causality is itself the issue of an uneasy alliance between two
quite different ways of interpreting graphs. Further miscegenation with the agency conception of causality looks
like a eugenically risky endeavour!

8For this to be effective, the variables in V should have clearly-defined meanings and be observable in the
real-world. Some Pearlian models incorporate unobservable latent variables without clearly identified external
referents, in which case only the implications of such a model for the behaviour of observables can be put to
empirical test.
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model thus has the great virtue, all too rare in treatments of causality, of being totally clear
and explicit about what is being said—allowing one to accord it, in a principled way, ac-
ceptance or rejection, as deemed appropriate, in any given application. And when a system
can indeed be described by a Pearlian DAG, it is straightforward to learn (not merely qual-
itatively, but quantitatively too), from purely observational data, about the (probabilistic)
effects of any interventions on variables in the system.

3.1 Justification

The falsifiability of the property of being a Pearlian DAG (unlike, for example, the some-
what ill-defined property of being a “causal DAG”) is at once a great strength of the the-
ory (especially for those with a penchant for Karl Popper’s “falsificationist” Philosophy
of Science), and something of an Achilles’ heel. For all too often it will be impossible,
for a variety of pragamatic, ethical or financial reasons, to conduct the experiments that
would be needed to falsify the Pearlian assumptions. A lazy reaction might then simply
be to assume that a DAG found, perhaps by “causal discovery”, to represent observational
conditional independencies, but without any interventions having been applied, is indeed
Pearlian—and so also describes what would happen under interventions. While this may
well be an interesting working hypothesis to guide further experimental investigations, it
would be an illogical and dangerous point at which to conclude our studies. In particular,
further experimental investigations could well result in rejection of our assumed Pearlian
model.

Nevertheless, if forced to make a tentative judgment on the Pearlian nature, or other-
wise, of a putative DAG model® of a system, there are a number of more or less reasonable,
more or less intuitive, arguments that can be brought to bear. As a very simple example, we
would immediately reject any putative ‘“Pearlian DAG” in which an arrow goes backwards
in time,'? or otherwise conflicts with an accepted causal order. As another, if an “obser-
vational” regime itself involves an imposed physical randomisation to generate the value
of some variable X, in a way that might possibly take account of variables Z temporally
prior to X, we might reasonably regard the conditional distribution of some later variable
Y, given X and Z, as a modular component, that would be the same in a regime that in-
tervenes to set the value of X as it is in the (observational) randomisation regime.'! Such
arguments can be further extended to “natural experiments”, where it is Nature that im-
posed the external randomisation. This is the case for “Mendelian randomisation” [Didelez
and Sheehan 2007], which capitalises on the random assortment of genes under Mendelian
genetics. Other natural experiments rely on other causal assumptions about Nature: thus
the “discontinuity design” [Trochim 1984] assumes that Nature supplies continuous dose-
response cause-effect relationships. But all such justifications are, and must be, based on
(what we think are) properties of the real world, and not solely on the internal structure of

9 Assumed, for the sake of non-triviality, already to be a Markov model of its observational probabilistic
properties.

10 Assuming, as most would accept, that an intervention in a variable at some time can not affect any variable
whose value is determined at an earlier time.

11See Dawid [2009] for an attempted argument for this, as well as caveats as to its general applicability.
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the putative Pearlian DAG. In particular, they are founded on pre-existing ideas we have
about causal and non-causal processes in the world, even though these ideas may remain
unformalised and woolly: the important point is that we have enough, perhaps tacit, shared
understanding of such processes to convince both ourselves and others that they can serve as
external justification for a suggested Pearlian model. Unless we have sufficient justification
of this kind, all the beautiful analysis (e.g. in Pearl [2009]) that develops the implications
of a Pearlian model will be simply irrelevant. To echo Cartwright [1994, Chapter 2], “No
causes in, no causes out”.

4 Modularity, extended conditional independence and
decision-theoretic causality

Although Pearlian causality as described above appears to be closely tied to graphical rep-
resentation, this is really an irrelevance. We can strip it of its graphical clothing, laying
bare its core ingredient: the property that certain conditional distributions'? are the same
across several different regimes. This modular conception provides us with yet another
interpretation of causality. When, as here, the regimes considered encompass both obser-
vation (seeing) and intervention (doing), it has the great advantage over other theories of
linking those disparate universes, thus supporting causal inference.

The modularity assumption can be conveniently expressed formally in the algebraic lan-
guage of conditional independence, suitably interpreted [Dawid 1979, 2002, 2009], mak-
ing no reference to graphs. Thus let F' be a “regime indicator”, a non-stochastic parameter
variable, whose value indicates the regime whose probabilistic properties are under con-
sideration. If X and Y are stochastic variables, the “extended conditional independence”
(ECI) property

@ YIUF|X

can be interpreted as asserting that the conditional distribution of Y, for specified regime
F = f and given observed value X = =z, depends only on z and not further on the
regime f that is operating: in terms of densities we could write p(y | f, z) = p(y |
x). If F had been a stochastic variable this would be entirely equivalent to stochastic
conditional independence of Y and F' given X; but it remains meaningful, with the above
interpretation, even when F' is a non-stochastic regime indicator: Indeed, it asserts exactly
the modular nature of the conditional distribution p(y | x), as being the same across all the
regimes indicated by values of F'. Such modularity properties, when expressed in terms of
ECI, can be formally manipulated—and, in those special cases where this is possible and
appropriate, represented and manipulated graphically—in essentially the same fashion as
for regular probabilistic conditional independence.

For applications of ECI to causal inference, we would typically want one or more of the
regimes indicated by F' to represent the behaviour of the system when subjected to an inter-
vention of a specified kind—thus linking up nicely with the agency interpretation; and one

2More generally, we could usefully identify features of the different regimes other than conditional
distributions—for example, conditional expectations, or odds ratios—as modular components.
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regime to describe the undisturbed system on which observations are made—thus allowing
the possibility of “causal inference” and making links with probabilistic causality, but in a
non-graphical setting. Modularity/ECI assumptions can now be introduced, as considered
appropriate, and their implications extracted by algebraic or graphical manipulations, using
the established theory of conditional independence. We emphasise that, although the nota-
tion and technical machinery of conditional independence is being used here, this is applied
in a way that is very different from the approach of probabilistic causality: no assumptions
need be made connecting causal relationships with ordinary probabilistic conditional inde-
pendence.

Because it concerns the probabilistic behaviour of a system under interventions—a par-
ticular interpretation of agency causality—this general approach can be termed “decision-
theoretic” causality. With the emphasis now on modularity, intuitive or graphically mo-
tivated causal terms such as “direct effect” or “causal pathway” are best dispensed with
(and with them such assumptions as the causal Markov property). The decision-theoretic
approach should not be regarded as providing a philosophical foundation for “causality”,
or even as a way of interpreting causal terms, but rather as very useful machinery for ex-
pressing and manipulating whatever modularity assertions one might regard as appropriate
in a given problem.

4.1 Intervention DAGs

The assumptions that are implicit in a Pearlian model can be displayed very explicitly in
the decision-theoretic framework, by associating a non-stochastic “intervention variable”
Fx with each “domain variable” X € V. The assumed ECI properties are conveniently
displayed by means of a DAG, D*, which extends the Pearlian DAG D by adding extra
nodes for these regime indicators, and extra arrows, from F'x to X for each X € V [Spohn
1976; Spirtes et al. 2000; Pearl 2009; Dawid 2002; Dawid 2009]. If X is the set of values
for X, then that for Fiy is X U {0}: the intended interpretation is that F'x = @ (the “idle”
regime) corresponds to the purely observational regime, while F'x = x € X corresponds
to “setting” X at x.

To be precise, we specify the distribution of X € V given its parents (pa(X), Fx) in
D* (where pa(X) denotes the “domain” parents of X, in D) as follows. When Fx = (),
this is the same as the observational conditional distribution of X, given pa(X); and when
Fx = x it is just a 1-point distribution on z, irrespective of the values of pa(X). The
extended DAG D*, supplied with these parent-child specifications, is the intervention DAG
representation of the problem.

With this construction, for any settings of all the regime indicators, some to idle and
some to fixed values, the implied joint distribution of all the domain variables in that regime
is exactly as required for the Pearlian DAG interpretation. But a valuable added bonus of the
intervention DAG representation is that the Pearlian assumptions are explicitly represented.
For example, the standard d-separation semantics applied to D* allows us to read off the
ECI property X Il {Fy : Y # X} | (pa(X), Fx ), which asserts the modular property of
the conditional distribution of X given pa(X): when Fx = () (the only non-trivial case) the
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conditional distribution of X given pa(X) is the same, no matter how the other variables
are set (or left idle).

4.2 More general causal models

It is implicit in the Pearlian conception that every variable in )V should be manipulable (the
causal Markov property then follows). But there is no real reason to require this. We can
instead introduce intervention variables for just those variables that we genuinely wish to
consider as “settable”. The advantage of this is that fewer assumptions need be made and
justified, but useful conclusions can often still be drawn.

EXAMPLE 2. (Instrumental variable)

Suppose we are interested in the “causal effect” of a binary exposure variable X on some
response Y. However we can not directly manipulate X. Moreover the observational
relationship between X and Y may be distorted because of an unobserved “confounder”
variable, U, associated with both X and Y. In an attempt to evade this difficulty, we also
measure an “instrumental variable” Z.

To express our interest in the causal effect of X on Y, we introduce an intervention
variable F'x associated with X, defined and interpreted exactly as in §4.1 above. The
aim of our causal inference is to make some kind of comparison between the distributions
of the response Y in the interventional regimes, F'y = 0 and Fx = 1, corresponding
to manipulating the value of X. The available data, however, are values of (X,Y, Z)
generated under the observational regime, F'y = (). We must make some assumptions if
we are to be able to use features of that observational joint distribution to address our causal
question, and clearly these must involve some kind of transference of information across
regimes.

A useful (when valid!) set of assumptions about the relationships between all the vari-

ables in the problem is embodied in the following set of ECI properties (the “core condi-
213

tions”"” for basing causal inferences on an instrumental variable):
(U.z) 1 Fx 3)
U 1 Z| Fx “)
Y 1 Fx | (X,U) (5)
Y U Z| (X,U;Fx) (6)
X A Z|Fx=0 (7

Property (3) is to be interpreted as saying that the joint distribution of (U, Z) is independent
of the regime Fx: i.e., it is the same in all three regimes. That is to say, it is entirely
unaffected by whether, and if so how, we intervene to set the value of X. The identity of
this joint distribution across the two interventional regimes, F'x = 0 and F'x = 1, can be
interpreted as expressing a causal property: manipulating X has no (probabilistic) effect

131n addition to these core conditions, precise identification of a causal effect by means of an instrumental
variable requires further modelling assumptions, such as linear regressions [Didelez and Sheehan 2007].

320



Seeing and Doing

on the pair of variables (U, Z). Moreover, since this common joint distribution is also
supposed the same in the idle regime, F'y = (), we could in principle use observational
data to estimate it—thus opening up the possibility of causal inference.

Property (4) asserts that, in their (common) joint distribution in any regime, U and Z are
independent (this however is a purely probabilistic, not a causal, property).

Property (5) says that the conditional distribution of Y given (X, U) is the same in both
interventional regimes, as well as in the observational regime, and can thus be considered
as a modular component, fully transferable between the three regimes—again, I regard this
as expressing a causal property.

Property (6) asserts that this common conditional distribution is unaffected by further
conditioning on Z (not in itself a causal property).

Finally, property (7) requires that Z be genuinely associated with X in the observational
regime.

Of course, these ECI properties should not simply be assumed without some attempt at
justification: for example, Mendelian randomisation attempts this in the case that Z is an
inherited gene. But because we have no need to consider interventions at any node other
than X, less by way of justification is required than if we were to do so.

Once expressed in terms of ECI, these core conditions can be manipulated algebraically
using the general theory of conditional independence [Dawid 1979]. Depending on what
further modelling assumptions are made, it may then be possible to identify, or to bound,
the desired causal effect in terms of properties of the observational joint distribution of
(X,Y, Z) [Dawid 2007b, Chapter 11].

In this particular case, although the required ECI conditions are expressed without ref-
erence to any graphical representation, it is possible (though not obligatory!) to give them
one. This is shown in Figure 1. Properties (3)—(6) can be read off this DAG directly using
the standard d-separation semantics. (Property (7) is only represented under a further as-
sumption that the graphical representation is faithful.) We term such a DAG an augmented
DAG: it differs from a Pearlian DAG in that some, but not necessarily all, variables have
associated intervention indicators.

(X

Fy

[~

Figure 1. Instrumental variable: Augmented DAG representation

Just as for regular CI, it is possible for a collection of ECI properties, constituting a
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‘\/ %é— - \;‘

v ‘ fF\

Figure 2. Two Markov-equivalent augmented DAGs

decision-theoretic causal model, to have no (augmented) DAG representation, or more than
one. This latter is the case for Figure 2, where the direction of the arrow between U and
V' is not determined. This emphasises that, even when we do have an augmented DAG
representation, we can not necessarily interpret the direction of an arrow in it as directly re-
lated to the direction of causality. Even in Figure 1 (and in spite of the natural connotation
of the term “instrument”), the arrow pointing from Z to X is not be interpreted as neces-
sarily causal, since the dependence between Z and X could be due to a “common cause”
U™ without affecting the ECI properties (3)—(6) [Dawid 2009], and Figure 1 is merely a
graphical representation of these properties, based on d-separation semantics. In particu-
lar, one should be cautious of using an augmented DAG, which is nothing but a way of
representing certain ECI statements, to introduce graphically motivated concepts such as
“causal pathway”. The general decision-theoretic description of causality via modularity,
expressed in terms of ECI properties, where there is no requirement that the assumptions
be representable by means of an augmented DAG at all, allows us to evade some of the
restrictions of graphical causality, while still retaining a useful “agency-cum-probabilistic”
causal theory.

The concept of an “interventional regime” can be made much more general, and in par-
ticular we need not require that it have the properties assumed above for an intervention
variable associated with a domain variable. We could, for example, incorporate “fat hand”
interventions that do not totally succeed in their aim of setting a variable to a fixed value, or
interventions (such as kicking the system) that simultaneously affect several domain vari-
ables [Duvenaud et al. 2009]. So long as we understand what such regimes refer to in
the real world, and can make and justify assumptions of modularity of appropriate con-
ditional distributions as we move across regimes, we can apply the decision-theoretic ECI
machinery. And at this very general level we can even apply a variant of “causal discovery”
algorithms—so long as we can make observations under all the regimes considered.'* For
example, if we can observe (X,Y") under the different regimes described by F', we can
readily investigate the validity of the ECI property X 1l F' | Y using standard tests (e.g.

140r we might make parametric modelling assumptions about the relationships across regimes, to fill in for
regimes we are not able to observe. This would be required for example when want to consider the effect of
setting the value of a continuous “dose” variable. At this very general level we can even dispense entirely with
the assumption of modular conditional distributions [Duvenaud et al. 2009].
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the x2-test) for conditional independence. Such discovered ECI properties (whether or not
they can be expressed graphically) can then be used to model the “causal structure” of the
problem.

5 Conclusion

Over many years, Judea Pearl’s original and insightful approach to understanding uncer-
tainty and causality have had an enormous influence on these fields. They have certainly
had a major influence on my own research directions: I have often—as evidenced by this
paper—found myself following in his footsteps, picking up a few crumbs here and there
for further digestion.

Pearl’s ideas do not however exist in a vacuum, and I believe it is valuable both to relate
them to their precursors and to assess the ways in which they may develop. In attempting
this task I fully acknowledge the leadership of a peerless researcher, whom I feel honoured
to count as a friend.
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Effect Heterogeneity and Bias in
Main-Effects-Only Regression Models

FELIX ELWERT AND CHRISTOPHER WINSHIP

1 Introduction

The overwhelming majority of OLS regression models estimated in the social sciences,
and in sociology in particular, enter all independent variables as main effects. Few re-
gression models contain many, if any, interaction terms. Most social scientists would
probably agree that the assumption of constant effects that is embedded in main-effects-
only regression models is theoretically implausible. Instead, they would maintain that
regression effects are historically and contextually contingent; that effects vary across
individuals, between groups, over time, and across space. In other words, social scien-
tists doubt constant effects and believe in effect heterogeneity.

But why, if social scientists believe in effect heterogeneity, are they willing to substan-
tively interpret main-effects-only regression models? The answer—not that it’s been
discussed explicitly—lies in the implicit assumption that the main-effects coefficients in
linear regression represent straightforward averages of heterogeneous individual-level
causal effects.

The belief in the averaging property of linear regression has previously been chal-
lenged. Angrist [1998] investigated OLS regression models that were correctly specified
in all conventional respects except that effect heterogeneity in the main treatment of in-
terest remained unmodeled. Angrist showed that the regression coefficient for this
treatment variable gives a rather peculiar type of average—a conditional variance
weighted average of the heterogeneous individual-level treatment effects in the sample. If
the weights differ greatly across sample members, the coefficient on the treatment vari-
able in an otherwise well-specified model may differ considerably from the arithmetic
mean of the individual-level effects among sample members.

In this paper, we raise a new concern about main-effects-only regression models.
Instead of considering models in which heterogeneity remains unmodeled in only one
effect, we consider standard linear path models in which unmodeled heterogeneity is
potentially pervasive.

Using simple examples, we show that unmodeled effect heterogeneity in more than one
structural parameter may mask confounding and selection bias, and thus lead to biased
estimates. In our simulations, this heterogeneity is indexed by latent (unobserved) group
membership. We believe that this setup represents a fairly realistic scenario—one in
which the analyst has no choice but to resort to a main-effects-only regression model
because she cannot include the desired interaction terms since group-membership is un-
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observed. Drawing on Judea Pearl’s theory of directed acyclic graphs (DAG) [1995,
2009] and VanderWeele and Robins [2007], we then show that the specific biases we
report can be predicted from an analysis of the appropriate DAG. This paper is intended
as a serious warning to applied regression modelers to beware of unmodeled effect het-
erogeneity, as it may lead to gross misinterpretation of conventional path models.

We start with a brief discussion of conventional attitudes toward effect heterogeneity in
the social sciences and in sociology in particular, formalize the notion of effect heteroge-
neity, and briefly review results of related work. In the core sections of the paper, we use
simulations to demonstrate the failure of main-effects-only regression models to recover
average causal effects in certain very basic three-variable path models where unmodeled
effect heterogeneity is present in more than one structural parameter. Using DAGs, we
explain which constellations of unmodeled effect heterogeneity will bias conventional
regression estimates. We conclude with a summary of findings.

2 A Presumed Averaging Property of Main-Effects-Only Regression
2.1 Social Science Practice

The great majority of empirical work in the social sciences relies on the assumption of
constant coefficients to estimate OLS regression models that contain nothing but main
effect terms for all variables considered.! Of course, most researchers do not believe that
real-life social processes follow the constant-coefficient ideal of conventional regression.
For example, they aver that the effect of marital conflict on children’s self-esteem is
larger for boys than for girls [Amato and Booth 1997]; or that the death of a spouse in-
creases mortality more for white widows than for African American widows [Elwert and
Christakis 2006]. When pressed, social scientists would probably agree that the causal
effect of almost any treatment on almost any outcome likely varies from group to group,
and from person to person.

But if researchers are such firm believers in effect heterogeneity, why is the constant-
coefficients regression model so firmly entrenched in empirical practice? The answer lies
in the widespread belief that the coefficients of linear regression models estimate aver-
ages of heterogeneous parameters—average causal effects—representing the average of
the individual-level causal effects across sample members. This (presumed) averaging
property of standard regression models is important for empirical practice for at least
three reasons. First, sample sizes in the social sciences are often too small to investigate
effect heterogeneity by including interaction terms between the treatment and more than a
few common effect modifiers (such as sex, race, education, income, or place of resi-
dence); second, the variables needed to explicitly model heterogeneity may well not have
been measured; third, and most importantly, the complete list of effect modifiers along
which the causal effect of treatment on the outcome varies is typically unknown (indeed,
unknowable) to the analyst in any specific application. Analysts thus rely on faith that

'Whether a model requires an interaction depends on the functional form of the dependent and/or
independent variables. For example, a model with no interactions in which the independent vari-
ables are entered in log form, would require a whole series of interactions in order to approximate
this function if the independent variables where entered in nonlog form.
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their failure to anticipate and incorporate all dimensions of effect heterogeneity into re-
gression analysis simply shifts the interpretation of regression coefficients from
individual-level causal effects to average causal effects, without imperiling the causal
nature of the estimate.

2.2 Defining Effect Heterogeneity

We start by developing our analysis of the consequences of causal heterogeneity within
the counterfactual (potential outcomes) model. For a continuous treatment T&(-00,0), let
T =t denote some specific treatment value and T = 0 the control condition. Y(t); is the
potential outcome of individual i for treatment T = t, and Y(0); is the potential outcome of
individual i for the control condition. For a particular individual, generally only one
value of Y(t); will be observed. The individual-level causal effect (ICE) of treatment
level T =t compared to T = 0 is then defined as: 9;; = Y(t); =Y (0); (or §;, for short, if T is
binary).

Since 0;; is generally not directly estimable, researchers typically attempt estimating
the average causal effect (ACE) for some sample or population:

N
8, =8 /N
i=1
We say that the effect of treatment T is heterogeneous if: 8, = 8, for at least one i.

In other words, effect heterogeneity exists if the causal effect of the treatment differs
across individuals. The basic question of this paper is whether a regression estimate for
the causal effect of the treatment can be interpreted as an average causal effect if effect
heterogeneity is present.

2.3 Regression Estimates as Conditional Variance Weighted Average Causal Effects

The ability of regression to recover average causal effects under effect heterogeneity has
previously been challenged by Angrist [1998].> Here, we briefly sketch the main result.
For a binary treatment, T=0,1, Angrist assumed a model where treatment was ignorable
given covariates X and the effect of treatment varied across strata defined by the values
of X. He then analyzed the performance of an OLS regression model that properly
controlled for confounding in X but was misspecified to include only a main effect term
for T and no interactions between T and X. Angrist showed that the regression estimate
for the main effect of treatment can be expressed as a weighted average of stratum-
specific treatment effects, albeit one that is difficult to interpret. For each stratum defined
by fixed values of X, the numerator of the OLS estimator has the form BXWXP(XZX),3
where 0y is the stratum-specific causal effect and P(X=x) is the relative size of the stra-
tum in the sample. The weight, W,, is a function of the propensity score, P,=P(T=1 | X),
associated with the stratum, W, = P, (1- Py), which equals the stratum-specific variance of
treatment. This variance, and hence the weight, is largest if P,=.5 and smaller as P, goes
toOor 1.

“This presentation follows Angrist [1998] and Angrist and Pischke [2009].
3The denominator of the OLS estimator is just a normalizing constant that does not aid intuition.
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If the treatment effect is constant across strata, these weights make good sense. OLS
gives the minimum variance linear unbiased estimator of the model parameters under
homoscedasticity assuming correct specification of the model. Thus in a model without
interactions between treatment and covariates X the OLS estimator gives the most weight
to strata with the smallest variance for the estimated within-stratum treatment effect,
which, not considering the size of the strata, are those strata with the largest treatment
variance, i.e. with the P, that are closest to .5. However, if effects are heterogeneous
across strata, this weighting scheme makes little substantive sense: in order to compute
the average causal effect, 8, as defined above, we would want to give the same weight to
every individual in the sample. As a variance-weighted estimator, however, regression
estimates under conditions of unmodeled effect heterogeneity do not give the same
weight to every individual in the sample and thus do not converge to the (unweighted)
average treatment effect.

3 Path Models with Pervasive Effect Heterogeneity

Whereas Angrist analyzed a misspecified regression equation that incorrectly assumed no
treatment-covariate interaction for a single treatment variable, we investigate the ability
of a main-effects-only regression model to recover unbiased average causal effects in
simple path models with unmodeled effect heterogeneity across multiple parameters.

Setup: To illustrate how misleading the belief in the averaging power of the constant-
coefficient model can be in practice, we present simulations of basic linear path models,
shown in summary in Figure 1 (where we have repressed the usual uncorrelated error
terms).

B._ B
A“/f \:C
Y

Figure 1. A simple linear path model

To introduce effect heterogeneity, let G = 0, 1 index membership in a latent group and
permit the possibility that the three structural parameters o, f3, and y vary across (but not
within) levels of G. The above path model can then be represented by two linear equa-
tions: B = Aog + e¢g and C = Ayg + BB + ec. In our simulations, we assume that
A~N(0,1) and &g, and ¢c are iid N(0,1), and hence all variables are normally distributed.
From these equations, we next simulate populations of N=100,000 observations, with
P(G=1) = P(G=0) = 1/2. We start with a population in which all three parameters are
constant across the two subgroups defined by G, and then systematically introduce effect
heterogeneity by successively permitting the structural parameters to vary by group,
yielding one population for each of the 2° = 8 possible combinations of constant/varying
parameters. To fix ideas, we choose the group-specific parameter values shown in Table
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1. For simulations in which one or more parameters do not vary by group, we set the
constant parameter(s) to the average of the group specific parameters, e.g. o = (a9 + a)/2.

Table 1: Group-specific structural parameters for simulations

oG Bo Yo

Group:
G=0 0.4 0.5 0.6
G=1 1.2 2.5 1.4
Average 0.8 1.5 1.0

Finally, we estimate a conventional linear regression model for the effects of A and B
on C using the conventional default specification, in which all variables enter as main
effects only, C = Ay + Bp + &. (Note that G is latent and therefore cannot be included in
the model.) The parameter, y refers to the direct effect of A on C holding B constant, and
B refers to the total effect of B on C.* In much sociological and social science research,
this main-effects regression model is intended to recover average structural (causal)
effects, and is commonly believed to be well suited for the purpose.

Results: Table 2 shows the regression estimates for the main effect parameters across
the eight scenarios of effect heterogeneity. We see that the main effects regression model
correctly recovers the desired (average) parameters, y=1 and f=1.5 if none of the pa-
rameters vary across groups (column 1), or if only one of the three parameters varies
(columns 2-4).

Other constellations of effect heterogeneity, however, produce biased estimates. If og
and Bg (column 5); or ag and yg (column 6); or ag, Bg, and yg (column 8) vary across
groups, the main-effects-only regression model fails to recover the true (average) pa-
rameter values known to underlie the simulations. For our specific parameter values, the
estimated (average) effect of B on C in these troubled scenarios is always too high, and
the estimated average direct effect of A on C is either too high or too low. Indeed, if we
set y=0 but let o and PBg vary across groups, the estimate for y in the main-effects-only
regression model would suggest the presence of a direct effect of A on C even though it
is known by design that no such direct effect exists (not shown).

Failure of the regression model to recover the known path parameters is not merely a
function of the number of paths that vary. Although none of the scenarios in which fewer
than two parameters vary yield incorrect estimates, and the scenario in which all three
parameters vary is clearly biased, results differ for the three scenarios in which exactly
two parameters vary. In two of these scenarios (columns 5 and 6), regression fails to
recover the desired (average) parameters, while regression does recover the correct
average parameters in the third scenario (column 7).

“The notion of direct and indirect effects is receiving deserved scrutiny in important recent work
by Robins and Greenland [1992]; Pearl [2001]; Robins [2003]; Frangakis and Rubin [2002]; Sobel
[2008]; and VanderWeele [2008].
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Table 2:  OLS regression estimates for the main effects of A and B on C across eight different
combinations of effect heterogeneity in a, f3,and/or y

) @ 3) “) )] ©) )] ®)

Heterogeneity in: - o B Y a, [} a, Yy B, Y o, B7 Y
Group: GO GI GO GI GO GI GO GI GO GI GO G1 GO Gl GO GlI
o 0.8 04 1.2 0.8 0.8 0412 0412 0.8 04 1.2
B 1.5 1.5 0.5 2.5 1.5 0.5 2.5 1.5 0525 05 25
Y 1.0 1.0 1.0 0.6 1.4 1.0 06 14 06 1.4 0.6 14
Pooled OLS estimate:
B 1.50 1.50 1.50 1.50 1.77 1.64 1.50 1.91
Y 1.00 1.00 1.00 1.00 1.17 0.89 1.00 1.07

Note: Bold estimates are biased for the true (average) parameters. Results from independent simu-

lations of N=100,000 for each scenario using (group-specific) parameters listed above. See text for
details.

In sum, the naive main-effects-only linear regression model recovers the correct (aver-
age) parameter values only under certain conditions of limited effect heterogeneity, and it
fails to recover the true average effects in certain other scenarios, including the scenario
we consider most plausible in the majority of sociological applications, i.e., where all
three parameters vary across groups. If group membership is latent—because group
membership is unknown to or unmeasured by the analyst— and thus unmodeled, linear
regression generally will fail to recover the true average effects.

4 DAGS to the Rescue

These results spell trouble for empirical practice in sociology. Judea Pearl’s work on cau-
sality and directed acyclic graphs (DAGs) [1995, 2009] offers an elegant and powerful
approach to understanding the problem. Focusing on the appropriate DAGs conveys the
critical insight for the present discussion that effect heterogeneity, rather than being a
nuisance that is easily averaged away, encodes structural information that analysts ignore
at their peril.

Pearl’s DAGs are nonparametric path models that encode causal dependence between
variables: an arrow between two variables indicates that the second variable is causally
dependent on the first (for detailed formal expositions of DAGs, see Pearl [1995, 2009];
for less technical introductions see Robins [2001]; Greenland, Pearl and Robins [1999] in
epidemiology, and Morgan and Winship [2007] in sociology). For example, the DAG in
Figure 2 indicates that Z is a function of X and Y, Z= f(X,Y,¢&z), where ¢ is an unob-
served error term independent of (X,Y).

In a non-parametric DAG—as opposed to a conventional social science path model—
the term f( ) can be any function. Thus, the DAG in Figure 2 is consistent with a linear
structural equation in which X only modifies (i.e. introduces heterogeneity into) the effect
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of Y on Z, Z=YE + YXq + ¢ In the language of VanderWeele and Robins [2007], who
provide the most extensive treatment of effect heterogeneity using DAGs to date, one
may call X a “direct effect modifier” of the effect of Y on Z. The point is that a variable
that modifies the effect of Y on Z is causally associated with Z, as represented by the
arrow from X to Z.

Figure 2. DAG illustrating direct effect modification of the effect of Y on Z in X

Returning to our simulation, one realizes that the social science path model of Figure 1,
although a useful tool for informally illustrating the data generation process, does not,
generally, provide a sufficiently rigorous description of the causal structure underlying
the simulations. Figure 1, although truthfully representing the separate data generating
mechanism for each group and each individual in the simulated population, is not the
correct DAG for the pooled population containing groups G = 0 and G = 1 for all of the
heterogeneity scenarios considered above. Specifically, in order to turn the informal
social science path model of Figure 1 into a DAG, one would have to integrate the source
of heterogeneity, G, into the picture. How this is to be done depends on the structure of
heterogeneity. If only Bg (the effect of B on C) and/or yg (the direct effect of A on C
holding B constant) varied with G, then one would add an arrow from G into C. If ag
(the effect of A on B) varied with G, then one would add an arrow from G into B. The
DAG in Figure 3 thus represents those scenarios in which ag as well as either B¢ or yg, or
both, vary with G (columns 5, 6, and 8). Interpreted in terms of a linear path model, this
DAG is consistent with the following two structural equations: B = Aay + AGa, + egand
C = Ayo + AGy; + BBy + BGB; + gc (where the iid errors, €, have been omitted from the
DAG and are assumed to be uncorrelated).’

In our analysis, mimicking the reality of limited observational data with weak substan-
tive theory, we have assumed that A, B, and C are observed, but that G is not observed. It
is immediately apparent that the presence of G in Figure 3 means that, first, G is a
confounder for the effect of B on C; and, second, that B is a “collider” [Pearl 2009] on

3t is also consistent with an equation that adds a main effect of X. For the purposes of this paper
it does not matter whether the main effect is present.

By construction of the example, we assume that A is randomized and thus marginally
independent of G. Note, however, that even though G is mean independent of B and C (no main
effect of G on either B or C), G is not marginally independent of B or C because
var(B|G=1)#var(B|G=0) and var(C|G=1)#var(C|G=0), which explains the arrows from G into B and
C. Adding main effects of G on B and C would not change the arguments presented here.
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the path from A to C via B and G. Together, these two facts explain the failure of the
main-effects-only regression model to recover the true parameters in panels 5, 6, and 8:
First, in order to recover the effect of B on C, 3, one would need to condition on the con-
founders A and G. But G is latent so it cannot be conditioned on. Second, conditioning on
the collider B in the regression opens a “backdoor path” from A to C via B and G (when
G is not conditioned on), i.e. it induces a non-causal association between A and C,
creating selection bias in the estimate for the direct effect of A on C, y [Pearl 1995, 2009;
Hernan et al 2004]. Hence, both coefficients in the main-effects-only regression model
will be biased for the true (average) parameters.

G

e

B

A > C

Figure 3. DAG consistent with effect modification of the effects of A on B, and B
on C and/or A on C, in G

By contrast, if G modifies neither § nor v, then the DAG would not contain an arrow
from G into C; and if G does not modify a then the DAG would not contain an arrow
from G into B. Either way, if either one (or both) of the arrows emanating from G are
missing, then G is not a confounder for the effect of B on C, and conditioning on B will
not induce selection bias by opening a backdoor path from A to C. Only then would the
main effects regression model be unbiased and recover the true (average) parameters, as
seen in panels 1-4 and 7.

In sum, Pearl’s DAGs neatly display the structural information encoded in effect het-
erogeneity [VanderWeele and Robins 2007]. Consequently, Pearl’s DAGs immediately
draw attention to problems of confounding and selection bias that can occur when more
than one effect in a causal system varies across sample members. Analyzing the appro-
priate DAG, the failure of main-effects-only regression models to recover average struc-
tural parameters in certain constellations of effect heterogeneity becomes predictable.

5 Conclusion

This paper considered a conventional structural model of a kind commonly used in the
social sciences and explored its performance under various basic scenarios of effect het-
erogeneity. Simulations show that the standard social science strategy of dealing with
effect heterogeneity—by ignoring it—is prone to failure. In certain situations, the main-
effects-only regression model will recover the desired quantities, but in others it will not.
We believe that effect heterogeneity in all arrows of a path model is plausible in many, if
not most, substantive applications. Since the sources of heterogeneity are often not theo-
rized, known, or measured, social scientists continue routinely to estimate main-effects-
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only regression models in hopes of recovering average causal effects. Our examples
demonstrate that the belief in the averaging powers of main-effects-only regression mod-
els may be misplaced if heterogeneity is pervasive, as estimates can be mildly or wildly
off the mark. Judea Pearl’s DAGs provide a straightforward explanation for these diffi-
culties—DAGs remind analysts that effect heterogeneity may encode structural infor-
mation about confounding and selection bias that requires consideration when designing
statistical strategies for recovering the desired average causal effects.

Acknowledgments: We thank Jamie Robins for detailed comments on a draft version of
this paper, and Michael Sobel, Stephen Morgan, Hyun Sik Kim, and Elizabeth Wrigley-
Field for advice. Genevieve Butler provided editorial assistance.
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Causal and Probabilistic Reasoning
in P-log

MicHAEL GELFOND AND NELSON RUSHTON

1 Introduction

In this paper we give an overview of the knowledge representation (KR) language P-
log [Baral, Gelfond, and Rushton 2009] whose design was greatly influenced by work
of Judea Pearl. We introduce the syntax and semantics of P-log, give a number of
examples of its use for knowledge representation, and discuss the role Pearl’s ideas
played in the design of the language. Most of the technical material presented in
the paper is not new. There are however two novel technical contributions which
could be of interest. First we expand P-log semantics to allow domains with infinite
Herbrand bases. This allows us to represent infinite sequences of random variables
and (indirectly) continuous random variables. Second we generalize the logical base
of P-log which improves the degree of elaboration tolerance of the language.

The goal of the P-log designers was to create a KR-language allowing natural
and elaboration tolerant representation of commonsense knowledge involving logic
and probabilities. The logical framework of P-log is Answer Set Prolog (ASP) —
a language for knowledge representation and reasoning based on the answer set se-
mantics (aka stable model semantics) of logic programs [Gelfond and Lifschitz 1988;
Gelfond and Lifschitz 1991]. ASP has roots in declarative programing, the syntax
and semantics of standard Prolog, disjunctive databases, and non-monotonic logic.
The semantics of ASP captures the notion of possible beliefs of a reasoner who
adheres to the rationality principle which says that “One shall not believe anything
one is not forced to believe”. The entailment relation of ASP is non-monotonic?,
which facilitates a high degree of elaboration tolerance in ASP theories. ASP allows
natural representation of defaults and their exceptions, causal relations (including
effects of actions), agents’ intentions and obligations, and other constructs of natural
language. ASP has a number of efficient reasoning systems, a well developed math-
ematical theory, and a well tested methodology of representing and using knowledge
for computational tasks (see, for instance, [Baral 2003]). This, together with the
fact that some of the designers of P-log came from the ASP community made the
choice of a logical foundation for P-log comparatively easy.

1Roughly speaking, a language L is monotonic if whenever II; and Il2 are collections of state-
ments of L with II; C Ila, and W is a model of Ila, then W is a model of IT;. A language which
is not monotonic is said to be nonmonotonic.
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The choice of a probabilistic framework was more problematic and that is where
Judea’s ideas played a major role. Our first problem was to choose from among
various conceptualizations of probability: classical, frequentist, subjective, etc. Un-
derstanding the intuitive readings of basic language constructs is crucial for a soft-
ware/knowledge engineer — probably more so than for a mathematician who may
be primarily interested in their mathematical properties. Judea Pearl in [Pearl 1988]
introduced the authors to the subjective view of probability — i.e. understanding
of probabilities as degrees of belief of a rational agent — and to the use of subjective
probability in AI. This matched well with the ASP-based logic side of the language.
The ASP part of a P-log program can be used for describing possible beliefs, while
the probabilistic part would allow knowledge engineers to quantify the degrees of
these beliefs.

After deciding on an intuitive reading of probabilities, the next question was
which sorts of probabilistic statements to allow. Fortunately, the question of concise
and transparent representation of probability distributions was already addressed by
Judea in [Pearl 1988], where he showed how Bayesian nets can be successfully used
for this purpose. The concept was extended in [Pearl 2000] where Pearl introduced
the notion of Causal Bayesian Nets (CBN’s). Pearl’s definition of CBN’s is pioneer-
ing in three respects. First, he gives a framework where nondeterministic causal
relations are the primitive relations among random variables. Second, he shows how
relationships of correlation and (classical) independence emerge from these causal
relationships in a natural way; and third he shows how this emergence is faithful to
our intuitions about the difference between causality and (mere) correlation.

As we mentioned above, one of the primary desired features in the design of P-log
was elaboration tolerance — defined as the ability of a representation to incorpo-
rate new knowledge with minimal revision [McCarthy 1999]. P-log inherited from
ASP the ability to naturally incorporate many forms of new logical knowledge. An
extension of ASP, called CR-Prolog, further improved this ability [Balduccini and
Gelfond 2003]. The term “elaboration tolerance” is less well known in the field of
probabilistic reasoning, but one of the primary strengths of Bayes nets as a repre-
sentation is the ability to systematically and smoothly incorporate new knowledge
through conditioning, using Bayes Theorem as well as algorithms given by Pearl
[Pear] 1988] and others. Causal Bayesian Nets carry this a step further, by allowing
us to formalize interventions in addition to (and as distinct from) observations, and
smoothly incorporate either kind of new knowledge in the form of updates. Thus
from the standpoint of elaboration tolerance, CBN’s were a natural choice as a
probabilistic foundation for P-log.

Another reason for choosing CBN’s is that we simply believe Pearl’s distinction
between observations and interventions to be central to commonsense probabilistic
reasoning. It gives a precise mathematical basis for distinguishing between the
following questions: (1) what can I expect to happen given that I observe X = z,
and (2) what can I expect to happen if 1 intervene in the normal operation of
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a probabilistic system by fixing value of variable X to 27 These questions could
in theory be answered using classical methods, but only by creating a separate
probabilistic model for each question. In a CBN these two questions may be treated
as conditional probabilities (one conditioned on an observation and the other on an
action) of a single probabilistic model.

P-log carries things another step. There are many actions one could take to
manipulate a system besides fixing the values of (otherwise random) variables —
and the effects of such actions are well studied under headings associated with
ASP. Moreover, besides actions, there are many sorts of information one might
gain besides those which simply eliminate possible worlds: one may gain knowledge
which introduces new possible worlds, alters the probabilities of possible worlds,
introduces new logical rules, etc. ASP has been shown to be a good candidate for
handling such updates in non-probabilistic settings, and our hypothesis was that it
would serve as well when combined with a probabilistic representation. Thus some of
the key advantages of Bayesian nets, which are amplified by CBN’s, show plausible
promise of being even further amplified by their combination with ASP. This is the
methodology of P-log: to combine a well studied method for elaboration tolerant
probabilistic representations (CBN’s) with a well studied method for elaboration
tolerant logical representations (ASP).

Finally let us say a few words about the current status of the language. It is com-
paratively new. The first publication on the subject appeared in [Baral, Gelfond,
and Rushton 2004], and the full journal paper describing the language appeared
only recently in [Baral, Gelfond, and Rushton 2009]. The use of P-log for knowl-
edge representation was also explored in [Baral and Hunsaker 2007] and [Gelfond,
Rushton, and Zhu 2006]. A prototype reasoning system based on ASP computa-
tion allowed the use of the language for a number of applications (see, for instance,
[Baral, Gelfond, and Rushton 2009; Pereira and Ramli 2009]). We are currently
working on the development and implementation of a more efficient system, and on
expanding it to allow rules of CR-Prolog. Finding ways for effectively combining
ASP-based computational methods of P-log with recent advanced algorithms for
Bayesian nets is probably one of the most interesting open questions in this area.

The paper is organized as follows. Section 2 contains short introduction to ASP
and CR-Prolog. Section 3 describes the syntax and informal semantics of P-log,
illustrating both through a nontrivial example. Section 4 gives another example,
similar in nature to Simpson’s Paradox. Section 5 states a new theorem which
extends the semantics of P-log from that given in [Baral, Gelfond, and Rushton
2009] to cover programs with infinitely many random variables. The basic idea of
Section 5 is accessible to a general audience, but its technical details require an
understanding of the material presented in [Baral, Gelfond, and Rushton 2009].
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2 Preliminaries

This section contains a description of syntax and semantics of both ASP and CR-
Prolog. In what follows we use a standard notion of a sorted signature from classical
logic. Terms and atoms are defined as usual. An atom p(t) and its negation —p(¥)
are referred to as literals. Literals of the form p(f) and —p(t) are called contrary.
ASP and CR-Prolog also contain connectives not and or which are called default
negation and epistemic disjunction respectively. Literals possibly preceded by de-
fault negation are called extended literals.

An ASP program is a pair consisting of a signature o and a collection of rules of
the form
loor ... orly —lmy1,.-.,lg,not lgy1,...,not l, (1)

where [’s are literals. The right-hand side of of the rule is often referred to as the
rule’s body, the left-hand side as the rule’s head.

The answer set semantics of a logic program II assigns to II a collection of answer
sets — partial interpretations? corresponding to possible sets of beliefs which can be
built by a rational reasoner on the basis of rules of II. In the construction of such
a set S, the reasoner is assumed to be guided by the following informal principles:

e S must satisfy the rules of II;

e the reasoner should adhere to the rationality principle, which says that one
shall not believe anything one is not forced to believe.

To understand the former let us consider a partial interpretation S viewed as a
possible set of beliefs of our reasoner. A ground atom p is satisfied by S if p € S,
i.e., the reasoner believes p to be true. According to the semantics of our connectives
—p means that p is false. Consequently, —p is satisfied by S iff =p € S, i.e., the
reasoner believes p to be false. Unlike —p, not p has an epistemic character and is
read as there is no reason to believe that p is true. Accordingly, S satisfies not [ if
I ¢ S. (Note that it is possible for the reasoner to believe neither p nor —p). An
epistemic disjunction Iy or [ is satisfied by S if I; € S or I3 € S, i.e., the reasoner
believes at least one of the disjuncts to be true. Finally, S satisfies the body (resp.,
head) of rule (1) if S satisfies all of the extended literals occurring in its body (resp.,
head); and S satisfies rule (1) if S satisfies its head or does not satisfy its body.

What is left is to capture the intuition behind the rationality principle. This will
be done in two steps.

DEFINITION 1 (Answer Sets, Part I). Let program IT consist of rules of the form:
lpor ...orly —1liy1,..., .

An answer set of II is a consistent set S of ground literals such that:

2By partial interpretation we mean a consistent set of ground literals of o (IT).
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e S satisfies the rules of II.

e S is minimal; i.e., no proper subset of S satisfies the rules of II.

The rationality principle here is captured by the minimality condition. For example,
it is easy to see that { } is the only answer set of program consisting of the single
rule p « p, and hence the reasoner associated with it knows nothing about the
truth or falsity of p. The program consisting of rules

p(a).
q(a) or q(b) « p(a).

has two answer sets: {p(a),q(a)} and {p(a),q(b)}. Note that no rule requires the
reasoner to believe in both ¢(a) and ¢(b). Hence he believes that the two formulas
p(a) and (q(a) or q(b)) are true, and that —p(a) is false. He remains undecided,
however, about, say, the two formulas p(b) and (—¢(a) or —¢q(b)). Now let us consider
an arbitrary program:

DEFINITION 2 (Answer Sets, Part IT). Let IT be an arbitrary collection of rules
(1) and S a set of literals. By IT° we denote the program obtained from II by

1. removing all rules containing not [ such that [ € S;
2. removing all other premises containing not .

S is an answer set of IT iff S is an answer set of TI°.

To illustrate the definition let us consider a program

p(a).
p(b).
—p(X) « not p(X).

where p is a unary predicate whose domain is the set {a,b, c}. The last rule, which
says that if X is not believed to satisfy p then p(X) is false, is the ASP formalization
of a Closed World Assumption for a relation p [Reiter 1978]. It is easy to see that
{p(a),p(b),—p(c)} is the only answer set of this program. If we later learn that
c satisfies p, this information can be simply added to the program as p(c). The
default for ¢ will be defeated and the only answer set of the new program will be

{p(a), p(b), p(c)}.

The next example illustrates the ASP formalization of a more general default. Con-
sider a statement: “Normally, computer science courses are taught only by computer
science professors. The logic course is an exception to this rule. It may be taught by
faculty from the math department.” This is a typical default with a weak exception®
which can be represented in ASP by the rules:

3An exception to a default is called weak if it stops application of the default without defeating
its conclusion. Otherwise it is called strong.
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—may-teach(P,C) <« —member(P,cs),
course(C, cs),
not ab(d,(P,C)),
not may_teach(P,C).
ab(dy (P, logic)) — not ~“member (P, math).

Here di(P,C) is the name of the default rule and ab(dy(P,C)) says that default
dy(P,C) is not applicable to the pair (P,C). The second rule above stops the
application of the default in cases where the class is logic and P may be a math
professor. Used in conjunction with rules:

member(john, cs).

member(mary, math).

member (bob, ee).

—member (P, D) «— not member(P, D).
course(logic, cs).
course(data_structures, cs).

the program will entail that Mary does not teach data structures while she may
teach logic; Bob teaches neither logic nor data structures, and John may teach both
classes.

The previous examples illustrate the representation of defaults and their strong and
weak exceptions. There is another type of possible exception to defaults, sometimes
referred to as an indirect exception. Intuitively, these are rare exceptions that
come into play only as a last resort, to restore the consistency of the agent’s world
view when all else fails. The representation of indirect exceptions seems to be
beyond the power of ASP. This observation led to the development of a simple but
powerful extension of ASP called CR-Prolog (or ASP with consistency-restoring
rules). To illustrate the problem let us consider the following example.

Consider an ASP representation of the default “elements of class ¢ normally have
property p”:
p(X) — X)),

not ab(d(X)),

not —p(X).
together with the rule

q(X) < p(X).

and the facts ¢(a) and —¢(a). Let us denote this program by F, where E stands for

“exception”.

It is not difficult to check that E is inconsistent. No rules allow the reasoner to
prove that the default is not applicable to a (i.e. to prove ab(d(a))) or that a
does not have property p. Hence the default must conclude p(a). The second rule
implies ¢(a) which contradicts one of the facts. However, there seems to exists a
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commonsense argument which may allow a reasoner to avoid inconsistency, and to
conclude that a is an indirect exception to the default. The argument is based on
the Contingency Axiom for default d(X) which says that any element of class
¢ can be an exception to the default d(X) above, but such a possibility is very rare,
and, whenever possible, should be ignored. One may informally argue that since the
application of the default to a leads to a contradiction, the possibility of a being an
exception to d(a) cannot be ignored and hence a must satisfy this rare property.

In what follows we give a brief description of CR-Prolog — an extension of ASP
capable of encoding and reasoning about such rare events.

A program of CR-Prolog is a four-tuple consisting of
1. A (possibly sorted) signature.
2. A collection of regular rules of ASP.

3. A collection of rules of the form
lo <1y, .. b, mot lgq, - .. not L, (2)

where [’s are literals. Rules of this type are called consistency restoring rules
(CR-rules).

4. A partial order, <, defined on sets of CR-rules. This partial order is often
referred to as a preference relation.

Intuitively, rule (2) says that if the reasoner associated with the program believes the
body of the rule, then he “may possibly” believe its head. However, this possibility
may be used only if there is no way to obtain a consistent set of beliefs by using
only regular rules of the program. The partial order over sets of CR-rules will be
used to select preferred possible resolutions of the conflict. Currently the inference
engine of CR-Prolog [Balduccini 2007] supports two such relations, denoted <; and
<5. One is based on the set-theoretic inclusion (R; <; Ry holds iff Ry C R»).
The other is defined by the cardinality of the corresponding sets (R; < Rs holds
iff |R1| < |Rs|). To give the precise semantics we will need some terminology and
notation.

The set of regular rules of a CR-Prolog program II will be denoted by II", and the
set of CR-rules of II will be denoted by II". By «(r) we denote a regular rule
obtained from a consistency restoring rule r by replacing & by «. If R is a set of
CR-rules then a(R) = {«a(r) : r € R}. As in the case of ASP, the semantics of
CR-Prolog will be given for ground programs. A rule with variables will be viewed
as a shorthand for a set of ground rules.

DEFINITION 3. (Abductive Support)
A minimal (with respect to the preference relation of the program) collection R of
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CR-rules of II such that II" U «(R) is consistent (i.e. has an answer set) is called
an abductive support of II.

DEFINITION 4. (Answer Sets of CR-Prolog)
A set A is called an answer set of II if it is an answer set of a regular program
IT" U a(R) for some abductive support R of II.

Now let us show how CR~Prolog can be used to represent defaults and their indirect
exceptions. The CR-Prolog representation of the default d(X), which we attempted
to represent in ASP program FE, may look as follows

p(X) = X)),
not ab(d(X)),
not —p(X).
-p(X) < eX).

The first rule is the standard ASP representation of the default, while the second rule
expresses the Contingency Axiom for the default d(X)*. Consider now a program
obtained by combining these two rules with an atom c(a).

Assuming that a is the only constant in the signature of this program, the program’s
unique answer set will be {c(a),p(a)}. Of course this is also the answer set of the
regular part of our program. (Since the regular part is consistent, the Contingency
Axiom is ignored.) Let us now expand this program by the rules

q(X) « p(X).
—q(a).

The regular part of the new program is inconsistent. To save the day we need to
use the Contingency Axiom for d(a) to form the abductive support of the program.
As a result the new program has the answer set {—q(a),c(a), ~p(a))}. The new
information does not produce inconsistency, as it did in ASP program E. Instead the
program withdraws its previous conclusion and recognizes a as a (strong) exception

to default d(a).

3 The Language

A P-log program consists of its declarations, logical rules, random selection rules,
probability atoms, observations, and actions. We will begin this section with a
brief description of the syntax and informal readings of these components of the
programs, and then proceed to an illustrative example.

The declarations of a P-log program give the types of objects and functions in
the program. Logical rules are “ordinary” rules of the underlying logical language

4In this form of Contingency Axiom, we treat X as a strong exception to the default. Sometimes
it may be useful to also allow weak indirect exceptions; this can be achieved by adding the rule
ab(d(X)) < ¢(X).
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written using light syntactic sugar. For purposes of this paper, the underlying
logical language is CR-Prolog.

P-log uses random selection rules to declare random attributes (essentially ran-
dom variables) of the form a(t), where a is the name of the attribute and ¢ is a
vector of zero or more parameters. In this paper we consider random selection rules
of the form

[ 7] random(a(t)) < B. (3)

where r is a term used to name the random causal process associated with the rule
and B is a conjunction of zero or more extended literals. The name [ r ] is optional
and can be omitted if the program contains exactly one random selection rule for
a(t). Statement (3) says that if B were to hold, the value of a(t) would be selected at
random from its range by process r, unless this value is fived by a deliberate action.
More general forms of random selection rules, where the values may be selected from
a range which depends on context, are discussed in [Baral, Gelfond, and Rushton
2009].

Knowledge of the numeric probabilities of possible values of random attributes is
expressed through causal probability atoms, or pr-atoms. A pr-atom takes the form

pTT(a(E) = y‘c B) =v

where a(t) is a random attribute, B a conjunction of literals, r is a causal process,
v € [0,1], and y is a possible value of a(t). The statement says that if the value of
a(t) is fized by process r, and B holds, then the probability that r causes a(t) =y is
v. If r is uniquely determined by the program then it can be omitted. The “causal
stroke” ‘|, and the “rule body” B may also be omitted in case B is empty.

Observations and actions of a P-log program are written, respectively, as

obs(1). do(a(t) = y)).

where [ is a literal, a(t) a random attribute, and y a possible value of a(¢). obs(1)
is read [ is observed to be true. The action do(a(t) = y) is read the value of a(t),

instead of being random, is set to y by a deliberate action.

This completes a general introductory description of P-log. Next we give an example
to illustrate this description. The example shows how certain forms of knowledge
may be represented, including deterministic causal knowledge, probabilistic causal
knowledge, and strict and defeasible logical rules (a rule is defeasible if it states
an overridable presumption; otherwise it is strict). We will use this example to
illustrate the syntax of P-log, and, afterward, to provide an indication of the for-
mal semantics. Complete syntax and semantics are given in [Baral, Gelfond, and
Rushton 2009], and the reader is invited to refer there for more details.
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EXAMPLE 5. [Circuit]

A circuit has a motor, a breaker, and a switch. The switch may be open or closed.
The breaker may be tripped or not; and the motor may be turning or not. The
operator may toggle the switch or reset the breaker. If the switch is closed and the
system is functioning normally, the motor turns. The motor never turns when the
switch is open, the breaker is tripped, or the motor is burned out. The system may
break and if so the break could consist of a tripped breaker, a burned out motor,
or both, with respective probabilities .9, .09, and .01. Breaking, however, is rare,
and should be considered only in the absence of other explanations.

Let us show how to represent this knowledge in P-log. First we give declarations of
sorts and functions relevant to the domain. As typical for representation of dynamic
domains we will have sorts for actions, fluents (properties of the domain which can
be changed by actions), and time steps. Fluents will be partitioned into inertial
fluents and defined fluents. The former are subject to the law of inertia [Hayes and
McCarthy 1969] (which says that things stay the same by default), while the latter
are specified by explicit definitions in terms of already defined fluents. We will also
have a sort for possible types of breaks which may occur in the system. In addition
to declared sorts P-log contains a number of predefined sorts, e.g. a sort boolean.
Here are the sorts of the domain for the circuit example:

action = {toggle, reset,break}.
inertial_fluent = {closed, tripped, burned}.
de fined_fluent = {turning, faulty}.
fluent = inertial_fluent U de fined_fluent.
step = {0, 1}.

breaks = {trip, burn, both}.

In addition to sorts we need to declare functions (referred in P-log as attributes)
relevant to our domain.

holds : fluent x step — boolean.
occurs : action X step — boolean.

Here holds(f,T) says that fluent f is true at time step 7" and occurs(a,T') indicates
that action a was executed at 7.

The last function we need to declare is a random attribute type_of_break(T") which
denotes the type of an occurrence of action break at step T

type_of break : step — breaks.

The first two logical rules of the program define the direct effects of action toggle.
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holds(closed, T +1)  «— occurs(toggle,T),
—holds(closed, T).

—holds(closed, T + 1) «— occurs(toggle,T),
holds(closed,T).

They simply say that toggling opens and closes the switch. The next rule says that
resetting the breaker untrips it.

—holds(tripped, T+ 1) «— occurs(reset,T).
The effects of action break are described by the rules

holds(tripped, T + 1) <« occurs(break,T),

type_of break(T) = trip.
holds(burned, T + 1) «— occurs(break,T),

type-of -break(T) = burn.
holds(tripped, T + 1) <« occurs(break,T),

type_of break(T) = both.
holds(burned, T + 1) <« occurs(break,T),

type_of break(T) = both.

The next two rules express the inertia axiom which says that by default, things stay

as they are. They use default negation not — the main nonmonotonic connective

of ASP —, and can be viewed as typical representations of defaults in ASP and its
extensions.
holds(F,T +1) « inertial_fluent(F),
holds(F,T),

not —holds(F,T + 1).
—holds(F,T+1) « inertial_fluent(F),

—holds(F,T),

not holds(F,T + 1).

Next we explicitly define fluents faulty and turning.

holds(faulty, T)  «— holds(tripped,T).
holds(faulty,T)  + holds(burned,T).
—holds(faulty,T) <« not holds(faulty,T).

The rules above say that the system is functioning abnormally if and only if the
breaker is tripped or the motor is burned out. Similarly the next definition says
that the motor turns if and only if the switch is closed and the system is functioning

normally.

holds(turning,T) < holds(closed,T),
—holds(faulty,T).
—holds(turning, T) «— not holds(turning,T).

The above rules are sufficient to define causal effects of actions. For instance if
we assume that at Step 0 the motor is turning and the breaker is tripped, i.e.
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action break of the type trip occurred at 0, then in the resulting state we will have
holds(tripped, 1) as the direct effect of this action; while —holds(turning, 1) will be
its indirect effect®.

We will next have a default saying that for each action A and time step T, in the
absence of a reason to believe otherwise we assume A does not occur at 7.

—occurs(A,T) «— action(A), not occurs(A,T).

We next state a CR-rule representing possible exceptions to this default. The rule
says that a break to the system may be considered if necessary (that is, necessary
in order to reach a consistent set of beliefs).

occurs(break, 0) &
The next collection of facts describes the initial situation of our story.
—holds(closed,0). —holds(burned,0). —holds(tripped,0). occurs(toggle,O0).

Next, we state a random selection rule which captures the non-determinism in the
description of our circuit.

random(type_of break(T)) «— occurs(break,T).

The rule says that if action break occurs at step T' then the type of break will be
selected at random from the range of possible types of breaks, unless this type is
fixed by a deliberate action. Intuitively, break can be viewed as a non-deterministic
action, with non-determinism coming from the lack of knowledge about the precise
type of break.

Let 7y be the circuit program given so far. Next we will give a sketch of the formal
semantics of P-log, using 7y as an illustrative example.

The logical part of a P-log program II consists of its declarations, logical rules,
random selection rules, observations, and actions; while its probabilistic part consists
of its pr-atoms (though the above program does not have any). The semantics of
P-log describes a translation of the logical part of II into an “ordinary” CR-Prolog
program 7(IT). The semantics of I is then given by

51t is worth noticing that, though short, our formalization of the circuit is non-trivial. It is
obtained using the general methodology of representing dynamic systems modeled by transition
diagrams whose nodes correspond to physically possible states of the system and whose arcs are
labeled by actions. A transition (oo, a,o1) indicates that state o1 may be a result of execution of
a in og. The problem of finding concise and mathematically accurate description of such diagrams
has been a subject of research for over 30 years. Its solution requires a good understanding of the
nature of causal effects of actions in the presence of complex interrelations between fluents. An
additional level of complexity is added by the need to specify what is not changed by actions. As
noticed by John McCarthy, the latter, known as the Frame Problem, can be reduced to finding
a representation of the Inertia Axiom which requires the ability to represent defaults and to do
non-monotonic reasoning. The representation of this axiom as well as that of the interrelations
between fluents we used in this example is a simple special case of general theory of action and
change based on logic programming under the answer set semantics.
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1. a collection of answer sets of 7(II) viewed as the set of possible worlds of a
rational agent associated with II, along with

2. a probability measure over these possible worlds, determined by the collection
of the probability atoms of II.

To obtain 7(m) we represent sorts as collections of facts. For instance, sort step
would be represented in CR-Prolog as

step(0). step(1).

For a non-boolean function type_of _break the occurrences of atoms of the form
type_of_-break(T) = trip in my are replaced by type_of _break(T,trip). Similarly for
burn and both. The translation also contains the axiom

—type_of break(T, V1) «— breaks(V1),breaks(Va), V1 # Va,
type_of break(T, Va).

to guarantee that type_of _break is a function. In general, the same transformation
is performed for all non-boolean functions.

Logical rules of 7 are simply inserted into 7(mp). Finally, the random selection rule

is transformed into

type_of break(T,trip) or type_of break(T, burn) or type_of break(T,both) «—
occurs(break,T),
not intervene(type_of break(T)).

It is worth pointing out here that while CBN’s represent the notion of intervention in
terms of transformations on graphs, P-log axiomatizes the semantics of intervention
by including not intervene(...) in the body of the translation of each random
selection rule. This amounts to a default presumption of randomness, overridable
by intervention. We will see next how actions using do can defeat this presumption.

Observations and actions are translated as follows. For each literal I in 7, 7(mo)
contains the rule

— obs(l),not 1.

For each atom a(t) =y, 7(7) contains the rules
aff,y) — do(a(F, ).

and

intervene(a(t)) « do(a(t,Y)).

The first rule eliminates possible worlds of the program failing to satisfy {. The
second rule makes sure that interventions affect their intervened-upon variables in
the expected way. The third rule defines the relation intervene which, for each
action, cancels the randomness of the corresponding attribute.
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It is not difficult to check that under the semantics of CR-Prolog, 7(m) has a unique
possible world W containing holds(closed, 1) and holds(turning, 1), the direct and
indirect effects, respectively, of the action close. Note that the collection of regular
ASP rules of 7(m) is consistent, i.e., has an answer set. This means that CR-rule
occurs(break, 0) < isnot activated, break does not occur, and the program contains
no randomness.

Now we will discuss how probabilities are computed in P-log. Let II be a P-log
program containing the random selection rule [r] random(a(t)) < B; and the pr-
atom pr,.(a(t) =y |. B2) = v. Then if W is a possible world of II satisfying B; and
Bs, the assigned probability of a(t) = y in W is defined © to be v. In case W satisfies
Bj; and a(t) = y, but there is no pr-atom pr.(a(t = y |. B2) = v of II such that
W satisfies By, then the default probability of a(t) =y in W is computed using the
“indifference principle”, which says that two possible values of a random selection
are equally likely if we have no reason to prefer one to the other (see [Baral, Gelfond,
and Rushton 2009] for details). The probability of each random atom a(t) = y
occurring in each possible world W of program II, written Pr(W,a(¢) = y), is now
defined to be the assigned probability or the default probability, as appropriate.

Let W be a possible world of II. The unnormalized probability, f(W), of a
possible world W induced by II is

in(W) =aer [ Pu(W,a(t) =y)
a(t,y)e W

where the product is taken only over atoms for which P(W, a(t) = y) is defined.
Suppose II is a P-log program having at least one possible world with nonzero
unnormalized probability, and let 2 be the set of possible worlds of II. The measure,
urr (W), of a possible world W induced by II is the unnormalized probability of W
divided by the sum of the unnormalized probabilities of all possible worlds of II,

ie.,
.y fir (W)
© ZW;,EQ ﬂH(W’L)

When the program IT is clear from context we may simply write & and p instead of

pr(W)

o and pgp respectively.

This completes the discussion of how probabilities of possible worlds are defined in
P-log. Now let us return to the circuit example. Let program m; be the union of
with the single observation

obs(—holds(turning, 1))

The observation contradicts our previous conclusion holds(turning, 1) reached by
using the effect axiom for toggle, the definitions of faulty and turning, and the

6For the sake of well definiteness, we consider only programs in which at most one v satisfies
this definition.
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inertia axiom for ¢ripped and burned. The program 7(m) will resolve this contra-
diction by using the CR-rule occurs(break,0) & to conclude that the action break
occurred at Step 0. Now type_of break randomly takes one of its possible values.
Accordingly, 7(m) has three answer sets: Wy, Wa, and W3. All of them contain
occurs(break,0), holds(faulty, 1), —=holds(turning,1). One, say W7 will contain

type_of _break(1,trip), holds(tripped, 1), —holds(burned, 1)
Wy and W3 will respectively contain

type_of -break(1, burn), —holds(tripped, 1), holds(burned, 1)
and

type_of _break(1,both), holds(tripped, 1), holds(burned, 1)

In accordance with our general definition, 71 will have three possible worlds, W7,
Wy, and W3. The probabilities of each of these three possible worlds can be com-
puted as 1/3, using the indifference principle.

Now let us add some quantitative probabilities to our program. If w5 is the union
of m; with the following three pr-atoms

pr(type-of break(T) = trip |, break(T)) = 0.9
pr(type_of break(T) = burned |, break(T)) = 0.09
pr(type-of break(T) = both |. break(T)) = 0.01

then program w9 has the same possible worlds as II;. Not surprisingly, Py, (W1) =
0.9. Similarly Py, (W3) = 0.09 and Pr,(W3) = 0.01. This demonstrates how a P-log
program may be written in stages, with quantitative probabilities added as they are
needed or become available.

Typically we are interested not just in the probabilities of individual possible worlds,
but in the probabilities of certain interesting sets of possible worlds described, e.g.,
those described by formulae. For current purposes a rather simple definition suffices.
Viz., recalling that possible worlds are sets of literals, for an arbitrary set C of literals
we define

PW(C) =def Pﬂ({W : C Q W})

For example, Py, (holds(turning, 1)) = 0, Py, (holds(tripped,1)) = 1/3,
and Py, (holds(tripped, 1)) = 0.91.

Our example is in some respects rather simple. For instance, every possible world
of our program contains at most one atom of the form a(t) = y where a(t) is a
random attribute. We hope, however, that this example gives a reader some insight
in the syntax and semantics of P-log. It is worth noticing that the example shows
the ability of P-log to mix logical and probabilistic reasoning, including reasoning
about causal effects of actions and explanations of observations. In addition it
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demonstrates the non-monotonic character of P-log, i.e. its ability to react to new
knowledge by changing probabilistic models of the domain and creating new possible
worlds.

The ability to introduce new possible worlds as a result of conditioning is of
interest from two standpoints. First, it reflects the common sense semantics of
utterances such as “the motor might be burned out.” Such a sentence does not
eliminate existing possible beliefs, and so there is no classical (i.e., monotonic)
semantics in which the statement would be informative. If it is informative, as
common sense suggests, then its content seems to introduce new possibilities into
the listener’s thought process.

Second, nonmonotonicity can improve performance. Possible worlds tend to pro-
liferate exponentially with the size of a program, quickly making computations in-
tractable. The ability to consider only those random selections which may explain
our abnormal observations may make computations tractable for larger programs.
Even though our current solver is in its early stages of development, it is based on
well researched answer set solvers which efficiently eliminate impossible worlds from
consideration based on logical reasoning. Thus even our early prototype has shown
promising performance on problems where logic may be used to exclude possible
worlds from consideration in the computation of probabilities [Gelfond, Rushton,
and Zhu 2006].

4 Spider Example

In this section, we consider a variant of Simpson’s paradox, to illustrate the for-
malization of interventions in P-log. The story we would like to formalize is as
follows:

In Stan’s home town there are two kinds of poisonous spider, the creeper and the
spinner. Bites from the two are equally common in Stan’s area — though spinner
bites are more common on a worldwide basis. An experimental anti-venom has
been developed to treat bites from either kind of spider, but its effectiveness is
questionable.

One morning Stan wakes to find he has a bite on his ankle, and drives to the
emergency room. A doctor examines the bite, and concludes it is a bite from either
a creeper or a spinner. In deciding whether to administer the anti-venom, the
doctor examines the data he has on bites from the two kinds of spiders: out of 416
people bitten by the creeper worldwide, 312 received the anti-venom and 104 did
not. Among those who received the anti-venom, 187 survived; while 73 survived
who did not receive anti-venom. The spinner is more deadly and tends to inhabit
areas where the treatment is less available. Of 924 people bitten by the spinner,
168 received the anti-venom, 34 of whom survived. Of the 756 spinner bite victims
who did not receive the experimental treatment, only 227 survived.

For a random individual bitten by a creeper or spinner, let s, a, and ¢ denote the
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events of survival, administering anti-venom, and creeper bite. Based on the fact
that the two sorts of bites are equally common in Stan’s region, the doctor assigns a
0.5 probability to either kind of bite. He also computes a probability of survival, with
and without treatment, from each kind of bite, based on the sampling distribution
of the available data. He similarly computes the probabilities that victims of each
kind of bite received the anti-venom. We may now imagine the doctor uses Bayes’
Theorem to compute P(s | a) = 0.522 and P(s | —~a) = 0.394.

Thus we see that if we choose a historical victim, in such a way that he has a
50/50 chance of either kind of bite, those who received anti-venom would have a
substantially higher chance of survival. Stan is in the situation of having a 50/50
chance of either sort of bite; however, he is not a historical victim. Since we are
intervening in the decision of whether he receives anti-venom, the computation
above is not germane (as readers of [Pearl 2000] already know) — though we can
easily imagine the doctor making such a mistake. A correct solution is as follows.
Formalizing the relevant parts of the story in a P-log program II gives

survive, antivenom : boolean.
spider : {creeper, spinner}.
random(spider).
random(survive).

random(antivenom,).

pr(spider = creeper) = 0.5.

r(survive |, spider = creeper, mantivenom) = 0.7.

3

(

pr(survive |. spider = creeper, antivenom) = 0.6.
(
(

pr(survive |, spider = spinner, antivenom) = 0.2.

pr(survive |. spider = spinner, ~antivenom) = 0.3.
and so, according to our semantics,

PHU{do(antivenom}(Survive) =04
PHU{do(—‘antivenom}(Survive) =05

Thus, the correct decision, assuming we want to intervene to maximize Stan’s chance
of survival, is to not administer antivenom.

In order to reach this conclusion by classical probability, we would need to consider
separate probability measures P; and P5, on the sets of patients who received or did
not receive antivenom, respectively. If this is done correctly, we obtain P;(s) = 0.4
and P5(s) = 0.5, as in the P-log program.

Thus we can get a correct classical solution using separate probability measures.
Note however, that we could also get an incorrect classical solution using separate
measures, since there exist probability measures Py and P, on the sets of histor-
ical bite victims which capture classical conditional probabilities given a and —a
respectively. We may define
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- P(ENa
Pl(E) —def 0(.35?52)

> P(EN-a
P2(E) —def (().6218 )

It is well known that each of these is a probability measure. They are seldom seen
only because classical conditional probability gives us simple notations for them in
terms of a single measure capturing common background knowledge. This allows us
to refer to probabilities conditioned on observations without defining a new measure
for each such observation. What we do not have, classically, is a similar mechanism
for probabilities conditioned on intervention — which is sometimes of interest as
the example shows. The ability to condition on interventions in this way has been a
fundamental contribution of Pearl; and the inclusion in P-log of such conditioning-
on-intervention is a direct result of the authors’ reading of his book.

5 Infinite Programs

The definitions given so far for P-log apply only to programs with finite numbers
of random selection rules. In this section we state a theorem which allows us to
extend these semantics to programs which may contain infinitely many random
selection rules. No changes are required from the syntax given in [Baral, Gelfond,
and Rushton 2009], and the probability measure described here agrees with the one
in [Baral, Gelfond, and Rushton 2009] whenever the former is defined.

We begin by defining the class of programs for which the new semantics are
applicable. The reader is referred to [Baral, Gelfond, and Rushton 2009] for the
definitions of causally ordered, unitary, and strict probabilistic levelling.

DEFINITION 6. [Admissible Program]|

A P-log program is admissible if it is causally ordered and unitary, and if there
exists a strict probabilistic levelling || on II such that no ground literal occurs in
the heads of rules in infinitely many II; with respect to ||.

The condition of admissibility, and the definitions it relies on, are all rather
involved to state precisely, but the intuition is as follows. Basically, a program is
unitary if the probabilities assigned to the possible outcomes of each selection rule
are either all assigned and sum to 1, or are not all assigned and their sum does not
exceed 1. The program is causally ordered if its causal dependencies are acyclic
and if the only nondeterminism in it is a result of random selection rules. A strict
probabilistic levelling is a well ordering of the selection rules of a program which
witnesses the fact that it is causally ordered. Finally, a program which meets these
conditions is admissible if every ground literal in the program logically depends on
only finitely many random experiments. For example, the following program is not
unitary:
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random(a) : boolean.
pr(a) =1/2.
pr(—a) = 2/3.

The following program is not causally ordered:

random(a) : boolean.
random(b) : boolean.
prr(ale b) =1/3.
pro(ale —b) = 2/3.
prr(blc a)=1/5.

and neither is the following:

p « notq.
q < not p.

since it has two answer sets which arise from circularity of defaults, rather than
random selections. The following program is both unitary and causally ordered, but
not admissible, because atLeastOneT ail depends on infinitely many coin tosses.

coin_toss : positive_integer — {head, tail}.
atLeastOneT ail : boolean.
random(coin_toss(N)).

atLeastOneT ail — coin_toss(N) = tail.

We need one more definition before stating the main theorem:

DEFINITION 7. [Cylinder algebra of II]

Let II be a countably infinite P-log program with random attributes a;(t), ¢ > 0,
and let C' be the collection of sets of the form {w : a;(t) =y € w} for arbitrary ¢,
i, and y. The sigma algebra generated by C' will be called the cylinder algebra of
program II.

Intuitively, the cylinder algebra of a program II is the collection of sets which
can be formed by performing countably many set operations (union, intersection,
and complement) upon sets whose probabilities are defined by finite subprograms.
We are now ready to state the main proposition of this section.

PROPOSITION 8. [Admissible programs]

Let II be an admissible P-log program with at most countably infinitely many ground
rules, and let A be the cylinder algebra of II. Then there exists a unique probability
measure Py defined on A such that whenever [r] random(a(t)) « By and pr,(a(t) =
y | B2) =wv occur in 1, and Pr(By A By) > 0, we have Pr(a(t) =y | By A B2) =v.

Recall that the semantic value of a P-log program II consists of (1) a set of possible
worlds of IT and (2) a probability measure on those possible worlds. The proposition
now puts us in position to give semantics for programs with infinitely many random
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selection rules. The possible worlds of the program are the answer sets of the
associated (infinite) CR-Prolog program, as determined by the usual definition —
while the probability measure is Ppy, as defined in Proposition 8.

We next give an example which exercises the proposition, in a form of a novel
paradox. Imagine a casino which offers an infinite sequence of games, of which our
agent may decide to play as many or as few as he wishes. For the n'" game, a fair
coin is tossed n times. If the agent chooses to play the n'* game, then the agent
wins 2"t + 1 dollars if all tosses made in the n'* game are heads and otherwise
loses one dollar.

We can formalize this game as an infinite P-log program II. First, we declare
a countable sequence of games and an integer valued variable, representing the
player’s net winnings after each game.

game : positive_integer.

winnings : game — integer.

play : game — boolean.

coin: {({M,N) | 1< M < N} — {head, tail}.

Note that the declaration for coin is not written in the current syntax of P-log; but
to save space we use set-builder notation here as a shorthand for the more lengthy
formal declaration. Similarly, the notation (M, N) is also a shorthand. From this
point on we will write coin(M, N) instead of coin({M, N}).

IT also contains a declaration to say that the throws are random and the coin is
known to be fair:

random(coin(M, N)).
pr(coin(M, N) = head) = 1/2.

The conditions of winning the N** game are described as follows:

lose(N) « play(N), coin(N, M) = tail.
win(N) < play(N), not lose(N).

The amount the agent wins or loses on each game is given by

winnings(0) =

winnings(N + 1) = winnings(N) + 1 +2NT1 — win(N).
winnings(N 4+ 1) = winnings(N) — 1 «— lose(N).
winnings(N + 1) = winnings(N) «— -—play(N).

Finally the program contains rules which describe the agent’s strategy in choosing
which games to play. Note that the agent’s expected winnings in the N** game are
given by (1/2V)(1+2V+1) — (1 —1/2V) = 1, so each game has positive expectation
for the player. Thus a reasonable strategy might be to play every game, represented
as
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play(N).

This completes program II. It can be shown to be admissible, and hence there is
a unique probability measure Py satisfying the conclusion of Proposition 1. Thus,
for example, Pp(coin(3,2) = head) = 1/2, and Py(win(10)) = 1/21°. Each of
these probabilities can be computed from finite sub-programs. As more interesting
example, let S be the set of possible worlds in which the agent wins infinitely many
games. The probability of this event cannot be computed from any finite sub-
program of II. However, S is a countable intersection of countable unions of sets
whose probabilities are defined by finite subprograms. In particular,

o oo
S= U W |win)ew}
N=1J=N
and therefore, S is in the cylinder algebra of IT and so its probability is given by
the measure defined in Proposition 1.

So where is the Paradox? To see this, let us compute the probability of S. Since
P is a probability measure, it is monotonic in the sense that no set has greater
probability than any of its subsets. Prp must also be countably subadditive, meaning
that the probability of a countable union of sets cannot exceed the sum of their
probabilities. Thus, from the above we get for every N,

Pu(S) < Pu( |J {W | win(J) e W}
J=N

< Z Pn({W | win(J) € W})

Now since right hand side can be made arbitrarily small by choosing a sufficiently
large N, it follows that P(S) = 0. Consequently, with probability 1, our agent
will lose all but finitely many of the games he plays. Since he loses one dollar per
play indefinitely after his final win, his winnings converge to —oc with probability
1, even though each of his wagers has positive expectation!
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On Computers Diagnosing Computers

Moises GOLDSZMIDT

1 Introduction

I came to UCLA in the fall of 1987 and immediately enrolled in the course titled
“Probabilistic Reasoning in Intelligent Systems” where we, as a class, went over the
draft of Judea’s book of the same title [Pearl 1988]. The class meetings were fun
and intense. Everybody came prepared, having read the draft of the appropriate
chapter and having struggled through the list of homework exercises that were due
that day. There was a high degree of discussion and participation, and I was very
impressed by Judea’s attentiveness and interest in our suggestions. He was fully
engaged in these discussions and was ready to incorporate our comments and change
the text accordingly. The following year, I was a teaching assistant (TA) for that
class. The tasks involved with being a TA gave me a chance to rethink and really
digest the contents of the course. It dawned on me then what a terrific insight
Judea had to focus on formalizing the notion of conditional independence: All the
“Juice” he got in terms of making “reasoning under uncertainty” computationally
effective came from that formalization. Shortly thereafter, I had a chance to chat
with Judea about these and related thoughts. I was in need of formalizing a notion
of “relevance” for my own research and thought that I could adapt some ideas from
the graphoid models [Pear]l 1988]. In that opportunity Judea shared another of his
great insights with me. After hearing me out, Judea said one word: “causality”.
I don’t remember the exact words he used to elaborate, but the gist of what he
said to me was: “we as humans perform extraordinarily complex reasoning tasks,
being able to select the relevant variables, circumscribe the appropriate context,
and reduce the number of factors that we should manipulate. I believe that our
intuitive notions of causality enable us to do so. Causality is the holly grail [for
Artificial Intelligence]”.

In this short note, I would like to pay tribute to Judea’s scientific work by specu-
lating on the very realistic possibility of computers using his formalization of causal-
ity for automatically performing a nontrivial reasoning task commonly reserved for
humans. Namely designing, generating, and executing experiments in order to con-
duct a proper diagnosis and identify the causes of performance problems on code
being executed in large clusters of computers. What follows in the next two sections
is not a philosophical exposition on the meaning of “causality” or on the reasoning
powers of automatons. It is rather a brief description of the current state of the art
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in programming large clusters of computers and then, a brief account argumenting
that the conditions are ripe for embarking on this research path.

2 Programming large clusters of computers made easy

There has been a recent research surge in systems directed at providing program-
mers with the ability to write efficient parallel and distributed applications [Hadoop
2008; Dean and Ghemawat 2004; Isard et al. 2007]. Programs written in these envi-
ronments are automatically parallelized and executed on large clusters of commodity
machines. The tasks of enabling programmers to effectively write and deploy par-
allel and distributed application has of course been a long-standing problem. Yet,
the relatively recent emergence of large-scale internet services, which depend on
clusters of hundreds of thousands of general purpose servers, have given the area
a forceful push. Indeed, this is not merely an academic exercise; code written in
these environments has been deployed and is very much in everyday use at com-
panies such as Google, Microsoft, and Yahoo (and many others). These programs
process web pages in order to feed the appropriate data to the search and news
summarization engines; render maps for route planning services; and update usage
and other statistics from these services. Year old figures estimate that Dryad, the
specific such environment created at Microsoft [Isard et al. 2007], is used to crunch
on the order of a petabyte a day at Microsoft. In addition, in our lab at Microsoft
Research, a cluster of 256 machines controlled by Dryad runs daily at a 100% uti-
lization. This cluster mostly runs tests and experiments on research algorithms in
machine learning, privacy, and security that process very large amounts of data.

The intended model in Dryad is for the programmer to build code as if she were
programming one computer. The system then takes care of a) distributing the code
to the actual cluster and b) managing the execution of the code in the cluster. All
aspects of execution, including data partition, communications, and fault tolerance,
are the responsibility of Dryad.

With these new capabilities comes the need for new tools for debugging code,
profiling execution performance, and diagnosing system faults. By the mere fact
that clusters of large numbers of computers are being employed, rare bugs will
manifest themselves more often, and devices will fail in more runs (due to both
software and hardware problems). In addition, as the code will be executed in a
networked environment and the data will be partitioned (usually according to some
hash function), communication bandwidth, data location, contention for shared
disks, and data skewness will impact the performance of the programs. Most of
the times the impact of these factors will be hard to reproduce in a single machine,
making it an imperative that the diagnosis, profiling, and debugging be performed
in the same environment and conditions as those in which the code is running.
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3 Computers diagnosing computers

The good news is that the same infrastructure that enables the programming and
control of these clusters can be used for debugging and diagnosis. Normally the
computation proceeds in stages where the different nodes in the cluster perform
the same computation in parallel on different portions of the data. For purposes
of fault tolerance, there are mechanisms in Dryad to monitor the execution time
of each node at any computation stage. It is therefore possible to gather robust
statistics about the expected execution time of any particular node at a given stage
and identify especially slow nodes. Currently, this information is used to restart
those nodes or to migrate the computation to other nodes.

We can take this further and collect the copious amount of data that is generated
by the various built-in monitors looking at things such as cpu utilization, memory
utilization, garbage collection, disk utilization, and statistics on I/O." The statis-
tical analysis of these signals may provide clues pointing at the probable causes
of poor performance and even of failures. Indeed we have built a system called
Artemis [Cretu-Ciocérlie et al. 2008], that takes advantage of the Dryad infras-
tructure to collect and preprocess the data from these signals in a distributed and
opportunistic fashion. Once the data is gathered, Artemis will run a set of statis-
tical and machine learning algorithms ranging from summarizations to regression
and pattern classification. In this paper we propose one more step. We can imagine
a system that guided with the information from these analyses, performs active ex-
periments on the execution of the code. The objective will be to causally diagnose
problems, and properly profile dependencies between the various factors affecting
the performance of the computations.

Let us ground this idea in a realistic example. Suppose that through the analy-
sis of the execution logs of some large task we identify that, on a computationally
intensive stage, a small number of machines performed significantly worse that the
average/median (in terms of overall processing speed). Through further analysis,
for example logistic regression with L1 regularization, we are able to identify the
factors that differentiate the slower machines. Thus, we narrow down the possi-
bilities and determine that the main difference between these machines and the
machines that performed well is the speed at which the data is read by the slower

2 Further factors influencing this speed are whether the data resides on

machines.
a local disk and whether there are other computational nodes that share that disk
(and introduce contention), and on the speed of the network. Figure 1 shows a
(simplified) causal model of this scenario depicting two processing nodes. The dark
nodes represent factors/variables that can be controlled or where intervention is

possible. Conducting controlled experiments guided by this graph would enable the

1The number of counters and other signals that these monitors yield can easily reach on the
order of hundreds per machine.

2This particular case was encountered by the author while running a benchmark based on
Terasort on a cluster with hundreds of machines [Cretu-Ciocarlie et al. 2008].
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Data partitioning
algorithm

Data Size 2

Data Size 1 Disk contention

Network status

Processing Speed 1 Processing Speed 2

Figure 1. Simplified causal network depicting the processing speed scenario. Dark
nodes represent the factor/variables than can be controlled or where intervention is
possible.

precise characterization of the relationship between processing speed, data skew-
ness, and disk contention, so that we can figure out how to partition and locate the
data more efficiently and avoid having slow processing nodes. As the causal graph
clearly exposes, controlling the data sizes for the computing nodes is not enough: if
they reside on the same disk, contention may still cause slowdowns. This is obvious
from the representation and algebra proposed by Judea in [Pearl 2000], as applied
to this graph. This model also makes clear that intervening directly on the level
of contention in the disk will indeed eliminate the dependency between the reading
speed and the size of the data.

The idea of using graphical models for diagnosing computer systems goes back
at least to [Breese and Heckerman 1996; Blake and Breese 1995]. It took close to
10 years after those papers for the first publication reporting the use of Bayesian
networks for diagnosis in a nontrivial system in production to appear in a top tier
systems conference [Cohen et al. 2004]. The methods in [Cohen et al. 2004] in-
volve passive observation, and the authors make very clear that inferences concern
correlation and not necessarily causation. However, hinting at root cause through
correlation may not be enough in the very near future. Complexity and scale in
current networked distributed systems keeps on increasing at a rapid pace. Because
of service availability and reliability requirements, root cause analysis pointing at
effective repair actions and accurate empirical characterization of dependencies be-
tween the different factors affecting computation are rapidly becoming a must.

Systems such as Dryad[Isard et al. 2007] enable the effective programming of
large cluster of computers. In addition, they provide effective mechanisms for con-
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trolling the “variables” of interest and setting up experiments in these clusters.
Systems such as Artemis [Cretu-Ciocarlie et al. 2008] enable efficient collection and
processing of extensive monitoring data, including the recording of the system state
for recreating particular troublesome scenarios. The final ingredient for having ma-
chines automatically set up and conduct experiments is a language to describe these
experiments and an algebra to reason about them in order to guarantee that the
right variables are being controlled, and that we are intervening in the right spots
in order to get to the correct conclusions. Through his seminal work in [Pearl 2000]
and follow up papers, Judea Pearl has already given us that ingredient.
Acknowledgments: The author wishes to thank Mihai Budiu for numerous tech-
nical discussions on the topics of this paper, Joe Halpern for his help with the
presentation, and very especially Judea Pearl for his continuous inspiration in the
relentless and honest search for scientific truth.
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Overthrowing the Tyranny of Null Hypotheses
Hidden in Causal Diagrams

SANDER GREENLAND

1 Introduction

Graphical models have a long history before and outside of causal modeling.
Mathematical graph theory extends back to the 1700s and was used for circuit analysis in
the 19" century. Its application in probability and computer science dates back at least to
the 1960s (Biggs et al., 1986), and by the 1980s graphical models had become fully
developed tools for these fields (e.g., Pearl, 1988; Hajek et al., 1992; Lauritzen, 1996).
As Bayesian networks, graphical models are carriers of direct conditional independence
judgments, and thus represent a collection of assumptions that confine prior support to a
lower dimensional manifold of the space of prior distributions over the nodes. Such
dimensionality reduction was recognized as essential in formulating explicit and
computable algorithms for digital-machine inference, an essential task of artificial-
intelligence (AI) research. By the 1990s, these models had been merged with causal path
diagrams long used in observational health and social science (OHSS) (Wright, 1934;
Duncan, 1975), resulting in a formal theory of causal diagrams (Spirtes et al., 1993;
Pearl, 1995, 2000).

It should be no surprise that some of the most valuable and profound contributions to
these developments were from Judea Pearl, a renowned Al theorist. He motivated causal
diagrams as causal Bayesian networks (Pearl, 2000), in which the basis for the
dimensionality reduction is grounded in judgments of causal independence (and
especially, autonomy) rather than mere probabilistic independence. Beyond his extensive
technical and philosophical contributions, Pearl fought steadfastly to roll back prejudice
against causal modeling and causal graphs in statistics. Today, only a few statisticians
still regard causality as a metaphysical notion to be banned from formal modeling (Lad,
1999). While a larger minority still reject some aspects of causal-diagram or potential-
outcome theory (e.g., Dawid, 2000, 2008; Shafer, 2002), the spreading wake of
applications display the practical value of these theories, and formal causal diagrams
have advanced into applied journals and books (e.g., Greenland et al., 1999; Cole and
Hernan, 2002; Hernan et al., 2002; Jewell, 2004; Morgan and Winship, 2007; Glymour
and Greenland, 2008) — although their rapid acceptance in OHSS may well have been
facilitated by the longstanding informal use of path diagrams to represent qualities of
causal systems (e.g., Susser, 1973; Duncan, 1975).

Graphs are unsurpassed tools for illustrating certain mathematical results that hold in
functional systems (whether stochastic or not, or causal or not). Nonetheless, it is
essential to recognize that many if not most causal judgments in OHSS are based on
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observational (purely associational) data, with little or nothing in the way of manipulative
(or “surgical”) experiment to test these judgments. Time order is usually known, which
insures that the chosen arrow directions are correct; but rarely is there a sound basis for
deleting an arrow, leaving autonomy in question. When all empirical constraints encoded
by the causal network come from passive frequency observations rather than
experiments, the primacy of causal independence judgments has to be questioned. In
these situations (which characterize observational research), we should not neglect
associational models (including graphs) that encode frequency-based judgments, for these
models may be all that are identified by available data. Indeed, a deep philosophical
commitment to statistically identified quantities seems to drive the arguments of certain
critics of potential outcomes and causal diagrams (Dawid, 2000, 2008). Even if we reject
this philosophy, however, we should retain the distinction between levels of identification
provided by our data, for even experimental data will not identify everything we would
like to know.

I will argue that, in some ways, the distinction of nonidentification from identification
is as fundamental to modeling and statistical inference about causal effects as is the
distinction of causation from association (Gustafson, 2005; Greenland, 2005a, 2009a,
2009b). Indeed, I believe that some of the controversy and confusion over causation
versus association stems from the inability of statistical observations to point identify
(consistently estimate) many of the causal parameters that astute scientists legitimately
ask about. Furthermore, if we consider strategies that force identification from available
data (such as node or arrow deletions from graphical models) we will find that
identification may arise only by declaring some types of joint frequencies as justifying
the corresponding conditional independence assumptions. This leads directly into the
complex topic of pruning algorithms, including the choice of target or loss function.

I will outline these problems in their most basic forms, for I think that in the rush to
adopt causal diagrams some realism has been lost by neglecting problems of
nonidentification and pruning. My exposition will take the form of a series of vignettes
that illustrate some basic points of concern. I will not address equally important concerns
that many of the nodes offered as “treatments” may be ill-defined or nonmanipulable, or
may correspond poorly to the treatments they ostensibly represent (Greenland, 2005b;
Hernan, 2005; Cole and Frangakis, 2009; VanderWeele, 2009).

2 Nonidentification from Unfaithfulness in a Randomized Trial

Nonidentification can be seen and has caused controversy in the simplest causal-
inference settings. Consider an experiment that randomizes a node R. Inferences on
causal effects of R from subsequent associations of R with later events would then be
justified, since R would be an exogenous node. R would also be an instrumental variable
for certain descendants under further conditional-independence assumptions.

A key problem is how one could justify removing arrows along the line of descent
from R to another node Y, even if R is exogenous. The overwhelmingly dominant
approach licenses such removal if the observed R-Y association fails to meet some
criterion for departure from pure randomness. This schematic for a causal-graph pruning
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algorithm was employed by Spirtes et al. (1993), unfortunately with a very naive
Neyman-Pearsonian criterion (basically, allowing removal of arrows when a P-value
exceeds an a level). These and related graphical algorithms (Pearl and Verma, 1991)
produce what appear to be results in conflict with practical intuitions, namely causal
“discovery” algorithms for single observational data sets, with no need for experimental
evidence. These algorithms have been criticized philosophically on grounds related to the
identification problem (Freedman and Humphreys, 1999; Robins and Wasserman,
1999ab), and there are also objections based on statistical theory (Robins et al., 2003).

One controversial assumption in these algorithms is faithfulness (or stability) that all
connected nodes are associated. Although arguments have been put forward in its favor
(e.g., Spirtes et al., 1993; Pearl, 2000, p. 63), this assumption coheres poorly with prior
beliefs of some experienced researchers. Without faithfulness, two nodes may be
independent even if there is an arrow linking them directly, if that arrow represents the
presence of causal effects among units in a target population. A classic example of such
unfaithfulness appeared in the debates between Fisher and Neyman in the 1930s, in
which they disagreed on how to formulate the causal null hypothesis (Senn, 2004). The
framework of their debate would be recognized today as the potential-outcome or
counterfactual model, although in that era the model (when named) was called the
randomization model. This model illustrates the benefit of randomization as a means of
detecting a signal by injecting white noise into a system to drown out uncontrolled
influences.

To describe the model, suppose we are to study the effect of a treatment X on an
outcome Y s observable on units in a specific target population. Suppose further we can
fully randomize X, so X will equal the randomized node R. In the potential-outcome
formulation, the outcome becomes a vector Y indexed by X. Specifically, X determines
which component Yy of Y is observable conditional on X=x: Y s = Yy given X=x. To say
X can causally affect a unit makes no reference to observation, however; it merely means
that some components of Y are unequal. With a binary treatment and outcome, there are
four types of units in the target population about a binary treatment X which indexes a
binary potential-outcome vector Y (Copas, 1973):

1) Noncausal units with outcomes Y=(1,1) under X=1,0 (“doomed’ to Y ,p:=1);

2) Causal units with outcomes Y=(1,0) under X=1,0 (X=1 causes Y o,s=1);

3) Causal units with outcomes Y=(0,1) under X=1,0 (X=1 prevents Y ,s—=1); and

4) Noncausal units with outcomes Y=(0,0) under X=1,0 (“immune” to Y ps=1).

Suppose the proportion of type i in the trial population is p;. There are now two null
hypotheses:

Hg: There are no causal units: p,=p;=0 (sharp or strong null),

Hy: There is no net effect of treatment on the distribution of Ys: po=p3 (weak null).
Under the randomization distribution we have

E(Y o0/ X=1) = Pr(Yopi=1/do[X=11) = Pr(Y,=1) = p,+p; and

E(Y o0/ X=0) = Pr(Yopi=1/do[X=01) = Pr(Yo=1) = p.ps;
hence Hy,: p,=p; is equivalent to the hypothesis that the expected outcome is the same for
both treatment groups, and that the proportions with Y ,s=1 under the extreme population
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intervention do[X=1] to every unit and do[X=0] to every unit are equal. Note however
that only Hj entails that the proportion with Y,,s=1 would be the same under every
possible allocation of treatment X among the units; this property implies that the Y
margin is fixed under Hy, and thus provides a direct causal rationale for Fisher’s exact test
of H (Greenland, 1991).

H; also entails H,, (or, in terms of parameter subspaces, H; C H,). The converse is
false; but, under any of the “optimal” statistical tests that can be formulated from data on
X and Y s only, power is identical to the test size on all alternatives to the sharp null with
P2=p3, i.e., Hy is not identifiable within Hy,, so within Hy, the power of any valid test of Hy
will not exceed its nominal alpha level. Thus, following Neyman, it is only relevant to
think in terms of H,, because Hy could be rejected whenever Hy could be rejected.
Furthermore, some later authors would disallow H,, — Hg: p» = p; # 0 because it violates
faithfulness (Spirtes et al., 2001) or because it represents an extreme treatment-by-unit
interaction with no main effect (Senn, 2004).

There is also a Bayesian argument for focusing exclusively on Hy. Hy, is of Lebesgue
measure zero, so under the randomization model, distinctions within Hy, can be ignored
by inferences based on an absolutely continuous prior on p = (p1,p»,ps) (Spirtes et al.,
1993). More generally, any distinction that remains a posteriori can be traced to the prior.
A more radical stance would dismiss both H and the model defined by 1-4 above as
“metaphysical,” because it invokes constraints on the joint distribution of the components
Y, and Y, and that joint distribution is not identified by randomization of X if only X
and Y o are observed (Dawid, 2000).

On the other hand, following Fisher one can argue that the null of key scientific and
practical interest is Hg, and that Hy, — Hg: p, = p3 # 0 is a scientifically important and
distinct hypothesis. For instance, p,>0, p;>0 entails the existence of units who should be
treated quite differently, and provides an imperative to seek covariates that discriminate
between the two causal types, even if p,=p;. Furthermore, rejection of the stronger H; is a
weaker inference than rejection of the weaker Hy,, and thus rejecting only Hs would be a
conservative interpretation of a “significant” test statistic. Thus, focusing on Hj is
compatible with a strictly falsificationist view of testing in which acceptance of the null is
disallowed. Finally, there are real examples in which X=1 causes Y=1 in some units and
causes Y=0 in others; in some of these cases there may be near-perfect balance of
causation and prevention, as predicted by certain physical explanations for the
observations (e.g., as in Neutra et al., 1980).

To summarize, identification problems arose in the earliest days of formal causal
modeling, even when considering only the simplest of trials. Those problems pivoted not
on whether one should attempt formal modeling of causation as distinct from association,
but rather on what could be identified by standard experimental designs. In the face of
limited (and limiting) design strategies, these problems initiated a long history of
attempts to banish identification problems based on idealized inference systems and
absolute philosophical assertions. But a counter-tradition of arguments, both practical and
philosophical, has regarded identification problems as carriers of valuable scientific
information: They are signs of study limitations which need to be recognized and can
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only be dealt with effectively by innovative data collection (e.g., measuring more
covariates or deploying new study designs), instead of by increasing sample sizes and
defining the problems away so that “identical replications” are sufficient to narrow
inferences.

3 Causal Diagrams Encode Numerous Uncertain Null Hypotheses

To move to the observational setting that is my main concern, consider figure 1, a typical
causal diagram used to illustrate assumptions used by methods for estimating “the effect
of X on Y” from observational data.

Figure 1: Naive causal diagram
Y /

The first point to note is that this diagram is woefully incomplete relative to the

X (&

epidemiologic reality, because it ignores

a) unmodeled confounders (variables not in the graph that affect more than one node

in the graph),

b) selection effects (effects of factors in the graph on selection), and

¢) measurement errors (which require addition of measurement nodes for each

imperfectly measured node).

Put another way, typical causal DAGs like that in figure 1 are full of hidden, assumed
null hypotheses, in the form of assumptions that imply problems a, b, and c are absent.
For example, a causal DAG assumes that for every node pair (A,B) in the DAG,

1) there is no shared ancestor not in graph (not A—B),

2) there is no unmarked conditioning event that has opened a path between A and

B (not A—B),

3) if A and B are nonadjacent (neither A—B nor A«<—B), there is no mechanism
that leads directly from one node to another (thus bypassing other nodes in the
graph).

Not every study will seriously violate all of these assumptions. But in most studies in
OHSS, none of the nulls 1-3 will have convincing support, and any purported test of a
causal effect will really be a test of these 3 nulls as well as the specified causal null. This
fact is just a special case of longstanding observations that statistical tests are really tests
of all assumptions used in the test, not just the particular null of interest (Fisher, 1943;
Box, 1980). In this regard, note that absence of arrows between nodes (3) encodes
particularly strong nulls that are routinely presumed but rarely have supporting data.
More often in OHSS, we observe only a conditional temporal sequence such as “A
precedes B,” which may be due to A—B, A«~B, A—B or some combination.
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While sensitivity analysis is often recommended to examine the impact of deviations
from assumptions, it becomes unintelligible if not infeasible as the number of
assumptions (or corresponding parameters) increase. Then too, some causal inferences
will display unlimited sensitivity to certain assumptions, requiring the introduction of
priors on the corresponding parameters in order to salvage any inference (Greenland,
1998, 2005a; Gustafson, 2005). This problem arises in the model given below.

4 Eliminating Unsupported Nulls (graphical realism)
Let conditioning be denoted with square brackets around the conditioned event node.
Then, in contrast to Figure 1, realistic causal graphs for OHSS will have

1) numerous unobserved (latent) nodes, often more of them than observed nodes,

2) few node pairs without an arc between them,

3) no observed set of variables sufficient for bias control, and

4) a selection node S that is bracketed and potentially affected by most other nodes.

In particular, when all variables are subject to measurement error, a realistic causal
model for a single exposure-disease analysis will have at least:

X = Exposure, X*: measured X

Y = Outcome, Y*: measured Y

C = Known antecedents, C*: measured C

U = Other antecedents (unmeasured and possibly unknown)

S = Selection into the analysis (from selection into the study plus exclusions).

Because analysis is always conditioned on S=1, we should always show this
conditioning event on the graph with a circle or brackets around it, e.g., as [S=1].

As an example, fig. 2 shows what I’d consider a minimal realistic causal graph for a
typical case-control study of a life history and a degenerative disease outcome (e.g,
nicotine intake X and Alzheimer’s disease Y), which has 25 of 28 possible adjacencies.

Figure 2: Realistic causal diagram

(U)

2

What can fig. 2 provide if further assumptions cannot be justified? The only observed
distribution is p(c*,x*,y*|S=1), which is not a factor in the causal Markov decomposition

entailed by the graph,
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p(u,c,x,y,c* x* y*s) =

p(w)p(clu)p(xfu,c)p(ylu,c,x)p(c*[u,c.x,y)p(x*[u,c,x,y)p(y*[u,c.X,y)p(s|u,c.x,y,c*,x*,y*),
which involves both S=0 events (not selected) and S=1 events (selected), i.e., the
lowercase “s” is used when S can be either 0 or 1.

The marginal (total-population) potential-outcome distribution for Y after intervention
on X, p(yx), equals p(y|do[X=x]), which under fig. 2 equals the standardized (mixing)
distribution of Y given X standardized to (weighted by or mixed over) p(c,u) =
p(clu)p(u):

P(yx) = p(yldo[x]) = e p(ylu.c.x)p(clu)p(u).

This estimand involves only three factors in the decomposition, but none of them are
identified if U is unobserved and no further assumptions are made. Analysis of the causal
estimand p(y,) must somehow relate it to the observed distribution p(c*,x*,y*|S=1) using
known or estimable quantities, or else remain purely speculative (i.e., a sensitivity
analysis).

It is a long, hard road from p(c*,x*,y*|S=1) to p(yx), much longer than the current
“causal inference” literature often makes it look. To appreciate the distance, rewrite the
summand of the standardization formula for p(yx) as an inverse-probability-weighted
(IPW) term derived from an observation (c*,x*,y*|S=1): From fig. 2,

p(ylu,c.x)p(clu)p(u) =

p(c*x*,y*|S=D)p(S=D)p(u,c,x,y|c*,x*,y*,S=1)/

P(x[u,e)p(c*|u,c,x,y)p(x*[u,c.x,y)p(y*[u,c.x,y)p(S=1[u,c.x,y,c*,x*,y*).

The latter expression includes

1) the exposure dependence on its parents, p(x|u,c);

2)  the measurement distributions p(c*|u,c,X,y), p(x*|u,c,x,y), p(y*|u,c,x,y); and

3) the fully conditioned selection probability p(S=1|u,c,x,y,c*,x*,y*).

The absence of effects corresponding to 1-3 from graphs offered as “causal” suggests
that “causal inference” from observational data using formal causal models remains a
theoretical and largely speculative exercise (albeit often presented without explicit
acknowledgement of that fact).

When adjustments for these effects are attempted, we are usually forced to use crude
empirical counterparts of terms like those in 1-3, with each substitution demanding
nonidentified assumptions. Consider that, for valid inference under figure 2,

1) Propensity scoring and IPW for treatment need p(x|u,c), but all we get from data
is p(x*|c*). Absence of u and c is usually glossed over by assuming “no
unmeasured confounders” or “no residual confounding.” These are not credible
assumptions in OHSS.

2) IPW for selection and censoring needs p(S=1|u,c,x,y,c*,x*,y*), but usually the
most we get from a cohort study or nested study is p(S=1|c*,x*). We do not even
get that much in a case-control study.

3) Measurement-error correction needs conditional distributions from
p(c*,x*,y*,u,c,x,y|S=1), but even when a “validation” study is done, we obtain
only alternative measurements c',x",y" (which are rarely error-free) on a tiny and
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biased  subset. So we end up with observations  from
p(c’ xTy',c* x* y*/S=1,V=1) where V is the validation indicator.

4) Consistency between the observed X and the intervention variable, in the sense t
hat P(Y|X=x) = P(Y|do[X=x],X=x). This can be hard to believe for common
variables such as smoking, body-mass index, and blood pressure, even if
do[X=x] is well-defined (which is not usually the case).

In the face of these realities, standard practice seems to be: Present wildly hypothetical
analyses that pretend the observed distribution p(c*,x*,y*|S=1), perhaps along with
p(c’ xTyt,c* x* y*S=1,V=1) or p(S=l|c*x*), is sufficient for causal inference. The
massive gaps are filled in with models or assumptions, which are priors that reduce
dimensionality of the problem to something within computing bounds. For example, use
of IPW with p(S=l1|c*,x*) to adjust for selection bias (as when 1-S is a censoring
indicator) depends crucially on a nonidentified ignorability assumption that
Su(U,C,X,Y)|(C*,X*), i.e., that selection S is independent of the latent variables U,C,X,Y
given the observed variables C*,X*. We should expect this condition to be violated
whenever a latent variable affects selection directly or shares unobserved causes with
selection. If such effects are exist but are missing from the analysis graph, then by some
definitions the graph (and hence the resulting analysis) isn’t causal, no matter how much
propensity scoring (PS), marginal structural modeling (MSM), inverse-probability
weighting (IPW), or other causal-modeling procedures we apply to the observations
(c*,x*,y*|S=1).

Of course, the overwhelming dimensionality of typical OHSS problems virtually
guarantees that arbitrary constraints will enter at some point, and forces even the best
scientists to rely on a tiny subset of all the models or explanations consistent with
available facts. Personal bias in determining this subset may be unavoidable due to strong
cultural influences (such as adherence to received theories, as well as moral strictures and
financial incentives), which can also lead to biased censoring of observations (Greenland,
2009c¢). One means of coping with such bias is by being aware of it, then trying to test it
against the facts one can muster (which are often few).

The remaining sections sketch some alternatives to pretending we can identify
unbiased or assuredly valid estimators of causal effects in observational data, as opposed
to within hypothetical models for data generation (Greenland, 1990; Robins, 2001). In
these approaches, both frequentist and Bayesian analyses are viewed as hypotheticals
conditioned on a data-generation model of unknown validity. Frequentist analysis
provides only inferences of the form “if the data-generation process behaves like this,
here is how the proposed decision rule would perform,” while Bayesian analysis provides
only inferences of the form “if I knew that its data-generation process behaves like this,
here is how this study would alter my bets.”" If we aren’t sure how the data-generation

"This statement describes Bayes factors (Good, 1983) conditioned on the model. That model may
include an unknown parameter that indexes a finite number of submodels scattered over some high-
dimensional subspace, in which case the Bayesian analysis is called “model averaging,” usually
with an implicit uniform prior over the models. Model averaging may also operate over continuous
parameters via priors on those parameters.
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process behaves, no statistical analysis can provide more, no matter how much causal
modeling is done.

5 Predictive Analysis

If current models for observed-data generators (whether logistic, structural, or propensity
models) can’t be taken seriously as “causal”, what can we make of their outputs? It is
hard to believe the usual excuses offered for regression outputs (e.g., that they are
“descriptive”) when the fitted model is asserted to be causal or “structural.” Are we to
consider the outputs of (say) and IPW-fitted MSM to be some sort of data summary? Or
will it function as some kind of optimal predictor of outcomes in a purely predictive
context? No serious case has been made for causal models in either role, and it seems that
some important technical improvements are needed before causal modeling methods
become credible predictive tools.

Nonetheless, graphical models remain useful (and might be less misleading) even when
they are not “causal,” serving instead as mere carriers of conditional independence
assumptions within a time-ordered framework. In this usage, one may still employ
presumed causal independencies as prior judgments for specification. In particular, for
predictive purposes, some or all of the arrows in the graph may retain informal causal
interpretations; but they may be causally wrong, and yet the graph can still be correct for
predictive purposes.

In this regard, most of the graphical modeling literature in statistics imposes little in the
way of causal burden on the graph, as when graphs are used as influence diagrams, belief
and information networks, and so on without formal causal interpretation (that is, without
representing a formal causal model, e.g., Pearl, 1988; Hajek et al., 1992; Cox and
Wermuth, 1996; Lauritzen, 1996). DAG rules remain valid for prediction if the absence
of an open path from X to Y is interpreted as entailing XuY, or equivalently if the
absence of a directed path from X to Y (in causal terms, X is not a cause of Y;
equivalently, Y is not affected by X) is interpreted as entailing Xu1Y |pax, the noncausal
Markov condition (where pay is the set of parents of X). In that case, X—Y can be used
in the graph even if X has no effect on Y, or vice-versa.

As an example, suppose X and Y are never observed without them affecting selection
S, as when X is affects miscarriage S and Y is congenital malformation. If the target
population is births, X predicts malformations Y among births (which have S=1). As
another example, suppose X and Y are never observed without an uncontrolled,
ungraphed confounder U, as when X is diet and Y is health status. If one wishes to target
those at high risk for screening or actuarial purposes it does not matter if X—Y
represents a causally confounded relation. Lack of a directed path from X to Y now
corresponds to lack of additional predictive value for Y from X given pax. Arrow
directions in temporal (time-ordered) predictive graphs correspond to point priors about
time order, just as they do in causal graphs.

Of course, if misinterpreted as causal, predictive inferences from graphs (or any
predictive modeling) may be potentially disastrous for judging interventions on X. But, in
OHSS, the causality represented by a directed path in a so-called causal diagram rarely
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corresponds to more than a hypothesis, plausible perhaps but only one among a myriad of
others. If most arrows shown in a graph encode no real data other than an observed
conditional temporal sequencing, then labeling the graph as a “causal diagram” sets the
stage for the disaster.

Figure 3 is the temporal predictive diagram for the observables in the earlier example,
assuming those events occur in the order C*, X*, Y*, [S=1].

Figure 3: Temporally predictive diagram

X* g c*

N>

Y —— [5=1]

Comparison to the causal diagram in figure 2 illustrates how a temporal predictive
diagram for an observable frequency distribution may be derived from an underlying
causal diagram for a nonidentified theory. Figure 3 is saturated in the sense that all nodes
are connected by an edge, but this need not be so for a predictive diagram derived from a
causal one. If there is temporal ambiguity among the observables, there may be multiple
predictive diagrams compatible with the causal diagram (which will form a subset of the
multiple probability graphs compatible with the causal diagram).

If we treat causal models as carriers of prior information about conditional
independencies, they appear as legitimate candidates to consider as predictive models.
For example, MSMs can be evaluated as devices for prediction from fixed sequences and
structural nested models can be evaluated as devices for prediction from stochastic
processes. I would thus offer this challenge to the current “longitudinal causal modeling”
literature: If we know our observations are just a dim and distant projection of the causal
structure and we can only identify predictive links among observed quantities, are there
predictive advantages of structural modeling (modeling potential outcomes as well as
observed outcomes)? If not, what precisely is the advantage of fitting such models
(compared to noncausal models) when effects are not identified?

I believe there are advantages of causal models, precisely as described by Pearl (2000):
They provide an encoding for qualitative (structural) prior information expressed in terms
of “cause” and “effect.” But in current practice, fitting methods for complex causal
models are quite primitive, and need to incorporate properly smoothness and other
information that can be freely assumed in purely predictive-modeling approaches. This is
a general problem of semi-parametric theory: It necessarily focuses sharp constraints in
some dimensions and none in “most” dimensions (represented by the infinite-dimensional
time component in standard Cox models). When relevant dimensions for constraint (those
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where much background information is available) are not well represented by the
dimensions constrained by the model, considerably efficiency can be lost for estimating
parameters of interest. A striking example given by Whittemore and Keller (1986)
displayed the poor small-sample performance for estimating a survival curve when using
an unsmoothed nonparametric hazard estimator (Kaplan-Meier or Nelson-Altschuler
estimation), relative to spline smoothing of the hazard.

6 Pruning the Identified Portion of the Model

Over recent decades, great strides have been made in creating predictive algorithms; the
question remains however, what role should these algorithms play in causal inference? It
would seem that these algorithms can be beneficially applied to fitting the marginal
distribution identified by the observations. Nonetheless, the targets of causal inference in
observational studies lie beyond the identified margin, and thus beyond the reach of these
algorithms. At best, then, the algorithms can provide the identified foundation for
building into unobserved dimensions of the phenomena under study.

Even if we focus only on the identified margin, however, there may be far more nodes
and edges than seem practical to allow in the final model. A prominent feature of modern
predictive algorithms is that they start with an impractically large number of terms and
then aggressively prune the model, and may re-grow and re-prune repeatedly (Hastie et
al., 2009). These strategies coincide with the intuition that omitting a term is justified
when its contribution is too small to stand out against bias and background noise; e.g., we
do not include variables like patient identification number because we know that are
usually pure noise.

Nonetheless, automated algorithms often delete variables or connections that prior
information instead suggests are relevant or related; thus shields from pruning are often
warranted. Furthermore, a deleted node or arrow may indeed be important from a
contextual perspective even if does not meet algorithmic retention criteria. Thus, model
simplification strategies such as pruning may be justified by a need for dimensionality
reduction, but should be recognized as part of algorithmic compression or computational
prediction, not as a mode of inference about structural models.

Apart from these vague cautions, it has long been recognized that if our goal is to
evaluate causal effects, different loss functions are needed from those in the pruning
algorithms commonly applied by researchers. Specifically, the loss or benefit entailed by
pruning needs to be evaluated in reference to the target effect under study, and not simply
successful prediction of identified quantities. Operationalizing this imperative requires
building out into the nonidentified (latent) realm of the target effects, which is the focus
of bias modeling.

7 Modeling Latent Causal Structures (Bias Modeling)

The target effects in causal inference are functions of unobserved dimensions of the data-
generating process, which consist primarily of bias sources (Greenland, 2005a). Once we
recognize the nonidentification this structure entails, the major analysis task shifts away
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from mathematical statistics to prior specification, because with nonidentification only
proper priors on nonidentified parameters can lead to proper posteriors.

Even the simplest point-exposure case can involve complexities that transform simple
and precise-looking conventional results into complex and utterly ambiguous posteriors
(Greenland, 2009a, 2009b). In a model complex enough to reflect Figure 2, there are far
too many elements of specification to contextually justify them all in detail. For example,
one could only rarely justify fewer than two free structural parameters per arrow, and the
distributional form for each parameter prior would call for at least two hyperparameters
per parameter (e.g., a mean and a variance), leading to at least 50 parameters and 100
hyperparameters in a graph with 25 arrows. Allowing but one prior association parameter
(e.g., a correlation) per parameter pair adds over 1,000 (50 choose 2) more
hyperparameters.

As a consequence of the exponential complexity of realistic models, prior specification
is difficult, ugly, ad hoc, highly subjective, and tentative in the extreme. In addition, the
hard-won model will lack generalizability and elegance, making it distasteful to both the
applied scientist and the theoretical statistician. Nor will it please the applied statistician
concerned with “data analysis,” for the analysis will instead revolve around numerous
contextual judgments that enlist diverse external sources of information. In contrast to the
experimental setting (in which the data-generation model may be dictated entirely by the
design), the usually sharp distinction between prior and data information will be blurred
by the dependence of the data-generation model on external information.

These facts raise another challenge to the current “causal modeling” literature: If we
know our observations are just a dim and distant projection of the causal structure and we
can only identify predictive links among observed quantities, how can we incorporate
simultaneously all error sources (systematic as well as random) known to be important
into a complex longitudinal framework involving mismeasurement of entire sequences of
exposures and confounders? Some progress on this front has been made, but primarily in
contexts with validation data available (Cole et al., 2010), which is not the usual case.

8 The Descriptive Alternative

In the face of the extraordinary complexity of realistic models for OHSS, it should be an
option of each study to focus on describing the study and its data thoroughly, sparing us
attempts at inference about nonidentified quantities such as “causal effects.” This option
will likely never be popular, but should be allowed and even encouraged (Greenland et
al., 2004). After all, why should I care about your causal inferences, especially if they are
based on or grossly over-weighted by the one or few studies that you happened to be
involved in? If I am interested in forming my own inferences, I do want to see your data
and get an accurate narrative of the physical processes that produced them. In this regard,
statistics may supply data summaries. Nonetheless, it must be made clear exactly how the
statistics offered reflect the data as opposed to some hypothesis about the population
from which they came; P-values do not satisfy this requirement (Greenland, 1993; Poole,
2001).
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Here then is a final challenge to the “causal modeling” literature: If we know our
observations are just a dim and distant projection of the causal structure and we can only
identify associations among observed quantities, how can we interpret the outputs of
“structural modeling” (such as confidence limits for ostensibly causal estimands which
are not in fact identified) as data summaries? We should want to see answers that are
sensible when the targets are effects in a context at least as complex as in fig. 2.

9 What is a Causal Diagram?

The above considerations call into question some epidemiological accounts of causal
diagrams. Pearl (2000) describes a causal model M as a formal functional system giving
relations among a set of variables. M defines a joint probability distribution p() and an
intervention operator do[] on the variables. A causal diagram is then a directed graph G
that implies the usual Markov decomposition for p() and displays additional properties
relating p() and do[]. In particular, each child-parent family {X, pax} in G satisfies

1) p(xldo[pax=a]) = p(xpax=a), and

2) if Z is not in {X, pax}, p(x|do[Z=z],pax=a) = p(x|pax=a).

(e.g., see Pearl, 2000, p. 24). These properties stake out G as an illustration (mapping)
of structure within M.

Condition 1 is often described as stating that the association of each node X with its
parent vector pay is unconfounded given M. Condition 2 says that, given M, the only
variables in G that affect a node X are its parents, and is often called the causal Markov
condition (CMC). Nonetheless, as seems to happen often as time passes and methods
become widely adopted, details have gotten lost. In the more applied literature, causal
diagrams have come to be described as “unconfounded graphs” without reference to an
underlying causal model (e.g., Hernan et al., 2004; VanderWeele and Robins, 2007;
Glymour and Greenland, 2008). This description not only misses the CMC (2) but, taken
literally, means that all shared causes are in the graph.

Condition 1 is a property relating two mathematical objects, G and M. To claim a
diagram is unconfounded is to instead make a claim about the relation of G the real
world, thus inviting confusion between a model for causal processes and the actual
processes. For many experts in OHSS, the claim of unconfoundedness has zero
probability of being correct because of its highly restrictive empirical content (e.g., see
Robins and Wasserman, 1999ab). At best, we can only hope that the diagram provides a
useful computing aid for predicting the outcomes of intervention strategies.

As with regression models, causal models in OHSS are always false. Because we can
never know we have a correct model (and in fact in OHSS we can’t even know if we are
very close), to say G is causal if unconfounded is a scientifically vacuous definition: It is
saying the graph is causal if the causal model it represents is correct. This is akin to
saying a monotone increasing function from the range of X to [0,1] is not a probability
distribution if it is not in fact how X is distributed; thus a normal(p,c”) cumulative
function wouldn’t be a probability distribution unless it is the actual probability
distribution for X (whether that distribution is an objective event generator or a subjective
betting schedule).
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So, to repeat: To describe a causal diagram as an “unconfounded graph” blurs the
distinction between models and reality. Model-based deductions are logical conditionals
of the form “model M deductively yields these conclusions,” and have complete certainty
given the model M. But the model, and hence reality, is never known with certainty, and
in OHSS cannot be claimed as known except in the most crude fashion. The point is
brought home above by appreciating just how unrealistic all causal models and diagrams
in OHSS must be. Thus I would encourage the description of causal diagrams as
graphical causal models (or more precisely, graphical representations of certain
equivalence classes of causal models), rather than as “unconfounded graphs” (or similar
phrases). This usage might even be acceptable to some critics of the current causal-
modeling literature (Dawid, 2008).

10 Summary and Conclusions

I would be among the last to deny the utility of causal diagrams; but I argue that their
practical utility in OHSS is limited to (i) compact and visually immediate representation
of assumptions, and (ii) illustration of sources of nonidentification and bias given realistic
assumptions. Converse claims about their utility for identification seem only the latest in
a long line of promises to “solve” the problem of causal inference. These promises are
akin to claims of preventing and curing all cancers; while progress is possible, the
enormous complexity of real systems should leave us skeptical about claims of
“solutions” to the real problem.

Many authors have recognized that the problem of effect identification is unsolvable in
principle. Although this logical impossibility led some to deny the scientific merit of
causal thinking, it has not prevented development of useful tools that have causal-
modeling components. Nonetheless, the most precision we can realistically hope for
estimating effects in OHSS is about one-digit accuracy, and in many problems even that
seems too optimistic. Thus some practical sense is needed to determine what is and isn’t
important to include as model components. Yet, despite the crudeness of OHSS, good
sense seems to lead almost inevitably to including more components than can be
identified by available data.

My main point is that effect identification (in the frequentist sense of identification by
the observed data) should be abandoned as a primary goal in causal modeling in OHSS.
My reasons are practical: Identification will often demand dropping too much of
importance from the model, thus imposing null hypotheses that have no justification in
either past frequency observations or in priors about mechanisms generating the
observations, thus leading to overconfident and biased inferences. In particular, defining
a graph as “causal” if it is unconfounded assumes a possibly large set of causal null
hypotheses (at least two for every pair of nodes in the graph: no shared causes or
conditioned descendants not in the graph). In OHSS, the only graphs that satisfy such a
definition will need many latent nodes to be “causal” in this sense, and as a consequence
will reveal the nonidentified nature of target effects. Inference may then proceed by
imposing contextually defensible priors or penalties (Greenland, 2005a, 2009a, 2009b,
2010).
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Despite my view and similar ones (e.g., Gustafson, 2005), I suspect the bulk of causal-
inference statistics will trundle on relying exclusively on artificially identified models. It
will thus be particularly important to remember that just because a method is labeled a
“causal modeling” method does not mean it gives us estimates and tests of actual causal
effects. For those who find identification too hard to abandon in formal analysis, the only
honest recourse is to separate identified and nonidentified components of the model,
focus technique on the identified portion, and leave the latent residual as a topic for
sensitivity analysis, speculative modeling, and further study. In this task, graphs can be
used without the burden of causality if we allow them a role as pure prediction tools, and
they can also be used as causal diagrams of the largely latent structure that generates the
data.

Acknowledgments: I am most grateful to Tyler VanderWeele, Jay Kaufman, and
Onyebuchi Arah for their extensive and useful comments on this chapter.
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Actual Causation and the Art of Modeling

JOSEPH Y. HALPERN AND CHRISTOPHER HITCHCOCK

1 Introduction

In The Graduate, Benjamin Braddock (Dustin Hoffman) is told that the future can
be summed up in one word: “Plastics”. One of us (Halpern) recalls that in roughly
1990, Judea Pearl told him that the future was in causality. Pearl’s own research
was largely focused on causality in the years after that; his seminal contributions
are widely known. We were among the many influenced by his work. We discuss one
aspect of it, actual causation, in this article, although a number of our comments
apply to causal modeling more generally.

Pearl introduced a novel account of actual causation in Chapter 10 of Causality,
which was later revised in collaboration with one of us [Halpern and Pearl 2005].
In some ways, Pearl’s approach to actual causation can be seen as a contribution to
the philosophical project of trying to analyze actual causation in terms of counter-
factuals, a project associated most strongly with David Lewis [1973a]. But Pearl’s
account was novel in at least two important ways. The first was his use of struc-
tural equations as a tool for modeling causality. In the philosophical literature,
causal structures were often represented using so-called neuron diagrams, but these
are not (and were never intended to be) all-purpose representational tools. (See
[Hitchcock 2007b] for a detailed discussion of the limitations of neuron diagrams.)
We believe that the lack of a more adequate representational tool had been a se-
rious obstacle to progress. Second, while the philosophical literature on causality
has focused almost exclusively on actual causality, for Pearl, actual causation was
a rather specialized topic within the study of causation, peripheral to many issues
involving causal reasoning and inference. Thus, Pearl’s work placed the study of
actual causation within a much broader context.

The use of structural equations as a model for causal relationships was well
known long before Pearl came on the scene; it seems to go back to the work of
Sewall Wright in the 1920s (see [Goldberger 1972] for a discussion). However, the
details of the framework that have proved so influential are due to Pearl. Besides
the Halpern-Pearl approach mentioned above, there have been a number of other
closely-related approaches for using structural equations to model actual causation;
see, for example, [Glymour and Wimberly 2007; Hall 2007; Hitchcock 2001; Hitch-
cock 2007a; Woodward 2003]. The goal of this paper is to look more carefully at
the modeling of causality using structural equations. For definiteness, we use the
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Halpern-Pearl (HP) version [Halpern and Pearl 2005] here, but our comments apply
equally well to the other variants.

It is clear that the structural equations can have a major impact on the conclu-
sions we draw about causality—it is the equations that allow us to conclude that
lower air pressure is the cause of the lower barometer reading, and not the other
way around; increasing the barometer reading will not result in higher air pressure.
The structural equations express the effects of interventions: what happens to the
bottle if it is hit with a hammer; what happens to a patient if she is treated with
a high dose of the drug, and so on. These effects are, in principle, objective; the
structural equations can be viewed as describing objective features of the world.
However, as pointed out by Halpern and Pearl [2005] and reiterated by others [Hall
2007; Hitchcock 2001; Hitchcock 2007a], the choice of variables and their values can
also have a significant impact on causality. Moreover, these choices are, to some
extent, subjective. This, in turn, means that judgments of actual causation are
subjective.

Our view of actual causation being at least partly subjective stands in contrast to
the prevailing view in the philosophy literature, where the assumption is that the job
of the philosopher is to analyze the (objective) notion of causation, rather like that
of a chemist analyzing the structure of a molecule. This may stem, at least in part,
from failing to appreciate one of Pearl’s lessons: actual causality is only part of the
bigger picture of causality. There can be an element of subjectivity in ascriptions
of actual causality without causation itself being completely subjective. In any
case, the experimental evidence certainly suggests that people’s views of causality
are subjective, even when there is no disagreement about the relevant structural
equations. For example, a number of experiments show that broadly normative
considerations, including the subject’s own moral beliefs, affect causal judgment.
(See, for example, [Alicke 1992; Cushman 2009; Cushman, Knobe, and Sinnott-
Armstrong 2008; Hitchcock and Knobe 2009; Knobe and Fraser 2008].) Even in
relatively non-controversial cases, people may want to focus on different aspects
of a problem, and thus give different answers to questions about causality. For
example, suppose that we ask for the cause of a serious traffic accident. A traffic
engineer might say that the bad road design was the cause; an educator might
focus on poor driver’s education; a sociologist might point to the pub near the
highway where the driver got drunk; a psychologist might say that the cause is the
driver’s recent breakup with his girlfriend.! Each of these answers is reasonable.
By appropriately choosing the variables, the structural equations framework can
accommodate them all.

Note that we said above “by appropriately choosing the variables”. An obvious
question is “What counts as an appropriate choice?”. More generally, what makes
a model an appropriate model? While we do want to allow for subjectivity, we need

IThis is a variant of an example originally due to Hanson [1958].
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to be able to justify the modeling choices made. A lawyer in court trying to argue
that faulty brakes were the cause of the accident needs to be able to justify his
model; similarly, his opponent will need to understand what counts as a legitimate
attack on the model. In this paper we discuss what we believe are reasonable bases
for such justifications. Issues such as model stability and interactions between the
events corresponding to variables turn out to be important.

Another focus of the paper is the use of defaults in causal reasoning. As we hinted
above, the basic structural equations model does not seem to suffice to completely
capture all aspects of causal reasoning. To explain why, we need to briefly outline
how actual causality is defined in the structural equations framework. Like many
other definitions of causality (see, for example, [Hume 1739; Lewis 1973b]), the HP
definition is based on counterfactual dependence. Roughly speaking, A is a cause of
B if, had A not happened (this is the counterfactual condition, since A did in fact
happen) then B would not have happened. As is well known, this naive definition
does not capture all the subtleties involved with causality. Consider the following
example (due to Hall [2004]): Suzy and Billy both pick up rocks and throw them at
a bottle. Suzy’s rock gets there first, shattering the bottle. Since both throws are
perfectly accurate, Billy’s would have shattered the bottle had Suzy not thrown.
Thus, according to the naive counterfactual definition, Suzy’s throw is not a cause
of the bottle shattering. This certainly seems counterintuitive.

The HP definition deals with this problem by taking A to be a cause of B if B
counterfactually depends on A under some contingency. For example, Suzy’s throw
is the cause of the bottle shattering because the bottle shattering counterfactually
depends on Suzy’s throw, under the contingency that Billy doesn’t throw. (As we
will see below, there are further subtleties in the definition that guarantee that, if
things are modeled appropriately, Billy’s throw is not also a cause.)

While the definition of actual causation in terms of structural equations has been
successful at dealing with many of the problems of causality, examples of Hall [2007],
Hiddleston [2005], and Hitchcock [2007a] show that it gives inappropriate answers in
cases that have structural equations isomorphic to ones where it arguably gives the
appropriate answer. This means that, no matter how we define actual causality in
the structural-equations framework, the definition must involve more than just the
structural equations. Recently, Hall [2007], Halpern [2008], and Hitchcock [20074a]
have suggested that using defaults might be a way of dealing with the problem.
As the psychologists Kahneman and Miller [1986, p. 143] observe, “an event is
more likely to be undone by altering exceptional than routine aspects of the causal
chain that led to it”. This intuition is also present in the legal literature. Hart and
Honoré [1985] observe that the statement “It was the presence of oxygen that caused
the fire” makes sense only if there were reasons to view the presence of oxygen as
abnormal.

As shown by Halpern [2008], we can model this intuition formally by combining a
well-known approach to modeling defaults and normality, due to Kraus, Lehmann,
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and Magidor [1990] with the structural-equation model. Moreover, doing this leads
to a straightforward solution to the problem above. The idea is that, when showing
that if A hadn’t happened then B would not have happened, we consider only
contingencies that are at least as normal as the actual world. For example, if
someone typically leaves work at 5:30 PM and arrives home at 6, but, due to
unusually bad traffic, arrives home at 6:10, the bad traffic is typically viewed as the
cause of his being late, not the fact that he left at 5:30 (rather than 5:20).

But once we add defaults to the model, the problem of justifying the model be-
comes even more acute. We not only have to justify the structural equations and the
choice of variables, but also the default theory. The problem is exacerbated by the
fact that default and “normality” have a number of interpretations. Among other
things, they can represent moral obligations, societal conventions, prototypicality
information, and statistical information. All of these interpretations are relevant to
understanding causality; this makes justifying default choices somewhat subtle.

The rest of this paper is organized as follows. In Sections 2 and 3, we review the
notion of causal model and the HP definition of actual cause; most of this material is
taken from [Halpern and Pearl 2005]. In Section 4, we discuss some issues involved
in the choice of variables in a model. In Section 5, we review the approach of
[Halpern 2008] for adding considerations of normality to the HP framework, and
discuss some modeling issues that arise when we do so. We conclude in Section 6.

2 Causal Models

In this section, we briefly review the HP definition of causality. The description of
causal models given here is taken from [Halpern 2008], which in turn is based on
that of [Halpern and Pearl 2005].

The HP approach assumes that the world is described in terms of random vari-
ables and their values. For example, if we are trying to determine whether a forest
fire was caused by lightning or an arsonist, we can take the world to be described
by three random variables:

e F for forest fire, where F' = 1 if there is a forest fire and F = 0 otherwise;
e [ for lightning, where L = 1 if lightning occurred and L = 0 otherwise;

e ML for match (dropped by arsonist), where ML = 1 if the arsonist drops a lit
match, and ML = 0 otherwise.

Some random variables may have a causal influence on others. This influence
is modeled by a set of structural equations. For example, to model the fact that
if either a match is lit or lightning strikes, then a fire starts, we could use the
random variables ML, F, and L as above, with the equation F = max(L, ML).
(Alternately, if a fire requires both causes to be present, the equation for F' becomes
F = min(L, ML).) The equality sign in this equation should be thought of more like
an assignment statement in programming languages; once we set the values of F
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and L, then the value of F' is set to their maximum. However, despite the equality,
if a forest fire starts some other way, that does not force the value of either ML or
L to be 1.

It is conceptually useful to split the random variables into two sets: the ezxoge-
nous variables, whose values are determined by factors outside the model, and the
endogenous variables, whose values are ultimately determined by the exogenous
variables. For example, in the forest-fire example, the variables ML, L, and F are
endogenous. However, we want to take as given that there is enough oxygen for
the fire and that the wood is sufficiently dry to burn. In addition, we do not want
to concern ourselves with the factors that make the arsonist drop the match or the
factors that cause lightning. These factors are all determined by the exogenous
variables.

Formally, a causal model M is a pair (S, F), where S is a signature, which explic-
itly lists the endogenous and exogenous variables and characterizes their possible
values, and F defines a set of modifiable structural equations, relating the values
of the variables. A signature S is a tuple (U, V,R), where U is a set of exogenous
variables, V is a set of endogenous variables, and R associates with every variable
Y € Y UV a nonempty set R(Y) of possible values for Y (that is, the set of values
over which Y ranges). F associates with each endogenous variable X € V a func-
tion denoted Fx such that Fy : (xpcyR(U)) X (Xyey—{x}R(Y)) — R(X). This
mathematical notation just makes precise the fact that Fx determines the value
of X, given the values of all the other variables in & U V. If there is one exoge-
nous variable U and three endogenous variables, X, Y, and Z, then F'x defines the
values of X in terms of the values of Y, Z, and U. For example, we might have
Fx(u,y,2) = u + y, which is usually written as X < U + Y.?2 Thus, if Y = 3 and
U = 2, then X =5, regardless of how Z is set.

In the running forest-fire example, suppose that we have an exogenous random
variable U that determines the values of L and ML. Thus, U has four possible values
of the form (4, 7), where both of ¢ and j are either 0 or 1. The 4 value determines
the value of L and the j value determines the value of ML. Although Fp gets as
arguments the vale of U, ML, and F, in fact, it depends only on the (first component
of) the value of U; that is, F1((¢,7), m, f) = 4. Similarly, Fp.((4,7),1, f) = j. The
value of F’ depends only on the value of L and ML. How it depends on them depends
on whether either cause by itself is sufficient for the forest fire or whether both are
necessary. If either one suffices, then Fr((i,7),l,m) = max(l,m), or, perhaps more
comprehensibly, F' = max(L, ML); if both are needed, then F' = min(L, ML). For
future reference, call the former model the disjunctive model, and the latter the
conjunctive model.

The key role of the structural equations is to define what happens in the presence
of external interventions. For example, we can explain what happens if the arsonist

2The fact that X is assigned U + Y (i.e., the value of X is the sum of the values of U and Y)
does not imply that Y is assigned X — U; that is, Fy (U, X, Z) = X — U does not necessarily hold.
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does not drop the match. In the disjunctive model, there is a forest fire exactly
if there is lightning; in the conjunctive model, there is definitely no fire. Setting
the value of some variable X to z in a causal model M = (S, F) results in a new
causal model denoted Mx. ,. In the new causal model, the equation for X is very
simple: X is just set to x; the remaining equations are unchanged. More formally,
Mx_p = (S, FX), where FX7 is the result of replacing the equation for X in
F by X =x.

The structural equations describe objective information about the results of in-
terventions, that can, in principle, be checked. Once the modeler has selected a set
of variables to include in the model, the world determines which equations among
those variables correctly represent the effects of interventions.> By contrast, the
choice of variables is subjective; in general, there need be no objectively “right” set
of exogenous and endogenous variables to use in modeling a problem. We return to
this issue in Section 4.

It may seem somewhat circular to use causal models, which clearly already encode
causal information, to define actual causation. Nevertheless, as we shall see, there
is no circularity. The equations of a causal model do not represent relations of
actual causation, the very concept that we are using them to define. Rather, the
equations characterize the results of all possible interventions (or at any rate, all
of the interventions that can be represented in the model) without regard to what
actually happened. Specifically, the equations do not depend upon the actual values
realized by the variables. For example, the equation F' = max(L, ML), by itself,
does not say anything about whether the forest fire was actually caused by lightning
or by an arsonist, or, for that matter, whether a fire even occurred. By contrast,
relations of actual causation depend crucially on how things actually play out.

A sequence of endogenous X7,..., X, of is a directed path from X; to X, if the

value of X;;1 (as given by Fx depends on the value of X;, for 1 =1,...,n— 1.

'i+1)
In this paper, following HP, we restrict our discussion to acyclic causal models,
where causal influence can be represented by an acyclic Bayesian network. That is,
there is no cycle X, ..., X,,, X1 of endogenous variables that forms a directed path
from X to itself. If M is an acyclic causal model, then given a context, that is,
a setting u for the exogenous variables in U, there is a unique solution for all the

equations.

3In general, there may be uncertainty about the causal model, as well as about the true setting
of the exogenous variables in a causal model. Thus, we may be uncertain about whether smoking
causes cancer (this represents uncertainty about the causal model) and uncertain about whether
a particular patient actually smoked (this is uncertainty about the value of the exogenous variable
that determines whether the patient smokes). This uncertainty can be described by putting a
probability on causal models and on the values of the exogenous variables. We can then talk
about the probability that A is a cause of B.
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3 The HP Definition of Actual Cause

3.1 A language for describing causes

Given a signature § = (U,V,R), a primitive event is a formula of the form X =
z, for X € V and z € R(X). A causal formula (over §) is one of the form
Y1 < v1,...,Yr < yi|o, where ¢ is a Boolean combination of primitive events,
Y1, ..., Y} are distinct variables in V, and y; € R(Y;). Such a formula is abbreviated
as [57 — Y]¢. The special case where k = 0 is abbreviated as ¢. Intuitively,
[Y1 < y1,...,Ys < yi]o says that ¢ would hold if Y; were set to y;, fori =1,...,k.

A causal formula 1 is true or false in a causal model, given a context. As usual,
we write (M, @) |= 1 if the causal formula ¢ is true in causal model M given context
. The [ relation is defined inductively. (M, %) | X = x if the variable X has
value z in the unique (since we are dealing with acyclic models) solution to the
equations in M in context # (that is, the unique vector of values for the endogenous
variables that simultaneously satisfies all equations in M with the variables in U
set to @). The truth of conjunctions and negations is defined in the standard way.
Finally, (M, @) |= [V — §]¢ if (Mg, i) = ¢. We write M |= ¢ if (M, i) |= ¢ for
all contexts .

For example, if M is the disjunctive causal model for the forest fire, and wu is
the context where there is lightning and the arsonist drops the lit match, then
(M,u) E [ML < 0](F = 1), since even if the arsonist is somehow prevented from
dropping the match, the forest burns (thanks to the lightning); similarly, (M, u) =
[L < O](F =1). However, (M,u) = [L < 0; ML « 0](F = 0): if the arsonist does
not drop the lit match and the lightning does not strike, then the forest does not

burn.

3.2 A preliminary definition of causality

The HP definition of causality, like many others, is based on counterfactuals. The
idea is that if A and B both occur, then A is a cause of B if, if A hadn’t occurred,
then B would not have occurred. This idea goes back to at least Hume [1748,
Section VIII], who said:

We may define a cause to be an object followed by another, ..., where,
if the first object had not been, the second never had existed.

This is essentially the but-for test, perhaps the most widely used test of actual
causation in tort adjudication. The but-for test states that an act is a cause of
injury if and only if, but for the act (i.e., had the the act not occurred), the injury
would not have occurred.

There are two well-known problems with this definition. The first can be seen
by considering the disjunctive causal model for the forest fire again. Suppose that
the arsonist drops a match and lightning strikes. Which is the cause? According
to a naive interpretation of the counterfactual definition, neither is. If the match
hadn’t dropped, then the lightning would still have struck, so there would have been
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a forest fire anyway. Similarly, if the lightning had not occurred, there still would
have been a forest fire. As we shall see, the HP definition declares both lightning
and the arsonist causes of the fire. (In general, there may be more than one actual
cause of an outcome.)

A more subtle problem is what philosophers have called preemption, which is
illustrated by the rock-throwing example from the introduction. As we observed,
according to a naive counterfactual definition of causality, Suzy’s throw would not
be a cause.

The HP definition deals with the first problem by defining causality as coun-
terfactual dependency under certain contingencies. In the forest-fire example, the
forest fire does counterfactually depend on the lightning under the contingency that
the arsonist does not drop the match; similarly, the forest fire depends counterfac-
tually on the dropping of the match under the contingency that the lightning does
not strike.

Unfortunately, we cannot use this simple solution to treat the case of preemp-
tion. We do not want to make Billy’s throw the cause of the bottle shattering by
considering the contingency that Suzy does not throw. So if our account is to yield
the correct verdict in this case, it will be necessary to limit the contingencies that
can be considered. The reason that we consider Suzy’s throw to be the cause and
Billy’s throw not to be the cause is that Suzy’s rock hit the bottle, while Billy’s did
not. Somehow the definition of actual cause must capture this obvious intuition.

With this background, we now give the preliminary version of the HP definition
of causality. Although the definition is labeled “preliminary”, it is quite close to
the final definition, which is given in Section 5. The definition is relative to a causal
model (and a context); A may be a cause of B in one causal model but not in
another. The definition consists of three clauses. The first and third are quite
simple; all the work is going on in the second clause.

The types of events that the HP definition allows as actual causes are ones of
the form X; = z1 A ... A X = zp—that is, conjunctions of primitive events; this is
often abbreviated as X = #. The events that can be caused are arbitrary Boolean
combinations of primitive events. The definition does not allow statements of the
form “A or A’ is a cause of B”, although this could be treated as being equivalent
to “either A is a cause of B or A’ is a cause of B”. On the other hand, statements
such as “A is a cause of B or B’” are allowed; this is not equivalent to “either A is
a cause of B or A is a cause of B"”.

DEFINITION 1. (Actual cause; preliminary version) [Halpern and Pearl 2005] X =
Z is an actual cause of ¢ in (M, ) if the following three conditions hold:

ACL. (M, @) & (X = %) and (M, @) E 6.

AC2. There is a partition of V (the set of endogenous variables) into two subsets
Z and W with X C Z , and a setting ' and W of the variables in X and V_V,
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respectively, such that if (M, @) = Z = z* for all Z € Z, then both of the
following conditions hold:

(2) (M, @) | [X — & W — @]-¢.

(b) (M, @) = [X « W' — @, Z — 7*]¢ for all subsets W’ of W and all
subsets Z' of Z , where we abuse notation and write W' «— i to denote
the assignment where the variables in w’ get the same values as they
would in the assignment W — .

AC3. X is minimal; no subset of X satisfies conditions AC1 and AC2.

AC1 just says that X = # cannot be considered a cause of ¢ unless both X=z
and ¢ actually happen. AC3 is a minimality condition, which ensures that only
those elements of the conjunction X = 7 that are essential for changing ¢ in AC2(a)
are considered part of a cause; inessential elements are pruned. Without AC3, if
dropping a lit match qualified as a cause of the forest fire, then dropping a match
and sneezing would also pass the tests of AC1 and AC2. AC3 serves here to strip
“sneezing” and other irrelevant, over-specific details from the cause. Clearly, all the
“action” in the definition occurs in AC2. We can think of the variables in Z as
making up the “causal path” from X to ¢, consisting of one or more directed paths
from variables in X to variables in ¢. Intuitively, changing the value(s) of some
variable(s) in X results in changing the value(s) of some variable(s) in Z, which
results in the value(s) of some other variable(s) in Z being changed, which finally
results in the truth value of ¢ changing. The remaining endogenous variables, the
ones in W, are off to the side, so to speak, but may still have an indirect effect
on what happens. AC2(a) is essentially the standard counterfactual definition of
causality, but with a twist. If we want to show that X = 7 is a cause of ¢, we
must show (in part) that if X had a different value, then ¢ would have been false.
However, this effect of the value of X on the truth value of ¢ may not hold in
the actual context; the value of W may have to be different to allow this effect
to manifest itself. For example, consider the context where both the lightning
strikes and the arsonist drops a match in the disjunctive model of the forest fire.
Stopping the arsonist from dropping the match will not prevent the forest fire.
The counterfactual effect of the arsonist on the forest fire manifests itself only in a
situation where the lightning does not strike (i.e., where L is set to 0). AC2(a) is
what allows us to call both the lightning and the arsonist causes of the forest fire.
Essentially, it ensures that X alone suffices to bring about the change from ¢ to —¢;
setting W to @ merely eliminates possibly spurious side effects that may mask the
effect of changing the value of X. Moreover, when X = Z, although the values of
variables on the causal path (i.e., the variables Z ) may be perturbed by the change
to W, this perturbation has no impact on the value of ¢. If (M, @) |= 7 = 7%, then
z* is the value of the variable Z in the context 4. We capture the fact that the
perturbation has no impact on the value of ¢ by saying that if some variables Z on
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the causal path were set to their original values in the context u, ¢ would still be
true, as long as X =7

EXAMPLE 2. For the forest-fire example, let M be the disjunctive model for the
forest fire sketched earlier, with endogenous variables L, ML, and F'. We want to
show that L = 1 is an actual cause of F' = 1. Clearly (M, (1,1)) E F = 1 and
(M, (1,1)) E L = 1; in the context (1,1), the lightning strikes and the forest burns
down. Thus, AC1 is satisfied. AC3 is trivially satisfied, since X consists of only one
element, L, so must be minimal. For AC2, take Z = {L, F} and take W = {ML},
let 2" =0, and let w = 0. Clearly, (M, (1,1)) = [L <« 0, ML «— O](F # 1); if the
lightning does not strike and the match is not dropped, the forest does not burn
down, so AC2(a) is satisfied. To see the effect of the lightning, we must consider the
contingency where the match is not dropped; the definition allows us to do that by
setting ML to 0. (Note that here setting L and ML to 0 overrides the effects of U;
this is critical.) Moreover, (M, (1,1)) = [L «— 1, ML — O](F = 1); if the lightning
strikes, then the forest burns down even if the lit match is not dropped, so AC2(b)
is satisfied. (Note that since Z = {L, F}, the only subsets of Z — X are the empty
set and the singleton set consisting of just F'.)

It is also straightforward to show that the lightning and the dropped match are
also causes of the forest fire in the context where U = (1,1) in the conjunctive
model. Again, AC1 and AC3 are trivially satisfied and, again, to show that AC2
holds in the case of lightning we can take Z = {L, F}, W = {ML}, and 2’ = 0, but
now we let w = 1. In the conjunctive scenario, if there is no lightning, there is no
forest fire, while if there is lightning (and the match is dropped) there is a forest
fire, so AC2(a) and AC2(b) are satisfied; similarly for the dropped match.

EXAMPLE 3. Now consider the Suzy-Billy example.* We get the desired result—
that Suzy’s throw is a cause, but Billy’s is not—but only if we model the story
appropriately. Consider first a coarse causal model, with three endogenous variables:

e ST for “Suzy throws”, with values 0 (Suzy does not throw) and 1 (she does);
e BT for “Billy throws”, with values 0 (he doesn’t) and 1 (he does);
e BS for “bottle shatters”, with values 0 (it doesn’t shatter) and 1 (it does).

(We omit the exogenous variable here; it determines whether Billy and Suzy throw.)
Take the formula for BS to be such that the bottle shatters if either Billy or Suzy
throw; that is BS = max(BT,ST). (We assume that Suzy and Billy will not
miss if they throw.) BT and ST play symmetric roles in this model; there is
nothing to distinguish them. Not surprisingly, both Billy’s throw and Suzy’s throw
are classified as causes of the bottle shattering in this model. The argument is
essentially identical to that in the disjunctive model of the forest-fire example in

4The discussion of this example is taken almost verbatim from HP.
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the context U = (1, 1), where both the lightning and the dropped match are causes
of the fire.

The trouble with this model is that it cannot distinguish the case where both
rocks hit the bottle simultaneously (in which case it would be reasonable to say
that both ST =1 and BT = 1 are causes of BS = 1) from the case where Suzy’s
rock hits first. To allow the model to express this distinction, we add two new
variables to the model:

e BH for “Billy’s rock hits the (intact) bottle”, with values 0 (it doesn’t) and
1 (it does); and

e SH for “Suzy’s rock hits the bottle”, again with values 0 and 1.
Now our equations will include:

o SH = ST,

e BH =min(BT,1 - SH); and

e BS =max(SH, BH).

Now it is the case that, in the context where both Billy and Suzy throw, ST =1
is a cause of BS = 1, but BT = 1 is not. To see that ST = 1 is a cause, note
that, as usual, it is immediate that AC1 and AC3 hold. For AC2, choose 7 =
{ST,SH,BH, BS}, W= {BT}, and w = 0. When BT is set to 0, BS tracks ST
if Suzy throws, the bottle shatters and if she doesn’t throw, the bottle does not
shatter. To see that BT = 1 is not a cause of BS = 1, we must check that there
is no partition Z U W of the endogenous variables that satisfies AC2. Attempting
the symmetric choice with 7 = {BT,BH,SH, BS}, W = {ST}, and w = 0 violates
AC2(b). To see this, take Z' = {BH}. In the context where Suzy and Billy both
throw, BH = 0. If BH is set to 0, the bottle does not shatter if Billy throws
and Suzy does not. It is precisely because, in this context, Suzy’s throw hits the
bottle and Billy’s does not that we declare Suzy’s throw to be the cause of the
bottle shattering. AC2(b) captures that intuition by allowing us to consider the
contingency where BH = 0, despite the fact that Billy throws. We leave it to the
reader to check that no other partition of the endogenous variables satisfies AC2
either.

This example emphasizes an important moral. If we want to argue in a case of
preemption that X = x is the cause of ¢ rather than Y = y, then there must be
a random variable (BH in this case) that takes on different values depending on
whether X = z or Y = y is the actual cause. If the model does not contain such
a variable, then it will not be possible to determine which one is in fact the cause.
This is certainly consistent with intuition and the way we present evidence. If we
want to argue (say, in a court of law) that it was A’s shot that killed C' rather than
B’s, then we present evidence such as the bullet entering C from the left side (rather
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than the right side, which is how it would have entered had B’s shot been the lethal
one). The side from which the shot entered is the relevant random variable in this
case. Note that the random variable may involve temporal evidence (if Y’s shot
had been the lethal one, the death would have occurred a few seconds later), but it
certainly does not have to.

4 The Choice of Variables

A modeler has considerable leeway in choosing which variables to include in a model.
Nature does not provide a uniquely correct set of variables. Nonetheless, there are a
number of considerations that guide variable selection. While these will not usually
suffice to single out one choice of variables, they can provide a framework for the
rational evaluation of models, including resources for motivating and defending
certain choices of variables, and criticizing others.

The problem of choosing a set of variables for inclusion in a model has many
dimensions. One set of issues concerns the question of how many variables to
include in a model. If the modeler begins with a set of variables, how can she know
whether she should add additional variables to the model? Given that it is always
possible to add additional variables, is there a point at which the model contains
“enough” variables? Is it ever possible for a model to have “too many” variables?
Can the addition of further variables ever do positive harm to a model?

Another set of issues concerns the values of variables. Say that variable X’ is a
refinement of X if, for each value x in the range of X, there is some subset S of
the range of X’ such that X = x just in case X’ is in S. When is it appropriate or
desirable to replace a variable with a refinement? Can it ever lead to problems if a
variable is too fine-grained? Similarly, are there considerations that would lead us
to prefer a model that replaced X with a new variable X", whose range is a proper
subset or superset of the range of X7

Finally, are there constraints on the set of variables in a model over and above
those we might impose on individual variables? For instance, can the choice to
include a particular variable X within a model require us to include another variable
Y, or to exclude a particular variable Z7

While we cannot provide complete answers to all of these questions, we believe
a good deal can be said to reduce the arbitrariness of the choice of variables. The
most plausible way to motivate guidelines for the selection of variables is to show
how inappropriate choices give rise to systems of equations that are inaccurate, mis-
leading, or incomplete in their predictions of observations and interventions. In the
next three subsections, we present several examples to show how such considerations
can be brought to bear on the problem of variable choice.

4.1 The Number of Variables

We already saw in Example 3 that it is important to choose the variables correctly.
Adding more variables can clearly affect whether A is a cause of B.  When is it

394



Actual Causation and the Art of Modeling

appropriate or necessary to add further variables to a model?® Suppose that we

have an infinite sequence of models M*', M2, ... such that the variables in M?* are
X0y, Xi+1,Y, and M?ZLH = M; (so that M**! can be viewed as an extension

of M?). Is it possible that whether X, = 1 is a cause of Y = 1 can alternate as we go
through this sequence? This would indicate a certain “instability” in the causality.
In this circumstance, a lawyer should certainly be able to argue against using, say,
M7 as a model to show that Xy = 1 is cause of Y = 1. On the other hand, if the
sequence stabilizes, that is, if there is some k such that for all ¢ > k, M? delivers the
same verdict on some causal claim of interest, that would provide a strong reason
to accept M* as sufficient.

Compare Example 2 with Example 3. In Example 2, we were able to adequately
model the scenario using only three endogenous variables: L, ML, and F. By
contrast, in Example 3, the model containing only three endogenous variables, BT,
ST, and BS, was inadequate. What is the difference between the two scenarios?
One difference we have already mentioned is that there seems to be an important
feature of the second scenario that cannot be captured in the three-variable model:
Suzy’s rock hit the bottle before Billy’s did. There is also a significant “topological”
difference between the two scenarios. In the forest-fire example, there are two
directed paths into the variable F'. We could interpolate additional variables along
these two paths. We could, for instance, interpolate a variable representing the
occurrence of a small brush fire. But doing so would not fundamentally change
the causal structure: there would still be just two directed paths into F. In the
case of preemption, however, adding the additional variables SH and BH created
an additional directed path that was not there before. The three-variable model
contained just two directed paths: one from ST to BS, and one from BT to BS.
However, once the variables SH and BH were added, there were three directed
paths: {ST,SH,BS}, {BT, BH,BS}, and {ST, SH, BH, BS}. The intuition, then,
is that adding additional variables to a model will not affect the relations of actual
causation that hold in the model unless the addition of those variables changes the
“topology” of the model. A more complete mathematical characterization of
the conditions under which the verdicts of actual causality remain stable under the
addition of further variables strikes us as a worthwhile research project that has not
yet been undertaken.

4.2 The Ranges of Variables

Not surprisingly, the set of possible values of a variable must also be chosen ap-
propriately. Consider, for example, a case of “trumping”, introduced by Schaffer
[2000]. Suppose that a group of soldiers is very well trained, so that they will obey
any order given by a superior officer; in the case of conflicting orders, they obey the

5 Although his model of causality is quite different from ours, Spohn [2003] also considers the
effect of adding or removing variables, and discusses how a model with fewer variables should be
related to one with more variables.
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highest-ranking officer. Both a sergeant and a major issue the order to march, and
the soldiers march. Let us put aside the morals that Schaffer attempts to draw from
this example (with which we disagree; see [Halpern and Pearl 2005] and [Hitchcock
2010]), and consider only the modeling problem. We will presumably want variables
S, M, and A, corresponding to the sergeant’s order, the major’s order, and the sol-
diers’ action. We might let S = 1 represent the sergeant’s giving the order to march
and S = 0 represent the sergeant’s giving no order; likewise for M and A. But this
would not be adequate. If the only possible order is the order to march, then there
is no way to capture the principle that in the case of conflicting orders, the soldiers
obey the major. One way to do this is to replace the variables M, S, and A by
variables M’, S’ and A’ that take on three possible values. Like M, M’ = 0 if the
major gives no order and M’ = 1 if the major gives the order to march. But now
we allow M’ = 2, which corresponds to the major giving some other order. S’ and
A’ are defined similarly. We can now write an equation to capture the fact that if
M’ =1 and S’ = 2, then the soldiers march, while if M’ = 2 and S’ = 1, then the
soldiers do not march.

The appropriate set of values of a variable will depend on the other variables
in the picture, and the relationship between them. Suppose, for example, that a
hapless homeowner comes home from a trip to find that his front door is stuck. If
he pushes on it with a normal force then the door will not open. However, if he
leans his shoulder against it and gives a solid push, then the door will open. To
model this, it suffices to have a variable O with values either 0 or 1, depending on
whether the door opens, and a variable P, with values 0 or 1 depending on whether
or not the homeowner gives a solid push.

On the other hand, suppose that the homeowner also forgot to disarm the security
system, and that the system is very sensitive, so that it will be tripped by any push
on the door, regardless of whether the door opens. Let A = 1 if the alarm goes off,
A = 0 otherwise. Now if we try to model the situation with the same variable P, we
will not be able to express the dependence of the alarm on the homeowner’s push.
To deal with both O and A, we need to extend P to a 3-valued variable P’, with
values 0 if the homeowner does not push the door, 1 if he pushes it with normal
force, and 2 if he gives it a solid push.

These considerations parallel issues that arise in philosophical discussions about
the metaphysics of “events”.5 Suppose that our homeowner pushed on the door with
enough force to open it. Is there just one event, the push, that can be described
at various levels of detail, such as a “push” or a “hard push”? This is the view of
Davidson [1967]. Or are there rather many different events corresponding to these
different descriptions, as argued by Kim [1973] and Lewis [1986b]? And if we take
the latter view, which of the many events that occur should be counted as causes of
the door’s opening? These strike us as pseudoproblems. We believe that questions

6This philosophical usage of the word “event” is different from the typical usage of the word in
computer science and probability, where an event is just a subset of the state space.
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about causality are best addressed by dealing with the methodological problem of
constructing a model that correctly describes the effects of interventions in a way
that is not misleading or ambiguous.

A slightly different way in which one variable may constrain the values that
another may take is by its implicit presuppositions. For example, a counterfactual
theory of causation seems to have the somewhat counterintuitive consequence that
one’s birth is a cause of one’s death. This sounds a little odd. If Jones dies suddenly
one night, shortly before his 80th birthday, the coroner’s inquest is unlikely to list
“birth” as among the causes of his death. Typically, when we investigate the causes
of death, we are interested in what makes the difference between a person’s dying
and his surviving. So our model might include a variable D such D = 1 holds if
Jones dies shortly before his 80th birthday, and D = 0 holds if he continues to
live. If our model also includes a variable B, taking the value 1 if Jones is born, 0
otherwise, then there simply is no value that D would take if B = 0. Both D =0
and D = 1 implicitly presuppose that Jones was born (i.e., B = 1). Our conclusion
is that if we have chosen to include a variable such as D in our model, then we
cannot conclude that Jones’ birth is a cause of his death!

4.3 Dependence and Independence

Lewis [1986a] added a constraint to his counterfactual theory of causation. In order
for event ¢ to be a cause of event e, the two events cannot be logically related.
Suppose for instance, that Martha says “hello” loudly. If she had not said “hello”,
then she certainly could not have said “hello” loudly. But her saying “hello” is not
a cause of her saying “hello” loudly. The counterfactual dependence results from a
logical, rather than a causal, relationship between the two events.

We must impose a similar constraint upon causal models. Values of different
variables should not correspond to events that are logically related. But now, rather
than being an ad hoc restriction, it has a clear rationale. For suppose that we had
a model with variable H; and Hs, where H; represents “Martha says ‘hello’” (i.e.,
Hy =1 if Martha says “hello” and H; = 0 otherwise), and Hs represents “Martha
says ‘hello’ loudly”. The intervention Hy = 0 A Ho = 1 is meaningless; it is logically
impossible for Martha not to say “hello” and to say ‘’hello” loudly.

We doubt that any careful modeler would choose variables that have logically
related values. However, the converse of this principle, that the different values
of any particular variable should be logically related (in fact, mutually exclusive),
is less obvious and equally important. Consider Example 3. While, in the actual
context, Billy’s rock will hit the bottle just in case Suzy’s doesn’t, this is not a
necessary relationship. Suppose that, instead of using two variables SH and BH,
we try to model the scenario with a variable H that takes the value 1 if Suzy’s rock
hits, and and 0 if Billy’s rock hits. The reader can verify that, in this model, there
is no contingency such that the bottle’s shattering depends upon Suzy’s throw. The
problem, as we said, is that H = 0 and H = 1 are not mutually exclusive; there are
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possible situations in which both rocks hit or neither rock hits the bottle. In partic-
ular, this representation does not allow us to consider independent interventions on
the rocks hitting the bottle. As the discussion in Example 3 shows, it is precisely
such an intervention that is needed to establish that Suzy’s throw (and not Billy’s)
is the actual cause of the bottle shattering.

While these rules are simple in principle, their application is not always trans-
parent.

EXAMPLE 4. Consider cases of “switching”, which have been much discussed in
the philosophical literature. A train is heading toward the station. An engineer
throws a switch, directing the train down the left track, rather than the right track.
The tracks re-converge before the station, and the train arrives as scheduled. Was
throwing the switch a cause of the train’s arrival? HP consider two causal models
of this scenario. In the first, there is a random variable S which is 1 if the switch
is thrown (so the train goes down the left track) and 0 otherwise. In the second,
in addition to S, there are variables LT and RT, indicating whether or not the
train goes down the left track and right track, respectively. Note that with the first
representation, there is no way to model the train not making it to the arrival point.
With the second representation, we have the problem that LT = 1 and RT =1
are arguably not independent; the train cannot be on both tracks at once. If we
want to model the possibility of one track or another being blocked, we should use,
instead of LT and RT, variables LB and RB, which indicate whether the left track
or right track, respectively, are blocked. This allows us to represent all the relevant
possibilities without running into independence problems. Note that if we have
only S as a random variable, then S = 1 cannot be a cause of the train arriving;
it would have arrived no matter what. With RB in the picture, the preliminary
HP definition of actual cause rules that S = 1 can be an actual cause of the train’s
arrival; for example, under the contingency that RB = 1, the train does not arrive
if S = 0. (However, once we extend the definition to include defaults, as we will in
the next section, it becomes possible once again to block this conclusion.)

These rules will have particular consequences for how we should represent events
that might occur at different times. Consider the following simplification of an
example introduced by Bennett [1987], and also considered in HP.

EXAMPLE 5. Suppose that the Careless Camper (CC for short) has plans to go
camping on the first weekend in June. He will go camping unless there is a fire in
the forest in May. If he goes camping, he will leave a campfire unattended, and
there will be a forest fire. Let the variable C take the value 1 if CC goes camping,
and 0 otherwise. How should we represent the state of the forest?

There appear to be at least three alternatives. The simplest proposal would be
to use a variable F' that takes the value 1 if there is a forest fire at some time, and 0
otherwise.” But now how are we to represent the dependency relations between F

7This is, in effect, how effects have been represented using “neuron diagrams” in late preemption
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and C? Since CC will go camping only if there is no fire (in May), we would want to
have an equation such as C' = 1—F. On the other hand, since there will be a fire (in
June) just in case CC goes camping, we will also need F = C. This representation is
clearly not rich enough, since it does not let us make the clearly relevant distinction
between whether the forest fire occurs in May or June. The problem is manifested
in the fact that the equations are cyclic, and have no consistent solution.®

A second alternative, adopted by Halpern and Pearl [2005, p. 860], would be to
use a variable F’ that takes the value 0 if there is no fire, 1 if there is a fire in
May, and 2 if there is a fire in June. Now how should we write our equations?
Since CC will go camping unless there is a fire in May, the equation for C' should
say that C = 0 iff F¥ = 1. And since there will be a fire in June if CC goes
camping, the equation for F’ should say that F/ =2 if C' = 1 and F’ = 0 otherwise.
These equations are cyclic. Moreover, while they do have a consistent solution, they
are highly misleading in what they predict about the effects of interventions. For
example, the first equation tells us that intervening to create a forest fire in June
would cause CC to go camping in the beginning of June. But this seems to get the
causal order backwards!

The third way to model the scenario is to use two separate variables, F} and Fy,
to represent the state of the forest at separate times. F; = 1 will represent a fire
in May, and F; = 0 represents no fire in May; F, = 1 represents a fire in June and
F5> = 0 represents no fire in June. Now we can write our equations as C' =1 — F}
and Fy = C x (1 — Fy). This representation is free from the defects that plague the
other two representations. We have no cycles, and hence there will be a consistent
solution for any value of the exogenous variables. Moreover, this model correctly
tells us that only an intervention on the state of the forest in May will affect CC’s
camping plans.

Once again, our discussion of the methodology of modeling parallels certain meta-
physical discussions in the philosophy literature. If heavy rains delay the onset of
a fire, is it the same fire that would have occurred without the rains, or a different
fire? It is hard to see how to gain traction on such an issue by direct metaphysical
speculation. By contrast, when we recast the issue as one about what kinds of
variables to include in causal models, it is possible to say exactly how the models
will mislead you if you make the wrong choice.

cases. See Hitchcock [2007b, pp. 85-88] for discussion.

8 Careful readers will note the the preemption case of Example 3 is modeled in this way. In that
model, BH is a cause of BS, even though it is the earlier shattering of the bottle that prevents
Billy’s rock from hitting. Halpern and Pearl [2005] note this problem and offer a dynamic model
akin to the one recommended below. As it turns out, this does not affect the analysis of the
example offered above.
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5 Dealing with normality and typicality

While the definition of causality given in Definition 1 works well in many cases, it
does not always deliver answers that agree with (most people’s) intuition. Consider
the following example, taken from Hitchcock [2007a], based on an example due to
Hiddleston [2005].

EXAMPLE 6. Assassin is in possession of a lethal poison, but has a last-minute
change of heart and refrains from putting it in Victim’s coffee. Bodyguard puts
antidote in the coffee, which would have neutralized the poison had there been
any. Victim drinks the coffee and survives. Is Bodyguard’s putting in the antidote
a cause of Victim surviving? Most people would say no, but according to the
preliminary HP definition, it is. For in the contingency where Assassin puts in the
poison, Victim survives iff Bodyguard puts in the antidote.

Example 6 illustrates an even deeper problem with Definition 1. The struc-
tural equations for Example 6 are isomorphic to those in the forest-fire example,
provided that we interpret the variables appropriately. Specifically, take the en-
dogenous variables in Example 6 to be A (for “assassin does not put in poison”),
B (for “bodyguard puts in antidote” ), and VS (for “victim survives”). Then A, B,
and VS satisfy exactly the same equations as L, ML, and F, respectively. In the
context where there is lightning and the arsonists drops a lit match, both the light-
ning and the match are causes of the forest fire, which seems reasonable. But here
it does not seem reasonable that Bodyguard’s putting in the antidote is a cause.
Nevertheless, any definition that just depends on the structural equations is bound
to give the same answers in these two examples. (An example illustrating the same
phenomenon is given by Hall [2007].) This suggests that there must be more to
causality than just the structural equations. And, indeed, the final HP definition
of causality allows certain contingencies to be labeled as “unreasonable” or “too
farfetched”; these contingencies are then not considered in AC2(a) or AC2(b). As
discussed by Halpern [2008], there are problems with the HP account; we present
here the approach used in [Halpern 2008] for dealing with these problems, which in-
volves assuming that an agent has, in addition to a theory of causality (as modeled
by the structural equations), a theory of “normality” or “typicality”. (The need
to consider normality was also stressed by Hitchcock [2007a] and Hall [2007], and
further explored by Hitchcock and Knobe [2009].) This theory would include state-
ments like “typically, people do not put poison in coffee” and “typically doctors do
not treat patients to whom they are not assigned”. There are many ways of giving
semantics to such typicality statements (e.g., [Adams 1975; Kraus, Lehmann, and
Magidor 1990; Spohn 2009]). For definiteness, we use ranking functions [Spohn
2009] here.

Take a world to be a complete description of the values of all the random variables.
we assume that each world has associated with it a rank, which is just a natural
number or co. Intuitively, the higher the rank, the less “normal” or “typical” the
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world. A world with a rank of 0 is reasonably normal, one with a rank of 1 is
somewhat normal, one with a rank of 2 is quite abnormal, and so on. Given a
ranking on worlds, the statement “if p then typically ¢” is true if in all the worlds
of least rank where p is true, ¢ is also true. Thus, in one model where people do not
typically put either poison or antidote in coffee, the worlds where neither poison
nor antidote is put in the coffee have rank 0, worlds where either poison or antidote
is put in the coffee have rank 1, and worlds where both poison and antidote are put
in the coffee have rank 2.

Take an extended causal model to be a tuple M = (S, F, k), where (S, F) is a
causal model, and « is a ranking function that associates with each world a rank.
In an acyclic extended causal model, a context @ determines a world, denoted sg.
X =7 is a cause of ¢ in an extended model M and context u if X = 7 is a cause of
¢ according to Definition 1, except that in AC2(a), there must be a world s such
that x(s) < k(sg) and X = @ AW = @ is true at s. This can be viewed as a
formalization of Kahneman and Miller’s [1986] observation that “an event is more
likely to be undone by altering exceptional than routine aspects of the causal chain
that led to it”.

This definition deals well with all the problematic examples in the literature.
Consider Example 6. Using the ranking described above, Bodyguard is not a cause
of Victim’s survival because the world that would need to be considered in AC2(a),
where Assassin poisons the coffee, is less normal than the actual world, where he
does not. We consider just one other example here (see [Halpern 2008] for further
discussion).

EXAMPLE 7. Consider the following story, taken from (an early version of) [Hall
2004]: Suppose that Billy is hospitalized with a mild illness on Monday; he is
treated and recovers. In the obvious causal model, the doctor’s treatment is a cause
of Billy’s recovery. Moreover, if the doctor does not treat Billy on Monday, then
the doctor’s omission to treat Billy is a cause of Billy’s being sick on Tuesday. But
now suppose that there are 100 doctors in the hospital. Although only doctor 1 is
assigned to Billy (and he forgot to give medication), in principle, any of the other
99 doctors could have given Billy his medication. Is the nontreatment by doctors
2-100 also a cause of Billy’s being sick on Tuesday?

Suppose that in fact the hospital has 100 doctors and there are variables
Aq,...,A190 and T4,..., Tygo in the causal model, where A; = 1 if doctor 7 is
assigned to treat Billy and A; = 0 if he is not, and 7; = 1 if doctor i actually treats
Billy on Monday, and T; = 0 if he does not. Doctor 1 is assigned to treat Billy;
the others are not. However, in fact, no doctor treats Billy. Further assume that,
typically, no doctor is assigned to a given patient; if doctor ¢ is not assigned to
treat Billy, then typically doctor ¢ does not treat Billy; and if doctor i is assigned
to Billy, then typically doctor ¢ treats Billy. We can capture this in an extended
causal model where the world where no doctor is assigned to Billy and no doctor
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treats him has rank 0; the 100 worlds where exactly one doctor is assigned to Billy,
and that doctor treats him, have rank 1; the 100 worlds where exactly one doctor is
assigned to Billy and no one treats him have rank 2; and the 100 x 99 worlds where
exactly one doctor is assigned to Billy but some other doctor treats him have rank
3. (The ranking given to other worlds is irrelevant.) In this extended model, in the
context where doctor i is assigned to Billy but no one treats him, ¢ is the cause of
Billy’s sickness (the world where i treats Billy has lower rank than the world where
1 is assigned to Billy but no one treats him), but no other doctor is a cause of Billy’s
sickness. Moreover, in the context where 7 is assigned to Billy and treats him, then
i is the cause of Billy’s recovery (for AC2(a), consider the world where no doctor is
assigned to Billy and none treat him).

Adding a normality theory to the model gives the HP account of actual causation
greater flexibility to deal with these kinds of cases. This raises the worry, however,
that this gives the modeler too much flexibility. After all, the modeler can now
render any claim that A is an actual cause of B false, simply by choosing a nor-
mality order that assigns the actual world sz a lower rank than any world s needed
to satisfy AC2. Thus, the introduction of normality exacerbates the problem of
motivating and defending a particular choice of model. Fortunately, the literature
on the psychology of counterfactual reasoning and causal judgment goes some way
toward enumerating the sorts of factors that constitute normality. (See, for exam-
ple, [Alicke 1992; Cushman 2009; Cushman, Knobe, and Sinnott-Armstrong 2008;
Hitchcock and Knobe 2009; Kahneman and Miller 1986; Knobe and Fraser 2008;
Kahneman and Tversky 1982; Mandel, Hilton, and Catellani 1985; Roese 1997].)
These factors include the following;:

e Statistical norms concern what happens most often, or with the greatest fre-
quency. Kahneman and Tversky [1982] gave subjects a story in which Mr.
Jones usually leaves work at 5:30, but occasionally leaves early to run errands.
Thus, a 5:30 departure is (statistically) “normal”, and an earlier departure
“abnormal”. This difference affected which alternate possibilities subjects
were willing to consider when reflecting on the causes of an accident in which
Mr. Jones was involved.

e Norms can involve moral judgments. Cushman, Knobe, and Sinnott-Armstrong
[2008] showed that people with different views about the morality of abortion
have different views about the abnormality of insufficient care for a fetus,
and this can lead them to make different judgments about the cause of a
miscarriage.

e Policies adopted by social institutions can also be norms. For instance, Knobe
and Fraser [2008] presented subjects with a hypothetical situation in which
a department had implemented a policy allowing administrative assistants
to take pens from the department office, but prohibiting faculty from doing
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so. Subjects were more likely to attribute causality to a professor’s taking a
pen than to an assistant’s taking one, even when the situation was otherwise

similar.

e There can also be norms of “proper functioning” governing the operations of
biological organs or mechanical parts: there are certain ways that hearts and
spark plugs are “supposed” to operate. Hitchcock and Knobe [2009] show
that these kinds of norms can also affect causal judgments.

The law suggests a variety of principles for determining the norms that are used
in the evaluation of actual causation. In criminal law, norms are determined by
direct legislation. For example, if there are legal standards for the strength of seat
belts in an automobile, a seat belt that did not meet this standard could be judged
a cause of a traffic fatality. By contrast, if a seat belt complied with the legal
standard, but nonetheless broke because of the extreme forces it was subjected to
during a particular accident, the fatality would be blamed on the circumstances of
the accident, rather than the seat belt. In such a case, the manufacturers of the
seat belt would not be guilty of criminal negligence. In contract law, compliance
with the terms of a contract has the force of a norm. In tort law, actions are often
judged against the standard of “the reasonable person”. For instance, if a bystander
was harmed when a pedestrian who was legally crossing the street suddenly jumped
out of the way of an oncoming car, the pedestrian would not be held liable for
damages to the bystander, since he acted as the hypothetical “reasonable person”
would have done in similar circumstances. (See, for example, [Hart and Honoré
1985, pp. 142ff.] for discussion.) There are also a number of circumstances in
which deliberate malicious acts of third parties are considered to be “abnormal”
interventions, and affect the assessment of causation. (See, for example, [Hart and
Honoré 1985, pp. 68fL.].)

As with the choice of variables, we do not expect that these considerations will
always suffice to pick out a uniquely correct theory of normality for a causal model.
They do, however, provide resources for a rational critique of models.

6 Conclusion

As HP stress, causality is relative to a model. That makes it particularly important
to justify whatever model is chosen, and to enunciate principles for what makes a
reasonable causal model. We have taken some preliminary steps in investigating
this issue with regard to the choice of variables and the choice of defaults. However,
we hope that we have convinced the reader that far more needs to be done if causal
models are actually going to be used in applications.
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From C-Believed Propositions to the
Causal Calculator

VLADIMIR LIFSCHITZ

1 Introduction

Default rules, unlike inference rules of classical logic, allow us to derive a new
conclusion only when it does not conflict with the other available information. The
best known example is the so-called commonsense law of inertia: in the absence
of information to the contrary, properties of the world can be presumed to be the
same as they were in the past. Making the idea of commonsense inertia precise is
known as the frame problem [Shanahan 1997]. Default reasoning is nonmonotonic,
in the sense that we may be forced to retract a conclusion derived using a default
when additional information becomes available.

The idea of a default first attracted the attention of Al researchers in the 1970s.
Developing a formal semantics of defaults turned out to be a difficult task. For
instance, the attempt to describe commonsense inertia in terms of circumscription
outlined in [McCarthy 1986] was unsatisfactory, as we learned from the Yale Shoot-
ing example [Hanks and McDermott 1987].

In this note, we trace the line of work on the semantics of defaults that started
with Judea Pearl’s 1988 paper on the difference between “E-believed” and “C-
believed” propositions. That paper has led other researchers first to the invention
of several theories of nonmonotonic causal reasoning, then to designing action lan-
guages C and C+, and then to the creation of the Causal Calculator—a software
system for automated reasoning about action and change.

2 Starting Point: Labels E and C

The paper Embracing Causality in Default Reasoning [Pearl 1988] begins with the
observation that

almost every default rule falls into one of two categories: expectation-
evoking or explanation-evoking. The former describes association among
events in the outside world (e.g., fire is typically accompanied by smoke);
the latter describes how we reason about the world (e.g., smoke normally
suggests fire).

Thus the rule fire = smoke is an expectation-evoking, or “causal” default; the rule
smoke = fire is explanation-evoking, or “evidential.” To take another example,
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(1) rained = grass_wet
is a causal default;
(2) grass_wet = sprinkler_on

is an evidential default.

To discuss the distinction between properties of causal and evidential defaults,
Pearl labels believed propositions by distinguishing symbols C' and E. A proposi-
tion P is E-believed, written E(P), if it is a direct consequence of some evidential
rule. Otherwise, if P can be established as a direct consequence of only causal rules,
it is said to be C-believed, written C(P). The labels are used to prevent certain
types of inference chains; in particular, C-believed propositions are prevented in
Pearl’s paper from triggering evidential defaults. For example, both causal rule (1)
and evidential rule (2) are reasonable, but using them to infer sprinkler_on from
rained is not.

We will see that the idea of using the distinguishing symbols C' and E had
a significant effect on the study of commonsense reasoning over the next twenty
years.

3 “Explained” as a Modal Operator

The story continues with Hector Geffner’s proposal to turn the label C into a modal
operator and to treat Pearl’s causal rules as formulas of modal logic. A formula F'
is considered “explained” if the formula CF' holds.

A rule such as “rain causes the grass to be wet” may thus be expressed
as a sentence

rain — Cgrass_wet,

which can then be read as saying that if rain is true, grass_wet is
explained [Geffner 1990].

The paper defined, for a set of axioms of this kind, which propositions are “causally
entailed” by it.

Geffner showed how this modal language can be used to describe effects of actions.
We can express that e(x) is an effect of an action a(z) with precondition p(x) by
the axiom

(3) p(x)e Aa(x) — Ce(w)i41,

where p(z); expresses that fluent p(z) holds at time ¢, and e(z):41 is understood in
a similar way; a(z); expresses that action a(z) is executed between times ¢ and ¢+ 1.

Such axioms explain the value of a fluent at some point in time (¢ 4+ 1 in the
consequent of the implication) in terms of the past (¢ in the antecedent). Geffner
gives also an example of explaining the value of a fluent in terms of the values of
other fluents at the same point in time: if all ducts are blocked at time ¢, that causes
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the room to be stuffy at time ¢. Such “static” causal dependencies are instrumental
when actions with indirect effects are involved. For instance, blocking a duct can
indirectly cause the room to become stuffy. We will see another example of this
kind in the next section.

4 Predicate “Caused”

Fangzhen Lin showed a few years later that the intuitions explored by Pearl and
Geffner can be made precise without introducing a new nonmonotonic semantics.
Circumscription [McCarthy 1986] will do if we employ, instead of the modal oper-
ator C, a new predicate.

Technically, we introduce a new ternary predicate Caused into the situa-
tion calculus: Caused(p, v, s) if the proposition p is caused (by something
unspecified) to have the truth value v in the state s [Lin 1995].

The counterpart of formula (3) in this language is
(4) p(x,s) — Caused(e(x), true, do(a(x), s)).

Lin acknowledges his intellectual debt to [Pearl 1988] by noting that his approach
echoes the theme of Pearl’s paper—the need for a primitive notion of causality in
default reasoning.

The proposal to circumscribe Caused was a major event in the history of research
on the use of circumscription for solving the frame problem. As we mentioned
before, the original method [McCarthy 1986] turned out to be unsatisfactory; the
improvement described in [Haugh 1987; Lifschitz 1987] is only applicable when
actions have no indirect effects. The method of [Lin 1995] is free of this limitation.
The main example of that paper is a suitcase with two locks and a spring loaded
mechanism that opens the suitcase instantaneously when both locks are in the
up position; opening the suitcase may thus become an indirect effect of toggling
a switch. The static causal relationship between the fluents up(l) and open is
expressed in Lin’s language by the axiom

(5) up(Ll,s) Aup(L2,s) — Caused(open, true, s).

5 Principle of Universal Causation

Yet another important modification of Geffner’s theory was proposed in [McCain
and Turner 1997]. That approach was originally limited to formulas of the form

F — CG,

where F' and G do not contain C. (Such formulas are particularly useful; for in-
stance, (3) has this form.) The authors wrote such a formula as

(6) F=GaG,
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so that the thick arrow = represented in their paper a combination of material
implication — with the modal operator C. In [Turner 1999], that method was
extended to the full language of [Geffner 1990].

The key idea of this theory of causal knowledge is described in [McCain and
Turner 1997] as follows:

Intuitively, in a causally possible world history every fact that is caused
obtains. We assume in addition the principle of universal causation,
according to which—in a causally possible world history—every fact
that obtains is caused. In sum, we say that a world history is causally
possible if exactly the facts that obtain in it are caused in it.

The authors note that the principle of universal causation represents a strong philo-
sophical commitment that is rewarded by the mathematical simplicity of the non-
monotonic semantics that it leads to. The definition of their semantics is indeed
surprisingly simple, or at least short. They note also that in applications this strong
commitment can be easily relaxed.

The extension of [McCain and Turner 1997] described in [Giunchiglia, Lee, Lif-
schitz, McCain, and Turner 2004] allows F' and G in (6) to be slightly more general
than propositional formulas, which is convenient when non-Boolean fluents are in-
volved. In the language of that paper we can write, for instance,

(7) ay = ft-l—l =0

to express that executing action a causes fluent f to take value v.

6 Action Descriptions

An action description is a formal expression representing a transition system—a
directed graph such that its vertices can be interpreted as states of the world,
with edges corresponding to the transitions caused by the execution of actions.
In [Giunchiglia and Lifschitz 1998], the nonmonotonic causal logic from [McCain
and Turner 1997] was used to define an action description language, called C. The
language C+ [Giunchiglia, Lee, Lifschitz, McCain, and Turner 2004] is an extension
of C that accomodates non-Boolean fluents and is also more expressive in some other
ways.

The distinguishing syntactic feature of action description languages is that they
do not involve symbols for time instants. For example, the counterpart of (7) in C+
is

a causes [ =wv.

The C+ keyword causes implicitly indicates a shift from the time instant ¢ when the
execution of action a begins to the next time instant t+1 when fluent f is evaluated.
This keyword represents a combination of three elements: material implication, the
Pearl-Geffner causal operator, and time shift.
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7 The Causal Calculator

Literal completion, defined in [McCain and Turner 1997, is a modification of the
completion process familiar from logic programming [Clark 1978]. It is applicable
to any finite set T of causal laws (6) whose heads G are literals, and produces a set
of propositional formulas such that its models in the sense of propositional logic are
identical to the models of T in the sense of the McCain-Turner causal logic. Literal
completion can be used to reduce some computational problems involving C action
descriptions to the propositional satisfiability problem.

This idea is used in the design of the Causal Calculator (CCALC)—a software
system that reasons about actions in domains described in a subset of C [McCain
1997]. CCaLC performs search by invoking a SAT solver in the spirit of the “plan-
ning as satisfiability” method of [Kautz and Selman 1992]. Version 2 of CCALC
[Lee 2005] extends it to C+ action descriptions.

The Causal Calculator has been succesfully applied to several challenge problems
in the theory of commonsense reasoning [Lifschitz, McCain, Remolina, and Tac-
chella 2000], [Lifschitz 2000], [Akman, Erdogan, Lee, Lifschitz, and Turner 2004].
More recently, it was used for the executable specification of norm-governed com-
putational societies [Artikis, Sergot, and Pitt 2009] and for the automatic analysis
of business processes under authorization constraints [Armando, Giunchiglia, and
Ponta 2009].

8 Conclusion
As we have seen, Judea Pearl’s idea of labeling the propositions that are derived
using causal rules has suggested to Geffner, Lin and others that the condition
G is caused (by something unspecified) if F' holds
can be sometimes used as an approximation to

G is caused by F.

Eliminating the binary “is caused by” in favor of the unary “is caused” turned out
to be a remarkably useful technical device.
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Analysis of the Binary Instrumental
Variable Model

THOMAS S. RICHARDSON AND JAMES M. ROBINS

1 Introduction

Pearl’s seminal work on instrumental variables [Chickering and Pearl 1996; Balke
and Pearl 1997] for discrete data represented a leap forwards in terms of under-
standing: Pearl showed that, contrary to what many had supposed based on linear
models, in the discrete case the assumption that a variable was an instrument
could be subjected to empirical test. In addition, Pearl improved on earlier bounds
[Robins 1989 for the average causal effect (ACE) in the absence of any monotonic-
ity assumptions. Pearl’s approach was also innovative insofar as he employed a
computer algebra system to derive analytic expressions for the upper and lower
bounds.

In this paper we build on and extend Pearl’s work in two ways. First we show
the geometry underlying Pearl’s bounds. As a consequence we are able to derive
bounds on the average causal effect for all four compliance types. Our analysis
also makes it possible to perform a sensitivity analysis using the distribution over
compliance types. Second our analysis provides a clear geometric picture of the
instrumental inequalities, and allows us to isolate the counterfactual assumptions
necessary for deriving these tests. This may be seen as analogous to the geometric
study of models for two-way tables [Fienberg and Gilbert 1970; Erosheva 2005].
Among other things this allows us to clarify which are the alternative hypotheses
against which Pearl’s test has power. We also relate these tests to recent work of
Pearl’s on bounding direct effects [Cai, Kuroki, Pearl, and Tian 2008].

2 Background
We consider three binary variables, X, Y and Z. Where:

Z is the instrument, presumed to be randomized e.g. the assigned treatment;
X is the treatment received;
Y is the response.

For X and Z, we will use 0 to indicate placebo, and 1 to indicate drug. For Y
we take 1 to indicate a desirable outcome, such as survival. X, is the treatment a
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<
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Figure 1. Graphical representation of the IV model given by assumptions (1) and
(2).The shaded nodes are observed.

patient would receive if assigned to Z = z. We follow convention by referring to the
four compliance types:

X.—0 X, Compliance Type

0 0 Never Taker NT
0 1 Complier CcO
1 0 Defier DE
1 1 Always Taker AT

Since we suppose the counterfactuals are well-defined, if Z = z then X = X..
Similarly we consider counterfactuals Y, for Y. Except where explicitly noted we
will make the exclusion restrictions:

Ym:O,z:O = Yw:O,z:l Yw:l,z:O = Ym:l,z:l (1)

for each patient, so that a patient’s outcome only depends on treatment assigned
via the treatment received. One consequence of the analysis below is that these
equations may be tested separately. We may thus similarly enumerate four types
of patient in terms of their response to received treatment:

Yico Yoz Response Type
0 0 Never Recover NR
0 1 Helped HE
1 0 Hurt HU
1 1 Always Recover AR

As before, it is implicit in our notation that if X = z, then Y, = Y; this is referred
to as the ‘consistency assumption’ (or axiom) by Pearl among others. In what
follows we will use tx to denote a generic compliance type in the set Dx, and ty to
denote a generic response type in the set Dy . We thus have 16 patient types:

(tx,ty) € {NT, CO, DE, AT} x {NR, HE, HU, AR} = Dy x Dy = D.
(Here and elsewhere we use angle brackets (tx, ty') to indicate an ordered pair.) Let

7, = p(tx) denote the marginal probability of a given compliance type tx € Dx,
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and let
mx = {m, | tx € Dx}

denote a marginal distribution on Dx. Similarly we use m ¢ = p(ty | tx) to
denote the probability of a given response type within the sub-population of in-
dividuals of compliance type tx, and my|x to indicate a specification of all these
conditional probabilities:

Ty|X = {Fty\tx | tx € Dx,ty S ]D)y}

We will use 7 to indicate a joint distribution p(tx,ty) on D.
Except where explicitly noted we will make the randomization assumption that
the distribution of types (tx,ty) is the same in both arms:

Z 1L {Xz:07Xz:17Y;E:07Yw:1}- (2)
A graph corresponding to the model given by (1) and (2) is shown in Figure 1.

Notation

In places we will make use of the following compact notation for probability distri-

butions:
DPoyls = DX =3|Z=1),
Dypwjlzi = p(Y:k,X:j|Z:i),

There are several simple geometric constructions that we will use repeatedly. In
consequence we introduce these in a generic setting.

2.1 Joints compatible with fixed margins

Consider a bivariate random variable U = (U, Us) € {0,1} x {0,1}. Now for fixed
1, ¢z € [0,1] consider the set

Peyer = {p > op(lus) =c15 > plus,1) = 02}

in other words, P, ¢, is the set of joint distributions on U compatible with fixed

margins p(U; = 1) =¢;, i = 1, 2.
It is not hard to see that P, ., is a one-dimensional subset (line segment) of
the 3-dimensional simplex of distributions for U. We may describe it explicitly as

follows:
p(1,1) t
1,0) = e —t
zZ;EO:(l)i _ Z; L t € [max {0, (c1 + c2) — 1} ,min{ec1,e2}] p. (3)
p(0,0) = 1—c1—ca+t
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C2

(iii)

C1

Figure 2. The four regions corresponding to different supports for ¢ in (3); see Table
1.

See also [Pearl 2000] Theorem 9.2.10. The range of ¢, or equivalently the support
for p(1,1), is one of four intervals, as shown in Table 1. These cases correspond to

‘ 01§1—62 0121—62
c1 < co (1) te [O, Cl] (11) te [Cl + co — 1, Cl]
c1 > co (111) t e [O, 02] (1V) t e [Cl +co — 1, 02]

Table 1. The support for ¢ in (3) in each of the four cases relating ¢; and ca.

the four regions show in Figure 2.

Finally, we note that since for ¢1, ¢3 € [0,1], max {0, (¢c1 + ¢2) — 1} < min {c1, ca},
it follows that {(c1,c2) | Pey ey # 0} = [0, 1]%. Thus for every pair of values (c1, c2)
there exists a joint distribution p(Uy, Us) for which p(U; =1) =¢;, i = 1, 2.

2.2 Two quantities with a specified average

We now consider the set:
Qeo ={(u,v)|au+(1—-a)w=c uvel0,1]}

where ¢, € [0,1]. In words, Q. is the set of pairs of values (u,v) in [0, 1] which
are such that the weighted average au + (1 — a)v is c.

It is simple to see that this describes a line segment in the unit square. Further
consideration shows that for any value of a € [0, 1], the segment will pass through
the point (¢, ¢) and will be contained within the union of two rectangles:

([e, 1] x [0,¢]) U ([0, ¢] x [1,¢]).

The slope of the line is negative for a € (0,1). For a € (0,1) the line segment may
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I
|
|
|
|
|
|
0 c 1

Figure 3. Illustration of Q. 4.

be parametrized as follows:

{Z - i;c—t(l—a))/aa te[max((),%)’min(ﬁ,l)]}.

The left and right endpoints of the line segment are:

(u,v) = <max(0, 1+ (c—1)/a), min(c/(1 - ), 1)>
and
(u,v) = <min(c/a, 1), max(0, (c — @) /(1 — a))>
respectively. See Figure 3.

2.3 Three quantities with two averages specified
We now extend the discussion in the previous section to consider the set:
Q(C17a1)(02,a2) = {<uv v, w> | aru + (1 - al)w = (1,

agv + (1 — ag)w = c2, u,v,w € [0,1] }.

In words, this consists of the set of triples (u,v,w) € [0,1]* for which pre-specified
averages of v and w (via 1), and v and w (via ag) are equal to ¢; and ¢y respectively.

If this set is not empty, it is a line segment in [0, 1]* obtained by the intersection
of two rectangles:

({600 € Q) x fwe 0.11)) 0 ({fevwh € Quaead x (we 0.1 )5 (@)

see Figures 4 and 5. For aq,as € (0,1) we may parametrize the line segment (4) as

follows:
u = (an—t(l—a1))/as,
v = (cg—t1—a))/as, tE€ [ti,t] ¢,
w = t,
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(@) (b)

(&)

Figure 4. (a) The plane without stripes is aqu + (1 — a3)w = ¢1. (b) The plane
without checks is agv + (1 — ag)w = ca.

where

tlzmaX{O a-a w}, tuzmin{lc—lc—Q}.

’1—01171—012 ’1—05171—042

Thus Q(c,,a1)(ca,a0) 7 ? if and only if ¢; < t,. It follows directly that for fixed
c1, ¢ the set of pairs (a1, az) € [0,1]? for which Q(e1,a1)(ca,az) 18 NOt empty may
be characterized thus:

Rcl,cz = {<041, O(2> }Q(cl,al)(c%ag) 7é (D}

= 0,120 () {lar,a2) | (@i = ei)(ap = (1 =) Sci(L—e)}. (5)

ie{1,2}
i*=3—i

In fact, as shown in Figure 6 at most one constraint is active, so simplification is
possible: let k = arg max; cj, and k* = 3 — k, then

Reyea = 10,1]2 N {{on, a2) | (o — ) (s — (1= ex=)) < (1 — cx)}-

(If ¢; = ¢ then R, o, = [0,1]%)

In the two dimensional analysis in §2.2 we observed that for fixed ¢, as a varied,
the line segment would always remain inside two rectangles, as shown in Figure 3.
In the three dimensional situation, the line segment (4) will stay within three boxes:

(i) If ¢1 < co then the line segment (4) is within:

([0,01] X [O,CQ] X [02, 1]) U ([0,01] X [Cg,l] X [01,02]) U ([Cl,l] X [02,1] X [O,Cl]).
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(@) (b)

Figure 5. Q(c;,a1)(ca,a0) COTTesponds to the section of the line between the two

marked points; (a) view towards u-w plane; (b) view from v-w plane. (Here ¢; < ¢3.)

(iii)

This may be seen as a ‘staircase’ with a ‘corner’ consisting of three blocks,
descending clockwise from (0,0,1) to (1,1,0); see Figure 7(a). The first and
second boxes intersect in the line segment joining the points (0, ¢z, c2) and
(c1, 2, co); the second and third intersect in the line segment joining {c1, ¢a, ¢1)
and (c1,1,¢1).

If ¢; > co then the line segment is within:
([0, e1] x [0, e2] x [e1, 1]) U ([e1, 1] x [0, 2] X [e2, e1]) U ([e1, 1] X [e2, 1] x [0, c2]).

This is a ‘staircase’ of three blocks, descending counter-clockwise from (0, 0, 1)
to (1,1,0); see Figure 7(b). The first and second boxes intersect in the line
segment joining the points (c¢1,0,¢1) and (c1,ca,c1); the second and third
intersect in the line segment joining {(c1, 2, ¢2) and (1, ¢z, ¢2).

If ¢; = ¢o = ¢ then the ‘middle’ box disappears and we are left with
([0, ¢] x [0, ¢] x [e,1]) U ([¢, 1] x [e, 1] x [0, ¢]).

In this case the two boxes touch at the point {(c, ¢, c).

Note however, that the number of ‘boxes’ within which the line segment (4) lies

may
case

be 1, 2 or 3 (or 0 if Qc, a1)(ca,a0) = (). This is in contrast to the simpler
considered in §2.2 where the line segment Q. , always intersected exactly two

rectangles; see Figure 3.

3

Characterization of compatible distributions of type

Returning to the Instrumental Variable model introduced in §2, for a given patient

the values taken by Y and X are deterministic functions of Z, tx and ty. Conse-
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&%) \\

Figure 6. R,,, corresponds to the shaded region. The hyperbola of which one
arm forms a boundary of this region corresponds to the active constraint; the other
hyperbola to the inactive constraint.

quently, under randomization (2), a distribution over D determines the conditional
distributions p(z,y | z) for z € {0,1}. However, since distributions on D form a 15
dimensional simplex, while p(z,y | z) is of dimension 6, it is clear that the reverse
does not hold; thus many different distributions over D give rise to the same distri-
butions p(x,y | z). In what follows we precisely characterize the set of distributions
over D corresponding to a given distribution p(z,y | 2).

We will accomplish this in the following steps:

1. We first characterize the set of distributions 7x on Dx compatible with a
given distribution p(z | z).

2. Next we use the technique used for Step 1 to reduce the problem of character-
izing distributions 7y |x compatible with p(x,y | 2) to that of characterizing
the values of p(y, = 1| tx) compatible with p(x,y | 2).

3. For a fixed marginal distribution mx on Dx we then describe the set of values
for p(y, = 1| z,tx) compatible with the observed distribution p(y | z, z).

4. In general, some distributions mx on Dx and observed distributions p(y | z, 2)
may be incompatible in that there are no compatible values for p(y, = 1 |
tx). We use this to find the set of distributions 7x on Dx compatible with
p(y,z | z) (by restricting the set of distributions found at step 1).

5. Finally we describe the values for p(y, = 1 | tx) compatible with the distri-
butions 7 over Dx found at the previous step.

We now proceed with the analysis.
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() (b)

Figure 7.  ‘Staircases’ of three boxes illustrating the possible support for
Qler,a1)(easaz); (8) €1 < c; (b) c2 < ¢1. Sides of the boxes that are formed by
(subsets of) faces of the unit cube are not shown. The line segments shown are
illustrative; in general they may not intersect all 3 boxes.

3.1 Distributions 7x on Dx compatible with p(z | z)

Under random assignment we have

px=1]2=0) = p(X00=1,X,21=0)+pX.00=1,X,21=1)
= p(DE) + p(AT),

p(ZE =1 | z = 1) = p(Xz:() = O,Xzzl = 1) —|—p(Xz:0 = l,Xzzl = 1)
= p(CO) + p(AT).
Letting Ujt1 = X.=, i = 0,1 and ¢j41 = plz =1 | 2z =j), j = 0,1, it follows
directly from the analysis in §2.1 that the set of distributions 7x on Dx that are
compatible with p(z | z) are thus given by

PCl,CQ - (6)
TAT = ta
= ¢ —t
DB a=h t € [max {0, (c1 + ¢2) — 1} ,min {cy, c2}]
Tco = ¢2—1,
T = 1—c¢1—co+1t,

3.2 Reduction step in characterizing distributions 7y x compatible
with p(x,y | 2)
Suppose that we were able to ascertain the set of possible values for the eight
quantities:
'y,i = p(Yomi = 1| tx), for i € {0,1} and tx € Dy,

X
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Figure 8. A graph representing the functional dependencies used in the reduction
step in §3.2. The rectangular node indicates that the probabilities are required to
sum to 1.

that are compatible with p(z,y | z). Note that p(y,=; = 1 | tx) is written as
p(y =1 | do(z=1), tx) using Pearl’s do(:) notation. It is then clear that the set of
possible distributions my|x that are compatible with p(x,y | z) simply follows from
the analysis in §2.1, since

W, = Plys=o=1]tx)
= p(HU|tx)+p(AR | tx),

N, = Pz =1]tx)
= p(HE|tx) +p(AR | tx).
These relationships are also displayed graphically in Figure 8: in this particular
graph all children are simple sums of their parents; the boxed 1 represents the ‘sum
to 1’ constraint.

Thus, by §2.1, for given values of 'y{fx the set of distributions 7y |x is given by:

c [max{o,(’}/gx +’)/t1X) — 1}7111111 {7€X77tlx }] ,

)

P(NR | tx) = 1-19¢ —7 +p(AR|tx),
)
)

%, —PAR | tx),
7, —P(AR] tx)

It follows from the discussion at the end of §2.1 that the values of 'yfx and 'y%X are
not restricted by the requirement that there exists a distribution p(- | tx) on Dy.
Consequently we may proceed in two steps: first we derive the set of values for the
eight parameters {’yéx} and the distribution on 7x (jointly) without consideration
of the parameters for 7y | x; second we then derive the parameters 7y x, as described
above.

Finally we note that many causal quantities of interest, such as the average causal
effect (ACE), and relative risk (RR) of X on Y, for a given response type tx, may
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p(yle=1,2=0)

Figure 9. A graph representing the functional dependencies in the analysis of the
binary IV model. Rectangular nodes are observed; oval nodes are unknown param-
eters. See text for further explanation.

be expressed in terms of the W,EX parameters:

ACE(tx) = v, — 7, RR(tx) = v, /¢, -

Consequently, for many purposes it may be unnecessary to consider the parameters
Ty |X at all.
3.3 Values for {ﬁx} compatible with 7x and p(y | z, 2)

We will call a specification of values for wx, feasible for the observed distribution if
(a) mx lies within the set described in §3.1 of distributions compatible with p(z | 2)
and (b) there exists a set of values for ”y,ix which results in the distribution p(y | z, 2).

In the next section we give an explicit characterization of the set of feasible
distributions mx; in this section we characterize the set of values of WEX compatible
with a fixed feasible distribution 7x and p(y | , 2).

PROPOSITION 1. The following equations relate wx, Y0, Yom: Y to p(y | z=
0,z2):

ply=1]2=0,2=0) = (ydomco +1krmNT)/(TCO +7NT), (8)
ply=1]2=0,2=1) = (e7moE +INr7NT)/(TDE + 7NT), 9)
Similarly, the following relate mx, Yo, Yhr, YA to p(y | x=1,2):
ply=1|2=1,2=0) = (vbr7pE + Yar7Tar)/(TDE + TAT), (10)
ply=1]z=1,2=1) = (YéoTco +Yarmar)/(7co + TaT)- (11)

Equations (8)—(11) are represented in Figure 9. Note that the parameters 73 and
&7 are completely unconstrained by the observed distribution since they describe,
respectively, the effect of non-exposure (X = 0) on Always Takers, and exposure
(X = 1) on Never Takers, neither of which ever occur. Consequently, the set
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Defiers

Compliers

1]

0.X

1]

+

+

PlY[do(X

vl

Obsérved P[Y|Z

P[Y|do(X=1)]

P[Y|do(x=0)]

Observed P_[Yﬂz:l’xzo]
t

Figure 10. Geometric picture illustrating the relation between the v,ix parameters
and p(y | z,z). See also Figure 9.

of possible values for each of these parameters is always [0,1]. Graphically this
corresponds to the disconnection of 78} and 44 from the remainder of the graph.

As shown in Proposition 1 the remaining six parameters may be divided into two
groups, {791 78r: 720} and {vAr, brs Y&o |+ depending on whether they relate to
unexposed subjects, or exposed subjects. Furthermore, as the graph indicates, for
a fixed feasible value of mx, compatible with the observed distribution p(x,y | z)
(assuming such exists), these two sets are variation independent. Thus, for a fixed
feasible value of mx we may analyze each of these sets separately.

A geometric picture of equations (8)—(11) is given in Figure 10: there is one square
for each compliance type, with axes corresponding to *ytOX and ”y,zx; the specific value
of <”y,?x , ’y,gx> is given by a cross in the square. There are four lines corresponding
to the four observed quantities p(y = 1 | x, z). Each of these observed quantities,
which is denoted by a cross on the respective line, is a weighted average of two v,ix
parameters, with weights given by mx (the weights are not depicted explicitly).

Proof of Proposition 1: We prove (8); the other proofs are similar. Subjects for
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whom X =0 and Z = 0 are either Never Takers or Compliers. Hence

p(ly=1]2=0,2=0) = p(y=1|2=0,2=0,tx=NT)p(tx=NT | 2=0,2=0)
+p(y=1]2=0,2=0,tx =CO)p(tx =CO | =0,2=0)

= Pp(Yr=0=1]2=0,2=0,tx =NT)p(tx=NT | tx € {CO,NT})
+p(Yp=0=1|2=0,2=0,tx =CO)p(tx =CO | ty € {CO,NT})

= p(yz:():l | ZIO,tX:NT) X 7TNT/(7TNT +7Tco)
+p(yz=0=1] 2=0,tx =CO) x mco/(mNnT + TCO)

= p(Yys=0=1]|tx=NT) x mn1/(7nT + TCO)
+p(yz=0=1]| tx =CO) x mco/(nnT + TCO)

= (”Y?JOWCO + 'Yl(\)ITﬂ'NT)/(ﬂ'CO + 7NT)-

Here the first equality is by the chain rule of probability; the second follows by
consistency; the third follows since Compliers and Never Takers have X = 0 when
Z = 0; the fourth follows by randomization (2). O

Values for 12,735 781 compatible with a feasible 7y
Since (8) and (9) correspond to three quantities with two averages specified, we may
apply the analysis in §2.3, taking oy = 7co/(7co + nnT), a2 = mpr/(7DE + 7NT),
c=ply=1|z=0,z=i—1)fori = 1,2, u = 125, v = 7 and w = VY.
Under this substitution, the set of possible values for (v&q, 73z, 75, is then given
by Qeer,an)(e2,2)-

Values for v}, 7hg: 7Ar compatible with a feasible 7x

Likewise since (10) and (11) contain three quantities with two averages specified we
again apply the analysis from §2.3, taking oy = m7co/(mTco+maT), @2 = mpr/(TDE+
mar), ¢ =ply=1]ax=1,2=2—14) fori = 1,2, u = v}, v = ¥pg and w = YAr.
The set of possible values for (Yoo, ¥hg, Yar) is then given by Q. a,)(

c2,2)"

3.4 Values of 7x compatible with p(x,y | 2)

In §3.1 we characterized the distributions mx compatible with p(z | z) as a one
dimensional subspace of the three dimensional simplex, parameterized in terms of
t = mwaT; see (6). We now incorporate the additional constraints on mx that arise
from p(y | z,z). These occur because some distributions 7x, though compatible
with p(x | 2), lead to an empty set of values for (Y&, Yhr, YAT) OF (Y0, MDE: TYT)
and thus are infeasible.

Constraints on mx arising from p(y | x =0, z)

Building on the analysis in §3.3 the set of values for

(a,00) = (mco/(mco + mnt), ToE/(TDE + 7INT))

= <7TCO/pm0|z0a7TDE/pwo|zo> (12)
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compatible with p(y |  =0,2) (i.e. for which the corresponding set of values for
(70 YDE: Y1) is non-empty) is given by Rex ey, where ¢f = p(y=1|2=0,z=
i—1),i=1,2 (see §2.3). The inequalities defining R+ .; may be translated into
upper bounds on t = war in (6), as follows:

t<min{1-Y" ply=jz=0]2=4), 1= ply=k,z=0]z=1-k) . (13)
je{01} ke{0.1)

Proof: The analysis in §3.3 implied that for R.: c; # ) we require

cf—« ch cy— o ct
L "l 2 apd 2 2<_ (14)
1—a1 1—(12 1—(12 1—a1

Taking the first of these and plugging in the definitions of ¢}, ¢, o1 and ag from
(12) gives:

Pyi|zo,20 — (WCO/pz(ﬂzo) Py 120,21
1- (ﬂ-CO/pw(ﬂzo) 1- (WDE/pw(ﬂzl)

(<:>) (py1|I0,Z0 - (ﬂ'CO/me\zo))(l - (TrDE/pw(ﬂzl)) < pyl\mo,m(l - (Trco/pm(ﬂzo))

(<:>) (pyl,mo\zo - ﬂ-CO)(pmo\zl - 7TDE) S pyl,mo\zl (pzo\zo - TrCO)'
But pugjz; — TDE = Paglze — Tco = 7INT, hence these terms may be cancelled to
give:
(Py1 2020 — TCO) < Pyt zol=
(<:>) TAT — Pzy|z1 < Dy ,xo|21 — Pyi,mo|20

(<) TAT

IN

1 - Pyo,zolz1 — Pyi,aolzo-
A similar argument applied to the second constraint in (14) to derive that
TAT S 1- pyo,;ﬂ0|z0 _pyl,mo\zlv
as required. O
Constraints on mx arising from p(y |z =1, 2)
Similarly using the analysis in §3.3 the set of values for
(a1, @) = (mco/(mco + maT), 7pE/(TDE + TAT))

compatible with p(y | z=1, 2) (i.e. that the corresponding set of values for (Y&, Vg, YAT)
is non-empty) is given by Re:+ 5+, where ¢;* = p(y=1|r=1,2=2—1i),i = 1,2

(see §2.3). Again, we translate the inequalities which define Rz c;+ into further
upper bounds on ¢ = war in (6):

t<min{ Y ply=jx=1]z=j), > ply=ka=1|z=1-k)p. (15)
je{0,1} ke{0,1}

428



Binary Instrumental Variable Model

The proof that these inequalities are implied, is very similar to the derivation of the
upper bounds on war arising from p(y | = 0, 2z) considered above.

The distributions mx compatible with the observed distribution

It follows that the set of distributions on Dx that are compatible with the observed
distribution, which we denote Px, may be given thus:

TAT € [lmar,urar],
Py — ant(mar) = 1—plx=1|2=0)—pla=1]|z=1)+maT, - (16)
moo(mar) = pl@=1[z=1)—mr,
me(tar) = ple=1|2=0)—mar
where
Imar = max{0,p(z=1]2z=0)+plz=1]z=1)—1};
plz=1[z=0), plz=1]z=1),
umar = ming 1-37,p(y=j,2=0[z=j), 1=, ply=ka=0|z=1-k),
Y iply=j,x=1|2=j), Yply=k,z=1]z=1-k)

Observe that unlike the upper bound, the lower bound on mat (and 7xT) obtained
from p(z,y | ) is the same as the lower bound derived from p(x | z) alone.
We define wx (rar) = (*nT(7AT), Tco (TaT), TDE(TAT), TAT), for use below. Note
the following:

PROPOSITION 2. When war (equivalently mnr) is minimized then either iyt = 0
or mat = 0.

Proof: This follows because, by the expression for Imar, either lmar = 0, or lmar =
plx=1]2z=0)4+plx=1]|z=1)—1, in which case lrnt = 0 by (16). O

4 Projections

The analysis in §3 provides a complete description of the set of distributions over
D compatible with a given observed distribution. In particular, equation (16) de-
scribes the one dimensional set of compatible distributions over Dx; in §3.3 we
first gave a description of the one dimensional set of values over (vdq, g, 791)
compatible with the observed distribution and a specific feasible distribution mx
over Dy; we then described the one dimensional set of values for (v,o, Vg, YAT)-
Varying mx over the set Px of feasible distributions over Dy, describes a set of
lines, forming two two-dimensional manifolds which represent the space of possible
values for (v2q, 2R, 7%r) and likewise for (v¢o,vbg, YAr)- As noted previously,
the parameters 731 and v are unconstrained by the observed data. Finally, if
there is interest in distributions over response types, there is a one-dimensional set
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of such distributions associated with each possible pair of values from WEX and thx.

For the purposes of visualization it is useful to look at projections. There are
many such projections that could be considered, here we focus on projections that
display the relation between the possible values for mx and WfX. See Figure 11.

We make the following definition:

of (mx) = pltx | Xezi = j),
where mx = (nnT,7TcO,TDE, TAT) € Px, as before. For example, o (rx) =

ant/ (TNt + Teo), aadp(mTx) = Nt/ (TNT + TDE).

4.1 Upper and Lower bounds on *y,fx as a function of 7x

We use the following notation to refer to the upper and lower bounds on 4% and
yar that were derived earlier. If mx is such that mxr > 0, so a2, al% > 0 then we
define:

00 10
_ Pyi|zgz0 — o‘co(ﬂ-X) Pyi|zoz1 — OZDE(TFX)
1~ = max<{0, -2
dnrlmy) = m X{ T el o) )
0 _ . pyl\zozo py1|96021
uir(mx) = ml“{ag%wx)’a;%(m’l}’

while if 7y = 0 then we define 171 (7x) = 0 and uydp(7x) = 1. Similarly, if 7y
is such that maT > 0 then we define:

11 01
_ Pyi|ziz1 — aco(WX) Pyi|z120 — O‘DE(WX)
vk = 0
Var(mx) ma"{ T Al Qi) )
1 _ . py1|x1Z1 pyl\zlzo
f— 1
Wi (mx) mm{aﬁ(m)’a%(wxw }

while if maT = 0 then let Ivip(mx) =0 and uyip(rx) = 1.

We note that Table 2 summarizes the upper and lower bounds, as a function of
mx € Px, on each of the eight parameters ”yfx that were derived earlier in §3.3.
These are shown by the thicker lines on each of the plots forming the upper and
lower boundaries in Figure 11 (781 and vy are not shown in the Figure).

The upper and lower bounds on 7% and A are relatively simple:

PROPOSITION 3. InQr(mx) and lyir(mx) are non-decreasing in mar and mxr.
Likewise uydr(mx) and uyirr(mx) are non-increasing in mat and 7NT.
Proof: We first consider I7Qr. By (16), intr =1 —plz =1 2=0) —p(z =1 |
z = 1) + maT, hence a function is non-increasing [non-decreasing] in war iff it is
non-increasing [non-decreasing] in mxT. Observe that for mxT > 0,
(pyl|96020 - a?:%(wx))/agOT(wX) = (pyl\zozo (T‘—NT + 7TCO) - T‘—CO) /WNT
= DPyi|zozo — Pyolzozo (WCO/WNT)

= Pyilzozo +pyo\woz0(1 - (pw0|zo/7TNT))
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Lower Bound Upper Bound

W IyRr(7x) uyRr(Tx)

FY(O]O (pyl\wozo - ’U”YI%T (WX) ’ ag@f)/ag% (pyﬂacozo - Z’VIQIT(WX) ’ o‘ggr)/o‘g%
FY]ODE (py1|moz1 - ury]QTT(ﬂ-X) ’ 0111\191,)/0[]130]5 (pyl\wozl - l’Y](\)IT(TrX) ’ al{l(’)l‘)/all)(l)*]
”YXT 0 1

’71{IT 0 1

7(130 (py1|961z1 - u/y/l\T(ﬂ—X) : azlx}r)/a}:%) (py1|96121 - l’yllkT(WX) : O‘}x}r)/aé%)
e Pyiferze — WAr(Tx) - af%) /ol (Pysfrz0 — Lyar(mx) - ) /o
”Yzle Z’Yzle (mx) U’Y}xT (mx)

Table 2. Upper and Lower bounds on vfx, as a function of mx € Px. If for some
mx an expression giving a lower bound for a quantity is undefined then the lower
bound is 0; conversely if an expression for an upper bound is undefined then the
upper bound is 1.

which is non-decreasing in mnr. Similarly,

(py1|m0z1 - aé%(wx))/aig(ﬂ'x) = Pyi|zoz1 + Pyo|zoz1 (1 - (pwo\m /WNT))'

The conclusion follows since the maximum of a set of non-decreasing functions is
non-decreasing.
The other arguments are similar. O

We note that the bounds on v&, and vy need not be monotonic in waT.
PROPOSITION 4. Let w%in be the distribution in Px for which waT and TN are

minimized then either:

min min

(1) w30 =0, hence IYp(TR") =0 and vy (T8™) = 1; or

(2) 70 =0, hence Iyrp(T8) =0 and uyip(TR") = 1.
Proof: This follows from Proposition 2, and the fact that if ¢ = 0 then ”y,ix is not
identified (for any 7). O

4.2 Upper and Lower bounds on p(AT) as a function of 43

The expressions given in Table 2 allow the range of values for each v,ix to be
determined as a function of 7wy, giving the upper and lower bounding curves in
Figure 11. However it follows directly from (8) and (9) that there is a bijection
between the three shapes shown for 78, 73 and vt (top row of Figure 11).
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In this section we describe this bijection by deriving curves corresponding to fixed
values of 7% that are displayed in the plots for 42, and 7. Similarly it follows
from (10) and (11) that there is a bijection between the three shapes shown for
7(130, Yog, Yar (bottom row of Figure 11). Correspondingly we add curves to the
plots for 7¢, and 7y corresponding to fixed values of yip. (The expressions in
this section are used solely to add these curves and are not used elsewhere.)

As described earlier, for a given distribution mx € Px the set of values for
V&0, D Es Yyr) forms a one dimensional subspace. For a given 7x if mco > 0 then
720 is a deterministic function of YR, likewise for 2.

It follows from Proposition 3 that the range of values for 4% when Tx = 7"
contains the range of possible values for 7 for any other mx € Px. The same
holds for yXy. Thus for any given possible value of 4%, the minimum compatible
value of maT = ImaAT = max {O,pxl‘zO + Daylzy — 1}. This is reflected in the plots in
Figure 11 for 791 and Ay in that the left hand endpoints of the thinner lines (lying
between the upper and lower bounds) all lie on the same vertical line for which war
is minimized.

In contrast the upper bounds on mar vary as a function of 31 (also YAp). The
upper bound for mar as a function of Y occurs when one of the thinner horizontal
lines in the plot for 4% in Figure 11 intersects either uydr(mx), (7% p(7x), or the
vertical line given by the global upper bound, umaT, on waT:

umaT (V) = max {WAT | R € [ZW%T(WX)W%%T(WX)]}

. b, Dy
= min {p$1|21 _pLE()IZ() <1 - m) I pwl‘Z() _pLE()IZl (1 - M) k)

0 0
INT INT
Pyo|zoz Pyo|zoz .
p$1‘21 - pm0|z0 (1 - 1 _0 /}j;(\)};) k) pI1|Z() _pwo\zl <1 - 1 _0 ,7(1%; 7U’7TAT I

similarly we have

umaT(YAr) = max {WAT | Yar € [V (mx), U%le(WX)]}

pm1|z1py1|;ﬂlzl pm1|z0py1|m1z0 pmﬂzlpyo\wlzl pwl‘Z()py()‘IlZ() }

= min < umaT, ) ) )
{ VAT VAT 1—7ir 1= 7ir
The curves added to the unexposed plots for Compliers and Defiers in Figure 11

are as follows:

7?]0 (WXv VI%T) = (py1|90020 - 7191T : O‘g(’)r)/ag(()jv

Yoo (mar, W) = {{mar, 7o (mx (maT), Wer ) 3 (17)
V%E(W)ﬁ VI%T) = (py1|90021 - 7191T : O‘I{I(’)r)/allj(l)m

Adg(mar, wr) = {(mar, D (Tx (mar), ) )5 (18)

min

for 41 € [N (T2), undp (7 B0)]; wat € [ImaT, umaT(vT)]. The curves added
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Table 3. Flu Vaccine Data from [McDonald, Hiu, and Tierney 1992].

zZ X Y count
0 0 O 99
0o 0 1 1027
0 1 o0 30
0o 1 1 233
1 0 0 84
1 0 1 935
1 1 0 31
1 1 1 422

2,861

to the exposed plots for Compliers and Defiers in Figure 11 are given by:

7(130 (ﬂ—Xu 711\T) = (py1|$121 - VllkT ! a}\}F)/a}J]E)?

07113E(7TAT, ’7.,1AT) = {(maT, 7(130 (mx (mat), ’7./1XT)>}; (19)
7I1)E(7TX7 ’711\T) = (py1|90120 - 711XT : aOAlT)/agi:,

p(mar, Yar) = {{mar, voe(Tx (Tar), vAr) }; (20)

min min

for 'Y}AT € [l’Y}xT(WX )vu"Y}xT(WX ); mar € [lWAT,WTAT(”Y}xT)}

4.3 Example: Flu Data

To illustrate some of the constructions described we consider the influenza vaccine
dataset [McDonald, Hiu, and Tierney 1992] previously analyzed by [Hirano, Imbens,
Rubin, and Zhou 2000]; see Table 3. Here the instrument Z was whether a patient’s
physician was sent a card asking him to remind patients to obtain flu shots, or not; X
is whether or not the patient did in fact get a flu shot. Finally Y = 1 indicates that
a patient was not hospitalized. Unlike the analysis of [Hirano, Imbens, Rubin, and
Zhou 2000] we ignore baseline covariates, and restrict attention to displaying the set
of parameters of the IV model that are compatible with the empirical distribution.

The set of values for Tx vs. (7&¢, 35: Y3) (upper row), and mx vs. (Yaos Ybg: VAT
corresponding to the empirical distribution for p(x,y | z) are shown in Figure 11.
The empirical distribution is not consistent with there being no Defiers (though the
scales in Figure 11 show 0 as one endpoint for the proportion 7y this is merely a
consequence of the significant digits displayed; in fact the true lower bound on this
proportion is 0.0005).

We emphasize that this analysis merely derives the logical consequences of the
empirical distribution under the IV model and ignores sampling variability.
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Figure 11. Depiction of the set of values for mx vs. (Y&, 735, 741) (upper row),
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5 Bounding Average Causal Effects

We may use the results above to obtain bounds on average causal effects, for different
complier strata:

ACE, (mx, % 0 1,) = vy (mx) =7, (),
IACE, (rx) = min%rt) o ACEy, (ﬂ'X,'y?X,”y%X),
X X
uACE (7x) = MaxXye i ACEy, (ﬂ'X,'y?X,”y%X),
X X

as a function of a feasible distribution 7x; see Table 5. As shown in the table, the
values of 7Qr and yir which maximize (minimize) ACEco and ACEpg are those
which minimize (maximize) ACEnT and ACEaT; this is an immediate consequence
of the negative coefficients for 7% and A in the bounds for 7%, and 7& in Table
2.

ACE bounds for the four compliance types are shown for the flu data in Figure 12.
The ACE bounds for Compliers indicate that, under the observed distribution, the
possibility of a zero ACE for Compliers is consistent with all feasible distributions
over compliance types, except those for which the proportion of Defiers in the
population is small.

Following [Pearl 2000; Robins 1989; Manski 1990; Robins and Rotnitzky 2004]
we also consider the average causal effect on the entire population:

ACEgobal(mx, {7{ 1) = D (W, (mx) = 9, (mx))me 5
txeby

upper and lower bounds taken over {*y,fx} are defined similarly. The bounds given
for ACE¢, in Table 5 are an immediate consequence of equations (8)—(11) which
relate p(y | z,z) to mx and {vfx}. Before deriving the ACE bounds we need the
following observation:

LEMMA 5. For a given feasible nx and p(y,z | z),

ACEgiobar(mx, {7, })
Pys,w1lzr — Pys,wolze + TE(YDE — WDE) + TINTYNT — TATVAT  (21)

= Pyiailzo — Pynaolz + Tco(00 — 1o0) + INTINT — TaTVAT.  (22)
Proof: (21) follows from the definition of ACEgjoba1 and the observation that p,, ., g =

Fcov(ljo + FAT’y[lXT and py; zo)z0 = WCO’Y%Q + WNT’Y%T. The proof of (22) is similar.
O

PROPOSITION 6. For a given feasible mx and p(y,x | z), the compatible distribu-

tion which minimizes [mazimizes| ACEgioha has
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Group ACE Lower Bound ACE Upper Bound
NT  0—uydr(mx) 1 —Ir(rx)
CO  Igolmx) — urto(mx) wWygo (mx) — o (Tx)
= ¢o (Tx, wyAT (X)) = ¢o(mx, (X))
—1eo(mx, 1R (7x)) 7o (mx, urRr(7x))
DE b (Tx) — urpE(Tx) wybg(Tx) — IypE(Tx)
= Ybr(Tx, uYAr(Tx)) = e (Tx, Ar(Tx))
—pe(Tx, IR (X)) D (Tx, uRT (X))
AT Iypp(mx) — 1 uYir(mx) =0
global Py, w112 = Pyy z0l20 Pys,z1]21 — Pya,zolo

+mpE - IACEpg(7x) — maT +mpE - uACEpg(rx) + 7~

= Py1,z1]20 ~ Py1,@0]21 = Py1,21]20 — Py1,x0l21
+7co - IACEco(mx) — maT +mco - uACEco(mx ) + 7N

Table 4. Upper and Lower bounds on average causal effects for different groups, as
a function of a feasible mx. Here i =1 — 7Nt

<”Yl(\)ITa’Yzle> = <l'71(\)IT7'UfY/1§T> [<U’71(\)1Tal”Yzle>]

(NmYAT) = (0,1) [(1,0)]

thus also minimizes [mazimizes] ACEco and ACEpg, and conversely mazimizes

[minimizes] ACEaT and ACEnr.

Proof: The claims follow from equations (21) and (22), together with the fact that
Y3t and vt are unconstrained, so ACEgiopar is minimized by taking 78 = 1 and
Y&t = 0, and maximized by taking 7% = 0 and vt = 1. O

It is of interest here that although the definition of ACEgiohal treats the four
compliance types symmetrically, the compatible distribution which minimizes [max-
imizes| this quantity (for a given 7mx) does not: it always corresponds to the scenario
in which the treatment has the smallest [greatest] effect on Compliers and Defiers.

The bounds on the global ACE for the flu vaccine data of [Hirano, Imbens, Rubin,
and Zhou 2000] are shown are shown in Figure 13.

Finally we note that it would be simple to develop similar bounds for other
measures such as the Causal Relative Risk and Causal Odds Ratio.
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Possible values for ACE for always takers Possible values for ACE for compliers

Compliance co oo
Type a1 02 012
Proportions: DE

NT

NT
05 06 069 05 05 089

Possible values for ACE for defiers Possible values for ACE for never takers

Compliance

o
co

e i
Proportions: DE " ' 0

NT
05 o,

Figure 12. Depiction of the set of values for mx vs. ACE¢, (rx) for tx € Dx for
the flu data.

6 Instrumental inequalities

The expressions involved in the upper bound on ma1 in (16) appear similar to those
which occur in Pearl’s instrumental inequalities. Here we show that the requirement
that Px # @, or equivalently, ImaT < umar is in fact equivalent to the instrumental
inequality. This also provides an interpretation as to what may be inferred from
the violation of a specific inequality.

THEOREM 7. The following conditions place equivalent restrictions on p(x | 2)
and p(y | =0, 2):

(al) max{0, p(x=1|2=0)+plz=1]2z=1)-1} <

min{l =2 py=4,x=0]z=j), 1 =3 ply=Fk,2=0]| z:l—k)};
(02) max {5, ply=d.0 =0 2=1), Dply=keo=02=1- b} <1.
Similarly, the following place equivalent restrictions on p(x | z) and p(y | x=1, 2):
(bl) max{0,plx=1|2=0)+plz=1]2=1)-1} <

min{ij(y:j,x:l | 2=3), 2o ply=Fk, =1 Zzl—k)};

(b2) max {¥; ply=j,o=1]2=j), Typy=k,o=1]2=1-k)} <1.
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Possible values for ACE for population

1.0

0.8

0.4 0.6

1] do(X=0))

0.2

1)) - P(Y:

P(Y=1]do(X

-10 -08 -06 -04 -02 0.0

AT
DE

NT

Figure 13. Depiction of the set of values for mx vs. the global ACE for the flu data.
The horizontal lines represent the overall bounds on the global ACE due to Pearl.

Thus the instrumental inequality (a2) corresponds to the requirement that the
upper bounds on p(AT) resulting from p(z | z) and p(y=1 | 2 =0, 2z) be greater
than the lower bound on p(AT) (derived solely from p(x | z)). Similarly for (b2)
and the upper bounds on p(AT) resulting from p(y=1|z=1, z).

Proof: [(al) < (a2)] We first note that:

1= ply=jia=02=j) = (Z,pla=1]2=j)) ~1
& Y1 =ply=42=0]|2=j4)) > > pla=1]|2=j)
& >, (y=1-j,2=0]z=j) +plx=1|2=j)) > >, plz=1]|2=j)
& >ply=4,x=0]z=j) > 0.
which always holds. By a symmetric argument we can show that it always holds
that:
1= 3, ply=jia=02=1-) = (2, pa=1]2=j)) ~ 1.

Thus if (al) does not hold then max{0, p(z=1|2=0) +p(z=1|2=1) — 1} = 0.
It is then simple to see that (al) does not hold iff (a2) does not hold.

[(bl) < (b2)] It is clear that neither of the sums on the RHS of (b1) are negative,
hence if (b1) does not hold then max{0,p(x =1|2=0)+pla=1|z=1)—-1} =
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(ij(le | Z:j)) — 1. Now

S, ply=ja=1]z=j) < (I, ple=1]2=5)) ~1
& 1< ply=ja=1]z=1-}).

Likewise
S, py=jo=1]z=1-j) < (I,p=1]2=) -1
& 1< ply=j,2=1|z=7j).
Thus (b1) fails if and only if (b2) fails. O

This equivalence should not be seen as surprising since [Bonet 2001] states that
the instrument inequalities (a2) and (b2) are sufficient for a distribution to be
compatible with the binary IV model. This is not the case if, for example, X takes
more than 2 states.

6.1 Which alternatives does a test of the instrument inequalities have
power against?

[Pearl 2000] proposed testing the instrument inequalities (a2) and (b2) as a means of
testing the IV model; [Ramsahai 2008] develops tests and analyzes their properties.
It is then natural to ask what should be inferred from the failure of a specific
instrumental inequality. It is, of course, always possible that randomization has
failed. If randomization is not in doubt, then the exclusion restriction (1) must
have failed in some way. The next result implies that tests of the inequalities (a2)
and (b2) have power, respectively, against failures of the exclusion restriction for
Never Takers (with X = 0) and Always Takers (with X = 1):

THEOREM 8. The conditions (RX), (RYx=0) and (Ex—q) described below imply
(a2); similarly (RX), (RYx=1) and (Ex=1) imply (b2).

(RX) Z 1Lty equivalently Z 1L X,—g, X.—1 :
(RYX—O) ZJ_LYIZ())Z:() | fX = NT, ZJ.LYm:07z:1 | tX = NT,

(RYX—l) ZiLYgC:l)zzl | fX = AT, ZJ.LYm:Lz:l | tX = AT,

(EX:O) p(YmZO,z:O = YmZO,zzl | tx = NT) = 1;
(Ex=1) p(Yo=i1:20=Yo=1.=1 | tx = AT) = 1.

Conditions (RX) and (RY x—,) correspond to the assumption of randomization
with respect to compliance type and response type. For the purposes of technical
clarity we have stated condition (RY x—,) in the weakest form possible. However,
we know of no subject matter knowledge which would lead one to believe that (RX)
and (RY x—,) held, without also implying the stronger assumption (2). In contrast,
the exclusion restrictions (Ex—,) are significantly weaker than (1), e.g. one could
conceive of situations where assignment had an effect on the outcome for Always
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Takers, but not for Compliers. It should be noted that tests of the instrument
inequalities have no power to detect failures of the exclusion restriction for Compliers
or defier.

We first prove the following Lemma, which also provides another characterization
of the instrument inequalities:

LEMMA 9. Suppose (RX) holds and Y ILZ | tx = NT then (a2) holds. Similarly,
if (RX) holds and Y 1L Z | tx = AT then (b2) holds.

Note that the conditions in the antecedent make no assumption regarding the exis-
tence of counterfactuals for Y.

Proof: We prove the result for Never Takers; the other proof is similar. By hypoth-
esis we have:

p(Y =1|Z=0,tx =NT)=p(Y =1|Z=1,txy =NT) = 1%p.  (23)
In addition,
p(Y =1]Z=0,X =0)
= p(Y=1|Z=0,X=0,X._0=0)
= p(Y=1[Z2=0,X.-=0)
= p(Y =1|Z=0,tx =CO)p(txy =CO | Z =0, X._o = 0)
+p(Y =1|Z=0,tx =NT)p(tx =NT | Z =0, X._o = 0)
= p(Y =1[Z=0,tx =CO)p(tx =CO | X.—0 =0) (24)
+ W p(tx = NT | X.—o = 0).

The first three equalities here follow from consistency, the definition of the compli-
ance types and the law of total probability. The final equality uses (RX). Similarly,
it may be shown that

p(Y=1|Z=1,X=0)

= p(Y: 1 | Z = 1,’()( :DE>p(tX :DE|XZ:1 ZO)

0 (25)
+wrp(tx =NT | X.—1 =0).

Equations (24) and (25) specify two averages of three quantities, thus taking
u=p(Y=1|Z=0,tx =CO),v=p(Y =1|Z =1,tx = DE) and w = &, we
may apply the analysis of §2.3. This then leads to the upper bound on waT given
by equation (15). (Note that the lower bounds on mar are derived from p(x | z)
and hence are unaffected by dropping the exclusion restriction.) The requirement
that there exist some feasible distribution 7x then implies equation (a2) which is
shown in Theorem 7 to be equivalent to (b2) as required. O
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Z \X/ Y

Figure 14. Graphical representation of the model given by the randomization as-
sumption (2) alone. It is no longer assumed that Z does not have a direct effect on
Y.

Proof of Theorem 8: We establish that (RX), (RYx=0), (Ex=0) = (a2). The proof
of the other implication is similar. By Lemma 9 it is sufficient to establish that
Y1Z |ty = NT.

p(Y =1|Z =0,tx = NT)

= pY=1|Z2=0,X=0,tx =NT) definition of NT;
= p(Yom0:.0=1|Z=0,X =0,tx =NT) consistency;
= p(Ye=0.=0=1|Z=0,tx =NT) definition of NT;
= p(Ye=0,2=0 = 1| tx = NT) by (RYx=0);
= p(Ya=o0.=1=1]tx =NT) by (Ex=o);
= p(Ye=0.=1=1|Z=1,tx =NT) by (RY x—o);
= pY=1|Z=1,tx =NT) consistency, NT.

a

A similar result is given in [Cai, Kuroki, Pearl, and Tian 2008], who consider the
Average Controlled Direct Effect, given by:

ACDE(z) = p(Yy,2=1=1) — p(Yz,.—0=1),

under the model given solely by the equation (2), which corresponds to the graph
in Figure 14. Cai et al. prove that under this model the following bounds obtain:

ACDE(z) > p(y=0,z|2=0)+py=1,2]z=1)—1, (26)

ACDE(z) < 1-p(y=0,z|z=1)—-p(y=1,2]|2=0). (27)
It is simple to see that ACDE(z) will be bounded away from 0 for some z iff one
of the instrumental inequalities is violated. This is as we would expect: the IV
model of Figure 1 is a sub-model of Figure 14, but if ACDE(z) is bounded away
from 0 then the Z — Y edge is present, and hence the exclusion restriction (1) is
incompatible with the observed distribution.
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(a) (b)

p(y=1hx=0.2=1) POt )

05 05 1 15 2 05 ! 05 A 15 K

p(y=1|x=0,z=0) .' / p(y=1|x=1,z=0)

Figure 15. Tlustration of the possible values for p(y | x,z) compatible with the
instrument inequalities, for a given distribution p(z|z).The darker shaded region
satisfies the inequalities: (a) X = 0, inequalities (a2); (b) X = 1, inequalities
(b2). In this example p(z =1 ] 2=0) = 0.84, p(ea =1 | z=1) = 0.32. Since
0.84/(1 —0.32) > 1, (a2) is trivially satisfied; see proof of Theorem 10.

6.2 How many instrument inequalities may be violated by a single
distribution?

THEOREM 10. For any distribution p(x,y | 2), at most one of the four instrument

inequalities:
(a2.1) > ;p(y=j,z=0]z=j) <1 (a22) };p(y=j,2=0]|2=1-j) < L;
(b21) ¥, ply=jo=1]2=7) <1 (1b2.2) 5, ply=jra=1]2=1-j) < 1

s violated.

Proof: We first show that at most one of (a2.1) and (a2.2) may be violated. Letting
0;; =p(ly =1]|x =j,z =1) we may express these inequalities as:

910 *Paglzy — 900 * Paolzo < Pzxy|z09 (321)
610 *Paglzy — Boo * Paolzo > —Pzxy|z15 (322)

giving two half-planes in (6go, 610)-space (see Figure 15(a)). Since the lines defin-
ing the half-planes are parallel, it is sufficient to show that the half-planes always
intersect, and hence that the regions in which (a2.1) and (a2.2) are violated are
disjoint. However, this is immediate since the (non-empty) set of points for which
010 * Pag|zr — 000 * Pay|zo = 0 always satisfy both inequalities.

The proof that at most one of (b2.1) and (b2.2) may be violated is symmetric.

We now show that the inequalities (a2.1) and (a2.2) place non-trivial restric-
tions on (Ao, 610) iff (b2.1) and (b2.2) place trivial restrictions on (o1, 6011). The
line corresponding to (a2.1) passes through (6oo,010) = (—Pai|z0/Pwojz050) and
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(0, 92,120/ Pao|= ); since the slope of the line is non-negative, it has non-empty inter-
section with [0,1]% iff p,, |2 /Puglz, < 1. Thus there are values of (o1, 6011) € [0,1]?
which fail to satisfy (a2.1) iff py,|2o/Pzelz; < 1. By a similar argument it may
be shown that (a2.2) is non-trivial iff p, ., /Pse|, < 1, which is equivalent to

pI1|Z0/pLEO‘Z1 < 1
The proof is completed by showing that (b2.1) and (b2.2) are non-trivial if and
only if pa, |20 /Paolz > 1. O

COROLLARY 11. Ewery distribution p(x,y | z) is consistent with randomization
(RX) and (2), and at least one of the exclusion restrictions Ex—¢ or Ex—1.

Flu Data Revisited

For the data in Table 3, all of the instrument inequalities hold. Consequently there is
no evidence of a direct effect of Z on Y. (Again we emphasize that unlike [Hirano,
Imbens, Rubin, and Zhou 2000], we are not using any information on baseline
covariates in the analysis.) Finally we note that, since all of the instrumental
inequalities hold, maximum likelihood estimates for the distribution p(z,y | z) under
the IV model are given by the empirical distribution. However, if one of the IV
inequalities were to be violated then the MLE would not be equal to the empirical
distribution, since the latter would not be a law within the IV model. In such a
circumstance a fitting procedure would be required; see [Ramsahai 2008, Ch. 5].

7 Conclusion

We have built upon and extended the work of Pearl, displaying how the range of
possible distributions over types compatible with a given observed distribution may
be characterized and displayed geometrically. Pearl’s bounds on the global ACE
are sometimes objected to on the grounds that they are too extreme, since for
example, the upper bound presupposes a 100% success rate among Never Takers if
they were somehow to receive treatment, likewise a 100% failure rate among Always
Takers were they not to receive treatment. Our analysis provides a framework for
performing a sensitivity analysis. Lastly, our analysis relates the IV inequalities to
the bounds on direct effects.
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Pearl Causality and the Value of Control

ROSS SHACHTER AND DAVID HECKERMAN

1 Introduction

We welcome this opportunity to acknowledge the significance of Judea Pearl’s con-
tributions to uncertain reasoning and in particular to his work on causality. In
the decision analysis community causality had long been “taboo” even though it
provides a natural framework to communicate with decision makers and experts
[Shachter and Heckerman 1986]. Ironically, while many of the concepts and meth-
ods of causal reasoning are foundational to decision analysis, scholars went to great
lengths to avoid causal terminology in their work. Judea Pearl’s work is helping
to break this barrier, allowing the exploration of some fundamental principles. We
were inspired by his work to understand exactly what assumptions are being made
in his causal models, and we would like to think that our subsequent insights have
contributed to his and others’ work as well.

In this paper, we revisit our previous work on how a decision analytic perspective
helps to clarify some of Pearl’s notions, such as those of the do operator and atomic
intervention. In addition, we show how influence diagrams [Howard and Matheson
1984] provide a general graphical representation for cause. Decision analysis can be
viewed simply as determining what interventions we want to make in the world to
improve the prospects for us and those we care about, an inherently causal concept.
As we shall discuss, causal models are naturally represented within the framework
of decision analysis, although the causal aspects of issues about counterfactuals and
causal mechanisms that arise in computing the value of clairvoyance [Howard 1990],
were first presented by Heckerman and Shachter [1994, 1995]. We show how this
perspective helps clarify decision-analytic measures of sensitivity, such as the value
of control and the value of revelation [Matheson 1990; Matheson and Matheson
2005].

2 Decision-Theoretic Foundations

In this section we introduce the relevant concepts from [Heckerman and Shachter
1995], the framework for this paper, along with some extensions to those concepts.

Our approach rests on a simple but powerful primitive concept of unresponsive-
ness. An uncertain variable is unresponsive to a set of decisions if its value is
unaffected by our choice for the decisions. It is unresponsive to those decisions in
worlds limited by other variables if the decisions cannot affect the uncertain variable
without also changing one of the other variables.
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We can formalize this by introducing concepts based on Savage [1954]. We con-
sider three different kinds of distinctions, which he called acts, consequences, and
possible states of the world. We have complete control over the acts but no con-
trol over the uncertain state of the world. We might have some level of control
over consequences, which are logically determined, after we act, by the state of the
world. Therefore, a consequence can be represented as a deterministic function of
acts and the state of the world, inheriting uncertainty from the state of the world
while affected, more or less, by our choice of action.

In practice, it is convenient to represent acts and consequences with variables in
our model. We call a variable describing a set of mutually exclusive and collectively
exhaustive acts a decision, and we denote the set of decisions by D. We call a
variable describing a consequence uncertain, and we denote the set of uncertain
variables by U. At times we will distinguish between the uncertain variables that
serve as our objectives or value variables, V, and the other uncertain variables which
we call chance variables, C = U\ V. Finally, in this section we will use the variables
S to represent the possible states of the world. As a convention we will refer to
single variables with lower-case (x or d), sets of variables with upper-case (D or V),
and particular instances of variables with bold (x or D). In this notation, the set of
uncertain variables X takes value X[S, D] deterministically when D is chosen and
S is the state of the world.

DEFINITION 1 (Unresponsiveness). Given a decision problem described by uncer-
tain variables U, decision variables D, and state of the world S, and variable sets
X CUandY C DUU, X is said to be unresponsive to D, denoted X +~ D, if we
believe that

VS € §,D; € D,Dy € D: X[S,D4] = X[S, D]

and, if not, X is said to be responsive to D.

Furthermore, X is said to be unresponsive to D in worlds limited by Y, denoted
X £y D, if we believe that

vVSeSDyeD DyeD: Y[S,Dl] = Y[S,Dz] - X[S,Dl] = X[S,Dz]

and, if not, X is said to be responsive to D in worlds limited by Y.

The distinctions of unresponsiveness and limited unresponsiveness seem natural
for decision makers to consider. Unresponsiveness is related to independence, in that
any uncertain variables X that are unresponsive to decisions D are independent of
D. Although it is not necessarily the case that X independent of D is unresponsive
to D, that implication is often assumed [Spirtes, Glymour, and Scheines 1993]. In
contrast, there is no such general correspondence between limited unresponsiveness
and conditional independence.

To illustrate these concepts graphically, we introduce influence diagrams [Howard
and Matheson 1984]. An influence diagram is an acyclic directed graph G with
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Treatment
Assigned

/

Cured Trea_tment
Assigned

Figure 1. The treatment assignment only cures the patient if it affects whether the drug
is taken, but genotype does not have a causal effect unless it is responsive to decisions.

nodes corresponding to the variables, rectangles for decisions, ovals for chance vari-
ables, and rounded rectangles for value variables. Arcs into chance and value nodes,
are conditional. For each uncertain variable z there is a conditional probability
distribution for = given its parents, Pa(z). If the distribution is a deterministic
function, we represent that in the graph by a double oval or double rounded rect-
angle. Arcs into decisions are informational, representing that the parent variables
will be observed before the decision is made. Although there are significant issues
involving informational arcs, we will focus primarily on models in which there are
no informational arcs and all of the decisions could be made in any order, before
any of the uncertain variables are observed.

We allow multiple value nodes, all with no children, assuming that their values
will be summed. We assume that the criterion for making decisions is either the
total value or an increasing exponential utility function of the total. This simplifies
the valuation of a proposed change to a decision problem because the most a decision
maker should be willing to pay for the change is the difference in the values of the
diagrams with and without the proposed change.

Although we have defined unresponsiveness without regard to a graphical rep-
resentation, there is an intuitive graphical interpretation (with some technical ex-
ceptions described in Heckerman and Shachter [1985]). The uncertain descendants
of decisions are usually responsive to them, and the other uncertain variables are
usually unresponsive. Also, X is usually unresponsive to D in worlds limited by Y
if all of the directed paths from D to X include nodes in Y. When these rules of
thumb are all satisfied, we say that an influence diagram is causal.

DEFINITION 2 (Causal Influence Diagram). An influence diagram with graph G
and decision nodes D, chance nodes C, and value nodes V, is said to be causal if
we believe that uncertain variables X C C' UV are unresponsive to decisions D,
X <~ D, whenever there is no directed path from D to X, and X is unresponsive to
decisions D in worlds limited by Y, X <y D, whenever every directed path from
D to X includes a node from Y.

Consider the influence diagram shown in Figure la which we believe is causal.
In this case, we believe that Drug Taken and Cured are responsive to Treatment
Assigned while Genotype is unresponsive to Treatment Assigned. We also believe
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that Clured is unresponsive to Treatment Assigned in worlds limited by Drug Taken.
Note that Treatnent Assigned is not independent of Genotype or Cured given Drug
Taken.

The concept of limited unresponsiveness allows us to define how one variable can
cause another in a way that is natural for decision makers to understand.

DEFINITION 3 (Cause with Respect to Decisions). Given a decision problem de-
scribed by uncertain variables U and decision variables D, and a variable z € U,
the set of variables Y C DUU \ {z} is said to be a cause for x with respect to D if
Y is a minimal set of variables such that = +~y D.

Defining cause with respect to a particular set of decisions adds clarity. Consider
again the causal influence diagram shown in Figure 1la. With respect to the decision
Treatment Assigned, the cause of Cured is either {Treament Assigned} or {Drug
Taken}, while the cause of Genotype is {}. Because we believe that Genotype is
unresponsive to Treatment Assigned it has no cause with respect to D. On the
other hand, we believe that Cured is responsive to Treatment Assigned but not in
worlds limited by Drug Taken, so { Drug Taken} is a cause of Cured with respect to
D.

Consider now the causal influence diagram shown in Figure 1b, in which we have
added the decision Gene Therapy. Because Genotype is now responsive to D, the
cause of Genotype is {Gene Therapy} with respect to D. If the gene therapy has
some side effect on whether the patient is cured, then { Gene Therapy, Drug Taken}
but not {Genotype, Drug Taken} would be a cause of Cured with respect to the
decisions, because Cured is unresponsive to D in worlds limited by the former but
not the latter.

The concept of limited unresponsiveness also allows us to formally define direct
and atomic interventions. A set of decision [ is a direct intervention on a set of
uncertain variables X if the effects of I on all other uncertain variables are mediated
through their effects on X.

DEFINITION 4 (Direct Intervention). Given a decision problem described by un-
certain variables U and decision variables D, a set of decisions I C D is said to be

a direct intervention on X C U with respect to D if (1) x « I for all z € X, and
(2)ysox Tloralyel.

In a causal influence diagram every node in I has children only in X and there
is a directed path from I to every node in X. In the causal influence diagram
shown in Figure 1b, Treatment Assigned is a direct intervention on Drug Taken,
and the set of decisions is a direct intervention on all three uncertain variables.
Note that whether a decision is a direct intervention depends on the underlying
causal mechanism. If the gene therapy had no side effect then Gene Therapy would
be a direct intervention on Genotype, but regardless whether there is a side effect,
Gene Therapy is a direct intervention on { Genotype, Cured}.

448



The Value of Control

System System System System
Upgrade Quality Upgrade Quality

Figure 2. We believe that a system upgrade will affect system quality by fixing bugs
unless new bugs are introduced in the process.

DEFINITION 5 (Atomic Intervention). Given a decision problem described by un-
certain variables U and decision variables D, a decision do(x) € D is said to be a
atomic intervention on x € U with respect to D if (1) do(x) is a direct invention on
a with respect to D, and (2) do(z) has precisely the instances (a) idle, which cor-
responds to no intervention, and (b) do(x) for every instance x of x, where z = x
whenever do(z) = do(x).

This is precisely the atomic intervention described without definition in Pearl
[1993]. The assumptions underlying it are quite strong. The causal influence dia-
gram shown in Figure 2a assumes that we can upgrade our system and improve the
quality by fixing the bugs, but the diagram shown in (b) illustrates the all too fa-
miliar situation when new bugs are introduced in the process, compromising system
quality. In that case, System Upgrade is not a direct intervention on Bugs Fized
and { Bugs Fized} is not a cause of System Quality with respect to D. Although the
system upgrade was intended to be an atomic intervention, it can have unintended
and undesirable consequences.

We can now represent the relationship between an uncertain variable x and other
variables Y, such as its parents in a causal influence diagram. We consider the
uncertain function z(Y') as a variable, and now z is a deterministic function of
Y and z(Y). In fact, if Y is a cause of z with respect to D then z(Y) must be
unresponsive to D.

DEFINITION 6 (Mapping Variable). Given a decision problem described by un-
certain variables U and decision variables D, z € U and variables Y such that for
every y € Y NU there exists an atomic intervention do(y) € D, the mapping variable
x(Y) is the chance variable that represents all possible mappings from Y to z.

Finally, we have developed the machinery to characterize a Pearl causal model
and structural equations [Pearl 1993]. Given uncertain variables U, suppose the
decisions D comprise an atomic intervention do(z) on every & € U. Given a graph
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D | dov) b) @ do(x)
MNORG

Figure 3. The partial influence diagram for x in a causal model, shown in (a) with parents
Y, becomes the diagram shown in (b) explicitly representing the structural equation for z,
and, when Y is nonempty, the diagram shown in (c) with an explicit atomic intervention
on the mapping variable.

G with nodes U, such that Pa(z)U{do(x)} is a cause for x with respect to D. Then
z = fo(Pa(x), do(z), z(Pa(z)))

for all z € U where f, is a deterministic function such that z = x if do(z) = do(x).

We can extend this to allow manipulation of a mapping variable for z € U
with parents to obtain a Pearl causal model with an atomic intervention for map-
ping variable x(Pa(x)). The decisions D now also include a atomic intervention
do(xz(Pa(z))). As a result, Pa(z)U{do(z),do(x(Pa(x)))} is now a cause for x with
respect to D and z(Pa(x)) = x(Pa(z)) when do(z(Pa(z))) = do(x(Pa(z))).

The causal model is represented by the partial influence diagrams shown in Fig-
ure 3 with Y = Pa(z) C C in the graph G. We assume in (a) that there are atomic
interventions do(y) on each y € Y represented as do(Y'). The diagram shown in
(b) explicitly represents the structural equation for z as a deterministic function of
Y, an atomic intervention, do(z), and the mapping variable, z(Y"). The influence
diagram is causal, showing that Y U {do(z)} is a cause for x with respect to D. We
can extend the model by adding an atomic intervention for the mapping variable,
do(xz(Y)). If Y is empty then nothing needs to be added, as do(z) is the same
atomic intervention as do(z()), but otherwise we obtain the diagram shown in (c).
Now Y U {do(z),do(x(Y))} is a cause for = with respect to D.

An influence diagram is said to be in canonical form if each uncertain variable
responsive to a decision is a descendant of that decision and represented as a de-
terministic node. Each decision, including atomic interventions, is explicit. Each
uncertain variable that is responsive to D is a deterministic function of its parents,
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including any decisions that are direct interventions on it, and a mapping variable.
As an example, the influence diagram shown in Figure 3b is in canonical form.

In the next section we apply these concepts to define and contrast different mea-
sures for the value to a decision maker of manipulating (or observing) an uncertain
variable.

3 Value of Control

When assisting a decision maker developing a model, sensitivity analysis measures
help the decision maker to validate the model. One popular measure is the value
of clairvoyance, the most a decision maker should be willing to pay to observe a
set of uncertain variables before making particular decisions [Howard 1967]. Our
focus of attention is another measure, the value of control (or wizardry), the most a
decision maker should be willing to pay a hypothetical wizard to optimally control
the distribution of an uncertain variable [Matheson 1990], [Matheson and Matheson
2005]. We consider and contrast the value of control with two other measures, the
value of do, and the value of revelation, and we develop the conditions under which
the different measures are equal.

In formalizing the value of control, it is natural to consider the value of an atomic
intervention on uncertain variable z, in particular do(x*), that would set it to x*
the instance yielding the most valuable decision situation, rather than to idle. We
call the most the decision maker should be willing to pay for such an intervention
the value of do and compute it as the difference in the values of the diagrams.

DEFINITION 7 (Value of Do). Given a decision problem including an atomic in-
tervention on uncertain variable x € U, the value of do for x, denoted by VoD (x*),
is the most one should be willing to pay for an atomic intervention on uncertain
variable z to the best possible deterministic instance, do(x*), instead of to idle.

Our goal in general is to value the optimal manipulation of the conditional distri-
bution of a target uncertain variable x in a causal influence diagram, P{z|Y'}, and
the most we should be willing to pay for such an intervention is the value of control.
The simplest case is when {do(z)} is a cause of z with respect to D, Y = {}, so the
optimal distribution is equivalent to an atomic intervention on z to x*, and control
and do are the same intervention. Otherwise, the do operation effectively severs the
arcs from Y to x and replaces the previous causal mechanism with the new atomic
one. By contrast, the control operation is an atomic intervention on the mapping
variable z(Y") to its optimal value do(x*(Y)) rather than to idle.

DEFINITION 8 (Value of Control). Given a decision problem including variables
Y, a mapping variable z(Y") for uncertain variable x € U, and atomic interventions
do(z) and do(z(Y")) such that Y U {do(z),do(z(Y))} is a cause of x with respect
to D, the value of control for x, denoted by VoC(x*(Y)), is the most one should
be willing to pay for an atomic intervention on the mapping variable for uncertain
variable x to the best possible deterministic function of Y, do(x*(Y’)), instead of
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to idle.
If Y = {}, then do(z) is the same atomic intervention as do(z(Y")), and the values
of do and control for z are equal, VoD(x*) = VoC(x*()).

In many cases, while it is tempting to assume atomic interventions, they can be
cumbersome or implausible. In an attempt to avoid such issues, Ronald A. Howard
has suggested an alternative passive measure, the value of revelation: how much
better off the decision maker should be by observing that the uncertain variable
in question obtained its most desirable value. This is only well-defined for vari-
ables unresponsive to D, except for those atomic interventions that are set to idle,
because otherwise the observation would be made before decisions it might be re-
sponsive to. Under our assumptions this can be computed as the difference in value
between two situations, but it is hard to describe it as a willingness to pay for this
difference as it is more passive than intentional. (The value of revelation is in fact
an intermediate term in the computation of the value of clairvoyance.)

DEFINITION 9 (Value of Revelation). Given a decision problem including uncer-
tain variable € U and a (possibly empty) set of atomic interventions, A, that is a
cause for z with respect to D, the value of revelation for uncertain variable x € U,
denoted by VoR(x*), is the increase in the value of the situation with d = idle
for all d € A, if one observed that uncertain variable z = x*, the best possible
deterministic instance, instead of not observing x.

To illustrate these three measures we, consider a partial causal influence diagram
including = and its parents, Y, which we assume for this example are uncertain
and nonempty, as shown in Figure 4a. There are atomic interventions do(z) on
z, do(z(Y")) on mapping variable z(Y’), and do(y) on each y € Y represented as
do(Y). The variable = is a deterministic function of Y, do(z) and z(Y). In this
model, Y U {do(z),do(x(Y))} is a cause of = with respect to D. The dashed line
from z to values V suggests that there might be some directed path from z to V.
If not, V' would be unresponsive to do(z) and do(z(Y)) and the values of do and
control would be zero.

To obtain the reference diagram for our proposed changes, we set all of the atomic
interventions to idle as shown in Figure 4bl. We can compute the value of this
diagram by eliminating the idle decisions and absorbing the mapping variable into
z, yielding the simpler diagram shown in (b2). To compute the value of do for x,
we can compute the value of the diagram with do(x*) by setting the other atomic
interventions to idle, as shown in (c1). But since that is making the optimal choice
for  with no interventions on Y or z(Y), we can now think of z as a decision
variable as indicated in the diagram shown in (c2). We shall use this shorthand
in many of the examples that we consider. To compute the value of control for
x, we can compute the value of the diagram with do(x*(Y)) by setting the other
atomic interventions to idle, as shown in (d1). But since that is making the optimal
choice for z(Y') with none of the other interventions, we can compute its value with
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A do(x(Y) @ do(x)

x(Y)

do(x)

idle

Figure 4. Partial causal influence diagrams to compute the values of do, control, and
revelation for x when Y is nonempty.
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Wealth

Happiness

Monkey's
Paw Wish

Happiness

—

Figure 5. Unless the intervention is direct there can be disastrous side effects.

the simpler influence diagram shown in (d2), again using our shorthand. Finally, to
compute the value of revelation for x, we can compute the value of the diagram with
x = z* and all of the atomic interventions idle, as shown in (el). The observation
is well-defined because all of the interventions are idle, but that also means that
we can compute its value with the simpler influence diagram shown in (e2).

Each of the three measures requires evaluation of two influence diagrams to de-
termine its value, the reference diagram with all of the atomic interventions set
to idle and a revised one, a diagram with either an atomic intervention or an ob-
servation. The values of these diagrams can be computed using simpler influence
diagrams, with either one new decision, an atomic one made with no observations,
or a new observation made before any decision, and the simpler diagram for the
reference value has neither new decisions nor observations. These simpler diagrams
are well-defined even if there are other decisions elsewhere and some observations
prior to some of the other decisions [Shachter 1986]. Note that care must be taken
in computing the value of control because there can be an exponential number of
instances for the mapping variable.

The assumption of a direct intervention is crucial. Matheson and Matheson
[2005]( refer to it as “pure” and to an atomic intervention as “perfect”.) There is a
classic horror story of a man granted three wishes on a monkey’s paw [Jacobs 1902].
He chooses to be wealthy and his wish is granted, tragically, through the death of
his son. This corresponds to the causal influence diagrams shown in Figure 5. The
value of his situation with no intervention is represented by the diagram in (a).
The atomic intervention on Wealth he intends would yield the same value as a
diagram in which Wealth is a decision as in (b), but the value with his intervention
actually equals the value of the diagram shown in (c¢). The wish decision he actually
made was not the direct intervention on Wealth he desired. The lesson is clear: in
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v

Inventory a[ Profit ] Inventory 4>[ Profit

Profit ]

N/

)| Forecast
Quality

Inventory

Figure 6. When we intervene on a forecast, we want to improve its quality, rather than
to obtain a single most desirable instance.

manipulating our situation, we must beware of the unintended consequences.

Suppose the uncertain variable is being used to provide information, such as a
forecast. Consider the causal influence diagram shown in Figure 6. This situation
corresponds to one in which inventory decisions must be made before demand is
observed, but a forecast relevant to demand will be observed before choosing inven-
tory as shown in (a). Alas, an atomic intervention setting the forecast to our most
desirable value (“highest demand”) as in (b) does not improve profit since it tells us
nothing about the real demand. What we would like to manipulate is the quality
of the forecast, having it represent the best possible signal about demand as in (c).
In this case, the value of do for Forecast is zero, but the value of control for Forecast
should be positive. In fact, if there are as many instances for Forecast as there are
for Demand, the highest quality forecast possible is clairvoyance on the demand,
and the value of control would be equal to the value of clairvoyance. In the diagram
Forecast Quality might not be an atomic intervention, both because there might
only be a choice among imperfect information sources, and because there might be
different costs associated with those different information sources.

Consider the causal influence diagrams shown in Figure 7, in which we believe
that Product Quality is unresponsive to direct interventions (not shown) on Sales
or Profit. We would like to understand how much we would improve our profit
by manipulating our product quality. The diagram shown in (a) treats quality
and sales as uncertain with its atomic interventions set to idle, and its value is
the reference for any changes. The diagram shown in (b) has the same value as
an atomic intervention on Product Quality to its optimal instance, and because
that intervention is the cause of Product Quality with respect to D, the difference
in values of this diagram relative to the one in (a) is both the value of do and the
value of control for Product Quality. Alternatively, in (c) if we observed that Product
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Profit Product »|  Profit
Quality
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Figure 7. In this causal influence diagram the values of do, control, and revelation for
Product Quality are equal.

a) Sales
Product »|  Profit Profit
Quality
Sales
(Quality)

Profit

c)

Product
Quality

Incentives

Figure 8. The values of do, control, and revelation for Sales might not be equal.

Quality takes the best possible value, this diagram has the same value as the one
in (b). As a result, the value of revelation is equal to the other two values. Finally,
in (d) we could contemplate a research and development effort that might lead to
higher product quality. Because the diagram in (d) is causal, { Product Quality} is
a cause of Sales with respect to D.

Now consider the causal influence diagrams shown in Figure 8, in which we are
manipulating sales rather than product quality to improve our profit. We obtain
the diagram shown in (a) by assuming that Product Quality is unresponsive to an
atomic intervention on Sales. In (b) we could observe that Sales takes that same
value, but this observation updates our belief about the Product Quality, and the
value of this diagram might not be equal to the value of the diagram in (a). We
obtain the diagram shown in (¢) by an atomic intervention on the mapping variable
for Sales, not determining sales but rather how it depends on quality (assuming that
there is an atomic intervention on Product Quality). In this situation the values of
do, control, and revelation could all be different! Finally, in (d) we consider offering
incentives to boost sales, recognizing that it might affect our profits both directly
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Figure 9. The values of do, control, and revelation are different for Income Taz.

and indirectly.

There can be a significant difference between passive observation of uncertain
variable x and intervention on x. Consider the causal influence diagrams shown
in Figure 9 representing disposable income after taxes. We believe that Income
is unresponsive to a direct intervention on Income Tax, but Income Tax might
be responsive to a direct intervention on Income. However, the value of do, the
difference between the values of the diagrams in (b) and (a), is quite different from
the value of revelation based on (c) and (a). Being able to choose not to pay any
tax is quite different from learning that you will pay no tax, since it is more likely
in the latter case that you have lost your job. Alternatively, we can consider setting
the income tax rate as shown in (d), which would lead to the value of control. In
this case, we can simplify the calculation in (d) that searches all possible mapping
variable instances, to a simpler decision shown in (e), recognizing that in this case
there is no interaction among the components of the mapping variable, and therefore
we can independently search for the best possible instance for Income Taz for each
possible instance of Income.

The correspondence between passive observation and intervention has been stud-
ied, primarily to identify causal effects from observational data [Robins 1986], [Pearl
1993] and [Spirtes, Glymour, and Scheines 1993]. In our framework, a set of vari-
ables Y is said to satisfy the back door condition for z if Y is unresponsive to do(z)
while do(x) is d-separated from V by {z} UY. When Y satisfies the back door
condition, there is a correspondence among the values of do, control and revelation,
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in that
P{V|Y,x*} = P{V|Y,do(x*)} = P{V|Y,do(x*"(Y))}.

However, in valuing the decision situation we do not get to observe Y and thus
P{V|x*} might not be equal to P{V|do(x*)}. Consider the diagrams shown in
Figure 9. Because Income satisfies the back door criterion relative to Income Taz,
the values of do, control and revelation on Income Tax would all be the same if we
observed Income. But we do not know what our Income will be and the values of
do, control, and revelation can all be different.

Nonetheless, if we make a stronger assumption, that Y is d-separated from V by
x, the three measures will be equal. The atomic intervention on x or its mapping
variable only affects the value V' through the descendants of z in a causal model,
and all other variables are unresponsive to the intervention in worlds limited by .
However, the atomic interventions might not be independent of V' given z unless Y’
is d-separated from V by x. Otherwise, observing x or an atomic intervention on
the mapping variable for x can lead to a different value for the diagram than an
atomic intervention on x.

We establish this result in two steps for both general situations and for Pearl
causal models. By assuming that do(x) is independent of V' given x, we first show
that the values of do and revelation are equal. If we then assume that Y is d-
separated from V by x, we show that the values of do and control are equal. The
conditions under which these two different comparisons can be made are not iden-
tical either. To be able to compute the value of revelation for x we must set to idle
all interventions that z is responsive to, while to compute the value of control for
x we need to be ensure that we have an atomic intervention on a mapping variable
for x.

THEOREM 10 (Equal Values of Do and Revelation). Given a decision problem
including uncertain variable x € U, if there is a set of atomic interventions A,
including do(z), that is a cause of x with respect to D, and do(x) is independent of V
given x, then the values of do and revelation for x are equal, VoD(x*) = VoR(x*).

If {do(x)} is a cause of x with respect to D, then they are also equal to the value
of control for x, VoC(x*()) = VoD(x*) = VoR(x*).

Proof. Consider the probability of V after the intervention do(x*) with all other
interventions in A set to idle. Because z is determined by do(x*), and do(z) is
independent of V given z,

P{V|do(x")} = P{V|x*,do(x")} = P{V|x*} = P{V|x",do(z) = idle}.

If {do(x)} is is a cause of x with respect to D then the values of do and control for
x are equal. a

COROLLARY 11. Given a decision problem described by a Pearl causal model in-
cluding uncertain variable x € U, if Pa(x) is d-separated from V by x, then the
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values of do and revelation for x are equal, VoD(x*) = VoR(x*). If x has no

parents, then the the values of do, control, and revelation for x are equal,

VoD(x*) = VoC(x*()) = VoR(x").

THEOREM 12 (Equal Values of Do and Control). Given a decision problem de-
scribed by an influence diagram including uncertain variable x € U, and nonempty
set of variables Y. If there are atomic interventions do(x) for x, do(y) for every
yeYNU, and do(z(Y))) for the mapping variable x(Y'), Y U {do(x),do(x(Y))} is
a cause of x with respect to D, and Y is d-separated from V by x, then the values
of do and control are equal,

VoD(x*) = VoC(x*(Y)).

Proof. We know that Y U {do(x),do(z(Y))} is independent of V given z, be-
cause otherwise Y would not be d-separated from V by z. Because do(z) is an
atomic intervention on x and do(x) is independent of V' given z, as in Theorem 10,
P{V]do(x*)} = P{V|x*,do(x*)} = P{V|x*}. Now consider the probability of V'
after the intervention do(x*(Y')). Because z = x*(Y) is determined by do(x*(Y))
and Y, and Y U {do(x(Y))} is independent of V given z,

P{V]do(x"(Y)), Y}

P{V]z =x*(Y),do(x*(Y)), Y}
PV]z = x"(Y)},

The optimal choice of z(Y') does not depend on YV, x*(Y) = x*, yielding
P{V]do(x*(Y)),Y} = P{V|x*}.
As a result,

P{V|do(x*(Y))}

Y P{V.Y|do(x"(Y))}
Y

Y P{VIdo(x*(Y)), Y}P{Y|do(x"(Y))}
Y

Y P{VIx"}P{Y|do(x"(Y))}
Y

P{V[x*} ) P{Y|do(x"(Y))}
Y

P{VIx"}

a

COROLLARY 13. Given an uncertain variable x € U with parents in a decision
problem described by a Pearl causal model with an atomic intervention for mapping
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OGRS

Figure 10. The values of do, control, and revelation are equal for each uncertain variable.

variable x(Pa(x)), if Pa(z) is d-separated from V by x, then the values of do,
control, and revelation for x are equal, VoD(x*) = VoC(x*(Pa(x))) = VoR(x*).

Consider the causal influence diagrams shown in Figure 10, concerning a com-
municable disease, for which we believe that Exposure is unresponsive to any direct
intervention on Infection, and both of them are unresponsive to any direct interven-
tion on Health, but all of the uncertain variables might be responsive to a direction
intervention on Ezposure. Because Ezrposure has no parents, the values of do, con-
trol, and revelation for it will be equal. Furthermore, in this case, even though
Infection has a parent, the values of do, control, and revelation for it will be also
equal, because Fzposure is independent of Health given Infection. Likewise, there
will be equal values of do, control, and revelation for Health.

4 Conclusions

We have sharpened the distinctions underlying the value of control and related value
of revelation and value of do, and shown that they are equivalent when the target
variable x in a causal influence diagram either has no parents, or its parents, Pa(z)
are d-separated from the value V' by z.

The general problem, which have only touched upon, permits multiple decisions
and information sets at those other decisions. In that case, there is a question of how
to recognize when Pa(x) in d-separated from V by x. We can address this in general
by either constructing the normal form diagram [Bhattacharjya and Shachter 2007]
or by building a policy diagram, iteratively substituting deterministic policies for
decisions starting with the latest decision [Shachter 1999]. These approaches exploit
the causal structure and the separable value function represented in the influence
diagram.
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Cause for Celebration, Cause for Concern

YOoAvV SHOHAM

It is truly a pleasure to contribute to this collection, celebrating Judea Pearl’s
scientific contributions. My focus, as well as that of several other contributors, is on
his work in the area of causation and causal reasoning. Any student of these topics
who ignores Judea’s evolving contributions, culminating in the seminal [Pearl 2009],
does so at his or her peril. In addition to the objective content of these contributions,
Judea’s unique energy and personality have led to his having unparalleled impact
on the subject, in a diverse set of disciplines far transcending AI, his home turf.
This body of work is truly a cause for celebration, and accounts for the first half of
the title of this piece.

The second half of the title refers to a concern I have about the literature in
Al regarding causation. As an early contributor to this literature I wade back
into this area gingerly, aware of many of the complexities involved and difficulties
encountered by earlier attempts to capture the notion formally. I am also aware
of the fact that many developments have taken place in the past decade, indeed
many associated with Judea himself, and only some of which I am familiar with.
Still, it seems to me that the concern merits attention. The concern is not specific
to Judea’s work, and certainly applies to my own work in the area. It has to do
with the yardsticks by which we judge this or that theory of causal representation
or reasoning.

A number of years ago, the conference on Uncertainty in AI (UAI) held a panel
on causation, chaired by Judea, in which I participated. In my remarks I listed a
few requirements for a theory of causation in AI. One of the other panelists, whom I
greatly respect, responded that he couldn’t care less about such requirements; if the
theory was useful that was good enough for him. In hindsight that was a discussion
worth developing further then, and I believe it still is now.

Let us look at a specific publication, [Halpern and Pearl 2001]. This selection
is arbitrary and I might as well have selected any number of other publications to
illustrate my point, but it is useful to examine a concrete example. In this paper
Halpern and Pearl present an account of “actual cause” (as opposed to “generic
cause”; “the lighting last night caused the fire” versus “lightnings cause fire”). This
account is also the basis for Chapter 10 of [Pearl 2009]. Without going into their
specific (and worthwhile) account, let me focus on how they argue in its favor. In
the third paragraph they say

While it is hard to argue that our definition (or any other definition, for
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that matter) is the “right definition”, we show that it deals well with
the difficulties that have plagued other approaches in the past, especially
those exemplified by the rather extensive compendium of [Hall 2004]'.

The reference is to a paper by a philosopher, and indeed of the thirteen references
in the paper to work other than by the authors themselves, eight are to work by
philosophers.

This orientation towards philosophy is evident throughout the paper, in par-
ticular in their relying strongly on particularly instructive examples that serve as
test cases. This is an established philosophical tradition. The “morning star —
evening star” example [Kripke 1980] catalyzed discussion of cross-world identity in
first-order modal logic (you may have different beliefs regarding the star seen in
the morning from those regarding the star seen in the evening, even though, unbe-
knownst to you, they are in fact the same star — Venus). Similarly, the example of
believing that you will win the lottery and coincidentally later actually winning it
served to disqualify the definition of knowledge as true belief, and a similar example
argues against defining knowledge as justified true belief [Gettier 1963].

Such “intuition pumps” clearly guide the theory in [Halpern and Pearl 2001], as
evidenced by the reference to [Hall 2004] mentioned earlier, and the fact that over
four out of the paper’s ten pages are devoted to examples. These examples can be
highly instructive, but the question is what role they play. In philosophy they tend
to serve as necessary but insufficient conditions for a theory. They are necessary in
the sense that each of them is considered sufficient grounds for disqualifying a theory
(namely, a theory which does not treat the example in an intuitively satisfactory
manner). And they are insufficient since new examples can always be conjured up,
subjecting the theory to ever-increasing demands.

This is understandable from the standpoint of philosophy, to the extent that it
attempts to capture a complex, natural notion (be it knowledge or causation) it its
full glory. But is this also the goal for such theories in AI? If not, what is the role
of these test cases?

If taken seriously, the necessary-but-insufficient interpretation of the examples
presents an impossible challenge to formal theory; a theoretician would never win
in this game, in which new requirements may surface at any moment. Indeed,
most of the philosophical literature is much less formal than the literature in Al in
particular [Halpern and Pearl 2001]. So where does this leave us?

This is not the first time computer scientists have faced this dilemma. Consider
knowledge, for example. The S5 logic of knowledge [Fagin, Halpern, Moses, and
Vardi 1994] captures well certain aspects of knowledge in idealized form, but the
terms “certain” and “idealized” are important here. The logic has nothing to say
about belief (as opposed to knowledge), nor about the dynamic aspects of knowledge
(how it changes over time). Furthermore, even with regard to the static aspects of

IThey actually refer to an earlier, unpublished version of Hall’s paper from 1998.
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knowledge, it is not hard to come up with everyday counterexamples to each of its
axioms.

And yet, the logic proves useful to reason about certain aspects of distributed
systems, and the mismatch between the properties of the modal operator K and
the everyday word “know” does not get in the way, within these confines. All
this changes as one switches the context. For example, if one wishes to consider
cryptographic protocols, the K axiom (Kp A K(p D q) D Kg, valid in any normal
modal logic, and here representing logical omniscience) is blatantly inappropriate.
Similarly, when one considers knowledge and belief together, axiom 5 of the logic
(=Kp D K-Kp, representing negative introspection ability) seems impossible to
reconcile with any reasonable notion of belief, and hence one is forced to retreat
back from the S5 system to something weaker.

The upshot of all this is the following criterion for a formal theory of natural
concepts: One should be explicit about the intended use of the theory, and within
the scope of this intended use one should require that everyday intuition about the
natural concepts be a useful guide in thinking about their formal counterparts.

A concrete interpretation of the above principle is what in [Shoham 2009] I called
the artifactual perspective.? Artifactual theories attempt to shed light on the op-
eration of a specific artifact, and use the natural notion almost as a mere visual
aid. In such theories there is a precise interpretation of the natural notion, which
presents a precise requirement for the formal theory. One example is indeed the use
of “knowledge” to reason about protocols governing distributed systems. Another,
discussed in [Shoham 2009], is the use of “intention” to reason about a database
serving an Al planner.

Is there a way to instantiate the general criterion above, or more specifically the
artifactual perspective, in the context of causation? I don’t know the answer, but
it seems to me worthy of investigation. If the answer is “yes” then we will be in a
position to devise provably correct theories, and the various illustrative examples
will be relegated to the secondary role of showing greater or lesser match with the
everyday concept.

Acknowledgments: This work was supported by NSF grant 11S-0205633-001.
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Automated Search for Causal Relations —
Theory and Practice

PETER SPIRTES, CLARK GLYMOUR, RICHARD SCHEINES, AND ROBERT TILLMAN

1 Introduction

The rapid spread of interest in the last two decades in principled methods of search or
estimation of causal relations has been driven in part by technological developments,
especially the changing nature of modern data collection and storage techniques, and the
increases in the speed and storage capacities of computers. Statistics books from 30 years
ago often presented examples with fewer than 10 variables, in domains where some
background knowledge was plausible. In contrast, in new domains, such as climate
research where satellite data now provide daily quantities of data unthinkable a few
decades ago, fMRI brain imaging, and microarray measurements of gene expression, the
number of variables can range into the tens of thousands, and there is often limited
background knowledge to reduce the space of alternative causal hypotheses. In such
domains, non-automated causal discovery techniques appear to be hopeless, while the
availability of faster computers with larger memories and disc space allow for the
practical implementation of computationally intensive automated search algorithms over
large search spaces. Contemporary science is not your grandfather’s science, or Karl
Popper’s.

Causal inference without experimental controls has long seemed as if it must
somehow be capable of being cast as a kind of statistical inference involving estimators
with some kind of convergence and accuracy properties under some kind of assumptions.
Until recently, the statistical literature said nof. While parameter estimation and
experimental design for the effective use of data developed throughout the 20™ century,
as recently as 20 years ago the methodology of causal inference without experimental
controls remained relatively primitive. Besides a cessation of hostilities from the
majority of the statistical and philosophical communities (which has still only partially
happened), several things were needed for theories of causal estimation to appear and to
flower: well defined mathematical objects to represent causal relations; well defined
connections between aspects of these objects and sample data; and a way to compute
those connections. A sequence of studies beginning with Dempster’s work on the
factorization of probability distributions [Dempster 1972] and culminating with Kiiveri
and Speed’s [Kiiveri & Speed 1982] study of linear structural equation models, provided
the first, in the form of directed acyclic graphs, and the second, in the form of the “local”
Markov condition. Pearl and his students [Pearl 1988], and independently, Stefan
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Lauritzen and his collaborators [Lauritzen, Dawid, Larsen, & Leimer 1990], provided the
third, in the form of the “global” Markov condition, or d-separation in Pearl’s
formulation, and the assumption of its converse, which came to be known as “stability”
or “faithfulness.” Further fundamental conceptual and computational tools were needed,
many of them provided by Pearl and his associates; for example, the characterization and
representation of Markov equivalence classes and the idea of “inducing paths,” essential
to understanding the properties of models with unrecorded variables. Initially, most of
these authors, including Pearl, did not connect directed graphical models with a causal
interpretation (in the sense of representing outcomes of interventions). This connection
between graphs and interventions was drawn from an earlier tradition in econometrics
[Strotz & Wold 1960], and in our work [Spirtes, Glymour, & Scheines 1993]. With this
connection, and the pieces Speed, Lauritzen, Pearl and others had established, a
principled theory of causal estimation could, and did, begin around 1990, and Pearl and
his students have made important contributions to it. Pearl has become the foremost
advocate in the universe for reconceiving the relations between causality and statistics.
Once begun for special cases, the understanding of search methods for causal relations
has expanded to a variety of scientific and statistical settings, and in many scientific
enterprises—neuroimaging for example—causal representations and search are treated as
almost routine.

The theory of interventions also provided a coherent normative theory of inference
using causal premises. That effort can also be traced back to Strotz and Wold [Strotz &
Wold 1960], then to our own work [Spirtes, Glymour, & Scheines 1993] on prediction
from classes of causal graphs, and then to the full development of a non-parametric
theory of prediction for graphical models by Pearl and his collaborators [Shpitser & Pearl
2008]. Pearl brilliantly turned philosopher and developed the theory of interventions into
a general account of counterfactual reasoning. Although we will not discuss it further, we
think there remain interesting open problems about prediction algorithms for various
parametric classes of graphical causal models.

The following paper surveys a broad range of causal estimation problems and
algorithms, concentrating especially on those that can be illustrated with empirical
examples that we and our students and collaborators have analyzed. This has naturally led
to a concentration on the algorithms and tools that we have developed. The kinds of
causal estimation problems and algorithms discussed are broadly representative of the
most important developments in methods for estimating causal structure since 1990, but
it is not a comprehensive survey. There have been so many improvements to the basic
algorithms that we describe here there is not room to discuss them all. A good resource
for a description of further research in this area is the Proceedings of the Conferences on
Uncertainty in Artificial Intelligence, at http://uai.sis.pitt.edu.

The dimensions of the problems, as we have long understood them, are these:

1. Finding computationally and statistically feasible methods for discovering
causal information for large numbers of variables, provably correct under
standard sampling assumptions, assuming no confounding by unrecorded
variables.

468



Automated Search for Causal Relations

The same when the “no confounding” assumption is abandoned.

3. Finding methods for obtaining causal information when there is systematic
sample selection bias — when values of some of the variables of interest are
associated with sample membership.

4. Finding methods for establishing the existence of unobserved causes and
estimating their causal relations with one another.

5. Finding methods for discovering causal relations in data produced by
feedback systems.

6. Finding methods for discovering causal relations in time series data.

7. Finding methods for discovering causal relations in linear and in non-linear
non-Gaussian systems with continuous variables.

8. Finding methods for discovering causal relations using distributed, multiple
data sets.

9. Finding methods for merging the above with experimental design.

2 Assumptions

We assume the reader’s familiarity with the standard notions used in discussions of
graphical causal model search: conditional independence, Markov properties, d-
separation, Markov equivalence, patterns, distribution equivalence, causal sufficiency,
etc. The appendix gives a brief review of the essential definitions, assumptions and
theorems required for known proofs of correctness of the algorithms we will discuss.

3 Model Search Assuming Causal Sufficiency

The assumption of causal sufficiency (roughly no unrecorded confounders) is often
unrealistic, but it is useful in explicating search because the concepts and methods used in
search algorithms that make more realistic assumptions are more complex versions of
ideas that are used in searches that assume causal sufficiency.

3.1 The PC Algorithm

The PC algorithm is a constraint-based search that attempts to find the pattern that most
closely entails all and only the conditional independence constraints judged to hold in the
population. The SGS algorithm [Spirtes & Glymour 1991] and the IC algorithm

[Verma & Pearl 1990] were early versions of this algorithm that were statistically and
computationally feasible only on data sets with few variables because they required
conditioning on all possible subsets of variables.) The PC algorithm solved both
difficulties in typical cases.

The PC algorithm has an adjacency phase in which the adjacencies are determined,
and an orientation phase in which as many edges as possible are oriented. The adjacency
phase is stated below, and illustrated in Figure 1. Let Adjacencies(G,4) be the set of
vertices adjacent to 4 in undirected graph G. (In the algorithm, the graph G is continually
updated, so Adjacencies(G,4) may change as the algorithm progresses.)
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Figure 1: Constraint based search, where correct pattern is P,

Adjacency Phase of PC Algorithm:
Form an undirected graph G in which every pair of vertices in V is adjacent.
n:=0.
repeat
repeat
Select an ordered pair of variables X and Y that are
adjacent in G such that Adjacencies(G,X)\{Y} has
cardinality greater than or equal to n, and a subset S of
Adjacencies(G,X)\{Y} of cardinality n, and if X and Y are
independent conditional on S delete edge X — Y from C
and record S in Sepset(X,Y) and Sepset(Y.X);
until all ordered pairs of adjacent variables X and Y such that
Adjacencies(G,X)\{Y} has cardinality greater than or equal to n
and all subsets S of Adjacencies(G,X)\{Y} of cardinality n have
been tested for conditional independence;
n=n+tl;
until for each ordered pair of adjacent vertices X, Y, Adjacencies(G,X)\{Y}
is of cardinality less than n.

After the adjacency phase of the algorithm, the orientation phase of the algorithm is
performed. The orientation phase of the algorithm is illustrated in Figure 2.
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A— B—Pp C 4D A—B—» C 4D

(1) E (ii) E
C ¢ Sepset(B,D)
B e Sepset(4,0)
C € Sepset(B,E)
C € Sepset(D,E)

Colliders Away From Colliders

Figure 2: Orientation phase of PC algorithm, assuming true pattern is P,

The orientation phase of the PC algorithm is stated more formally below. The last
two orientation rules (Away from Cycles, and Double Triangle) are not used in the
example, but are sound because if the edges were oriented in ways that violated the rules,
there would be a directed cycle in the pattern, which would imply a directed cycle in the
graph (which in this section is assumed to be impossible). The orientation rules are
complete [Meek 1995], i.e. every edge that has the same orientation in every member of a
DAG conditional independence equivalence class is oriented by these rules.

Orientation Phase of PC Algorithm
For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are each
adjacent in graph G but the pair X, Z are not adjacent in G, orient X — Y —Z as
X — Y« Zif and only if Y is not in Sepset(X,Z2).
repeat
Away from colliders: If 4 - B — C, and 4 and C are not adjacent, then
orient as B — C.
Away from cycles: If 4 - B — C and 4 — C, then orientas 4 — C.
Double Triangle: If 4 — B < C, A and C are not adjacent, 4 — D — C, and
there is an edge B— D, orient B—D as D — B.
until no more edges can be oriented.

The tests of conditional independence can be performed in the usual way.
Conditional independence among discrete variables can be tested using the G statistic;
conditional independence among multivariate Gaussian variables can be tested using
Fisher’s Z-transformation of the partial correlations [Spirtes, Glymour, & Scheines
2001]. Section 3.4 describes more general tests of conditional independence. Such tests
require specifying a significance level for the test, which is a user-specified parameter of
the algorithm. Because the PC algorithm performs a sequence of tests without
adjustment, the significance level does not represent any (easily calculable) statistical
feature of the output, but should only be understood as a parameter used to guide the
search.
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Assuming that the causal relations can be represented by a directed acyclic graph, the
Causal Markov Assumption, the Causal Faithfulness Assumption, and consistent tests of
conditional independence, in the large sample (i.i.d.) limit for a causally sufficient set of
variables, the PC algorithm outputs a pattern that represents the true causal graph.

The PC algorithm has been shown to apply to very high dimensional data sets (under
a stronger version of the Causal Faithfulness Assumption), both for finding causal
structure [Kalisch & Buhlmann 2007] and for classification [Aliferis, Tsamardinos, &
Statnikov 2003]. A version of the algorithm controlling the false discovery rate is
available [Junning & Wang 2009].

3.1.1 Example - Foreign Investment

This example illustrates how the PC algorithm can find plausible alternatives to a model
built from domain knowledge. Timberlake and Williams used regression to claim foreign
investment in third-world countries promotes dictatorship [Timberlake & Williams
1984]. They measured political exclusion (PO) (i.e., dictatorship), foreign investment
penetration in 1973 (FI), energy development in 1975 (EN), and civil liberties (CV) for
72 countries. CV was measured on an ordered scale from 1 to 7, with lower values
indicating greater civil liberties.

Their inference is unwarranted. Their model (with the relations between the
regressors omitted) and the pattern obtained from the PC algorithm using a 0.12
significance level to test for vanishing partial correlations) are shown in Figure 3.1 We
typically run the algorithms at a variety of different significance levels, and compare the
results to see if any of the features of the output are constant.

Fl— 62
EN%PO FI —+— EN—— PO —p-CV
cv 1.061 \/v

(a) Timberlake-Williams Model (b) Output of PC Algorithm

Figure 3: Two Models of Foreign Investment

The PC Algorithm will not orient the F7 — EN and EN — PO edges, and assumes that
the edges are not due to an unmeasured common cause. Maximum likelihood estimates of
any linear, Gaussian parameterization of any DAG represented by the pattern output by
the PC algorithm requires that the influence of F7 on PO (if any) be negative, and the
models easily pass a likelihood ratio test. If any of these SEMs is correct, Timberlake and
William's regression model appears to be a case in which an effect of the outcome
variable is taken as a regressor.

Given the small sample size, and the uncertainty about the distributional
assumptions, we do not present the alternative models suggested by the PC algorithm as
particularly well supported by the evidence. However, we do think that they are at least

IScarches at lower significance levels remove the adjacency between F/ and EN.
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as well supported as the regression model, and hence serve to cast doubt upon
conclusions drawn from that model.

3.1.2  Example - Spartina Biomass

This example illustrates a case where the PC algorithm output received some
experimental confirmation. A textbook on regression [Rawlings 1988] skillfully
illustrates regression principles and techniques for a biological study from a dissertation
[Linthurst 1979] in which it is reasonable to think there is a causal process at work
relating the variables. The question at issue is plainly causal: among a set of 14 variables,
which have the most influence on an outcome variable, the biomass of Spartina grass?
Since the example is the principle application given for an entire textbook on regression,
the reader who reaches the 13™ chapter may be surprised to find that the methods yield
almost no useful information about that question.

According to Rawlings, Linthurst obtained five samples of Spartina grass and soil
from each of nine sites on the Cape Fear Estuary of North Carolina. Besides the mass of
Spartina (B/0), fourteen variables were measured for each sample:

e  Free Sulfide (H2S)

e  Salinity (SAL)

e Redox potentials at pH 7 (EH7)
e Soil pH in water (PH)

e Buffer acidity at pH 6.6 (BUF)
e  Phosphorus concentration (P)

e Potassium concentration (K)

e Calcium concentration (CA)

e  Magnesium concentration (MG)
e  Sodium concentration (NA)

e Manganese concentration (MN)
e  Zinc concentration (ZN)

e  Copper concentration (CU)

e  Ammonium concentration (NH4)

The aim of the data analysis was to determine for a later experimental study which of
these variables most influenced the biomass of Spartina in the wild. Greenhouse
experiments would then try to estimate causal dependencies out in the wild. In the best
case one might hope that the statistical analyses of the observational study would
correctly select variables that influence the growth of Spartina in the greenhouse. In the
worst case, one supposes, the observational study would find the wrong causal structure,
or would find variables that influence growth in the wild (e.g., by inhibiting or promoting
growth of a competing species) but have no influence in the greenhouse.

Using the SAS statistical package, Rawlings analyzed the variable set with a multiple
regression and then with two stepwise regression procedures from the SAS package. A
search through all possible subsets of regressors was not carried out, presumably because
the candidate set of regressors is too large. The results were as follows:
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(1) a multiple regression of B/O on all other variables gives only K and CU
significant regression coefficients;

(ii) two stepwise regression procedures? both yield a model with PH, MG, CA
and CU as the only regressors, and multiple regression on these variables alone gives
them all significant coefficients;

(iii) simple regressions one variable at a time give significant coefficients to PH,
BUF, CA, ZN and NH4.

What is one to think? Rawling's reports that "None of the results was satisfying to
the biologist; the inconsistencies of the results were confusing and variables expected to
be biologically important were not showing significant effects.”" (p. 361).

This analysis is supplemented by a ridge regression, which increases the stability of
the estimates of coefficients, but the results for the point at issue--identifying the
important variables--are much the same as with least squares. Rawlings also provides a
principal components factor analysis and various geometrical plots of the components.
These calculations provide no information about which of the measured variables
influence Spartina growth.

Noting that PH, for example, is highly correlated with BUF, and using BUF instead
of PH along with MG, C4 and CU would also result in significant coefficients, Rawlings
effectively gives up on this use of the procedures his book is about:

Ordinary least squares regression tends either to indicate that none of the
variables in a correlated complex is important when all variables are in the
model, or to arbitrarily choose one of the variables to represent the complex
when an automated variable selection technique is used. A truly important
variable may appear unimportant because its contribution is being usurped
by variables with which it is correlated. Conversely, unimportant variables
may appear important because of their associations with the real causal
factors. It is particularly dangerous in the presence of collinearity to use the
regression results to impart a "relative importance,” whether in a causal
sense or not, to the independent variables. (p. 362)

Rawling's conclusion is correct in spirit, but misleading and even wrong in detail. If
we apply the PC algorithm to the Linthurst data then there is one robust conclusion. the
only variable that may directly influence biomass in this population’ is PH; PH is
distinguished from all other variables by the fact that the correlation of every other
variable (except MG) with BIO vanishes or vanishes when PH is conditioned on.* The
relation is not symmetric; the correlation of PH and BIO, for example, does not vanish
when BUF is controlled. The algorithm finds PH to be the only variable adjacent to B/O

2The "maximum R-square" and "stepwise" options in PROC REG in the SAS program.

3 Although the definition of the population in this case is unclear, and must in any case be
drawn quite narrowly.

4More exactly, at .05, with the exception of MG the partial correlation of every regressor
with BIO vanishes when some set containing PH is controlled for; the correlation of MG
with B/O vanishes when CA4 is controlled for.
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no matter whether we use a significance level of .05 to test for vanishing partial
correlations, or a level of 0.1, or a level of 0.2. In all of these cases, the PC algorithm
(and the FCI algorithm, which allows for the possibility of latent variables in section 4.2 )
yields the result that PH and only PH can be directly connected with B/O. If the system is
linear normal and the Causal Markov Assumption obtains, then in this population any
influence of the other regressors on B/O would be blocked if PH were held constant. Of
course, over a larger range of values of the variables there is little reason to think that
BIO depends linearly on the regressors, or that factors that have no influence in
producing variation within this sample would continue to have no influence.

Although the analysis cannot conclusively rule out possibility that PH and BIO are
confounded by one or more unmeasured common causes, in this case the principles of the
theory and the data argue against it. If PH and BIO have a common unmeasured cause 7,
say, and any other variable, Z;, among the 13 others either causes PH or has a common
unmeasured cause with PH (Figure 4, in which we do not show connections among the Z
variables), then Z; and BIO should be correlated conditional on PH, which is statistically

not the case.
20 Zyo Zijo—__PPH

M

BIO

Figure 4 : PH and BIO Confounding?

The program and theory lead us to expect that if PH is forced to have values like
those in the sample--which are almost all either below PH 5 or above PH 7-- then
manipulations of other variables within the ranges evidenced in the sample will have no
effect on the growth of Spartina. The inference is a little risky, since growing plants in a
greenhouse under controlled conditions may not be a direct manipulation of the variables
relevant to growth in the wild. If, for example, in the wild variations in PH affect
Spartina growth chiefly through their influence on the growth of competing species not
present in the greenhouse, a greenhouse experiment will not be a direct manipulation of
PH for the system.

The fourth chapter of Linthurst's thesis partly confirms the PC algorithm's analysis.
In the experiment Linthurst describes, samples of Spartina were collected from a salt
marsh creek bank (presumably at a different site than those used in the observational
study). Using a 3 x 4 x 2 (PH x SAL x AERATION) randomized complete block design
with four blocks, after transplantation to a greenhouse the plants were given a common
nutrient solution with varying values PH and SAL and AERATION. The AERATION
variable turned out not to matter in this experiment. Acidity values were PH 4, 6 and 8.
SAL for the nutrient solutions was adjusted to 15, 25, 35 and 45 %o.

Linthurst found that growth varied with SAL at PH 6 but not at the other PH values,
4 and 8, while growth varied with PH at all values of SAL (p. 104). Each variable was
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correlated with plant mineral levels. Linthurst considered a variety of mechanisms by
which extreme PH values might control plant growth:

At pH 4 and 8, salinity had little effect on the performance of the species. The
pH appeared to be more dominant in determining the growth response.
However, there appears to be no evidence for any causal effects of high or low
tissue concentrations on plant performance unless the effects of pH and salinity
are also accounted for. (p.108)

The overall effect of pH at the two extremes is suggestive of damage to the
root, thereby modifying its membrane permeability and subsequently its
capacity for selective uptake. (p. 109).

A comparison of the observational and experimental data suggests that the PC
Algorithm result was essentially correct and can be extrapolated through the variation in
the populations sampled in the two procedures, but cannot be extrapolated through PH
values that approach neutrality. The result of the PC search was that in the non-
experimental sample, observed variations in aerial biomass were perhaps caused by
variations in PH, but were not caused (at least not directly, relative to PH) by variations
in other variables. In the observational data Rawlings reports (p. 358) almost all SAL
measurements are around 30--the extremes are 24 and 38. Compared to the experimental
study rather restricted variation was observed in the wild sample. The observed values of
PH in the wild, however, are clustered at the two extremes; only four observations are
within half a PH unit of 6, and no observations at all occurred at PH values between 5.6
and 7.1. For the observed values of PH and SAL, the experimental results appear to be in
very good agreement with our results from the observational study: small variations in
SAL have no effect on Spartina growth if the PH value is extreme.

3.1.3  College Plans

Sewell and Shah [Sewell & Shah 1968] studied five variables from a sample of 10,318
Wisconsin high school seniors.> The variables and their values are:

e SEX male = 0, female = 1

e JO = Intelligence Quotient, lowest = 0, highest =3
e (P =college plans yes=0,no0=1

e PE = parental encouragement low =0, high =1

e SES = socioeconomic status lowest = 0, highest =3

The question of interest is what the causes of college plans are. This data set is of
interest because it has been used by a variety of different search algorithms that make
different assumption. The different results illustrate the role that the different assumptions
make in the output and are discussed in subsequent sections.

SExamples of the analysis of the Sewell and Shah data using Bayesian networks are given
in Spirtes et al. (2001), and Heckerman (1998).
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SEX———»PE——p CP

10
Figure 5: Model of Causes of College Plans

The pattern produced as the output of the PC algorithm is shown in Figure 5. The model
predicts that SEX affects CP only indirectly via PE.

It is possible to predict the effects of some manipulations from the pattern, but not
others. For example, because the pattern is compatible both with SES — /Q and with SES
« 1Q, it is not possible to determine if SES is a cause or an effect of /Q, and hence it is
not possible to predict the effect of manipulating SES on /Q from the pattern. On the
other hand, it can be shown that all of the models in the conditional independence
equivalence class represented by the pattern entail the same predictions about the
quantitative effects of manipulating PE on CP. When PE is manipulated, in the
manipulated distribution: P(CP=0|PE=0) = .095; P(CP=1|PE=0) = .905; P(CP=0|PE=1)
=.484; P(CP=1PE=1) = .516 [Spirtes, Scheines, Glymour, & Meek 2004].

3.2  Greedy Equivalence Search Algorithm

Algorithms that maximize a score have certain advantages over constraint-based
algorithms such as PC. When the data are not Gaussian, but the system is linear,
extensive unpublished simulations find that at least one such algorithm, the Greedy
Equivalence Search (GES) algorithm [Meek 1997] outperforms PC. GES can be used
with a number of different scores for patterns, including posterior probabilities (for some
parametric families and under some priors), and the Bayesian Information Criterion
(BIC), which is an approximation of a class of posterior distributions in the large sample
limit. The BIC score [Schwarz 1978] is: -2 In(ML) + & In(n), where ML is the likelihood
of the data at the maximum likelihood estimate of the parameters, k is the dimension of
the model and » is the sample size. For uniform priors on models and smooth priors on
the parameters, the posterior probability conditional on the data is a monotonic function
of BIC in the large sample limit. In the forward stage of the search, starting with an
initial (possibly empty) pattern, at each stage GES selects the pattern that is the one-edge
addition compatible with the current pattern and has the highest score. The forward stage
continues until no further additions improve the score. Then a reverse procedure is
followed that removes edges according to the same criterion, until no improvement is
found. The computational and convergence advantages of the algorithm depend on the
fact that it searches over Markov equivalence classes of DAGs rather than individual
DAGs, and that only one forward stage and one backward stage are required for an
asymptotically correct search. In the large sample limit, GES identifies the Markov
equivalence class of the true graph if the assumptions above are met [Chickering 2002].
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GES has proved especially valuable in searches for latent structure (GESMIMBuild)
and in searches with multiple data sets (IMaGES). Examples are discussed in sections 4.4
and 5.3 .

3.3 LiNGAM

Standard implementations of the constraint-based and score-based algorithms above
usually assume that continuous variables have multivariate Gaussian distributions. This
assumption is inappropriate in many contexts such as EEG analysis where variables are
known to deviate from Gaussianity.

The LiNGAM (Linear Non-Gaussian Acyclic Model) algorithm [Shimizu, Hoyer,
Hyvérinen, & Kerminen 2006] is appropriate specifically for cases where each variable in
a set of measured variables can be written as a linear function of other measured variables
plus an independent noise component, where at most one of the measured variables’
noise components may be Gaussian. For example, consider the system with the causal
graph shown in Figure 6 and assume X, Y, and Z are determined as follows, where a, b,
and c are real-valued coefficients and &, &, and & are independent noise components of
which at least two are non-Gaussian.

(HX=¢
Q) Y=aX+eg
()Z=bX+cY+e

SX_>X 4>Y<_€Y

N l\R&

74— &7
(i) Causal Graph (i) Reduced Form

Figure 6: Causal Graph and Reduced Form

The equations can be rewritten in what economists called reduced form, also shown in
Figure 6:

4) X=¢&
(5) Y=aexy+ &
(6) Z= bSX + acEx+ cEy + &

The standard Independent Components Analysis (ICA) procedure [Hyvérinen & Oja,
2000] can be used to recover a matrix containing the real-valued coefficients a, b, and ¢
from an i.id. sample of data generated from the above system of equations. The
LiNGAM algorithm finds the correct matching of coefficients in this ICA matrix to
variables and prunes away any insignificant coefficients using statistical criteria.
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The procedure yields correct values even if the coefficients were to perfectly cancel,
and hence the variables such as X, Z above were to be uncorrelated. Since coefficients
are determined for each variable, we can always reconstruct the true unique DAG, instead
of its Markov equivalence class. The procedure converges (at least) pointwise to the true
DAG and coefficients assuming: (1) there are no unmeasured common causes; (2) the
dependencies among measured variables are linear; (3) none of the relations among
measured variables are deterministic; (4) i.i.d. sampling; (5) the Markov Condition; (6) at
most one error or disturbance term is Gaussian. We do not know its complexity
properties.

The LINGAM procedure can be generalized to estimate causal relations among
observables when there are latent common causes [Hoyer, Shimizu, & Kerminen 2006],
although the result is not in general a unique DAG, and LINGAM has been combined
[Shimizu, Hoyer, & Hyvarinen 2009] with Silva’s clustering procedure (section 4.4 ) for
locating latent variables to estimate a unique DAG among latent variables, and also with
search for cyclic graphs [Lacerda, Spirtes, Ramsey, & Hoyer 2008], and combined with
the PC and GES algorithms when more than one disturbance term is Gaussian [Hoyer et
al. 2008].

3.4 The kPC Algorithm

The kPC algorithm [Tillman, Gretton, & Spirtes, 2009] relaxes distributional assumptions
further, allowing not only non-Gaussian noise with continuous variables, but also
nonlinear dependencies. In many cases, kPC will return a unique DAG (even when there
is more than one DAG in the Markov equivalence class. However, unlike LINGAM there
is no requirement that a certain number of variables be non-Gaussian.

kPC consists of two stages. In the first stage of kPC, the standard PC algorithm is
applied to the data using efficient implementations of the Hilbert-Schmidt Independence
Criteria [Gretton, Fukumizu, Teo, Song, Scholkopf, & Smola, 2008], a nonparametric
independence test and an extension of this test to the conditional cases based on the
dependence measure given in [Fukumizu, Gretton, Sun, & Scholkopf, 2008]. This
produces a pattern. Additional orientations are then possible if the true causal model, or a
submodel (after removing some variables) of the true causal model is an additive noise
model [Hoyer, Janzing, Mooij, Peters, & Scholkopf, 2009] that is noninvertible.

A set of variables is an additive noise model if (i) the function form of each variable
can be expressed as a (possible nonlinear) smooth function of its parents in the true
causal model plus an additive (Gaussian or non-Gaussian) noise component and (ii) the
additive noise components are mutually independent. An additive noise model is
noninvertible if we cannot reverse any edges in the model and still obtain smooth
functional forms for each variable and mutually independent additive noise components
that fit the data.

For example, consider the two variable case where X — Y is the true DAG and we
have the following function forms and additive noise components for X and Y:

X=¢,Y=sin(nX)+¢,, g, ~Uniform(-1,1), €, ~ Uniform(-1,1)
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If we fit a nonparametric regression model for Y regressed on X, the forward model,
Figure 7a, and for X regressed on Y, the backward model, Figure 7b, we observe [/ (éy ,X)

and —I(€,,Y) since this additive noise model is noninvertible.

1

EERY $ 051 15 2

(@ (b)

Figure 7: Nonparametric regressions of (a) ¥ on X, and (b) X on Y with the data
overlayed for nonlinear non-Gaussian case

Thus in this case, we can conclude that X — Y is the true DAG from the data since the

additive noise model fits in only one direction, i.e. it is noninvertible. However, consider
the following linear Gaussian case:

X=¢,Y=24-X+g, & ~N(0,1), & ~N(O,1)

After fitting nonparametric regression models for both directions, Figure 8, we find
1(¢,,X) and I(£,,Y)so we cannot determine whether X — Y or ¥ — X is the correct

DAG.

(@) (b)

Figure 8: Nonparametric regressions of (a) ¥ on X, and (b) X on Y with the data
overlayed for linear Gaussian case

[Zhang and Hyvarinen, 2009] show that only a few special cases, other than the linear
Gaussian case, exist where the additive noise model is invertible.

The second stage of kPC consists of searches for submodels that are consistent with
the pattern learned in the first stage of kPC that may be noninvertible additive noise
models. If such models are discovered, then further orientations of edges can be made
resulting in an equivalence class of possible DAGs that is a proper subset of the Markov
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equivalence class. In many cases, only a few variables need be nonlinear or non-Gaussian
to obtain a unique DAG using kPC.
kPC requires the following additional assumption:

Weak Additivity Assumption: If the relationship between X and Parents(G,X) in the
true DAG G cannot be expressed as a noninvertible additive noise model, there does not
exist a Y in Parents(G,X) and alternative DAG G’ such that ¥ and Parents(G’,Y) can be
expressed as a noninvertible additive noise model where X is included in Parents(G’,Y).

This assumption does rule out invertible additive noise models or many cases where
noise may not be additive, only the hypothetical case where we can fit an additive noise
model to the data, but only in the incorrect direction. Weak additivity can be considered
an extension of the simplicity intuitions underlying the causal faithfulness assumption,
i.e. a complicated true model will not generate data resembling a different simpler model.
Faithfulness can fail, but under a broad range of distributions, violations are Lebesgue
measure zero [Spirtes, Glymour, & Scheines 2000]. Whether a similar justification can
be given for the weak additivity assumption is an open question.

kPC is both correct and complete, i.e. it converges to the correct DAG or smallest
possible equivalence class of DAGs in the limit under weak additivity and the
assumptions of the PC algorithm.

34.1 Example - Auto MPG

Figure 9 shows the structures learned for the Auto MPG dataset, which records MPG fuel
consumption of 398 automobiles in 1983 with 8 characteristics from the UCI database
(Asuncion & Newman, 2007). The nominal variables Year and Origin were excluded.

Cylinders Weight MPG Acceleration

Dispitcement Weight

Horsepower Horsep%A

Acceleration MPG Cylinders €—— Displacement

Figure 9: Automobile Models

The PC result indicates MPG causes Weight and Horsepower, and Acceleration
causes Weight, Horsepower, and Displacement, which are clearly false. kPC finds the
more plausible chain Displacement — Horsepower — Acceleration and finds
Horsepower and Weight cause MPG.

3.4.2 Example - Forest Fires

The Forest Fires dataset contains 517 recordings of meteorological for forest fires
observed in northeast Portugal and the total area burned (4rea) [Asuncion & Newman
2007]. We again exclude nominal variables Month and Year. Figure 10 shows the

481



Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

structures learned by PC and kPC for this dataset. kPC finds every variable other than
Area is a cause of Area, which is sensible since each of these variables were included in
the dataset by domain experts as predictors which influence the total area burned by
forest fires.

The PC structure, however, indicates that Area is not associated with any of the
variables, which are all assumed to be predictors by experts.

X-axis X-axis DMC Area
Y—clzxis Y—Axis FFMC
FFMC
DMC
DC DC IST
IS1 Area /
Temp Wind
| ~A

RH z emp Rain
Wind

Rain RH “
(a) kPC output (b) PC output

Figure 10: kKPC and PC Forest Fires
4 Search For Latent Variable Models

The assumption that the observed variables are causally sufficient is usually unwarranted.
In this section, we describe searches that do not make this assumption.

4.1 Distribution and Conditional Independence Equivalence

Let O be the set of observed variables, which may not be causally sufficient. If G, is a
DAG over Vy, G, is a DAG over V,, O c Vy, and O c V,, G; and G, are O-conditional
independence equivalent, if they both entail the same set of conditional independence
relations among the variables in O (i.e. they have the same d-separation relations among
the variables in Q). <G,0,> and <G,,0,> are O-distribution equivalent with respect to
the parametric families ©, and @, if and only if they represent the same set of marginal
distributions over O.

It is possible that two directed graphs are conditional independence equivalent, or
even distributionally equivalent (relative to given parametric families) but are not O-
distributionally equivalent (relative to the same parametric families), as long as at least
one of them contains a latent variable. Although there are algebraic techniques that
determine when two Bayesian networks with latent variables are O-distributionally
equivalent for some parametric families, or find features common to an O-distributional
equivalence class, known algorithms to do so are not computationally feasible [Geiger &
Meek 1999] for models with more than a few variables. In addition, if an unlimited
number of latent variables are allowed, the number of DAGs that are O-distributionally
equivalent may be infinite. Hence, instead of searching for O-distribution equivalence
classes of models, we will describe how to search for O-conditional independence classes
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of models. This is not as informative as the computationally infeasible strategy of
searching for O-distribution equivalence classes, but is nevertheless correct.

It is often far from intuitive what constitutes a complete set of graphs O-conditional
independence equivalent to a given graph although algorithms for deciding this now exist
[Ali, Richardson, & Spirtes 2009].

4.2  The Fast Causal Inference Algorithm

The PC algorithm gives an asymptotically correct representation of the conditional
independence equivalence class of a DAG without latent variables by outputting a pattern
that represents all of the features that the DAGs in the equivalence class have in common.
The same basic strategy can be used without assuming causal sufficiency, but the rules
for detecting adjacencies and orientations are much more complicated, so we will not
describe them in detail. The FCI algorithm6 outputs an asymptotically correct
representation of the O-conditional independence equivalence class of the true causal
DAG (assuming the Causal Markov and Causal Faithfulness Principles), in the form of a
graphical structure called a partial ancestral graph (PAG) that represents some of the
features that the DAGs in the equivalence class have in common. The FCI algorithm
takes as input a sample, distributional assumptions, optional background knowledge (e.g.
time order), and a significance level, and outputs a partial ancestral graph. Because the
algorithm uses only tests of conditional independence among sets of observed variables,
it avoids the computational problems involved in calculating posterior probabilities or
scores for latent variable models.

Just as the pattern can be used to predict the effects of some manipulations, a partial
ancestral graph can also be used to predict the effects of some manipulations. Instead of
calculating the effects of manipulations for which every member of the O-distribution
equivalence class agree, we can calculate the effects only of those manipulations for
which every member of the O-conditional independence equivalence agree. This will
typically predict the effects of fewer manipulations than could be predicted given the O-
distributional equivalence class (because a larger set of graphs have to make the same
prediction), but the predictions made will still be correct.

Even though the set S of DAGs in an O-conditional independence equivalence class
is infinite, it is still possible to extract the features that the members of S have in
common. For example, every member of the conditional independence class over O that
contains the DAG in Figure 11 has a directed path from PE to CP and no latent common
cause of PE and CP. This is informative because even though the data do not help choose
between members of the equivalence class, insofar as the data are evidence for the
disjunction of the members in the equivalence class, they are evidence that PE is a cause
of CP.

6The FCI algorithm is similar to Pearl’s IC* algorithm [Pearl 2000] in many respects, and
uses concepts bases on IC*; however IC* is computationally and statistically feasible
only for a few variables.
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A partial ancestral graph is analogous to a pattern, and represents the features
common to an O-conditional independence class. Figure 11 shows an example of a DAG
and the corresponding partial ancestral graph over O = {IQ, SES, PE, CP, SEX}. Two
variables 4 and B are adjacent in a partial ancestral graph that represents an O-
conditional independence class, when 4 and B are not entailed to be independent (i.e.
they are d-connected) conditional on any subset of the variables in O\{4,B} for each
DAG in the O-conditional independence class. The “— endpoint of the PE — CP edge
means that PE is an ancestor of CP in every DAG in the O-conditional independence
class. The “>" endpoint of the PE — CP edges means that CP is not an ancestor of PE in
any member of the O-conditional independence class. The “0” endpoint of the SES o—o
1Q edge makes no claim about whether SES is an ancestor of /Q or not.

Applying the FCI algorithm to the Sewell and Shah data yields the PAG in Figure
11. The output predicts that when PE is manipulated, the following conditional
probabilities hold: P(CP=0|PE=0) = .063; P(CP=1|PE=0) = .937; P(CP=0|PE=1) = .572;
P(CP=1PE=1) = .428. These estimates are close to the estimates given by the output of
the PC algorithm, although unlike the PC algorithm the output of the FCI algorithm
posits the existence of latent variables. A bootstrap test of the output run at significance
level 0.001 yielded the same results on 8 out of 10 samples. In the other two samples, the
algorithm could not calculate the effect of the manipulation.

SES -« SES
T V\ Ly
L, SEX 4> g >¢ SEX o—p> PE—> cP

}Q“_{/L

Figure 11: DAG and Partial Ancestral Graph

4.2.1 Online Course

Data from an online course provides an example where there was some experimental
confirmation of the FCI causal model. Carnegie Mellon University offers a full semester
online course that serves as a tutor on the subject of causal reasoning.” The course
contains a number of different modules that contain both text and interactive online
exercises that illustrate various concepts. Each module ends with a quiz that students
must take. The interactive exercises are purely voluntary and play no role in calculating
the student’s final grade. It is possible to print the text from the online modules, but a
student who studies from the printed text cannot use the online interactive exercises. The
following variables were measured for each student:

e Pre-test (%)

e  Print-outs (% modules printed)

e Quiz Scores (avg. %)

7See http://oli.web.cmu.edu/openlearning/forstudents/freecourses/csr
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e  Voluntary Exercises (% completed)
e Final Exam (%)
e 9 other variables

Using data from 2002, and some background knowledge about causal order, the
output of the FCI algorithm was the PAG shown in Figure 12a. That model predicts that
interventions that stops students from printing out the text and encourages students to use
the online interactive exercises should raise the final grade in the class.

In 2003, students were advised that completing the voluntary exercises seemed to be
important in helping grades, but that printing out the modules seemed to prevent
completing the voluntary exercises. They were advised that, if they printed out the text
they should make extra effort to go online and complete the interactive online exercises.
Data on the same variables was gathered in 2003, and the output of the FCI algorithm is
shown Figure 12b. The interventions to discourage printing and encourage the use of the
online interactive exercises were largely successful, and the PAG output by the FCI
algorithm from the 2003 data is exactly the PAG one would expect after intervening on
the PAG output by the FCI algorithm from the 2002 data.

rint —¥> voluntary exercise rint —® voluntary exercises
30(% -41%* -.M -.16
pre JISHE preo
: 0
A41*

5

.3;}Afinal quiz '25\A final

(a) 2002 (b) 2003

Figure 12: Online Course Printing

4.3 Errors in Variables: Combining Constraint Based Search and Bayesian
Reasoning

In some cases the parameters of the output of the FCI algorithm are not identifiable or it
is important to find not a particular latent variable model, but an equivalence class of
latent variable models. In some of those cases the FCI algorithm can be combined with
Bayesian methods.

43.1 Example - Lead and IQ

The next example shows how the FCI algorithm can be used to find a PAG, which can
then be used as a starting point for a search for a latent variable DAG model and
Bayesian estimation of parameters. It also illustrates how such a procedure produces
different results than simply applying regression or using regression to generate more
sophisticated models, such as errors-in-variables models.

By measuring the concentration of lead in a child’s baby teeth, Herbert Needleman
was the first epidemiologist to even approximate a reliable measure of cumulative lead
exposure. His work helped convince the United States to eliminate lead from gasoline
and most paint [Needleman 1979]. In their 1985 article in Science [Needleman, Geiger, &
Frank 1985], Needleman, Geiger and Frank gave results for a multivariate linear
regression of children’s IQ on lead exposure. Having started their analysis with almost 40
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covariates, they were faced with a variable selection problem to which they applied
backwards-stepwise variable selection, arriving at a final regression model involving lead
and five of the original 40 covariates. The covariates were measures of genetic
contributions to the child’s IQ (the parent’s IQ), the amount of environmental stimulation
in the child’s early environment (the mother’s education), physical factors that might
compromise the child’s cognitive endowment (the number of previous live births), and
the parent’s age at the birth of the child, which might be a proxy for many factors. The
measured variables they used are as follows:

cig - child’s verbal 1Q score piq - parent’s 1Q scores

lead - measured concentration in baby teeth mab - mother’s age at child’s birth
e med - mother’s level of education in years fab - father’s age at child’s birth

e nlb - number of live births previous to the sampled child

The standardized regression solution® is as follows, with t-ratios in parentheses.
Except for fab, which is significant at 0.1, all coefficients are significant at 0.05, and R =
271.

cig = — 143 lead + 219 med + 247 piq + 237 mab — 204 fab — .159 nib

(2.32) (3.08) (3.87) (1.97) (1.79) (2.30)

This analysis prompted criticism from Steve Klepper and Mark Kamlet, economists
at Carnegie Mellon [Klepper, 1988/Klepper, Kamlet, & Frank 1993]. Klepper and
Kamlet correctly argued that Needleman’s statistical model (a linear regression)
neglected to account for measurement error in the regressors. That is, Needleman’s
measured regressors were in fact imperfect proxies for the actual but latent causes of
variations in 1Q, and in these circumstances a regression analysis gives a biased estimate
of the desired causal coefficients and their standard errors. Klepper and Kamlet
constructed an errors-in-variables model to take into account the measurement error. See
Figure 13, where the latent variables are in boxes, and the relations between the
regressors are unconstrained.

Unfortunately, an errors-in-variables model that explicitly accounts for Needleman’s
measurement error is “underidentified,” and thus cannot be estimated by classical
techniques without making additional assumptions. Klepper, however, worked out an
ingenious technique to bound the estimates, provided one could reasonably bound the
amount of measurement error contaminating certain measured regressors [Klepper, 1988;
Klepper et al. 1993]. The required measurement error bounds vary with each problem,
however, and those required in order to bound the effect of actual lead exposure below 0
in Needleman’s model seemed wholly unreasonable. Klepper concluded that the
statistical evidence for Needleman’s hypothesis was indeed weak. A Bayesian analysis,
based on Gibbs sampling techniques, found that several posteriors corresponding to
different priors lead to similar results. Although the size of the Bayesian point estimate

8 The covariance data for this reanalysis was originally obtained from Needleman by
Steve Klepper, who generously forwarded it. In this, and all subsequent analyses
described, the correlation matrix was used.
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for lead’s influence on /Q moved up and down slightly, its sign and significance (the 95%
central region in the posterior over the lead-iqg connection always included zero) were

robust.
L Ly || Ls Ly Ls Lg L L, Ly
M\n% med, piq ead mM lead
ciq ciq
Klepper’s errors-in-variables model FCI errors-in-variables model

Figure 13: Errors-in-Variables Models
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Figure 14: Posterior for Klepper’s Model

A reanalysis using the FCI algorithm produced different results [Scheines 2000].
Scheines first used the FCI algorithm to generate a PAG, which was subsequently used as
the basis for constructing an errors-in-variables model. The FCI algorithm produced a
PAG that indicated that mab, fab, and nlb are not adjacent to cig, contrary to
Needleman’s regression.” If we construct an errors-in-variables model compatible with
the PAG produced by the FCI algorithm, the model does not contain mab, fab, or nlb. See
Figure 13. (We emphasize that there are other models compatible with the PAG, which
are not errors-in-variables models; the selection of an error-in-variables model from the

9 The fact that mab had a significant regression coefficient indicates that mab and cig are
correlated conditional on the other variables; the FCI algorithm concluded that mab is not
a cause of cig because mab and cig are unconditionally uncorrelated.
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set of models represented by the PAG is an assumption.) In fact the variables that the FCI
algorithm eliminated were precisely those, which required unreasonable measurement
error assumptions in Klepper's analysis. With the remaining regressors, Scheines
specified an errors-in-variables model to parameterize the effect of actual lead exposure
on children’s 1Q. This model is still underidentified but under several priors, nearly all
the mass in the posterior was over negative values for the effect of actual lead exposure
(now a latent variable) on measured IQ. In addition, applying Klepper’s bounds analysis
to this model indicated that the effect of actual lead exposure on cig was bounded below
zero given reasonable assumptions about the degree of measurement error.
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Figure 15: Posterior for FCI model

4.4 BuildPureClusters and MIMBuild

Searches using conditional independence constraints are correct, but completely
uninformative for some common kinds of data sets. Consider the model S in Figure 16.
The data comes from a survey of test anxiety indicators administered to 335 grade 12
male students in British Columbia [Gierl & Todd 1996]. The survey contains 20
measures of symptoms of anxiety under test conditions. Each question is about a
symptom of anxiety. For example, question 8 is about how often one feels “jittery when
taking tests”. The answer is observed on a four-point approximately Likert scale (almost
never, sometimes, often, or almost always). As in many such analyses, we will assume
that the variables are approximately Gaussian.

Each X variable represents an answer to a question on the survey. For reasons to be
explained later, not all of the questions on the test have been included in the model. There
are three unobserved common causes in the model: Emotionality, Care about achieving
(which will henceforth be referred to as Care) and Self-defeating. The test questions are
of little interest in themselves; of more interest is what information they reveal about
some unobserved psychological traits. If S is correct, there are no conditional
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independence relations among the X variables alone - the only entailed conditional
independencies require conditioning on an unobserved common cause. Hence the FCI
algorithm would return a completely unoriented PAG in which every pair of variables in
X is adjacent. Such a PAG makes no predictions at all about the effects of manipulations
of the observed variables.

Furthermore, in this case, the effects of manipulating the observed variables (answers
to test questions) are of no interest - the interesting questions are about the effects of
manipulating the unobserved variables and the qualitative causal relationships between
them.

Although PAGs can reveal the existence of latent common causes (as by the double-
headed arrows in Figure 11 for example), before one could make a prediction about the
effect of manipulating an unobserved variable(s), one would have to identify what the
variable (or variables) is, which is never possible from a PAG.

Emotionality

Self-defeating

Figure 16: SEM S

Models such as S are multiple indicator models, and can be divided into two parts:
the measurement model, which contains the edges between the unobserved variables and
the observed variables (e.g. Emotionality — X), and the structural model, which contains

the edges between the unobserved variables (e.g. Emotionality — Care).

The X variables in S ({X, X5, X5, X5, X7, X8, Xo, X10, X11, X14, X16, X18}) Were chosen
with the idea that they indirectly measure some psychological trait that cannot be directly
observed. Ideally, the X variables can be broken into clusters, where each variable in the
cluster is caused by one unobserved cause common to the members of the cluster, and a
unique error term uncorrelated with the other error terms, and nothing else. From the
values of the variables in the cluster, it is then possible to make inferences about the
value of the unobserved common cause. Such a measurement model is called pure. In
psychometrics, pure measurement models satisfy the property of local independence:
each measured variable is independent of all other variables, conditional on the
unobserved variable it measures. In Figure 16, the measurement model of S is pure.

If the measurement model is impure (i.e. there are multiple common causes of a pair
of variables in X, or some of the X variables cause each other) then drawing inferences
about the values of the common causes is much more difficult. Consider the set X’ =X U
{Xis}. If X5 indirectly measured (was a direct effect of) the unobserved variable Care,
but Xjo directly caused X5, then the measurement model over the expanded set of

489



Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

variables would not be pure. If a measurement model for a set X* of variables is not pure,
it is nevertheless possible that some subset of X’ (such as X) has a pure measurement
model. If the only reason that the measurement model is impure is that X, causes Xis
then X = X"\{Xis} does have a pure measurement model, because all the “impurities”
have been removed. S does not contain all of the questions on the survey precisely
because various tests described below indicated that they some of them needed to be
excluded in order to have a pure measurement model.

The task of searching for a multiple indicator model can then be broken into two
parts: first finding clusters of variables so that the measurement model is pure; second,
use the pure measurement model to make inferences about the structural model.

Factor analysis is often used to determine the number of unmeasured common causes
in a multiple indicator model, but there are important theoretical and practical problems
in using factor analysis in this way. Factor analysis constructs models with unobserved
common causes (factors) of the observed X variables. However, factor analysis models
typically connect each unobserved common cause (factor) to each X variable, so the
measurement model is not pure. A major difficulty with giving a causal interpretation to
factor analytic models is that the observed distribution does not determine the covariance
matrix among the unobserved factors. Hence, a number of different factor analytic
models are compatible with the same observed data [Harman 1976]. In order to reduce
the underdetermination of the factor analysis model by the data, it is often assumed that
the unobserved factors are independent of each other; however, this is clearly not an
appropriate assumption for unobserved factors that are supposed to represent actual
causes that may causally interact with each other. In addition, simulation studies indicate
that factor analysis is not a reliable tool for estimating the correct number of unobserved
common causes [Glymour 1998].

On this data set, factor analysis indicates that there are 2 unobserved direct common
causes, rather than 3 unobserved direct common causes [Bartholomew, Steele, Moustaki,
& Galbraith 2002]. If a pure measurement model is constructed from the factor analytic
model by associating each observed X variable only with the factor that it is most
strongly associated with, the resulting model fails a statistical test (has a p-value of zero)
[Silva, Scheines, Glymour, & Spirtes 2006]. A search for pure measurement models that
depends upon testing vanishing tetrad constraints is an alternative to factor analysis.
Conceptually, the task of building a pure measurement model from the observed
variables can be broken into 3 separate tasks:

1. Select a subset of the observed variables that form a pure measurement model.

2. Determine the number of clusters (i.e. the number of unobserved common
causes) that the observed variables measure.

3. Cluster the observed variables into the proper groups (so each group has exactly
one unobserved direct common cause.)

It is possible to construct pure measurement models using vanishing tetrad
constraints as a guide [Silva et al. 2006]. A vanishing tetrad constraint holds among X, 7,
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Z, W when cov(X,Y) - cov(Z,W) — cov(X,Z) - cov(Y,W) = 0. A pure measurement model
entails that each X; variables is independent of every other X; variable conditional on its
unobserved parent, e.g. S entails X, is independent of X; conditional on Emotionality.
These conditional independence relations cannot be directly tested, because Emotionality
is not observed. However, together with the other conditional independence relations
involving unobserved variables entailed by S, they imply vanishing tetrad constraints on
the observed variables that reveal information about the measurement model that does not
depend upon the structural model among the unobserved common causes. The basic idea
extends back to Spearman’s attempts to use vanishing tetrad constraints to show that
there was a single unobserved factor of intelligence that explained a variety of observed
competencies [Spearman 1904].

Because X, and X have one unobserved direct common cause (Emotionality), and X3
and Xs have a different unobserved direct common cause (Care), S entails covs(Xp, X3) -
covs(Xs, Xg) = covs(Xa, X5) - covs(Xi, Xg) # covs(Xa, Xg) - covs(Xz, Xs) for all values of the
model’s free parameters (here covg is the covariance matrix entailed by S).19 On the other
hand, because X;, X3, Xy, and X, all have one unobserved common cause (Emotionality)
as a direct common cause, the following vanishing tetrad constraints are entailed by S:
covs(Xa, Xg) - covs(Xo, Xi9) = covs(Xa, Xo) - covs(Xs, Xi9) = covs(Xa, Xig) - covs(Xs, Xo)
[Spirtes et al. 2001]. The BuildPureClusters algorithm uses the vanishing tetrad
constraints as a guide to the construction of pure measurement models, and in the large
sample limit reliably succeeds if there is a pure measurement model among a large
enough subset of the observed variables [Silva et al. 2006].

In this example, BuildPureClusters automatically constructed the measurement
model corresponding to the measurement model of S. The clustering on statistical
grounds makes substantive sense, as indicated by the fact that it is similar to a prior
theory-based clustering based on background knowledge about the content of the
questions; however BuildPureClusters removes some questions, and splits one of the
clusters of questions constructed from domain knowledge into two clusters.

Once a pure measurement model has been constructed, there are several algorithms
for finding the structural model. One way is to estimate the covariances among the
unobserved common causes, and then input the estimated covariances to the FCI
algorithm. The output is then a PAG among the unobserved common causes. Alternative
searches for the structural model include the MIMBuild and GESMIMBuild algorithms,
which output patterns [Silva et al. 2006].

In this particular analysis, the MIMBuild algorithm, which also employs vanishing
tetrad constraints, was used to construct a variety of output patterns corresponding to
different values of the search parameters. The best pattern returned contains an
undirected edge between every pair of unobserved common causes. (S is an example that
is compatible with the pattern, but any other orientation of the edges among the three

10 The inequality is based on an extension of the Causal Faithfulness Assumption that
states that vanishing tetrad constraints that are not entailed for all values of the free
parameters by the true causal graph are assumed not to hold.
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unobserved common causes that does not create a cycle is also compatible with the
pattern.) The resulting model (or set of models) passes a statistical test with a p-value of
0.47.

44.1 Example - Religion and Depression

Data relating religion and depression provides an example that shows how an
automated causal search produces a model that is compatible with background
knowledge, but fits much better than a model that was built from theories about the
domain.

Bongjae Lee from the University of Pittsburgh organized a study to investigate
religious/spiritual coping and stress in graduate students [Silva & Scheines 2004]. In
December of 2003, 127 Masters in Social Works students answered a questionnaire
intended to measure three main factors:

e  Stress, measured with 21 items, each using a 7-point scale (from “not all

stressful” to “extremely stressful”) according to situations such as: “fulfilling

99, <.

responsibilities both at home and at school”; “meeting with faculty”; “writing

99, <.

papers”;

99, <

paying monthly expenses”; “fear of failing”; “arranging childcare”;

e Depression, measured with 20 items, each using a 4-point scale (from “rarely or
none” to “most or all the time”) according to indicators as: “my appetite was
poor”; “I felt fearful”; “I enjoyed life” “I felt that people disliked me”; “my
sleep was restless”;

e Spiritual coping, measured with 20 items, each using a 4-point scale (from “not
at all” to “a great deal”) according to indicators such as: “I think about how my
life is part of a larger spiritual force”; “I look to God (high power) for strength in
crises”; “I wonder whether God (high power) really exists”; “I pray to get my
mind off of my problems”;

The goal of the original study was to use graphical models to quantify how Spiritual
coping moderates the association of Stress and Depression, and hypothesized that
Spiritual coping reduces the association of Stress and Depression. The theoretical model
(Figure 17) fails a chi-square test: p = 0. The measurement model produced by
BuildPureClusters is shown in Figure 18. Note that the variables selected automatically
are proper subsets of Lee’s substantive clustering. The full model automatically produced
with GESMIMBuild with the prior knowledge that Stress is not an effect of other latent
variables is given in Figure 19. This model passes a chi square test, p = 0.28, even though
the algorithm itself does not try to directly maximize the fit. Note that it supports the
hypothesis that Depression causes Spiritual Coping rather than the other way around.
Although this conclusion is not conclusive, the example does illustrate how the algorithm
can find a theoretically plausible alternative model that fits the data well.
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Figure 19: Output of GESMIMBuild
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5 Time Series and Feedback

The models described so far are for “equilibrium.” That is, they assume that an
intervention fixes the values of a variable or variables, and that the causal process results
in stable values of effect variables, so that time can be ignored. When time cannot be
ignored, representation, interventions and search are all more complicated.

Time series models with a causal interpretation are naturally represented by directed
acyclic graphs in at least three different forms: A graph whose variables are indexed by
time, a “unit” graph giving a substructure that is repeated in the time indexed graph, and a
finite graph that may be cyclic. Models of the first kind have been described as
“Dynamical Causal Models” but the description does not address the difficulties of
search. Pursuing a strategy of the PC or FCI kind, for example, requires a method of
correctly estimating conditional independence relations.

5.1 Time series models

Chu and Glymour [2008] describe conditional independence tests for additive
models, and use these tests in a slight modification of the PC and FCI algorithms. The
series data is examined by standard methods to determine the requisite number of lags.
The data are then replicated a number of times equal to the lags, delaying the first
replicant by one time step, the second by two time steps, and so on, and conditional
independence tests applied to the resulting sets of data. They illustrate the algorithm with
climate data.

Climate teleconnections are associations of geospatially remote climate phenomena
produced by atmospheric and oceanic processes. The most famous, and first established
teleconnection, is the association of EI Nino/Southern Oscillation (ENSO) with the failure
of monsoons in India. A variety of associations have been documented among sea surface
temperatures (SST), atmospheric pressure at sea level (SLP), land surface temperatures
(LST) and precipitation over land areas. Since the 1970s data from a sequence of satellites
have provided monthly (and now daily) measurements of such variables, at resolutions as
small as 1 square kilometer. Measurements in particular spatial regions have been
clustered into time-indexed indices for the regions, usually by principal components
analysis, but also by other methods. Climate research has established that some of these
phenomena are exogenous drivers of others, and has sought physical mechanisms for the
teleconnections.

Chu and Glymour (2008) consider data from the following 6 ocean climate indices,
recorded monthly from 1958 to 1999, each forming a time series of 504 time steps:

*  QOBO (Quasi Biennial Oscillation): Regular variation of zonal stratospheric

winds above the equator
e SOI (Southern Oscillation): Sea Level Pressure (SLP) anomalies between
Darwin and Tabhiti

e WP (Western Pacific): Low frequency temporal function of the ‘zonal dipole’
SLP spatial pattern over the North Pacific.

*  PDO (Pacific Decadal Oscillation): Leading principal component of monthly
Sea Surface Temperature (SS7) anomalies in the North Pacific Ocean, poleward
of 20° N
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*  AO (Arctic Oscillation): First principal component of SLP poleward of 20° N
e NAO (North Atlantic Oscillation) Normalized SLP differences between Ponta
Delgada, Azores and Stykkisholmur, Iceland

Some connections among these variables are reasonably established, but are not
assumed in the analysis that follows. In particular, SO and NAO are thought to be
exogenous drivers.

After testing for stationarity, the PC algorithm yields the structure for the climate
data shown in Figure 20. The double-headed arrows indicate the hypothesis of common
unmeasured causes.'' So far as the exogenous drivers are concerned, the algorithm output
is in accord with expert opinion.
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Figure 20: Climate Time Series

Monthly time series of temperatures and pressures at the sea surface present a case in
which one might think that the causal processes take place more rapidly that the sampling
rate. If so, then the causal structure in between time samples, the “contemporaneous”
causal structure, should look much like a unit of the time series causal structure. When
we sample at intervals of time as in economic, climate, and other time series, can we
discover what goes on in the intervals between samples? Swanson and Granger
suggested that an autoregression be used to remove the effects on each variable of
variables at previous times, and a search could then be applied to the residual correlations
[Swanson & Granger 1997]. The search they suggested was to assume a chain and to test

"' When under the usual assumptions, the PC algorithm produces double headed arrows,
they reliably indicate common unobserved causes as will FCI. But unlike FCI, PC is not
complete in this respect.
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it by methods described in [Glymour, Scheines, Spirtes, & Kelly 1987], some of the work
whose aims and methods Cartwright previously sought to demonstrate is impossible
[Cartwright 1994]. But a chain model of contemporaneous causes is far too special a
case. Hoover & Demiralp, and later, Moneta & Spirtes, proposed applying PC to the
residuals [Hoover & Demiralp 2003; Moneta & Spirtes 2006]. (Moneta also worked out
the statistical corrections to the correlations required by the fact that they are obtained as
residuals from regressions.) When that is done for model above, the result is the unit
structure of the time series: QBO SOl — WP <> PDO <> AO < NA.

5.2 Cyclic Graphs

Since the 1950s, the engineering literature has developed methods for analyzing the
statistical properties of linear systems described by cyclic graphs. The literature on search
is more recent. Spirtes showed that linear systems with independent noises satisfy a
simple generalization of d-separation, and the idea of faithfulness is well-defined for such
systems [Spirtes 1995]; Pearl & Dechter extended these results to discrete variable
systems [Pearl & Dechter 1996]. Richardson proved some of the essential properties of
such graphs, and developed a pointwise consistent PC style algorithm for search
[Richardson 1996]. More recently, an extension of the LINGAM algorithm for linear,
cyclic, non-Gaussian models has been developed [Lacerda et al. 2008].

5.3  Distributed Multiple Data Sets: ION and IMaGES

Data mining has focused on learning from a single database, but inferences from
multiple databases are often needed in social science, multiple subject time series in
physiological and psychological experiments, and to exploit archived data in many
subjects. Such data sets typically pose missing variable problems: some of what is
measured in one study or for one subject, may not be measured in another. In many cases
such multiple data sets cannot, for physical, sociological or statistical reasons, be merged
into a single data set with missing variables. There are two strategies for this kind of
problem: learn a structure or set of structures separately for each data set and then find
the set of structures consistent with the several “marginal” structures, or learn a single set
of structures by evaluating steps in a search procedure using all of the data sets. The first
strategy could be carried out using PC, kPC GES, FCI, LINGAM or other procedure on
each data set, and then using an algorithm that returns a description of the set of all
graphs, or mixed graphs, consistent with the results from each database [Tillman, Danks,
& Glymour 2008]. Tillman, Danks and Glymour have used such a procedure in
combination with GES and FCI. The result in some (surprising) cases is a unique partial
ancestral graph, and in other cases a large set of alternatives collectively carrying little
information. The second strategy has been implemented in the IMaGES algorithm
[Ramsey et al. 2009]. The algorithm uses GES, but at each step in the evaluation of a
candidate edge addition or removal, the candidate is scored separately by BIC on each
data set and the average of the BIC scores is used by the algorithm in edge addition or
deletion choices. The IMaGES strategy is more limited—no consistency proof is
available when the samples are from mixed distributions, and a proof of convergence of
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averages of BIC scores to a function of posteriors is only available when the sample sizes
of several data sets are equal. Nonetheless, IMaGES has been applied to fMRI data from
multiple subjects with remarkably good results. For example, an fMRI study of
responses to visually presented rhyming and non-rhyming words and non-words should
produce a left hemisphere cascade leading to right hemisphere effects, which is exactly
what IMaGES finds, using only the prior knowledge that the input variable is not an
effect of other variables.

UFG RIFG

T~

LACC —» RACC
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LoCC ————————————+ ROCC
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Figure 21: IMaGES Output for fMRI Data

6 Conclusion

The discovery of d-separation, and the development of several related notions, has
made possible principled search for causal relations from observational and quasi-
experimental data in a host of disciplines. New insights, algorithms and applications have
appeared almost every year since 1990, and they continue. We are seeing a revolution in
understanding of what is and is not possible to learn from data, but the insights and
methods have seeped into statistics and applied science only slowly. We hope that pace
will quicken.

7 Appendix

A directed graph (e.g. G, of Figure 22) consists of a set of vertices and a set of
directed edges, where each edge is an ordered pair of vertices. In G, the vertices are
{4,B,C,D,E}, and the edges are {B - A4,B — C,D — C, C — E}. In Gy, B is a parent of
A, A is a child of B, and 4 and B are adjacent because there is an edge A — B. A path in a
directed graph is a sequence of adjacent edges (i.e. edges that share a single common
endpoint). A directed path in a directed graph is a sequence of adjacent edges all pointing
in the same direction. For example, in Gy, B — C — E is a directed path from B to E. In
contrast, B — C <« D is a path, but not a directed path in G| because the two edges do not
point in the same direction; in addition, C is a collider on the path because both edges on
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the path are directed into C. A triple of vertices <B,C,D> is a collider if there are edges B
— C « D in Gy; <B,C,D> is an unshielded collider if in addition there is no edge
between B and D. E is a descendant of B (and B is an ancestor of E) because there is a
directed path from B to E; in addition, by convention, each vertex is a descendant (and
ancestor) of itself. A directed graph is acyclic when there is no directed path from any
vertex to itself: in that case the graph is a directed acyclic graph, or DAG for short.

A4B —»C 4D A—»B—p» C 4D 4—B —» C 4D

v

E E E
Gl G2 P1

Figure 22: G,, G,, and P, (pattern for G, and G,)

A probability distribution P(V) satisfies the local Markov condition for a DAG G,
with vertices V when each variable is independent of its non-parental non-descendants
conditional on its parents. A Bayesian network is an ordered pair of a directed acyclic
graph G and a set of probability distributions that satisfy the local Markov condition for
G.

The graphical relationship among sets of variables in a DAG G called “d-separation”
determines which conditional independence relations are entailed by satisfying the local
directed Markov property). Following [Pearl 1988], in a DAG G, for disjoint variable sets
X, Y, and Z, X and Y are d-separated conditional on Z in G if and only if there exists no
path U between an X € X and a Y € Y such that (i) every collider on U has a descendent
in Z and (ii) no other vertex on U is in Z. An important theorem in [Pearl 1988] is that a
DAG G entails that X is independent of Y conditional on Z if and only if X is d-separated
from Y conditional on Z in G.

A Bayesian network restricted to a parametric family <G,Q> where G is a DAG and
Q is some parameterization of the DAG, e.g. multivariate Gaussian, has two distinct
interpretations. First, it has a probabilistic interpretation as a distribution over the
variables in G, for distributions that satisfy the local Markov condition for G. Under this
interpretation, it is a useful tool for calculating conditional probabilities.

Second, it has a causal interpretation, and can be used to calculate the effects of
manipulations. Intuitively, a manipulation of a variable is an exogenous action that forces
a value (or a distribution over values) upon a variable in the system, e.g. as in a
randomized experiment - if no exogenous action is taken on variable X, X is said to have
undergone a null manipulation. An example of a manipulation is a randomized
experiment, in which a distribution for some variables (e.g. 2 of the subjects take a given
drug, and % of the subjects do not take the drug) is imposed from outside. The kinds of
manipulations that we will consider are ideal in the sense that a manipulation of X
directly affects only X.
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X is a direct cause of Y relative to a set of variables V if there is a pair of
manipulations (including possibly null manipulations, and including hypothetical
manipulations in the many circumstances where no actual manipulations are feasible) of
the values of the variables in V\{Y} that differ only in the value assigned to X, but that
have different distributions for Y. This is in accord with the idea that the gold standard for
determining causation is randomized experiments. (This is not a reduction of causality to
non-causal concepts, because manipulation is itself a causal concept that we have taken
as primitive.) Under the causal interpretation of DAGs, there is an edge X — Y when X is
a direct cause of Y relative to the set of variables in the DAG. A set of variables V is
causally sufficient if every direct cause (relative to V) of any pair of variables in V, is
also in V. We will assume that causally interpreted DAGs are causally sufficient,
although we will not generally all of the variables in a causally interpreted DAG are
measured.

In automated causal search, the goal is to discover as much as possible about the true
causal graph for a population from a sample from the joint probability distribution over
the population, together with background knowledge (e.g. parametric assumptions, time
order, etc.) This requires having some assumptions that link (samples from) probability
distributions on the one hand, and causal graphs on the other hand. Extensive discussions
of the following assumptions that we will make, including arguments for making the
assumptions as well as limitations of the assumptions can be found in Causation,
Prediction, & Search [Spirtes et al. 2001].

7.1  Causal Markov Assumption

The Causal Markov Assumption is a generalization of two commonly made
assumptions: the immediate past screens off the present from the more distant past; and if
X does not cause Y and Y does not cause X, then X and Y are independent conditional on
their common causes. It presupposes that while the random variables of a unit in the
population may causally interact, the units themselves are not causally interacting with
each other.

Causal Markov Assumption: Let G be a causal graph with causally sufficient
vertex set V and let P be a probability distribution over the vertices in V generated by the
causal structure represented by G. G and P satisfy the Causal Markov Assumption if and
only if for every W in V, W is independent of its non-parental non-descendants
conditional on its parents in G.

In graphical terms, the Causal Markov Assumption states that in the population
distribution over a causally sufficient set of variables, each variable is independent of its
non-descendants and non-parents, conditional on its parents in the true causal graph.

While the Causal Markov Assumption allows for some causal conclusions from
sample data, it only supports inferences that some causal connections exist - it does not
support inferences that some causal connections do not exist. The following assumption
does support the latter kind of inference.
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7.2 Causal Faithfulness Assumption

Often the set of distributions that satisfy the local Markov condition for G is
restricted to some parametric family © (e.g. Gaussian). In those cases, the set of
distributions belonging to the Bayesian network will be denoted as f{<G,®>), and
M(<G,6>) will denote a member of fi<G,0>) for the particular value 8 € ® (and f[<G,6>)
is represented by <G,0>). Let I(X,Y|Z) denote that X is independent of Y conditional
on Z in a distribution f.

If a DAG G does not entail that Iy ,(X,Y|Z) for all 8 € ©, nevertheless there may
be some parameter values 6 such that I;g,(X,Y|Z). In that case say that {<G,0>) is
unfaithful to G. In Pearl’s terminology the distribution is unstable [Pearl 1988]. This
would happen for example if taking birth control pills increased the probability of blood
clots directly, but decreased the probability of pregnancy which in turn increased the
probability of blood clots, and the two causal paths exactly cancelled each other. We will
assume that such unfaithful distributions do not happen - that is there may be such
canceling causal paths, but the causal paths do not exactly cancel each other.

Causal Faithfulness Assumption: For a true causal graph G over a causally
sufficient set of variables V, and probability distribution P(V) generated by the causal
structure represented by G, if G does not entail that X is independent of Y conditional on
Z then X is not independent of Y conditional on Z in P(V).

7.3  Conditional Independence Equivalence

Let I(<G,0>) be the set of all conditional independence relations entailed by
satisfying the local Markov condition. For any distribution that satisfies the local directed
Markov property for G, all of the conditional independence relations in I(<G,©>) hold.
Since these independence relations don’t depend upon the particular parameterization but
only on the graphical structure and the local directed Markov property, they will
henceforth be denoted by I(G).

G, and G, are conditional independence equivalent if and only if I(G,) = I(G,). This
occurs if and only if G, and G, have the same d-separation relations. A set of graphs that
are all conditional independence equivalent to each other is a conditional independence
equivalence class. 1f the graphs are all restricted to be DAGs, then they form a DAG
conditional independence equivalence class. Two DAGs are conditional independence
equivalent if and only if they have the same d-separation relations.

Theorem 1 (Pearl, 1988): Two directed acyclic graphs are conditional independence
equivalent if and only if they contain the same vertices, the same adjacencies, and the
same unshielded colliders.

For example, Theorem 1 entails that the set consisting of G and G, in Figure 22 is a
DAG conditional independence equivalence class. The fact that G; and G, are conditional
independence equivalent, but are different causal models, indicates that in general any
algorithm that relies only on conditional independence relations to discover the causal
graph cannot (without stronger assumptions or more background knowledge) reliably
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output a single DAG. A reliable algorithm could at best output the DAG conditional
independence equivalence class, e.g. {G;, G,}.

Fortunately, Theorem 1 is also the basis of a simple representation called a pattern
[Verma & Pearl 1990] of a DAG conditional independence equivalence class. Patterns
can be used to determine which predicted effects of a manipulation are the same in every
member of a DAG conditional independence equivalence class and which are not.

The adjacency phase of the PC algorithm is based on the following two theorems,
where Parents(G,A4) is the set of parents of 4 in G.

Theorem 2: If A and B are d-separated conditional on any subset Z in DAG G, then A
and B are not adjacent in G.

Theorem 3: A and B are not adjacent in DAG G if and only if A and B are d-separated
conditional on Parents(G,A) or Parents(G,B) in G.

The justification of the orientation phase of the PC algorithm is based on Theorem 4.

Theorem 4: If in a DAG G, A and B are adjacent, B and C are adjacent, but A and C are
not adjacent, either B is in every subset of variables Z such that A and C are d-separated
conditional on Z, in which case <A,B,C> is not a collider, or B is in no subset of variables
Z such A and C are d-separated conditional on Z, in which case <A,B,C> is a collider.

A pattern (also known as a PDAG) P represents a DAG conditional independence
equivalence class X if and only if:

1. P contains the same adjacencies as each of the DAGs in X

2. each edge in P is oriented as X — Z if and only if the edge is oriented as X — Z

in every DAG in X, and as X — Z otherwise.

There are simple algorithms for generating patterns from a DAG [Meek, 1995;
Andersson, Madigan, & Perlman 1997; Chickering 1995]. The pattern P; for the DAG
conditional independence equivalence class containing G, is shown in Figure 22. It
contains the same adjacencies as Gy, and the edges are the same except that the edge
between 4 and B is undirected in the pattern, because it is oriented as 4 < B in Gy, and

oriented as 4 — B in G,.

7.4 Distributional Equivalence

For multi-variate Gaussian distributions and for multinomial distributions, every
distribution that satisfies the set of conditional independence relations in I(<G,0>) is also
a member of f{<G,0>). However, for other families of distributions, it is possible that
there are distributions that satisfy the conditional independence relations in I(<G,0,>),
but are not in fi<G,0,>), i.e. the parameterization imposes constraints that are not
conditional independence constraints [Lauritzen et al. 1990; Pearl 2000; Spirtes et al.
2001].

It can be shown that when restricted to multivariate Gaussian distributions, G; and
G, in Figure 22 represent exactly the same set of probability distributions, i.e. {<G,0:>)
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= fi<G,,0,>). In that case say that <G,0,> and <G,,0,> are distributionally equivalent
(relative to the parametric family). Whether two models are distributionally equivalent
depends not only on the graphs in the models, but also on the parameterization families of
the models. A set of models that are all distributionally equivalent to each other is a
distributional equivalence class. If the graphs are all restricted to be DAGs, then they
form a DAG distributional equivalence class.

In contrast to conditional independence equivalence, distribution equivalence
depends upon the parameterization families as well as the graphs. Conditional
independence equivalence of G, and G, is a necessary, but not always sufficient
condition for the distributional equivalence of <G1,0 ,> and <G,,05>.

Algorithms that rely on constraints beyond conditional independence may be able to
output subsets of conditional independence equivalence classes, although without further
background knowledge or stronger assumptions they could at best reliably output a DAG
distribution equivalence class. In general, it would be preferable to take advantage of the
non conditional independence constraints to output a subset of the conditional
independence equivalence class, rather than simply outputting the conditional
independence equivalence class. For some parametric families it is known how to take
advantage of the non conditional independence constraints (sections 3.4 and 4.4 );
however in other parametric families, either there are no non conditional independence
constraints, or it is not known how to take advantage of the non conditional independence
constraints.

Acknowledgements: Clark Glymour and Robert Tillman thanks the James S. McDonnell
Foundation for support of their research.
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The Structural Model and the Ranking Theoretic
Approach to Causation: A Comparison

WOLFGANG SPOHN

1 Introduction

Large parts of Judea Pearl’s very rich work lie outside philosophy; moreover, basically
being a computer scientist, his natural interest was in computational efficiency, which, as
such, is not a philosophical virtue. Still, the philosophical impact of Judea Pearl’s work is
tremendous and often immediate; for the philosopher of science and the formal episte-
mologist few writings are as relevant as his. Fully deservedly, this fact is reflected in
some philosophical contributions to this Festschrift; I am glad I can contribute as well.

For decades, Judea Pearl and I were pondering some of the same topics. We both re-
alized the importance of the Bayesian net structure and elaborated on it; his emphasis on
the graphical part was crucial, though. We both saw the huge potential of this structure
for causal theorizing, in particular for probabilistic causation. We both felt the need for
underpinning the probabilistic account by a theory of deterministic causation; this is, after
all, the primary notion. And we both came up with relevant proposals. Judea Pearl ap-
proached these topics from the Artificial Intelligence side, I from the philosophy side.
Given our different proveniences, overlap and congruity are surprisingly large.

Nevertheless, it slowly dawned upon me that the glaring similarities are deceptive,
and that we fill the same structure with quite different contents. It is odd how much di-
vergence can hide underneath so much similarity. I have identified no less than fifteen
different, though interrelated points of divergence, and, to be clear, I am referring here
only to our accounts of deterministic causation, the structural model approach so richly
developed by Judea Pearl and my (certainly idiosyncratic) ranking-theoretic approach. In
this brief paper I just want to list the points of divergence in a more or less descriptive
mood, without much argument. Still, the paper may serve as a succinct reference list of
the many crucial points that are at issue when dealing with causation and may thus help
future discussion.

At bottom, my comparison refers, on the one hand, to the momentous book of Pearl
(2000), the origins of which reach back to the other momentous book of Pearl (1988) and
many important papers in the 80’s and 90’s,s and, on the other hand, to the chapters 14
and 15 of Spohn (forthcoming) on causation, the origins of which reach back to Spohn
(1978, sections 3.2 - 3, and 1983) and a bunch of subsequent papers. For ease of access,

507



Wolfgang Spohn

though, I shall substantially refer to Halpern, Pearl (2005) and Spohn (2006) where the
relevant accounts are presented in a more compact way. Let me start with reproducing the
basic explications in section 2 and then proceed to my list of points of comparison in
section 3. Section 4 concludes with a brief moral.

2 The Accounts to be Compared

For all those taking philosophical talk of events not too seriously (the vast majority
among causal theorists) the starting point is a frame, a (non-empty, finite) set U of vari-
ables; X, Y, Z, W, etc. denote members of U, )?, f’, Z, W, etc. subsets of U. Each vari-
able X € U has a range Qy of values and is a function from some possibility space Q into
its range Qy. For simplicity, we may assume that Q is the Cartesian product of all Qy and
X the projection from Q to Qy. Forx € Qyand 4 c Qy, {X=x} = {ow e Q| X(®w) =x}
and {X € 4} = {0 | X(®) € A) are propositions (or events), and all those propositions
generate a propositional algebra A over Q. For X = {X;, ..., X,} and ¥= (x|, ..., x,) { X
= X } is short for {X; = x; and ... and X,, = x,}. How a variable is to be precisely under-
stood may be exemplified in the usual ways; however, we shall see that it is one of the
issues still to be discussed.

The causal theorist may or may not presuppose a temporal order among variables; |
shall. So, let < be a linear order on the frame U representing temporal precedence. Line-
arity excludes simultaneous variables. The issue of simultaneous causation is pressing,
but not one dividing us; therefore I put it to one side. Let, e.g., {< Y} denote {Z e U |Z
< Y}, that is, the set of variables preceding Y. So much for the algebraic groundwork.

A further ingredient is needed in order to explain causal relations. In the structural-
model approach it is a set of structural equations, in the ranking-theoretic approach it is a
ranking function.

A set F of structural equations is just a set of functions Fy that specifies for each vari-
able Y in some subset ¥ of U how Y (essentially) functionally depends on some subset
X of U; thus Fy maps QX into Qy. V is the set of endogenous variables, U=Uu-7V
the set of exogenous variables. The only condition on F is that no Yin V' indirectly func-
tionally depends on itself via the equations in F. Thus, F induces a DAG on U such that,
if Fy maps Qg into Qy, X is the set of parents of Y. (In their appendix A.4 Halpern,
Pearl (2005) generalize their account by dropping the assumption of the acyclicity of the
structural equations.) The idea is that F provides a set of laws that govern the variables in
U, though, again, the precise interpretation of F will have to be discussed below. (U, F) is
then called a structural model (SM). Note that a SM does not fix the values of any vari-
ables. However, once we fix the values # of all the exogenous variables in U , the equa-
tions in F determine the values v of all the endogenous variables in V . Let us call (U, F,
i) a contextualized structural model (CSM). Thus, each CSM determines a specific
world or course of events w = (#, V) in Q. Accordingly, each proposition 4 in A is true
or false in a CSM (U, F, # ), depending on whether or not w € A4 for the o thereby de-

termined.
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For the structural model approach, causation is essentially related to intervention.
Therefore we must first explain the latter notion. An intervention always intervenes on a
CSM (U, F, ii), more specifically, on a certain set X cV of endogenous variables,
thereby setting the values of X to some fixed values X ; that intervention or setting is
denoted by X < X . What such an intervention X <— % does is to turn the CSM (U, F, ii )
into another CSM. The variables in X are turned into exogenous variables; i.e., the set F
of structural equations is reduced to the set F¥, as I denote it, that consists of all the
equations in F for the variables in ¥ — X . Correspondingly, the context ii of the origi-
nal CSM is enriched by the chosen setting X for the new exogenous variables in }? .In
short, the intervention X <— ¥ changes the CSM (U, F, ii ) into the CSM (U, FY, (u,
X )). Again, it will be an issue what this precisely means.

Now, we can proceed to Pearl’s explication of actual causation; this is definition 3.1
of Halpern, Pearl (2005, p. 853) slightly adapted to the notation introduced so far (see
also Halpern, Hitchcock (2010, Section 3)). Not every detail will be relevant to my fur-
ther discussion below; I reproduce it here only for reasons of accuracy:

SM DEFINITION: { X = %} is an actual cause of {Y =y} in the CSM (U, F, i ) iff the

following three conditions hold:

(1)  {X =X}and {Y=y} are true in (U, F, ii ).

(2)  There exists a partition (Z, W) of ¥ with X < Z and some setting (X',#') of
the variables in X and W such that if {Z =Z} is true in (U, F, i ), then both of
the following conditions hold:

(@)  {Y=y} is false in the intervention (X, W) « (X', w') on(U,F, ), ie.,
in (U, F*" (i, %', w")). In other words, changing (X, W) from
(X, ) to (x',w'") changes {Y =y} from true to false.
(b) {Y =y} is true in (U, | I (ii, ¥, w', Z')) for all subsets W' of W
and all subsets Z' of Z , where Z' is the subsequence of Z pertaining to
AR
3) X is minimal; i.e., no subset of X satisfies conditions (1) and ).

This is not as complicated as it may look. Condition (1) says that the cause and the ef-
fect actually occur in the relevant CSM (U, F, i ) and, indeed, had to occur given the
structural equations in F and the context # . Condition (2a) says that if the cause vari-
ables in X had been set differently, the effect {¥ = y} would not have occurred. It is
indeed more liberal in allowing that also the variables in W outside X are set to differ-
ent values, the reason being that the effect of XonY may be hidden, as it were, by the
actual values of W , and uncovered only by setting W to different values. However, this
alone would be too liberal; perhaps the failure of the effect {¥ =y} to occur is due only to
the change of W rather than that of X . Condition (2b) counteracts this permissiveness,
and ensures that basically the change in X alone brings about the change of ¥. Condition
(3), finally, is to guarantee that the cause { X = ¥ } does not contain irrelevant parts; for
the change described in (2a) all the variables in X are required. Note that X is a set of
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variables so that { X = %} should be called a total cause of {Y = y}; its parts {X; = x;}
for X; € X may then be called contributory causes.

The details of the SM definition are mainly motivated by an adequate treatment of
various troubling examples much discussed in the literature. It would take us too far to go
into all of them. I should also mention that the SM definition is only preliminary in
Halpern, Pearl (2005); but again, the details of their more refined definition presented on
p. 870 will not be relevant for the present discussion.

The basics of the ranking-theoretic account may be explained in an equally brief way:
A negative ranking function x for Q is just a function ¥ from Q into N U {eo} such that
K(w) = 0 for at least one w € Q. It is extended to propositions in A by defining k(4) =
min{K(®) | ® € 4} and k(D) = «o; and it is extended to conditional ranks by defining k(B
| A) =K(4 N B) — K(A) for k(A) # . Negative ranks express degrees of disbelief: x(4) >
0 says that A4 is disbelieved, so that x( A ) > 0 expresses that 4 is believed in k; however,
we may well have x(4) = k( 4) = 0. It is useful to have both belief and disbelief repre-
sented in one function. Hence, we define the mwo-sided rank 1(4) = k( A ) — x(4), so that
A 1is believed, disbelieved, or neither according to whether t(4) > 0, <0, or = 0. Again,
we have conditional two-sided ranks: ©1(B | 4) = x( B | A) — k(B | 4). The positive rele-
vance of a proposition 4 to a proposition B is then defined by ©(B | 4) > 1(B | 4), i.e., by
the fact that B is more firmly believed or less firmly disbelieved given 4 than given A4 ;
we might also say in this case that 4 confirms or is a reason for B. Similarly for negative
relevance and irrelevance (= independence).

Like a set of structural equations, a ranking function x induces a DAG on the frame U
conforming with the given temporal order <. The procedure is the same as with prob-
abilities: we simply define the set of parents of a variable Y as the unique minimal set X
C {< Y} such that Y is independent of { < Y} — X given X relative to k, i.e., such that ¥
is independent of all the other preceding variables given X . If X is empty, Y is exoge-
nous; if X # @, Y is endogenous. The reading that ¥ directly causally depends on its
parents will be justified later on.

Now, for me, being a cause is just being a special kind of conditional reason, i.e., be-
ing a reason given the past. In order to express this, for a subset X of U and a course of
events 0 € Q let ®[X] denote the proposition that the variables in X behave as they do
in ®. (So far, we could denote such a proposition by { X =% }, if X (0)= X, but we
shall see in a moment that this notation is now impractical.) Then the basic definition of
the ranking-theoretic account is this:

RT DEFINITION 1: For 4 € Wyand B € Wy {X € A} is a direct cause of {Y € B} in ®

€ Q relative to the ranking function « (or the associated t) iff

a X<17,

(b) X(w)e Aand Y(w) € B,ie., {Xe A} and {Y € B} are facts in o,

(© ({YeB}|{Xed}n [{<Y}— X3 >1({Ye B} | {Xe A} N (<Y} -
{X}]); i.e., {X e 4} is areason for {Y € B} given the rest of the past of Y as it is in
.
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It is obvious that the SM and the RT definition deal more or less with the same expli-
candum; both are after actual causes, where actuality is represented either by the context
i ofaCSM (U, F, i ) in the SM definition or by the course of events ® in the RT defi-
nition. A noticeable difference is that in the RT definition the cause {X € A} refers only
to a single variable X. Thus, the RT definition grasps what has been called a contributory
cause, a total cause of {Y € B} then being something like the conjunction of its con-
tributory causes. As mentioned, the SM definition proceeds the other way around.

Of course, the major differences lie in the explicantia; this will be discussed in the
next section. A further noticeable difference in the definienda is that the RT definition 1
explains only direct causation; indeed, if {X € 4} would be an indirect cause of {¥ € B},
we could not expect {X € 4} to be positively relevant to {¥ € B} conditional on the rest
of the past of Y in m, since that condition would not keep open the causal path from X to
Y, but fix it to its actual state in ®. Hence, the RT definition 1 is restricted accordingly.
As the required extension, I propose the following

RT DEFINITION 2: {X € A4} is a (direct or indirect) cause of {Y € B} in ® € Q relative
to x (or 1) iff there are Z; € U and C; € “Z,- (i=1,...,n>2)suchthat X=2,,4=C, Y
=7, B=C,, and {Z; € C;} is a direct cause of {Z;;; € C;} in o relative to x for all i = 1,
ceon—1.

In other words, causation in  is just the transitive closure of direct causation in ®.
We may complete the ranking-theoretic account by explicating causal dependence
between variables:

RT DEFINITION 3: Y e U (directly) causally depends on X € U relative x iff there are 4
C Wy, B Wy, and ® € Q such that {X e A} is a (direct) cause of {Y € B} in o relative
to K.

One consequence of RT definition 3 is that the set of parents of ¥ in the DAG generated
by K and < consists precisely of all the variables on which Y directly causally depends.

So much for the two accounts to be compared. There are all the differences that meet
the eye. As we shall see, there are even more. Still, let me conclude this section by
pointing out that there are also less differences than meet the eye. I have already men-
tioned that both accounts make use of the DAG structure of causal graphs. And when we
supplement the probabilistic versions of the two accounts, they further converge. In the
structural-model approach we would then replace the context # of a CSM (U, F, i ) by a
probability distribution over the exogenous variables rendering them independent and
extending via the structural equations to a distribution for the whole of U, thus forming a
pseudo-indeterministic system, as Spirtes et al. (1993, pp. 38f.) call it, and hence a Baye-
sian net in which the probabilities agree with the causal graph. In the ranking-theoretic
approach, we would replace the ranking function by a probability measure for U (or over
A) that, together with the temporal order of the variables, would again induce a DAG or a
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causal graph so as to form a Bayesian net. In this way, the basic ingredient of both ac-
counts would become the same: a probability measure;the remaining differences appear
to be of a merely technical nature.

Indeed, as I see the recent history of the theory of causation, this large agreement ini-
tially dominated the picture of probabilistic causation. However, the need for underpin-
ning the probabilistic by a deterministic account was obvious; after all, the longer history
of the notion was an almost entirely deterministic one up to the recent counterfactual
accounts following Lewis (1973). And so the surprising ramification sketched above
came about, both branches of which well agree with their probabilistic origins. The rami-
fication is revealing since it makes explicit dividing lines that were hard to discern within
the probabilistic harmony. Indeed, the points of divergence between the structural-model
and the ranking-theoretic approach to be discussed in the next section apply to their prob-
abilistic sisters as well, a claim that is quite suggestive, though I shall not elaborate on it.

3 Fifteen Points of Comparison

All in all, I shall come up with fifteen clearly distinguishable, though multiply connected
points of comparison. The theorist of causation must take a stance towards all of them,
and even more; my list is pertinent to the present comparison and certainly not exhaus-
tive. Let us go through the list point for point:

(1) The most obvious instances provoking comparison and divergence are provided
by examples, about preemption and prevention, overdetermination and switches, etc. The
literature abounds in cases challenging all theories of causation and examples designed
for discriminating among them, a huge bulk still awaiting systematic classification
(though I attempted one in my (1983, ch. 3) as far as possible at that time). A theory of
causation must do well with these examples in order to be acceptable. No theory, though,
will reach a perfect score, all the more as many examples are contested by themselves,
and do not provide a clear-cut criterion of adequacy. And what a ‘good score’ would be
cannot be but vague. Therefore, I shall not even open this unending field of comparison
regarding the two theories at hand.

(2) The main reason why examples provide only a soft criterion is that it is ultimately
left to intuition to judge whether an example has been adequately treated. There are
strong intuitions and weak ones. They often agree and often diverge. And they are often
hard to compromise. Indeed, intuitions play an indispensable and important role in as-
sessing theories of causation; they seem to provide the ultimate unquestionable grounds
for that assessment.

Still, I have become cautious about the role of intuitions. Quite often I felt that the
intuitions authors claim to have are guided by their theory; their intuitions seem to be
what their theory suggests they should be. Indeed, the more I dig into theories of causa-
tion and develop my own, the harder it is for me to introspectively discern whether or not
I share certain intuitions independently of any theorizing. So, again, the appeal to intui-
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tions must be handled with care, and I shall not engage into a comparison of the relevant
theories on an intuitive level.

(3) Another large field of comparison is the proximity to and the applicability in sci-
entific practice. No doubt, the SM account fares much better in this respect than the RT
approach. Structural modeling is something many scientists really do, whereas ranking
theory is unknown in the sciences and it may be hard to say why it should be known
outside epistemology. The point applies to other accounts as well. The regularity theory
of causation seems close to the sciences, since they seem to state laws and regularities,
whereas counterfactual analyses seem remote, since counterfactual claims are not an
official part of scientific theories, even though, unofficially, counterfactual talk is ubig-
uitous. And probabilistic theories maintain their scientific appearance by ecumenically
hiding disputes about the interpretation of probability.

Again, the importance of this criterion is undeniable; the causal theorist is well ad-
vised to appreciate the great expertise of the sciences, in general and specifically con-
cerning causation. Still, I tend to downplay this criterion, not only in order to keep the RT
account as a running candidate. The point is rather that the issue of causation is of a kind
for which the sciences are not so well prepared. The counterfactual analysis is a case in
point. If it should be basically correct, then the counterfactual idiom can no longer be
treated as a second-rate vernacular (to use Quine’s term), as the sciences do, but must be
squarely faced in a systematic way, as, e.g., Pearl (2000, ch. 7) does, but qua philosopher,
not qua scientist. Probabilities are a similar case. Mathematicians and statisticians by far
know best how to deal with them. However, when it comes to say what probabilities
mean, they are not in a privileged position.

The point of these three remarks is to claim primacy for theoretical issues about cau-
sation as such. External considerations are relevant and helpful, but they cannot release
us from the task of taking some stance or other towards these theoretical issues. So, let us
turn to them.

(4) Both, the SM and the RT account, are based on a frame providing a framework of
variables and appertaining facts. I am not sure, however, whether we interpret it in the
same way. A (random) variable is a function from some state space into some range of
values, usually the reals; this is mathematical standard. That a variable takes a certain
value is a proposition, and if the value is the true one (in some model), the proposition is
a fact (in that model); so much is clear. However, the notion of a variable is ambiguous,
and it is so since its statistic origins. A variable may vary over a given population as its
state space and take on a certain value for each item in the population. E.g., size varies
among Germans and takes (presently) the value 6' 0" for me. This is what I call a generic
variable. Or a variable may vary over a set of possibilities as its state space and take
values accordingly. For example, my (present) size is a variable in this sense and actually
takes the value 6' 0", though it takes other values in other possibilities; I might (presently)
have a different size. I call this a singular variable representing the possibility range of a
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given single case. For each German (and time), size is such a singular variable. The ge-
neric variable of size, then, is formed by the actual values of all these singular variables.

The above RT account exclusively speaks about singular variables and their realiza-
tions; generic variables simply are out of the picture. By contrast, the ambiguity seems to
afflict the SM account. I am sure everybody is fully clear about the ambiguity, but this
clarity seems insufficiently reflected in the terminology. For instance, the equations of a
SM represent laws or ceteris paribus laws or invariances in Woodward’s (2003) terms or
statistical laws, if supplemented by statistical ‘error’ terms, and thus state relations be-
tween generic variables. It is contextualization by which the model gets applied to a
given single case; then, the variables should rather be taken as singular ones; their taking
certain values then are specific facts. There is, however, no terminological distinction of
the two interpretations; somehow, the notion of a variable seems to be intended to play
both roles. In probabilistic extensions we find the same ambiguity, since probabilities
may be interpreted as statistical distributions over populations or as realization propensi-
ties of the single case.

(5) I would not belabor the point if it did not extend to the causal relations we try to
capture. We have causation among facts, as analyzed in the SM definition and the RT
definitions 1 - 2; they are bound to apply to the single case. And we have causal relations
among variables, i.e., causal dependence (though often and in my view confusingly the
term “cause” is used here as well), and we find here the same ambiguity. Causal depend-
ence between generic variables is a matter of causal laws or of general causation. How-
ever, there is also causal dependence between singular variables, something rarely made
explicit, and it is a matter of singular causation applying to the single case just as much
as causation between facts. Since its inception the discussion of probabilistic causality
was caught in this ambiguity between singular and general causation; and I am wonder-
ing whether we can still observe the aftermath of that situation.

In any case, structural equations are intended to capture causal order, and the order
among generic variables thus given pertains to general causation. Derivatively these
equations may be interpreted as stating causal dependencies also between singular vari-
ables. In the SM account, though, singular causation is explicitly treated only as pertain-
ing to facts. By contrast, the RT definition 3 explicates only causal dependence between
singular variables. The RT account is so far silent about general causation and can grasp
it only by generalizing over the causal relations in the single case. These remarks are not
just pedantry; I think it is important to observe these differences for an adequate compari-
son of the accounts.

(6) 1 see these differences related to the issue of the role of time in an analysis of cau-
sation. The point is simply that generic variables as such are not temporally ordered,
since their arguments, the items to which they apply, may have varying temporal posi-
tions; usually, statistical data do not come temporally ordered. By contrast, singular vari-
ables are temporally ordered, since their variable realizability across possibilities is tied
to a fixed time. As a consequence, the SM definition makes no explicit reference to time,
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whereas the RT definitions make free use of that reference. While I think that this point
has indeed disposed Judea Pearl and me to our diverging perspectives on the relation
between time and causation, it must be granted that the issue takes on much larger dimen-
sions that open enough room for indecisive defenses of both perspectives.

Many points are involved: (i) Issues of analytic adequacy: while Pearl (2000, pp.
249f1f.) argues that reference to time does not sufficiently further the analytic project and
proposes ingenious alternatives (sections 2.3 - 4 + 8 - 9), I am much more optimistic
about the analytic prospects of referring to time (see my 1990, section 3, and forthcom-
ing, section 14.4). (ii) Issues of analytic policy (see also point 10 below): Is it legitimate
to refer to time in an analysis of causation? I was never convinced by the objections. Or
should the two notions be analytically decoupled? Or should the analytic order be even
reversed by constructing a causal theory of time? Pearl (2000, section 2.8) shows sym-
pathies for the latter project, although he suggests an evolutionary explanation, rather
than Reichenbach’s (1956) physical explanation for relating temporal direction with
causal directionality. (iii) The issue of causal asymmetry: Is the explanation of causal
asymmetry by temporal asymmetry illegitimate? Or incomplete? Or too uninformative, as
far as it goes? If any of these, what is the alternative?

(7) Causation always is causation within given circumstances. What do the accounts
say what the circumstances are? The RT definition 1 explicitly takes the entire past of the
effect except the cause as the circumstances of a direct causal relationship, something
apparently much too large and hence inadequate, but free of conceptual circularity, as I
have continuously emphasized. In contrast, Pearl (2000, pp. 250ff.) endorses the circular
explanation of Cartwright (1979) that those circumstances consist of the other causes of
the effect and hence, in the case of direct causation, of the realizations of the other par-
ents of the effect variable in the causal graph. Pearl thus accepts also Cartwright’s con-
clusion that the reference to the obtaining circumstances does not help explicating causa-
tion; he thinks that this reference at best provides a kind of consistency test. I argue that
the explicatory project is not doomed thereby, since Cartwright’s circular explanation
may be derived from my apparently inadequate definition (cf. Spohn 1990, section 4). As
for the circumstances of indirect causation, the RT definition 2 is entirely silent, since it
relies on transitivity; however, in Spohn (1990, Theorems 14 and 16) I explored how
much I can say about them. In contrast, the SM definition contains an implicit account of
the circumstances that applies to indirect causal relationships as well; it is hidden in the
partition {Z,W) of the set V of endogenous variables. However, it still accepts Cart-
wright’s circular explanation, since it presupposes the causal graph generated by the
structural equations. So, this is a further respect in which our accounts are diametrically
opposed.

(8) The preceding point contains two further issues. One concerns the distinction of
direct and indirect causation. The SM approach explicates causation without attending to
this distinction. Of course, it could account for it, but it does not acquire a basic impor-
tance. By contrast, the distinction receives analytic significance within the RT approach
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that first defines direct causation and then, only on that basis, indirect causation. The
reason is that, in this way, the RT approach hopes to reach a non-circular explication of
causation, whereas the SM approach has given up on this hope (see also point 10 below)
and thus sees no analytic rewards in this distinction.

(9) The other issue already alluded to in (7) is the issue of transitivity. This is a most
vexed topic, and the community seems unable to find a stable attitude. Transitivity had to
be given up, it seemed, within probabilistic causation (cf. Suppes 1970, p. 58), while it
was derivable from a regularity account and was still defended by Lewis (1973) for de-
terministic causation. In the meantime the situation has reversed; transitivity has become
more respectable within the probabilistic camp; e.g., Spirtes et al. (1993, p. 44) simply
assume it in their definition of “indirect cause”. By contrast, more and more tend to reject
it for deterministic causation (cf., e.g., McDermott 1995 and Hitchcock 2001).

This uncertainty is also reflected in the present comparison. Pearl (2000, p. 237) re-
jects transitivity of causal dependence among variables, but, as the argument shows, only
in the sense of what Woodward (2003, p. 51) calls “total cause”. Still, Woodward (2003,
p- 59), in his concluding explication M, accepts the transitivity of causal dependence
among variables in the sense of “contributory cause”, and I have not found any indication
in Pearl (2000) or Halpern, Pearl (2005) that they would reject Woodward’s account of
contributory causation. However, all of them deny the transitivity of actual causation
between facts.

I see it just the other way around. The RT definition 2 stipulates the transitivity of
causation (with arguments, though; cf. Spohn 1990, p. 138, and forthcoming, section
14.12), whereas the RT definition 3 entails the transitivity of causal dependence among
variables in the contributory sense only under (mild) additional assumptions. Another
diametrical opposition.

(10) A much grander issue is looming behind the previous points, the issue of analytic
policy. The RT approach starts defining direct causation between singular facts, proceeds
to indirect causation and then to causal dependence between singular variables, and fi-
nally only hopes to thereby grasp general causation as well. It thus claims to give a non-
circular explication or a reductive analysis of causation. The SM approach proceeds in
the opposite direction. It presupposes an account of general causation that is contained in
the structural equations, transfers this to causal dependence between singular variables (I
mentioned in points 4 and 5 that this step is not fully explicit), and finally arrives at actual
causation between facts. The claim is thereby to give an illuminating analysis of causa-
tion, but not a reductive one.

Now, one may have an argument about conceptual order: which causal notions to ex-
plicate on the basis of which? I admit I am bewildered by the SM order. The deeper issue,
though, or perhaps the deepest, is the feasibility of reductive analysis. Nobody doubts that
it would be most welcome to have one; therefore the history of the topic is full of at-
tempts at such an analysis. Perhaps, though, they are motivated by wishful thinking. How
to decide? One way of assessing the issue is by inspecting the proposals. The proponents
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are certainly confident of their analyses, but their inspection revealed so many problems
that doubts preponderate. However, this does not prove their failure. Also, one may ad-
vance principled arguments such as Cartwright’s (1979) that one cannot avoid being
entangled in conceptual circles. For such reasons, the majority, it seems, has acquiesced
in non-reductive analysis; cf., e.g., Woodward (2003, pp. 104ff.) for an apology of non-
reductivity or Glymour (2004) for a eulogy of the, as he calls it, Euclidean as opposed to
the Socratic ideal.

Another way of assessing the issue is more philosophical. Are there any more basic
features of reality to which causation may reduce? One may well say no, and thereby
justify the rejection of reductive analysis. Or one may say yes. Laws may be such a more
basic feature; this, however, threatens to result either in an inadequate regularity theory of
causation or in an inability to say what laws are beyond regularities. Objective probabili-
ties may be such a feature — if we only knew what they are. What else is there on offer?
On the other hand, it is not so easy to simply accept causation as a basic phenomenon;
after all, the point has deeply worried philosophers for centuries after Hume.

In any case, all these issue are involved in settling for a certain analytic policy. It will
become clearer in the subsequent points why I nevertheless maintain the possibility of
reductive analysis.

(11) The most conspicuous difference of the SM and the RT approach is a direct con-
sequence of their different policies. The SM account bases its analysis on structural mod-
els or equations, whereas the RT account explicates causation in terms of ranking func-
tions. These are entirely different things!

Prima facie, structural equations are easier to grasp. Despite its non-reductive proce-
dure the SM approach incurs the obligation, though, to somehow explain how the struc-
tural equations can establish causal order among generic variables. They can do this,
because Pearl (2000, pp. 157ff.) explicitly gives them an interventionistic interpretation
that, in turn, is basically a counterfactual one, as is entirely clear to Pearl; most interven-
tions are only counterfactual. Woodward (2003) repeatedly emphasizes the point that the
interventionistic account clarifies the counterfactual approach by forcing a specific inter-
pretation of the multiply ambiguous counterfactual idiom. Still, despite Woodward’s
(2003, pp. 121f)) claim to use counterfactuals only when they are clearly true of false,
and despite Pearl’s (2000, section 7.1) attempt to account for counterfactuals within
structural models, the issue how counterfactuals acquire truth conditions remains a mys-
tery in my view.

By contrast, it is quite bewildering to base an analysis of causation on ranking func-
tions that are avowedly to be understood only as doxastic states, i.e., in a purely episte-
mological way. One of my reasons for doing so is that the closer inspection envisaged in
(10) comes out, on the whole, more satisfactorily than for other accounts, that is, the
overall score in dealing with examples is better. The other reason why I find ranking
functions not so implausible a starting point lies in my profoundly Humean strategy in
dealing with causation. There is no more basic feature of reality to which causation might
reduce. The issue rather is how modal facts come into the world — where modal facts
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pertain to lawhood, causation, counterfactuals, probabilities, etc. We do not find ‘musts’
and ‘cans’ in the world as we find apples and pears; this was Hume’s crucial challenge.
And his answer was what is now called Hume’s projectivism (cf. Blackburn 1993, in
particular the essays in part I). Ranking functions are well suited for laying out this pro-
jectivist answer in detail. This fundamental difference between the SM and the RT ap-
proach further unfolds in the final four points.

(12) A basic idea in our notion of causation between facts is, very roughly, that the
cause does something for its effect, contributes to it, makes it possible or necessary or
more likely, in short: that the cause is somehow positively relevant to its effect. One fact
could also be negatively relevant to another, in which case the second obtains despite the
first. As for causal dependence between variables, it is only required that the one is rele-
vant for the other. What are the notions of relevance and positive relevance provided by
the SM and the RT approach?

Ranking theory has a rich notion of positive and negative relevance, analogous and
equivalent in formal behavior to the probabilistic notions. Its relevance notion is much
richer and, I find, more adequate to the needs of causal theorizing than those provided by
the key terms of other approaches to deterministic causation: laws, counterfactuals, inter-
ventions, structural equations, or whatever. This fact grounds my optimism that the RT
approach is, on the whole, better able to cope with all the examples and problem cases.

I just said that the relevance notion provided by the SM approach is poorer. What is
it? Clause (2b) of the SM definition says, in a way, that the effect {¥ =y} had to occur
given the cause { X = X} occurs, and clause (2a) says that the effect might not have
occurred if the cause does not occur and, indeed, would not have occurred if the cause
variable(s) X would have been realized in a suitable alternative way. In traditional
terms, we could say that the cause is a necessary and sufficient condition of the effect
provided the circumstances — where the subtleties of the SM approach lie in the proviso;
that’s the SM positive relevance notion. So, roughly, in SM terms, the only ‘action’ a
cause can do is making its effect necessary, whereas ranking theory allows many more
‘actions’. This is what I mean by the SM approach being poorer. For instance, it is not
clear how a fact could be negatively relevant to another fact in the SM approach, or how
one fact could be positively and another negatively relevant to a third one. And so forth.

(13) Let’s take a closer look at what “action” could mean in the previous paragraph.
In the RT approach it means comparing ranks conditional on the cause {X € 4} and on
its negation {X € A }; the rank raising showing up in that comparison is what the cause
‘does’. In the SM approach we do not conditionalize on the cause { X = ¥} and some
alternative { X = X'}; rather, in clauses (2a-b) of the SM definition we look at the con-
sequences of the interventions X <% and X « X', i.e., by replacing the structural
equation(s) for X by the stipulation X = X or, respectively, = X'. The received view
by now is that intervention is quite different from conditionalization (cf., e.g.,
Goldszmidt, Pearl 1992, and Meek, Glymour 1994), the suggestion being that interven-
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tion is what causal theorizing requires, and that all approaches relying on conditionaliza-
tion such as the RT approach therefore are misguided (cf. also Pearl 2000, section 3.2).

The difference looks compelling: intervention is a real activity, whereas conditionali-
zation is only a mental, suppositional activity. But once we grant that intervention is
mostly counterfactual (i.e., also suppositional), the difference shrinks. Indeed, I tend to
say that there never is a real intervention in a given single case; after a real intervention
we deal with a different single case than before. Hence, I think the difference the received
view assumes is spurious; rather, interventions may be construed in terms of condition-
alization:

Of course, the intervention X «— % differs from conditioning on { X = X }; in this,
the received view is correct. However, the RT and other conditioning approaches do not
simply conditionalize on the cause, but on much more. What the intervention X;<x; on
the single variable X; does is change the value of X; to x; while at the same time keeping
fixed the values of all temporally preceding variables as they are in the given context, or,
if only a causal graph and not temporal order is available, either of all ancestors of X; or
of all non-descendants of X; (which comes to the same thing in structural models, and
also in probabilistic terms given the common cause principle). Thus, the intervention is
equivalent to conditioning on {X; = x,} and on the fixed values of those other variables.

Similarly for a double intervention (X;, X,) < (x|, x). For assessing the behavior of
the variables temporally between X; and X, (or being descendants of Xj, but not of X3)
under the double intervention, we have to look at the same conditionalization as in the
single intervention X;<—x;, whereas for the variables later than X, (or descending from
both X; and X;) we have to condition on {X; = x;}, {X; = x,}, the past of X as it is in the
given context, and on those intermediate variables taking the values as they are after the
intervention X;<—x;. And so forth for multiple interventions (that are so crucial for the
SM approach).

Given this translation, this kind of difference between the SM and the RT approach
vanishes, I think. Consider, e.g., the definition of direct causal dependence of Woodward
(2003, p. 55): Y directly causally depends on X iff an intervention on X can make a differ-
ence to Y, provided the values of all other variables in the given frame U are somehow
fixed by intervention. Translate this as proposed, and you arrive at the conditionalization
I use in the above RT definitions to characterize direct causation.

(14) The preceding argument has a gap that emerges when we attend to another topic
that I find crucial, but nowhere thoroughly discussed: the frame-relativity of causation.
Everybody agrees that the distinction between direct and indirect causation is frame-
relative; of course, a direct causal relationship relative to a coarse-grained frame may turn
indirect under refinements. What about causation itself, though? One may try some mod-
erate antirealism, e.g., general thoughts to the effect that science only produces models of
reality and never truly represents reality as it really is; then causation would be model-
relative, too.

However, this is not what I have in mind. The point is quite specific: The RT defini-
tion 1 refers, in a way I had explained in point 7, to the obtaining circumstances, however
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only insofar as they are represented in the given frame U. This entails a genuine frame-
relativity of causation as such; {X =x} may be a (direct) cause of {¥ = y} within one
frame, but not within another or more refined frame. As Halpern, Hitchock (2010, Sec-
tion 4.1) argue, this phenomenon may also show up within the SM approach.

I do not think that this agrees with Pearl’s intention in pursuing the SM account; an
actual cause should not cease to be an actual cause simply by refining the frame. Perhaps,
the intention was to arrive at a frame-independent notion of causation by assuming a
frame-independent notion of intervention. My translation of the intervention Xj<—x; into
conditionalization referred to the past (or the ancestors or the non-descendants) of X; as
far as they are represented in the given frame U, and thus reproduced only a frame-
relative notion of intervention. However, the intention presumably is to refer to the entire
past of X; absolutely, not leaving any hole for the supposition of {X; = x;} to backtrack.
If so, there is another sharp difference between the SM and the RT approach with reper-
cussions on the previous point.

Of course, I admit that our intuitive notion of causation is not frame-relative; we aim
at an absolute notion. However, this aim bars us from having a reductive analysis of cau-
sation, since the analysis would have to refer then to the rest of the world, as it were, to
many things outside the frame that are thus prevented from entering the analysis. In fact,
any rigorous causal theorizing is thereby frustrated in my view. For, how can you theo-
retically deal with all those don’t-know-what’s? For this reason I always preferred to
work with a fixed frame, to pretend that this frame is all there is, and then to say every-
thing about causation that can be said within this frame. This procedure at least allows a
reductive analysis of a frame-relative notion.

How, then, can we get rid of the frame-relativity? I propose, by ever more fine-
graining and extending the frame, studying the frame-relative causal relations within all
these well-defined frames, and finding out what remains stable across all these refine-
ments; we may hope, then, that these stable features are preserved even in the maximally
refined, universal frame (cf. Spohn forthcoming, section 14.9; for Halpern, Hitchcock
(2010, Section 4.1) this stability is also crucial). I would not know how else to deal with
the challenge posed by frame-relativity, and I suspect that considerable problems in
causal theorizing result from not explicitly facing this challenge.

(15) The various points may be summarized in the final opposition: whether causation
is to be subjectivistically or objectivistically conceived. Common sense, Judea Pearl, and
many others are on the objectivistic side: “I now take causal relationships to be the fun-
damental building blocks both of physical reality and of human understanding of that
reality” (Pearl 2000, pp. xiiif.). And insofar as structural equations are objective, the SM
approach shares this objectivism. By contrast, frame-relativity is an element of subject-
relativity; frames are chosen by us. And the use of only epistemically interpretable rank-
ing functions involves a much deeper subjectivization of the topic of causation. (The
issue of relevance, point 12, is related, by the way, since in my view only epistemic rele-
vance is rich enough a concept.)
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The motive of the subjectivistic RT approach was, I said, Hume’s challenge. And the
gain, I claimed, is the feasibility of a reductive analysis. Any objectivistic approach has to
tell how else to cope with that challenge and how to make peace with non-reductivity.
Still, we cannot simply acquiesce in subjectivism, since it flies in the face of everyone
keeping some sense of reality. The general philosophical strategy to escape pure subjec-
tivism has been aptly described by Blackburn (1993, part 1) as Humean projectivism
leading to so-called quasi-realism that is indistinguishable from ‘real’ realism.

This general strategy may be precisely explicated in the case of causation: I had indi-
cated in the previous point how I propose to get rid of frame-relativity. And in Spohn
(forthcoming, ch. 15) I develop an objectification theory for ranking functions, according
to which some ranking functions, the objectifiable ones, may be said, to truly (or falsely)
represent causal relations. No doubt, this objectification theory is disputable, but it shows
that the subjectivistic starting point need not preclude us from objectivistic aims. Maybe,
though, these aims are more convincingly served by approaching them in a more direct
and realistic way, as the SM account does.

4 Conclusion

On none of the fifteen differences above could I seriously start discussion; obviously
nothing below book length would do. Indeed, discussing these points was not my aim at
all, let alone treating anyone conclusively (though, of course, I could not hide where my
sympathies are). My first intention was simply to display the differences, not all of which
are clearly seen in the literature; already the sheer number is surprising. And I expressed
my second intention between point 3 and point 4: namely to show that there are many
internal theoretical issues in the theory of causation. On all of them one must take and
argue a stance, a most demanding requirement. My hunch is that those theoretical consid-
erations will eventually override issues of exemplification and application. All the more
important it is to take some stance; no less will do for reaching a considered judgment.
Judea Pearl has paradigmatically shown how to do this. His brilliant theoretical develop-
ments have not closed, but tremendously advanced our understanding of all these issues
pertaining to causation.

Acknowledgment: I am indebted to Joe Halpern for providing most useful comments
and correcting my English.
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30
On Identifying Causal Effects

JIN TIAN AND ILYA SHPITSER

1 Introduction

This paper deals with the problem of inferring cause-effect relationships from a
combination of data and theoretical assumptions. This problem arises in diverse
fields such as artificial intelligence, statistics, cognitive science, economics, and the
health and social sciences. For example, investigators in the health sciences are
often interested in the effects of treatments on diseases; policymakers are concerned
with the effects of policy decisions; Al research is concerned with effects of actions
in order to design intelligent agents that can make effective plans under uncertainty;
and so on.

To estimate causal effects, scientists normally perform randomized experiments
where a sample of units drawn from the population of interest is subjected to the
specified manipulation directly. In many cases, however, such a direct approach is
not possible due to expense or ethical considerations. Instead, investigators have
to rely on observational studies to infer effects. A fundamental question in causal
analysis is to determine when effects can be inferred from statistical information,
encoded as a joint probability distribution, obtained under normal, intervention-
free behavior. A key point here is that it is not possible to make causal conclusions
from purely probabilistic premises — it is necessary to make causal assumptions.
This is because without any assumptions it is possible to construct multiple “causal
stories” which can disagree wildly on what effect a given intervention can have, but
agree precisely on all observables. For instance, smoking may be highly correlated
with lung cancer either because it causes lung cancer, or because people who are
genetically predisposed to smoke may also have a gene responsible for a higher cancer
incidence rate. In the latter case there will be no effect of smoking on cancer.

In this paper, we assume that the causal assumptions will be represented by
directed acyclic causal graphs [Pearl, 2000; Spirtes et al., 2001] in which arrows
represent the potential existence of direct causal relationships between the corre-
sponding variables and some variables are presumed to be unobserved. Our task will
be to decide whether the qualitative causal assumptions represented in any given
graph are sufficient for assessing the strength of causal effects from nonexperimental
data.

This problem of identifying causal effects has received considerable attention
in the statistics, epidemiology, and causal inference communities [Robins, 1986;
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Robins, 1987; Pearl, 1993; Robins, 1997; Kuroki and Miyakawa, 1999; Glymour
and Cooper, 1999; Pearl, 2000; Spirtes et al., 2001]. In particular Judea Pearl and
his colleagues have made major contributions in solving the problem. In his seminal
paper Pearl (1995) established a calculus of interventions known as do-calculus —
three inference rules by which probabilistic sentences involving interventions and
observations can be transformed into other such sentences, thus providing a syntac-
tic method of deriving claims about interventions. Later, do-calculus was shown to
be complete for identifying causal effects, that is, every causal effects that can be
identified can be derived using the three do-calculus rules [Shpitser and Pearl, 2006a;
Huang and Valtorta, 2006b]. Pearl (1995) also established the popular “back-door”
and “front-door” criteria — sufficient graphical conditions for ensuring identifica-
tion of causal effects. Using do-calculus as a guide, Pearl and his collaborators
developed a number of sufficient graphical criteria: a criterion for identifying causal
effects between singletons that combines and expands the front-door and back-door
criteria [Galles and Pearl, 1995], a condition for evaluating the effects of plans in
the presence of unmeasured variables, each plan consisting of several concurrent
or sequential actions [Pearl and Robins, 1995]. More recently, an approach based
on c-component factorization has been developed in [Tian and Pearl, 2002a; Tian
and Pearl, 2003] and complete algorithms for identifying causal effects have been
established [Tian and Pearl, 2003; Shpitser and Pearl, 2006b; Huang and Valtorta,
2006a). Finally, a general algorithm for identifying arbitrary counterfactuals has
been developed in [Shpitser and Pearl, 2007], while the special case of effects of
treatment on the treated has been considered in [Shpitser and Pearl, 2009].

In this paper, we summarize the state of the art in identification of causal effects.
The rest of the paper is organized as follows. Section 2 introduces causal models
and gives formal definition for the identifiability problem. Section 3 presents Pearl’s
do-calculus and a number of easy to use graphical criteria. Section 4 presents the
results on identifying (unconditional) causal effects. Section 5 shows how to iden-
tify conditional causal effects. Section 6 considers identification of counterfactual
quantities which arise when we consider effects of relative interventions. Section 7

concludes the paper.

2 Notation, Definitions, and Problem Formulation

In this section we review the graphical causal models framework and introduce the
problem of identifying causal effects.

2.1 Causal Bayesian Networks and Interventions

The use of graphical models for encoding distributional and causal assumptions is
now fairly standard [Heckerman and Shachter, 1995; Lauritzen, 2000; Pearl, 2000;
Spirtes et al., 2001]. A causal Bayesian network consists of a DAG G over a set
V ={VW1,...,V,} of variables, called a causal diagram. The interpretation of such a
graph has two components, probabilistic and causal. The probabilistic interpreta-
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tion views G as representing conditional independence assertions: Each variable is
independent of all its non-descendants given its direct parents in the graph.! These
assertions imply that the joint probability function P(v) = P(v1,...,v,) factorizes
according to the product [Pearl, 1988]

Pv) = HP(vilpai), (1)

where pa; are (values of) the parents of variable V; in the graph. Here we use
uppercase letters to represent variables or sets of variables, and use corresponding
lowercase letters to represent their values (instantiations).

The set of conditional independences implied by the causal Bayesian network
can be obtained from the causal diagram G according to the d-separation criterion
[Pearl, 1988].

DEFINITION 1 (d-separation). A path 2 p is said to be blocked by a set of nodes
Z if and only if

1. p contains a chain V; — V; — V}, or a fork V; <+ V; — V}, such that the node
Vi isin Z, or

2. p contains an inverted fork V; — V; < Vj, such that Vj is not in Z and no
descendant of Vj is in Z.

A path not blocked by Z is called d-connecting or active. A set Z is said to d-
separate X from Y, denoted by (X 1Y|Z)q, if and only if Z blocks every path
from a node in X to a node in Y.

We have that if Z d-separates X from Y in the causal diagram G, then X is
conditionally independent of Y given Z in the distribution P(v) given in Eq. (1).

The causal interpretation views the arrows in G as representing causal influences
between the corresponding variables. In this interpretation, the factorization of
(1) still holds, but the factors are further assumed to represent autonomous data-
generation processes, that is, each parents-child relationship characterized by a con-
ditional probability P(v;|pa;) represents a stochastic process by which the values of
V; are assigned in response to the values pa; (previously chosen for V;’s parents),
and the stochastic variation of this assignment is assumed independent of the vari-
ations in all other assignments in the model. Moreover, each assignment process
remains invariant to possible changes in the assignment processes that govern other
variables in the system. This modularity assumption enables us to infer the effects
of interventions, such as policy decisions and actions, whenever interventions are
described as specific modifications of some factors in the product of (1). The sim-
plest such intervention, called atomic, involves fixing a set T of variables to some

1We use family relationships such as “parents,” “children,” and “ancestors” to describe the
obvious graphical relationships.
2A path is a sequence of consecutive edges (of any directionality).
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Figure 1. A causal diagram illustrating the effect of smoking on lung cancer

constants T = ¢ denoted by do(T = t) or do(t), which yields the post-intervention
distribution®
Py(v) = { [pvigry Pvilpai) v .consist.ent Witl’.l t. @)
0 v inconsistent with .

Eq. (2) represents a truncated factorization of (1), with factors corresponding to the
manipulated variables removed. This truncation follows immediately from (1) since,
assuming modularity, the post-intervention probabilities P(v;|pa;) corresponding
to variables in 7' are either 1 or 0, while those corresponding to unmanipulated
variables remain unaltered. If T" stands for a set of treatment variables and Y for
an outcome variable in V' \ T, then Eq. (2) permits us to calculate the probability
Pi(y) that event Y = y would occur if treatment condition T' = ¢ were enforced
uniformly over the population. This quantity, often called the “causal effect” of T'
on Y is what we normally assess in a controlled experiment with 7" randomized, in
which the distribution of Y is estimated for each level ¢ of T

As an example, consider the model shown in Figure 1(a) from [Pearl, 2000] that
concerns the relation between smoking (X) and lung cancer (Y), mediated by the
amount of tar (Z) deposited in a person’s lungs. The model makes qualitative
causal assumptions that the amount of tar deposited in the lungs depends on the
level of smoking (and external factors) and that the production of lung cancer
depends on the amount of tar in the lungs but smoking has no effect on lung cancer
except as mediated through tar deposits. There might be (unobserved) factors (say
some unknown carcinogenic genotype) that affect both smoking and lung cancer,
but the genotype nevertheless has no effect on the amount of tar in the lungs
except indirectly (through smoking). Quantitatively, the model induces the joint
distribution factorized as

P(u,z,z,y) = P(u)P(z|u)P(z|x)P(y|z,u). (3)

3[Pearl, 1995; Pearl, 2000] used the notation P(vl|set(t)), P(v|do(t)), or P(v|t) for the post-
intervention distribution, while [Lauritzen, 2000] used P(v||t).
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Assume that we could perform an ideal intervention on variable X by banning
smoking?, then the effect of this action is given by

Px—rpaise(u, z,y) = P(u)P(2|X = False)P(y|z,u), (4)

which is represented by the model in Figure 1(b).

2.2 The Identifiability Problem

We see that, whenever all variables in V' are observed, given the causal diagram
G, all causal effects can be computed from the observed distribution P(v) as given
by Eq. (2). However, if some variables are not measured, or two or more variables
in V are affected by unobserved confounders, then the question of identifiability
arises. The presence of such confounders would not permit the decomposition of
the observed distribution P(v) in (1). For example, in the model shown in Figure
1(a), assume that the variable U (unknown genotype) is unobserved and we have
collected a large amount of data summarized in the form of (an estimated) join
distribution P over the observed variables (X,Y,Z). We wish to assess the causal
effect P,(y) of smoking on lung cancer.

Let V and U stand for the sets of observed and unobserved variables, respectively.
If each U variable is a root node with exactly two observed children, then the cor-
responding model is called a semi-Markovian model. In this paper, we will present
results on semi-Markovian models as they allow for simpler treatment. However the
results are general as it has been shown that causal effects in a model with arbitrary
sets of unobserved variables can be identified by first projecting the model into a
semi-Markovian model [Tian and Pearl, 2002b; Huang and Valtorta, 2006a].

In a semi-Markovian model, the observed probability distribution P(v) becomes
a mixture of products:

P(v) = ZHP(UHPGuUi)P(U) (5)

where Pa; and U’ stand for the sets of the observed and unobserved parents of
V; respectively, and the summation ranges over all the U variables. The post-
intervention distribution, likewise, will be given as a mixture of truncated products

Z H P(vi|pa;,u’)P(u) v consistent with .
B(v) =93 w {ilviery (6)

0 v inconsistent with ¢.

And, the question of identifiability arises, i.e., whether it is possible to express some
causal effect P:(s) as a function of the observed distribution P(v), independent of
the unknown quantities, P(u) and P(v;|pa;, u?).

4Whether or not any actual action is an ideal manipulation of a variable (or is feasible at all)
is not part of the theory - it is input to the theory.
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It is convenient to represent a semi-Markovian model with a graph G that does
not show the elements of U explicitly but, instead, represents the confounding effects
of U variables using (dashed) bidirected edges. A bidirected edge between nodes V;
and Vj represents the presence of unobserved confounders that may influence both
Vi and V;. For example the model in Figure 1(a) will be represented by the graph
in Figure 1(c).

In general we may be interested in identifying conditional causal effects Py(s|c),
the causal effects of T' on S conditioned on another set C' of variables. This problem
is important for evaluating conditional plans and stochastic plans [Pearl and Robins,
1995], where action T is taken to respond in a specified way to a set C of other
variables — say, through a functional relationship ¢ = g(c). The effects of such
actions may be evaluated through identifying conditional causal effects in the form
of P;(s|e) [Pearl, 2000, chapter 4].

DEFINITION 2 (Causal-Effect Identifiability). The causal effect of a set of vari-
ables T on a disjoint set of variables S conditioned on another set C' is said to be
identifiable in a causal diagram G if the quantity P:(s|c) can be computed uniquely
from any positive probability P(v) of the observed variables—that is, if P (s|c) =
PMz(s|¢) for every pair of models M; and My with PM1(v) = PM2(v) > 0.

3 Do-calculus and Graphical Criteria

In general the identifiability of causal effects can be decided using Pearl’s do-calculus
— a set of inference rules by which probabilistic sentences involving interventions
and observations can be transformed into other such sentences. A finite sequence
of syntactic transformations, each applying one of the inference rules, may reduce
expressions of the type P;(s) to subscript-free expressions involving observed quan-
tities.

Let X, Y, and Z be arbitrary disjoint sets of nodes in G. We denote by G+ the
graph obtained by deleting from G all arrows pointing to nodes in X. We denote
by G x the graph obtained by deleting from G all arrows emerging from nodes in X.
Similarly, G, will represent the deletion of both incoming and outgoing arrows.

THEOREM 3 (Rules of do-Calculus). [Pearl, 1995] For any disjoint sets of vari-
ables X, Y, Z, and W we have the following rules.

Rule 1 (Insertion/deletion of observations) :

Po(ylz, w) = Pr(ylw) if (YILZ|IX, W)a. (7)

Rule 2 (Action/observation exchange) :

P, .(ylw) = Py(ylz,w) if (YILZ|X, W)Gfg‘ (8)

Rule 3 (Insertion/deletion of actions) :
Py .(ylw) = Polylw) if (YALZIX, W)e . (9)
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where Z(W) is the set of Z-nodes that are not ancestors of any W-node in
Gx.

A key result about do-calculus is that any interventional distribution that is
identifiable can be expressed in terms of the observational distribution by means of
applying a sequence of do-calculus rules.

THEOREM 4. [Shpitser and Pearl, 2006a] Do-calculus is complete for identifying
causal effects of the form P.(y|z).

In practice, do-calculus may be difficult to apply manually in complex causal
diagrams, since, as stated, the rules give little guidance for chaining them together
into a valid derivation.

Fortunately, a number of graphical criteria have been developed for quickly judg-
ing the identifiability by looking at the causal diagram G, of which the most influ-
ential are Pearl’s back-door and front-door criteria. A path from X to Y is called
back-door (relative to X) if it starts with an arrow pointing at X.

DEFINITION 5 (Back-Door). A set of variables Z satisfies the back-door criterion
relative to an ordered pair of variables (X;, X;) in a DAG G if:
(i) no node in Z is a descendant of X;; and

(ii) Z blocks every back-door path from X; to X;.

Similarly, if X and Y are two disjoint sets of nodes in G, then Z is said to satisfy
the back-door criterion relative to (X,Y) if it satisfies the criterion relative to any
pair (X;, X;) such that X; € X and X; €Y.

THEOREM 6 (Back-Door Criterion). [Pearl, 1995] If a set of variables Z satis-
fies the back-door criterion relative to (X,Y), then the causal effect of X on'Y is
identifiable and is given by the formula

Py(y) = Y Pyle,2)P(2). (10)

For example, in Figure 1(c) X satisfies the back-door criterion relative to (Z,Y)
and we have

P.(y) = P(ylz,2)P(x). (11)
DEFINITION 7 (Front-Door). A set of variables Z is said to satisfy the front-door
criterion relative to an ordered pair of variables (X,Y) if:

(i) Z intercepts all directed paths from X to Y;
(ii) all back-door paths from X to Z are blocked (by empty set); and
(iii) all back-door paths from Z to Y are blocked by X.
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THEOREM 8 (Frout-Door Criterion). [Pearl, 1995] If Z satisfies the front-door
criterion relative to an ordered pair of variables (X,Y), then the causal effect of X

on'Y is identifiable and is given by the formula

P.(y) =) P(zlz))_ Plyla',2)P(a). (12)

For example, in Figure 1(c) Z satisfies the front-door criterion relative to (X,Y")
and the causal effect P, (y) is given by Eq. (12).

There is a simple yet powerful graphical criterion for identifying the causal effects
of a singleton. For any set S, let An(S) denote the union of S and the set of ancestors
of the variables in S. For any set C, let G¢ denote the subgraph of G composed
only of variables in C. Let a path composed entirely of bidirected edges be called a
bidirected path.

THEOREM 9. [Tian and Pearl, 2002a] The causal effect Py(s) of a variable X on
a set of variables S is identifiable if there is no bidirected path connecting X to any
of its children in G apn(s)-

In fact, for X and S being singletons, this criterion covers both back-door and
front-door criteria, and also the criterion in [Galles and Pearl, 1995].

These criteria are simple to use but are not necessary for identification. In the
next sections we present complete systematic procedures for identification.

4 Identification of Causal Effects

In this section, we present a systematic procedure for identifying causal effects using
so-called c-component decomposition.

4.1 C-component decomposition

The set of variables V' in G can be partitioned into disjoint groups by assigning
two variables to the same group if and only if they are connected by a bidirected
path. Assuming that V' is thus partitioned into k groups Si, ..., Sk, each set S; is
called a c-component of V in G or a c-component of G. For example, the graph in
Figure 1(c) consists of two c-components {X,Y} and {Z}.

For any set C' C V, define the quantity Q[C](v) to denote the post-intervention
distribution of C' under an intervention to all other variables:®

QeI = Pocle) =3 T Pludpasu)P(w). (13)
u {i|V;€C}

In particular, we have Q[V](v) = P(v). If there is no bidirected edges connected
with a variable V;, then U® = () and Q[{V;}](v) = P(vi|pa;). For convenience, we
will often write Q[C](v) as Q[C].

The importance of the c-component steps from the following lemma.

5Set Q[0](v) = 1 since Y, P(u) = 1.
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LEMMA 10 (C-component Decomposition). [Tian and Pearl, 2002a] Assuming
that V' is partitioned into c-components S1,...,Sk, we have

(i) P(v) = 1, QISi].

(i1) Each Q[S;] is computable from P(v). Let a topological order over V be
Vi<...<Vp,andlet VD ={Vi,....Vi},i=1,...,n, and V®© = (). Then each
Q[S;l, j=1,...,k, is given by

QSil= J[ Pkt ) (14)

{ilVieS;}

The lemma says that for each c-component S; the causal effect Q[S;] = P\, (s4)
is identifiable. For example, in Figure 1(c), we have P, ,(z) = Q[{Z}] = P(z|x)
and P,(z,y) = Q{X,Y}] = P(y|z, z) P(x).

Lemma 10 can be generalized to the subgraphs of G as given in the following
lemma.

LEMMA 11 (Generalized C-component Decomposition). [Tian and Pearl, 2005]
Let H CV, and assume that H is partitioned into c-components Hy, ..., H; in the
subgraph G . Then we have
(i) Q[H| decomposes as
QU] = T Qi) (15)

(i) Each Q[H;] is computable from Q[H|. Let k be the number of variables in
H, and let a topological order of the variables in H be V,,,, < --- <V, in Gy. Let
H® = {Vinys -+ Vin, } be the set of variables in H ordered before Vi, (including
Vi )y i=1,...,k, and H® = (. Then each QH;), j=1,...,1, is given by

QH]
QH;] = . H W’ (16)
{Z‘VmieHj}
where each QIHW], i = 1,... k, is given by
QIHY]= ) QIH]. (17)

R\R()

Lemma 11 says that if the causal effect Q[H] = P\, (h) is identifiable, then for
each c-component H; of the subgraph G, the causal effect Q[H;] = P,\p, (h;) is
identifiable.

Next, we show how to use the c-component decomposition to identify causal
effects.

4.2 Computing causal effects

First we present a facility lemma. For W C C' C V, the following lemma gives a
condition under which Q[W] can be computed from Q[C] by summing over C'\ W,
like ordinary marginalization in probability theory.
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LEMMA 12. [Tian and Pearl, 2008] Let W C C CV, and W = C\W. If W
contains its own ancestors in the subgraph Go (An(W)g, = W), then

> QIC = QW]. (18)

Note that we always have ) Q[C] = 1.
Next, we show how to use Lemmas 10-12 to identify the causal effect P;(s) where
S and T are arbitrary (disjoint) subsets of V. We have

P(s)= Y R\t)= > QV\TI. (19)
(W\D\s (s

Let D = An(S)
out:

Gy\r- Then by Lemma 12, variables in (V' \ T') \ D can be summed

Ps)=>_ > QV\T]=> Q[D. (20)
d\s (v\t)\d d\s

Assume that the subgraph Gp is partitioned into c-components D1, ..., D;. Then
by Lemma 11, Q[D] can be decomposed into products of Q[D;]’s, and Eq. (20) can
be rewritten as

Pi(s)=>_J]elpil. (21)
d\s i
We obtain that P;(s) is identifiable if all Q[D;]’s are identifiable.

Let G be partitioned into c-components Si,...,S;g. Then any D; is a subset
of certain S; since if the variables in D; are connected by a bidirected path in a
subgraph of G then they must be connected by a bidirected path in G. Assuming
D; C S;, Q[D;] is identifiable if it is computable from @Q[S;]. In general, for C' C
T C V, whether Q[C] is computable from Q[T] can be determined recursively by
repeated applications of Lemmas 12 and 11, as given in the recursive algorithm
shown in Figure 2. At each step of the algorithm, we either find an expression for
Q[C], find Q[C] unidentifiable, or reduce the problem to a simpler one.

In summary, an algorithm for computing P;(s) is given in Figure 3, and the
algorithm has been shown to be complete, that is, if the algorithm outputs FAIL,
then P;(s) is not identifiable.

THEOREM 13. [Shpitser and Pearl, 2006b; Huang and Valtorta, 2006a] The algo-
rithm ID in Figure 3 is complete.

5 Identification of Conditional Causal Effects

An important refinement to the problem of identifying causal effects P,(y) is con-
cerned with identifying conditional causal effects, in other words causal effects in
a particular subpopulation where variables Z are known to attain values z. These
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Algorithm Identify(C, T, Q)

INPUT: C C T CV,Q = Q[T]. Gr and G¢ are both composed of one single
c-component.

OUTPUT: Expression for Q[C] in terms of @ or FAIL.

Let A= An(C)g,.
o IF A =C, output Q[C] = Zt\CQ.
e [F A=1T, output FAIL.
e IFCCACT

1. Assume that in G 4, C is contained in a c-component T".
2. Compute Q[T"] from Q[A] = Zt\a Q@ by Lemma 11.
3. Output Identify(C,T", Q[T"]).

Figure 2. An algorithm for determining if Q[C] is computable from Q[T].

Algorithm ID(s,t)

INPUT: two disjoint sets S, T C V.
OUTPUT: the expression for P;(s) or FAIL.
Phase-1:

1. Find the c-components of G: Si,...,S;. Compute each Q[S;] by Lemma 10.

2. Let D = An(S) and the c-components of Gp be D;, 1 =1,...,1.

Gy\r

Phase-2:
For each set D; such that D; C S;:

Compute Q[D;] from Q[S;] by calling Identify(D;, S;, Q[S;]) in Figure 2. If the
function returns FAIL, then stop and output FAIL.

Phase-3: Output P (s) = >_p, [; QIDs]-

Figure 3. A complete algorithm for computing P;(s).
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conditional causal effects are written as P, (y|z), and defined just as regular condi-
tional distributions as

Py (y, )

Complete closed form algorithms for identifying effects of this type have been
developed. One approach [Tian, 2004] generalizes the algorithm for identifying
unconditional causal effects P, (y) found in Section 4. There is, however, an easier
approach which works.

The idea is to reduce the expression P, (y|z), which we don’t know how to handle
to something like P,/ (y’), which we do know how to handle via the algorithm already
presented. This reduction would have to find a way to get rid of variables Z in the
conditional effect expression.

Ridding ourselves of some variables in Z can be accomplished via rule 2 of do-
calculus. Recall that applying rule 2 to an expression allows us to replace condi-
tioning on some variable set W C Z by fixing W instead. Rule 2 states that this
is possible in the expression P, (y|z) whenever W contains no back-door paths to
Y conditioned on the remaining variables in Z and X (that is X U Z \ W), in the
graph where all incoming arrows to X have been cut.

It’s not difficult to show the following uniqueness lemma.

LEMMA 14. [Shpitser and Pearl, 2006a] For every conditional effect P,(y|z) there
exists a unique mazimal W C Z such that P, (y|z) is equal to Py 4, (y|z\w) according

to rule 2 of do-calculus.

Lemma 14 states that we only need to apply rule 2 once to rid ourselves of as
many conditioned variables as possible in the effect of interest. However, even after
this is done, we may be left with some variables in Z \ W past the conditioning
bar in our effect expression. If we insist on using unconditional effect identification,
we may try to identify the joint distribution P, ,(y,z \ w) to obtain an expression

a, and obtain the conditional distribution P, ,,(y|z \ w) by taking s~ But what
Y

it Pyw(y,z \ w) is not identifiable? Are there cases where P, . (y,z \ w) is not
identifiable, but P, ,(y|z \ w) is? Fortunately, it turns out the answer is no.

LEMMA 15. [Shpitser and Pearl, 2006a] Let P, (y|z) be a conditional effect of inter-
est, and W C Z the unique mazimal set such that Py(y|z) is equal to Py . (y|z \ w).
Then P, (y|z) is identifiable if and only if Py, (y, z \ w) is identifiable.

Lemma 15 gives us a simple algorithm for identifying arbitrary conditional effects
by first reducing the problem into one of identifying an unconditional effect — and
then invoking the complete algorithm ID in Figure 3. This simple algorithm is
actually complete since the statement in Lemma 15 is if and only if. The algorithm
itself is shown in Fig. 4. The algorithm as shown picks elements of W one at a
time, although the set it picks as it iterates will equal the maximal set W due to
the following lemma.
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Algorithm IDC(y, x, z)
INPUT: disjoint sets X,Y,Z C V.
OUTPUT: Expression for P,(y|z) in terms of P or FAIL.

Lif W e Z)(Y L WX, Z\{W})a, s
return IDC(y, z U {w}, z \ {w}).

2 else let P/ =1ID(yU z, z).
/ /
return P’/ > P’

Figure 4. A complete identification algorithm for conditional effects.

LEMMA 16. Let P,(y|z) be a conditional effect of interest in a causal model induc-
ing G, and W C Z the unique mazimal set such that P,(y|z) is equal to Py ., (y|z\w).
Then W = {W'|Py(y|2) = Pru(ylz \ {w'})}.

Completeness of the algorithm easily follows from the results we presented.
THEOREM 17. [Shpitser and Pearl, 2006a] The algorithm IDC is complete.

We note that the procedures ID and IDC served as a means to prove the com-
pleteness of do-calculus (Theorem 4). The proof [Shpitser and Pearl, 2006b] pro-
ceeds by reducing the steps in these procedures to sequences of do-calculus deriva-
tions.

6 Relative Interventions and the Effect of Treatment on the
Treated

Interventions considered in the previous sections are what we term “absolute,” since
the values x to which variables are set by do(z) bear no relationship to whatever
natural values were assumed by variables X prior to an intervention. Such absolute
interventions correspond to clamping a wire in a circuit to ground, or performing a
randomized clinical trial for a drug which does not naturally occur in the body.

By contrast, many interventions are relative, in other words, the precise level x
to which the variable X is set depends on the values X naturally attains. A typical
relative intervention is the addition of insulin to the bloodstream. Since insulin
is naturally synthesized by the human body, the effect of such an intervention
depends on the initial, pre-intervention concentration of insulin in the blood, even
if a constant amount is added for every patient. The insulin intervention can be
denoted by do(i + X), where 4 is the amount of insulin added, and X denotes the
random variable representing pre-intervention insulin concentration in the blood.
More generally, a relative intervention on a variable X takes the form of do(f(X))
for some function f.

How are we to make sense of a relative intervention do(f(X)) on X applied to a
given population where the values of X are not known? Can relative interventions
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be reduced to absolute interventions? It appears that in general the answer is “no.”
Consider: if we knew that X attained the value x for a given unit, then the effect
of an intervention in question on the outcome variable Y is really P(y|do(f(x)),x).
This expression is almost like the (absolute) conditional causal effect of do(f(x)) on
1y, except the evidence that is being conditioned on is on the same variable that is
being intervened. Since z and f(z) are not in general the same, it appears that this
expression contains a kind of value conflict. Are these kinds of probabilities always
07 Are they even well defined?

In fact, expressions of this sort are a special case of a more general notion of
a counterfactual distribution, which can be derived from functional causal models
[Pearl, 2000, Chapter 7]. Such models consist of two sets of variables, the observable
set V representing the domain of interest, and the unobservable set U representing
the background to the model that we are ignorant of. Associated with each observ-
able variable V; in V is a function f; which determines the value of V; in terms of
values of other variables in V U U. Finally, there is a joint probability distribution
P(u) over the unobservable variables, signifying our ignorance of the background
conditions of the model.

The causal relationships in functional causal models are represented, naturally,
by the functions f;; each function causally determines the corresponding V; in terms
of its inputs. Causal relationships entailed by a given model have an intuitive visual
representation using a causal diagram. Causal diagrams contain two kinds of edges.
Directed edges are drawn from a variable X to a variable V; if X appears as an input
of f;. Directed edges from the same unobservable U; to two observables V;, Vi can
be replaced by a bidirected edge between V; to V. We will consider semi-Markovian
models which induce acyclic graphs where P(u) = []; P(u;), and each U; has at
most two observable children. A graph obtained in this way from a model is said
to be induced by said model.

Unlike causal Bayesian networks introduced in Section 2, functional causal mod-
els represent fundamentally deterministic causal relationships which only appear
stochastic due to our ignorance of background variables. This inherent determin-
ism allows us to define counterfactual distributions which span multiple worlds
under different interventions regimes. Formally, a joint counterfactual distribution
is a distribution over events of the form Y, where Y is a post-intervention random
variable in a causal model (the intervention in question being do(x)). A single joint
distribution can contain multiple such events, with different, possibly conflicting
interventions.

Such joint distributions are defined as follows:

PYh =yt .., YE =4 = > Pu), (22)

{ulYY, (W=y! A AYE (u)=y*}

where U is the set of unobserved variables in the model. In other words, a joint
counterfactual probability is obtained by adding up the probabilities of every setting
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of unobserved variables in the model that results in the observed values of each
counterfactual event Y, in the expression. The query with the conflict we considered
above can then be expressed as a conditional distribution derived from such a joint,
specifically P(Yy,) = y|X = 2) = W. Queries of this form are well
known in the epidemiology literature as the effect of treatment on the treated (ETT)
[Heckman, 1992; Robins et al., 2006].

In fact, relative interventions aren’t quite the same as ETT since we don’t actually
know the original levels of X. To obtain effects of relative interventions, we simply
average over possible values of X, weighted by the prior distribution P(x) of X.
In other words, the relative causal effect P(y|do(f(X))) is equal to D P(Y¢) =
y|lX = 2)P(X = x).

Since relative interventions reduce to ETT, and because ETT questions are of in-
dependent interest, identification of ETT is an important problem. If interventions
are performed over multiple variables, it turns out that identifying ETT questions is
almost as intricate as general counterfactual identification [Shpitser and Pearl, 2009;
Shpitser and Pearl, 2007]. However, in the case of a singleton intervention, there is a
formulation which bypasses most of the complexity of counterfactual identification.
This formulation is the subject of this section.

We want to approach identification of ET'T in the same way we approached iden-
tification of causal effects in the previous sections, namely by providing a graphical
representation of conditional independences in joint distributions of interest, and
then expressing the identification algorithm in terms of this graphical representa-
tion. In the case of causal effects, we were given as input the causal diagram rep-
resenting the original, pre-intervention world, and we were asking questions about
the post-intervention world where arrows pointing to intervened variables were cut.
In the case of counterfactuals we are interested in joint distributions that span mul-
tiple worlds each with its own intervention. We want to construct a graph for these
distributions.

The intuition is that each interventional world is represented by a copy of the
original causal diagram, with the appropriate incoming arrows cut to represent the
changes in the causal structure due to the intervention. All worlds are assumed to
share history up to the moment of divergence due to differing interventions. This
is represented by all worlds sharing unobserved variables U. In the special case of
two interventional worlds the resulting graph is known as the twin network graph
[Balke and Pearl, 1994b; Balke and Pearl, 1994a].

In the general case, a refinement of the resulting graph (to account for the possi-
bility of duplicate random variables) is known as the counterfactual graph [Shpitser
and Pearl, 2007]. The counterfactual graph represents conditional independences
in the corresponding counterfactual distribution via the d-separation criterion just
as the causal diagram represents conditional independences in the observed distri-
bution of the original world. The graph in Figure 5(b) is a counterfactual graph for
the query P(Y, = y|X = z’) obtained from the original causal diagram shown in
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X 4>24> Y W
U U
X 7 Y X zZ Y X VA Y

(a) (b) (c)

Figure 5. (a) A causal diagram G. (b) The counterfactual graph for P(Y, = y|z’)
in G. (¢) The graph G’ from Theorem 18.

Figure 5(a).

There exists a rather complicated general algorithm for identifying arbitrary
counterfactual distributions from either interventional or observational data [Sh-
pitser and Pearl, 2007; Shpitser and Pearl, 2008], based on ideas from the causal
effect identification algorithms given in the previous sections, only applied to the
counterfactual graph, rather than the causal diagram. It turns out that while iden-
tifying ETT of a single variable X can be represented as an identification problem
of ordinary causal effects, ETT of multiple variables is significantly more complex
[Shpitser and Pearl, 2009]. In this paper, we will concentrate on single variable
ETT with multiple outcome variables Y.

What makes single variable ETT P(Y, = y|X = z’) particularly simple is the
form of its counterfactual graph. For the case of all ETTs, this graph will have
variables from two worlds — the “natural” world where X is observed to have taken
the value 2’ and the interventional world, where X is fixed to assume the value z.
There are two key points that simplify matters. The first is that no descendant
of X (including variables in Y') is of interest in the “natural” world, since we are
only interested in the outcome Y in the interventional world. The second is that
all non-descendants of X behave the same in both worlds (since interventions do
not affect non-descendants). Thus, when constructing the counterfactual graph we
don’t need to make copies of non-descendants of X, and we can ignore descendants
of X in the “natural” world. But this means the only variable in the “natural”
world we will construct is a copy of X itself.

What this implies is that a problem of identifying the ETT P(Y, = y|X = 2/)
can be rephrased as a problem of identifying a certain conditional causal effect.
THEOREM 18. [Shpitser and Pearl, 2009] For a singleton variable X, and a set
Y, P(Y, = y|X = a') is identifiable in G if and only if P, (y|w) is identifiable in G,
where G’ is obtained from G by adding a new node W with the same set of parents
(both observed and unobserved) as X, and no children. Moreover, the estimand for
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P(Y, = y|X = 12') is equal to that of P,(y|lw) with all occurrences of w replaced by

.

We illustrate the application of Theorem 18 by considering the graph G in
Fig. 5(a). The query P(Y, = y|X = 2’) is identifiable by considering P, (y|w)
in the graph G’ shown in Fig. 5(c), while the counterfactual graph for P(Y, = y|z’)
is shown in Fig. 5(b). Identifying P,(y|w) in G’ using the algorithm IDC in the
previous section leads to ) P(z|z) >, P(y|z, w,x)P(w,z)/P(w). Replacing w by
' yields the expression > P(z|z) Y ., P(y|z,a',2")P(z',z")/P(z").

Ordinarily, we know that P(y|z,2’,2"") is undefined if 2’ is not equal to z”’. How-
ever, in our case, we know that observing X = z’ in the natural world implies X = 2’
in any other interventional world which shares ancestors of X with the natural
world. This implies the expression ) ., P(y|z,2’,2")P(a’,2")/P(z') is equivalent
to P(y|z,2"), thus our query P(Y, = y|X = a’) is equal to ), P(y|z,2")P(z|z).

It is possible to use Theorem 18 to derive analogues of the back-door and front-
door criteria for ETT.

COROLLARY 19 (Back-door Criterion for ETT). If a set Z satisfies the back-door
criterion relative to (X,Y), where X is a singleton variable, then P(Y, = y|X = ')
is identifiable and equal to ) P(y|z,x)P(z|z").

The intuition for the back-door criterion for ETT is that Z, by assumption,
screens X and Y from observed values of X in other counterfactual worlds. Thus,
the first term in the back-door expression does not change. The second term changes
in an obvious way since Z depends on observing X = z’.

COROLLARY 20 (Front-door Criterion for ETT). If a set Z satisfies the front-door
criterion relative to (X,Y), where X, Y are singleton variables, then P(Y, = y|X =
x') is identifiable and equal to y, P(y|z,a")P(z|x).

Proof. We will be using a number of graphs in this proof. G is the original
graph. G is the graph obtained from G by adding a copy of X called W with the
same parents (including unobserved parents) as X and no children. G’ is a graph
representing independences in P(X,Y,Z). It is obtained from G by removing all
nodes other than X, Y, Z, by adding a directed arrow between any remaining A and
B in X,Y, Z if there is a d-connected path containing only nodes not in X,Y, 7
which starts with a directed arrow pointing away from A and ends with any arrow
pointing to B. Similarly, a bidirected arrow is added between any A and B in
X,Y, Z if there is a d-connected path containing only nodes not in X,Y, Z which
starts with any arrow pointing to A and ends with any arrow pointing to B. (This
graph is known as a latent projection [Pearl, 2000]). The graphs G', Gl are
defined similarly as above.

We want to identify P, (y, z,w) in G'. First, we want to show that no node in Z
shares a c-component with W or any node in Y in GZ¥. This can only happen if a
node in Z and W or a node in Y share a bidirected arc in G%’. But this means that
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either there is a back-door d-connected path from Z to Y in Gz, or there is a back-
door d-connected path from X to Z in G. Both of these claims are contradicted by
our assumption that Z satisfies the front-door criterion for (X,Y).

This implies P, (y, z,w) = P, »(y, w) Py (2) in G*.

By construction of G* and the front-door criterion, Py ., (2) = Py(z) = P(z|x).
Furthermore, since no nodes in Z and Y share a c-component in G’*, no node in
Z has a bidirected path to Y in G". This implies, by Lemma 1 in [Shpitser et al.,
2009], that P,(y,w,z) = P(y|z, w,z)P(w, ).

Since Z intercepts all directed paths from X to Y (by the front-door criterion),
P.oaly,w) = Paly,w) = X2, P(ylz, w,2)P(w,x).

We conclude that P,(y,w) is equal to >, P(z|z) >, P(y|z, w,z)P(w,z). Since
Po(w) = P(w) in G, Py(ylw) = 5, P(z]2) 3, P(ylz w, 2)Pla]w).

Finally, recall that W is just a copy of X, and X is observed to attain value z’ in
the “natural” world. This implies that our expression simplifies to ) P(z|z)P(y|z,z’),
which proves our result. a

If neither the back-door nor the front-door criteria hold, we must invoke general
causal effect identification algorithms from the previous sections. However, in the
case of ETT of a single variable, there is a simple complete graphical criterion which
works.

THEOREM 21. [Shpitser and Pearl, 2009] For a singleton variable X, and a set
Y, P(Y, = y|X = a') is identifiable in G if and only if there is no bidirected path
from X to a child of X in Gupn(y). Moreover, if there is no such bidirected path,
the estimand for P(Y, = y|X = 2') is obtained by multiplying the estimand for
D ann\ otz Pelan(y) \ @) (which exists by Theorem 9) by #ﬁg[sr]’ where
S? is the c-component in G containing X , and Q[S*]’ is obtained from the expression
for Q[S®] by replacing all occurrences of x with z’.

7 Conclusion

In this paper we described the state of the art in identification of causal effects and
related quantities in the framework of graphical causal models. We have shown
how this framework, developed over the period of two decades by Judea Pearl and
his collaborators, and presented in Pearl’s seminal work [Pearl, 2000], can sharpen
causal intuition into mathematical precision for a variety of causal problems faced
by scientists.
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