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The Effects of Interventions

3.1 Interventions

The ultimate aim of many statistical studies is to predict the effects of interventions. When
we collect data on factors associated with wildfires in the west, we are actually searching for
something we can intervene upon in order to decrease wildfire frequency. When we perform a
study on a new cancer drug, we are trying to identify how a patient’s illness responds when we
intervene upon it by medicating the patient. When we research the correlation between violent
television and acts of aggression in children, we are trying to determine whether intervening
to reduce children’s access to violent television will reduce their aggressiveness.

As you have undoubtedly heard many times in statistics classes, “correlation is not
causation.” A mere association between two variables does not necessarily or even usually
mean that one of those variables causes the other. (The famous example of this property
is that an increase in ice cream sales is correlated with an increase in violent crime—not
because ice cream causes crime, but because both ice cream sales and violent crime are more
common in hot weather.) For this reason, the randomized controlled experiment is considered
the golden standard of statistics. In a properly randomized controlled experiment, all factors
that influence the outcome variable are either static, or vary at random, except for one—so
any change in the outcome variable must be due to that one input variable.

Unfortunately, many questions do not lend themselves to randomized controlled experi-
ments. We cannot control the weather, so we can’t randomize the variables that affect wildfires.
We could conceivably randomize the participants in a study about violent television, but it
would be difficult to effectively control how much television each child watches, and nearly
impossible to know whether we were controlling them effectively or not. Even randomized
drug trials can run into problems when participants drop out, fail to take their medication, or
misreport their usage.

In cases where randomized controlled experiments are not practical, researchers instead
perform observational studies, in which they merely record data, rather than controlling it.
The problem of such studies is that it is difficult to untangle the causal from the merely
correlative. Our common sense tells us that intervening on ice cream sales is unlikely to have
any effect on crime, but the facts are not always so clear. Consider, for instance, a recent
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University of Winnipeg study that showed that heavy text messaging in teens was correlated
with “shallowness.” Media outlets jumped on this as proof that texting makes teenagers more
shallow. (Or, to use the language of intervention, that intervening to make teens text less
would make them less shallow.) The study, however, proved nothing of the sort. It might be
the case that shallowness makes teens more drawn to texting. It might be that both shallowness
and heavy texting are caused by a common factor—a gene, perhaps—and that intervening on
that variable, if possible, would decrease both.

The difference between intervening on a variable and conditioning on that variable should,
hopefully, be obvious. When we intervene on a variable in a model, we fix its value. We change
the system, and the values of other variables often change as a result. When we condition on a
variable, we change nothing; we merely narrow our focus to the subset of cases in which the
variable takes the value we are interested in. What changes, then, is our perception about the
world, not the world itself.

YX

Z
UY

UZ
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Figure 3.1 A graphical model representing the relationship between temperature (Z), ice cream sales
(X), and crime rates (Y)

Consider, for instance, Figure 3.1 that shows a graphical model of our ice cream sales
example, with X as ice cream sales, Y as crime rates, and Z as temperature. When we inter-
vene to fix the value of a variable, we curtail the natural tendency of that variable to vary
in response to other variables in nature. This amounts to performing a kind of surgery on
the graphical model, removing all edges directed into that variable. If we were to intervene
to make ice cream sales low (say, by shutting down all ice cream shops), we would have
the graphical model shown in Figure 3.2. When we examine correlations in this new graph,
we find that crime rates are, of course, totally independent of (i.e., uncorrelated with) ice
cream sales since the latter is no longer associated with temperature (Z). In other words, even
if we vary the level at which we hold X constant, that variation will not be transmitted to
variable Y (crime rates). We see that intervening on a variable results in a totally different
pattern of dependencies than conditioning on a variable. Moreover, the latter can be obtained
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Figure 3.2 A graphical model representing an intervention on the model in Figure 3.1 that lowers ice
cream sales
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directly from the data set, using the procedures described in Part One, while the former varies
depending on the structure of the causal graph. It is the graph that instructs us which arrow
should be removed for any given intervention.

In notation, we distinguish between cases where a variable X takes a value x naturally and
cases where we fix X = x by denoting the latter do(X = x). So P(Y = y|X = x) is the probabil-
ity that Y = y conditional on finding X = x, while P(Y = y|do(X = x)) is the probability that
Y = y when we intervene to make X = x. In the distributional terminology, P(Y = y|X = x)
reflects the population distribution of Y among individuals whose X value is x. On the other
hand, P(Y = y|do(X = x)) represents the population distribution of Y if everyone in the popu-
lation had their X value fixed at x. We similarly write P(Y = y|do(X = x),Z = z) to denote the
conditional probability of Y = y, given Z = z, in the distribution created by the intervention
do(X = x).

Using do-expressions and graph surgery, we can begin to untangle the causal relationships
from the correlative. In the rest of this chapter, we learn methods that can, astoundingly, tease
out causal information from purely observational data, assuming of course that the graph

stitutes a valid representation of re lity. It is worth noting here that we are making a
assumption that the intervention has no “side effects,” that is, that assigning the value x

for the variable X for an individual does not alter subsequent variables in a direct way. For
example, being “assigned” a drug might have a different effect on recovery than being forced
to take the drug against one’s religious objections. When side effects are present, they need to
be specified explicitly in the model.

3.2 The Adjustment Formula

The ice cream example represents an extreme case in which the correlation between X and
Y was totally spurious from a causal perspective, because there was no causal path from X
to Y . Most real-life situations are not so clear-cut. To explore a more realistic situation, let us
examine Figure 3.3, in which Y responds to both Z and X. Such a model could represent, for
example, the first story we encountered for Simpson’s paradox, where X stands for drug usage,
Y stands for recovery, and Z stands for gender. To find out how effective the drug is in the pop-
ulation, we imagine a hypothetical intervention by which we administer the drug uniformly
to the entire population and compare the recovery rate to what would obtain under the com-
plementary intervention, where we prevent everyone from using the drug. Denoting the first
intervention by do(X = 1) and the second by do(X = 0), our task is to estimate the difference

P(Y = 1|do(X = 1)) − P(Y = 1|do(X = 0)) (3.1)
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Figure 3.3 A graphical model representing the effects of a new drug, with Z representing gender, X
standing for drug usage, and Y standing for recovery
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which is known as the “causal effect difference,” or “average causal effect” (ACE). In general,
however, if X and Y can each take on more than one value, we would wish to predict the
general causal effect P(Y = y|do(X = x)), where x and y are any two values that X and Y can
take on. For example, x may be the dosage of the drug and y the patient’s blood pressure.

We know from first principles that causal effects cannot be estimated from the data set
itself without a causal story. That was the lesson of Simpson’s paradox: The data itself was
not sufficient even for determining whether the effect of the drug was positive or negative. But
with the aid of the graph in Figure 3.3, we can compute the magnitude of the causal effect from
the data. To do so, we simulate the intervention in the form of a graph surgery (Figure 3.4)
just as we did in the ice cream example. The causal effect P(Y = y|do(X = x)) is equal to the
conditional probability Pm(Y = y|X = x) that prevails in the manipulated model of Figure 3.4.
(This, of course, also resolves the question of whether the correct answer lies in the aggregated
or the Z-specific table—when we determine the answer through an intervention, there’s only
one table to contend with.)

YX = x

Z
x

UZ

UY

Figure 3.4 A modified graphical model representing an intervention on the model in Figure 3.3 that
sets drug usage in the population, and results in the manipulated probability Pm

The key to computing the causal effect lies in the observation that Pm, the manipulated
probability, shares two essential properties with P (the original probability function that pre-
vails in the preintervention model of Figure 3.3). First, the marginal probability P(Z = z) is
invariant under the intervention, because the process determining Z is not affected by remov-
ing the arrow from Z to X. In our example, this means that the proportions of males and
females remain the same, before and after the intervention. Second, the conditional proba-
bility P(Y = y|Z = z,X = x) is invariant, because the process by which Y responds to X and
Z,Y = f (x, z, uY ), remains the same, regardless of whether X changes spontaneously or by
deliberate manipulation. We can therefore write two equations of invariance:

Pm(Y = y|Z = z,X = x) = P(Y = y|Z = z,X = x) and Pm(Z = z) = P(Z = z)

We can also use the fact that Z and X are d-separated in the modified model and are, there-
fore, independent under the intervention distribution. This tells us that Pm(Z = z|X = x) =
Pm(Z = z) = P(Z = z), the last equality following from above. Putting these considerations
together, we have

P(Y = y|do(X = x))

= Pm(Y = y|X = x) (by definition) (3.2)
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=
∑

z

Pm(Y = y|X = x,Z = z)Pm(Z = z|X = x) (3.3)

=
∑

z

Pm(Y = y|X = x,Z = z)Pm(Z = z) (3.4)

Equation (3.3) is obtained using the Law of Total Probability by conditioning on and sum-
ming over all values of Z = z (as in Eq. (1.9)) while Eq. (3.4) makes use of the independence
of Z and X in the modified model.

Finally, using the invariance relations, we obtain a formula for the causal effect, in terms of
preintervention probabilities:

P(Y = y|do(X = x)) =
∑

z

P(Y = y|X = x,Z = z)P(Z = z) (3.5)

Equation (3.5) is called the adjustment formula, and as you can see, it computes the associ-
ation between X and Y for each value z of Z, then averages over those values. This procedure
is referred to as “adjusting for Z” or “controlling for Z.”

This final expression—the right-hand side of Eq. (3.5)—can be estimated directly from the
data, since it consists only of conditional probabilities, each of which can be computed by the
filtering procedure described in Chapter 1. Note also that no adjustment is needed in a random-
ized controlled experiment since, in such a setting, the data are generated by a model which
already possesses the structure of Figure 3.4, hence, Pm = P regardless of any factors Z that
affect Y . Our derivation of the adjustment formula (3.5) constitutes therefore a formal proof
that randomization gives us the quantity we seek to estimate, namely P(Y = y|do(X = x)). In
practice, investigators use adjustments in randomized experiments as well, for the purpose of
minimizing sampling variations (Cox 1958).

To demonstrate the working of the adjustment formula, let us apply it numerically to
Simpson’s story, with X = 1 standing for the patient taking the drug, Z = 1 standing for the
patient being male, and Y = 1 standing for the patient recovering. We have

P(Y = 1|do(X = 1)) = P(Y = 1|X = 1,Z = 1)P(Z = 1) + P(Y = 1|X = 1,Z = 0)P(Z = 0)

Substituting the figures given in Table 1.1 we obtain

P(Y = 1|do(X = 1)) = 0.93(87 + 270)
700

+ 0.73(263 + 80)
700

= 0.832

while, similarly,

P(Y = 1|do(X = 0)) = 0.87(87 + 270)
700

+ 0.69(263 + 80)
700

= 0.7818

Thus, comparing the effect of drug-taking (X = 1) to the effect of nontaking (X = 0), we
obtain

ACE = P(Y = 1|do(X = 1)) − P(Y = 1|do(X = 0)) = 0.832 − 0.7818 = 0.0502

giving a clear positive advantage to drug-taking. A more informal interpretation of ACE here is
that it is simply the difference in the fraction of the population that would recover if everyone
took the drug compared to when no one takes the drug.

We see that the adjustment formula instructs us to condition on gender, find the benefit of
the drug separately for males and females, and only then average the result using the percent-
age of males and females in the population. It also thus instructs us to ignore the aggregated
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population data P(Y = 1|X = 1) and P(Y = 1|X = 0), from which we might (falsely) conclude
that the drug has a negative effect overall.

These simple examples might give readers the impression that whenever we face the
dilemma of whether to condition on a third variable Z, the adjustment formula prefers the
Z-specific analysis over the nonspecific analysis. But we know this is not so, recalling
the blood pressure example of Simpson’s paradox given in Table 1.2. There we argued that
the more sensible method would be not to condition on blood pressure, but to examine the
unconditional population table directly. How would the adjustment formula cope with
situations like that?

Z

X Y

Figure 3.5 A graphical model representing the effects of a new drug, with X representing drug usage, Y
representing recovery, and Z representing blood pressure (measured at the end of the study). Exogenous
variables are not shown in the graph, implying that they are mutually independent

The graph in Figure 3.5 represents the causal story in the blood pressure example. It is the
same as Figure 3.4, but with the arrow between X and Z reversed, reflecting the fact that the
treatment has an effect on blood pressure and not the other way around. Let us try now to
evaluate the causal effect P(Y = 1|do(X = 1)) associated with this model as we did with the
gender example. First, we simulate an intervention and then examine the adjustment formula
that emanates from the simulated intervention. In graphical models, an intervention is simu-
lated by severing all arrows that enter the manipulated variable X. In our case, however, the
graph of Figure 3.5 shows no arrow entering X, since X has no parents. This means that no
surgery is required; the conditions under which data were obtained were such that treatment
was assigned “as if randomized.” If there was a factor that would make subjects prefer or reject
treatment, such a factor should show up in the model; the absence of such a factor gives us the
license to treat X as a randomized treatment.

Under such conditions, the intervention graph is equal to the original graph—no arrow need
be removed—and the adjustment formula reduces to

P(Y = y|do(X = x)) = P(Y = y|X = x),

which can be obtained from our adjustment formula by letting the empty set be the element
adjusted for. Obviously, if we were to adjust for blood pressure, we would obtain an incorrect
assessment—one corresponding to a model in which blood pressure causes people to seek
treatment.

3.2.1 To Adjust or not to Adjust?

We are now in a position to understand what variable, or set of variables, Z can legitimately be
included in the adjustment formula. The intervention procedure, which led to the adjustment
formula, dictates that Z should coincide with the parents of X, because it is the influence of
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these parents that we neutralize when we fix X by external manipulation. Denoting the parents
of X by PA(X), we can therefore write a general adjustment formula and summarize it in a rule:

Rule 1 (The Causal Effect Rule) Given a graph G in which a set of variables PA are desig-
nated as the parents of X, the causal effect of X on Y is given by

P(Y = y|do(X = x)) =
∑

z

P(Y = y|X = x,PA = z)P(PA = z) (3.6)

where z ranges over all the combinations of values that the variables in PA can take.

If we multiply and divide the summand in (3.6) by the probability P(X = x|PA = z), we get
a more convenient form:

P(y|do(x)) =
∑

z

P(X = x,Y = y,PA = z)
P(X = x|PA = z)

(3.7)

which explicitly displays the role played by the parents of X in predicting the results of inter-
ventions. The factor P(X = x|PA = z) is known as the “propensity score” and the advantages
of expressing P(y|do(x)) in this form will be discussed in Section 3.5.

We can appreciate now what role the causal graph plays in resolving Simpson’s paradox,
and, more generally, what aspects of the graph allow us to predict causal effects from purely
statistical data. We need the graph in order to determine the identity of X’s parents—the set of
factors that, under nonexperimental conditions, would be sufficient for determining the value
of X, or the probability of that value.

This result alone is astounding; using graphs and their underlying assumptions, we were
able to identify causal relationships in purely observational data. But, from this discussion,
readers may be tempted to conclude that the role of graphs is fairly limited; once we identify
the parents of X, the rest of the graph can be discarded, and the causal effect can be evaluated
mechanically from the adjustment formula. The next section shows that things may not be
so simple. In most practical cases, the set of X’s parents will contain unobserved variables
that would prevent us from calculating the conditional probabilities in the adjustment formula.
Luckily, as we will see in future sections, we can adjust for other variables in the model to
substitute for the unmeasured elements of PA(X).

Study questions

Study questions 3.2.1

Referring to Study question 1.5.2 (Figure 1.10) and the parameters listed therein,

(a) Compute P(y|do(x)) for all values of x and y, by simulating the intervention do(x) on the
model.

(b) Compute P(y|do(x)) for all values of x and y, using the adjustment formula (3.5)
(c) Compute the ACE

ACE = P(y1|do(x1)) − P(y1|do(x0))
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and compare it to the Risk Difference

RD = P(y1|x1) − P(y1|x0)

What is the difference between ACE and the RD? What values of the parameters would
minimize the difference?

(d) Find a combination of parameters that exhibit Simpson’s reversal (as in Study question
1.5.2(c)) and show explicitly that the overall causal effect of the drug is obtained from the
desegregated data.

3.2.2 Multiple Interventions and the Truncated Product Rule

In deriving the adjustment formula, we assumed an intervention on a single variable, X, whose
parents were disconnected, so as to simulate the absence of their influence after intervention.
However, social and medical policies occasionally involve multiple interventions, such as those
that dictate the value of several variables simultaneously, or those that control a variable over
time. To represent multiple interventions, it is convenient to resort to the product decompo-
sition that a graphical model imposes on joint distributions, as we have discussed in Section
1.5.2. According to the Rule of Product Decomposition, the preintervention distribution in the
model of Figure 3.3 is given by the product

P(x, y, z) = P(z)P(x|z)P(y|x, z) (3.8)

whereas the postintervention distribution, governed by the model of Figure 3.4 is given by the
product

P(z, y|do(x)) = Pm(z)Pm(y|x, z) = P(z)P(y|x, z) (3.9)

with the factor P(x|z) purged from the product, since X becomes parentless as it is fixed at
X = x. This coincides with the adjustment formula, because to evaluate P(y|do(x)) we need to
marginalize (or sum) over z, which gives

P(y|do(x)) =
∑

z

P(z)P(y|x, z)

in agreement with (3.5).
This consideration also allows us to generalize the adjustment formula to multiple interven-

tions, that is, interventions that fix the values of a set of variables X to constants. We simply
write down the product decomposition of the preintervention distribution, and strike out all
factors that correspond to variables in the intervention set X. Formally, we write

P(x1, x2, … , xn|do(x)) =
∏

i

P(xi|pai) for all i with Xi not in X.

This came to be known as the truncated product formula or g-formula. To illustrate, assume
that we intervene on the model of Figure 2.9 and set X to x and Z3 to z3. The postintervention
distribution of the other variables in the model will be

P(z1, z2,w, y|do(X = x,Z3 = z3)) = P(z1)P(z2)P(w|x)P(y|w, z3, z2)

where we have deleted the factors P(x|z1, z3) and P(z3|z1, z2) from the product.
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It is interesting to note that combining (3.8) and (3.9), we get a simple relation between the
pre- and postintervention distributions:

P(z, y|do(x)) =
P(x, y, z)
P(x|z) (3.10)

It tells us that the conditional probability P(x|z) is all we need to know in order to predict
the effect of an intervention do(x) from nonexperimental data governed by the distribution
P(x, y, z).

3.3 The Backdoor Criterion

In the previous section, we came to the conclusion that we should adjust for a variable’s parents,
when trying to determine its effect on another variable. But often, we know, or believe, that the
variables have unmeasured parents that, though represented in the graph, may be inaccessible
for measurement. In those cases, we need to find an alternative set of variables to adjust for.

This dilemma unlocks a deeper statistical question: Under what conditions does a causal
story permit us to compute the causal effect of one variable on another, from data obtained by
passive observations, with no interventions? Since we have decided to represent causal stories
with graphs, the question becomes a graph-theoretical problem: Under what conditions is the
structure of the causal graph sufficient for computing a causal effect from a given data set?

The answer to that question is long enough—and important enough—that we will spend
the rest of the chapter addressing it. But one of the most important tools we use to determine
whether we can compute a causal effect is a simple test called the backdoor criterion. Using
it, we can determine, for any two variables X and Y in a causal model represented by
which set of variables Z in that model should be conditioned on when searching for
causal relationship between X and Y .

Definition 3.3.1 (The Backdoor Criterion) Given an ordered pair of variables (X,Y) in a
directed acyclic graph G, a set of variables Z satisfies the backdoor criterion relative to (X,Y)
if no node in Z is a descendant of X, and Z blocks every path between X and Y that contains
an arrow into X.

If a set of variables Z satisfies the backdoor criterion for X and Y , then the causal effect of
X on Y is given by the formula

P(Y = y|do(X = x)) =
∑

z

P(Y = y|X = x,Z = z)P(Z = z)

just as when we adjust for PA(X). (Note that PA(X) always satisfies the backdoor criterion.)
The logic behind the backdoor criterion is fairly straightforward. In general, we would like

to condition on a set of nodes Z such that

1. We block all spurious paths between X and Y .
2. We leave all directed paths from X to Y unperturbed.
3. We create no new spurious paths.

a DAG,
the
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When trying to find the causal effect of X on Y , we want the nodes we condition on to block
any “backdoor” path in which one end has an arrow into X, because such paths may make
X and Y dependent, but are obviously not transmitting causal influences from X, and if we do
not block them, they will confound the effect that X has on Y . We condition on backdoor paths
so as to fulfill our first requirement. However, we don’t want to condition on any nodes that
are descendants of X. Descendants of X would be affected by an intervention on X and might
themselves affect Y; conditioning on them would block those pathways. Therefore, we don’t
condition on descendants of X so as to fulfill our second requirement. Finally, to comply with
the third requirement, we should refrain from conditioning on any collider that would unblock
a new path between X and Y . The requirement of excluding descendants of X also protects us
from conditioning on children of intermediate nodes between X and Y (e.g., the collision node
W in Figure 2.4.) Such conditioning would distort the passage of causal association between
X and Y , similar to the way conditioning on their parents would.

To see what this means in practice, let’s look at a concrete example, shown in Figure 3.6.

Z
W

X Y

Figure 3.6 A graphical model representing the relationship between a new drug (X), recovery (Y),
weight (W), and an unmeasured variable Z (socioeconomic status)

Here we are trying to gauge the effect of a drug (X) on recovery (Y). We have also measured
weight (W), which has an effect on recovery. Further, we know that socioeconomic status (Z)
affects both weight and the choice to receive treatment—but the study we are consulting did
not record socioeconomic status.

Instead, we search for an observed variable that fits the backdoor criterion from X to Y .
A brief examination of the graph shows that W, which is not a descendant of X, also blocks
the backdoor path X ← Z → W → Y . Therefore, W meets the backdoor criterion. So long as
the causal story conforms to the graph in Figure 3.6, adjusting for W will give us the causal
effect of X on Y . Using the adjustment formula, we find

P(Y = y|do(X = x)) =
∑

w

P(Y = y|X = x,W = w)P(W = w)

This sum can be estimated from our observational data, so long as W is observed.
With the help of the backdoor criterion, you can easily and algorithmically come to a con-

clusion about a pressing policy concern, even in complicated graphs. Consider the model in
Figure 2.8, and assume again that we wish to evaluate the effect of X on Y . What variables
should we condition on to obtain the correct effect? The question boils down to finding a set
of variables that satisfy the backdoor criterion, but since there are no backdoor paths from X
to Y , the answer is trivial: The empty set satisfies the criterion, hence no adjustment is needed.
The answer is

P(y|do(x)) = P(y|x)
Suppose, however, that we were to adjust for W. Would we get the correct result for the

effect of X on Y? Since W is a collider, conditioning on W would open the path X → W ← Z ←
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T → Y . This path is spurious since it lies outside the causal pathway from X to Y . Opening this
path will create bias and yield an erroneous answer. This means that computing the association
between X and Y for each value of W separately will not yield the correct effect of X on Y , and
it might even give the wrong effect for each value of W.

How then do we compute the causal effect of X on Y for a specific value w of W?
In Figure 2.8, W may represent, for example, the level of posttreatment pain of a patient, and
we might be interested in assessing the effect of X on Y for only those patients who did not
suffer any pain. Specifying the value of W amounts to conditioning on W = w, and this, as
we have realized, opens a spurious path from X to Y by virtue of the fact that W is a collider.

The answer is that we still have the option of blocking that path using other variables. For
example, if we condition on T , we would block the spurious path X → W ← Z T → Y ,
even if W is part of the conditioning set. Thus to compute the w-specific causal effect, written
P(y|do(x),w), we adjust for T , and obtain

P(Y = y|do(X = x),W =w) =
∑

t

P(Y = y|X = x,W =w,T = t)P(T = t|X = x,W =w) (3.11)

Computing such W-specific causal effects is an essential step in examining effect modifi-
cation or moderation, that is, the degree to which the causal effect of X Y is modified
by different values of W. Consider, again, the model in Figure 3.6, and suppose we wish to
test whether the causal effect for units at level W = w is the same as for units at level W = w′

(W may represent any pretreatment variable, such as age, sex, or ethnicity). This question calls
for comparing two causal effects,

P(Y = y|do(X = x),W = w) and P(Y = y|do(X = x),W = w′)

In the specific example of Figure 3.6, the answer is simple, because W satisfies the backdoor
criterion. So, all we need to compare are the conditional probabilities P(Y = y|X = x,W = w)
and P(Y = y|X = x,W = w′); no summation is required. In the more general case, where W
alone does not satisfy the backdoor criterion, yet a larger set, T ∪ W, does, we need to adjust
for members of T , which yields Eq. (3.11). We will return to this topic in Section 3.5.

From the examples seen thus far, readers may get the impression that one should refrain
from adjusting for colliders. Such adjustment is sometimes unavoidable, as seen in Figure 3.7.
Here, there are four backdoor paths from X to Y , all traversing variable Z, which is a collider on
the path X ← E → Z ← A → Y . Conditioning on Z will unblock this path and will violate the
backdoor criterion. To block all backdoor paths, we need to condition on one of the following
sets: {E,Z}, {A,Z}, or {E,Z,A}. Each of these contains Z. We see, therefore, that Z, a collider,
must be adjusted for in any set that yields an unbiased estimate of the effect of X on Y .

AE

Z

X Y

Figure 3.7 A graphical model in which the backdoor criterion requires that we condition on a collider
(Z) in order to ascertain the effect of X on Y

on

←
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The backdoor criterion has some further possible benefits. Consider the fact that
P(Y = y|do(X = x)) is an empirical fact of nature, not a byproduct of our analysis. That
means that any suitable variable or set of variables that we adjust on—whether it be PA(X)
or any other set that conforms to the backdoor criterion—must return the same result for
P(Y = y|do(X = x)). In the case we looked at in Figure 3.6, this means that

∑
w

P(Y = y|X = x,W = w)P(W = w) =
∑

z

P(Y = y|X = x,Z = z)P(Z = z)

This equality is useful in two ways. First, in the cases where we have multiple observed sets
of variables suitable for adjustment (e.g., in Figure 3.6, if both W and Z had been observed), it
provides us with a choice of which variables to adjust for. This could be useful for any number
of practical reasons—perhaps one set of variables is more expensive to measure than the other,
or more prone to human error, or simply has more variables and is therefore more difficult to
calculate.

Second, the equality constitutes a testable constraint on the data when all the adjustment
variables are observed, much like the rules of d-separation. If we are attempting to fit a model
that leads to such an equality on a data set that violates it, we can discard that model.

Study questions

Study question 3.3.1

Consider the graph in Figure 3.8:

CB

DA

X W Y

Z

Figure 3.8 Causal graph used to illustrate the backdoor criterion in the following study questions

(a) List all of the sets of variables that satisfy the backdoor criterion to determine the causal
effect of X on Y.

(b) List all of the minimal sets of variables that satisfy the backdoor criterion to determine
the causal effect of X on Y (i.e., any set of variables such that, if you removed any one of
the variables from the set, it would no longer meet the criterion).

(c) List all minimal sets of variables that need be measured in order to identify the effect of D
on Y. Repeat, for the effect of {W,D} on Y.
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Study question 3.3.2 (Lord’s paradox)

At the beginning of the year, a boarding school offers its students a choice between two meal
plans for the year: Plan A and Plan B. The students’ weights are recorded at the beginning and
the end of the year. To determine how each plan affects students’ weight gain, the school hired
two statisticians who, oddly, reached different conclusions. The first statistician calculated the
difference between each student’s weight in June (WF) and in September (WI) and found that
the average weight gain in each plan was zero.

The second statistician divided the students into several subgroups, one for each initial
weight, WI. He finds that for each initial weight, the final weight for Plan B is higher than the
final weight for Plan A.

So, the first statistician concluded that there was no effect of diet on weight gain and the
second concluded there was.

Figure 3.9 illustrates data sets that can cause the two statisticians to reach conflicting
conclusions. Statistician-1 examined the weight gain WF − WI, which, for each student, is rep-
resented by the shortest distance to the 45∘ line. Indeed, the average gain for each diet plan is
zero; the two groups are each situated symmetrically relative to the zero-gain line, WF = WI.
Statistician-2, on the other hand, compared the final weights of plan A students to those of
plan B students who entered school with the same initial weight W0 and, as the vertical line
in the figure indicates, plan B students are situated above plan A students along this vertical
line. The same will be the case for any other vertical line, regardless of W0.

(a) Draw a causal graph representing the situation.
(b) Determine which statistician is correct.
(c) How is this example related to Simpson’s paradox?

WI

WF WF = WI

A

B

W0

Figure 3.9 Scatter plot with students’ initial weights on the x-axis and final weights on the y-axis. The
vertical line indicates students whose initial weights are the same, and whose final weights are higher
(on average) for plan B compared with plan A

Study questions 3.3.3

Revisit the lollipop story of Study question 1.2.4 and answer the following questions:

(a) Draw a graph that captures the story.
(b) Determine which variables must be adjusted for by applying the backdoor criterion.
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(c) Write the adjustment formula for the effect of the drug on recovery.
(d) Repeat questions (a)–(c) assuming that the nurse gave lollipops a day after the study, still

preferring patients who received treatment over those who received placebo.

3.4 The Front-Door Criterion

The backdoor criterion provides us with a simple method of identifying sets of covariates that
should be adjusted for when we seek to estimate causal effects from nonexperimental data. It
does not, however, exhaust all ways of estimating such effects. The do-operator can be applied
to graphical patterns that do not satisfy the backdoor criterion to identify effects that on first
sight seem to be beyond one’s reach. One such pattern, called front-door, is discussed in this
section.

Consider the century-old debate on the relation between smoking and lung cancer. In the
years preceding 1970, the tobacco industry managed to prevent antismoking legislation by
promoting the theory that the observed correlation between smoking and lung cancer could 
be explained by some sort of carcinogenic genotype that also induces an inborn craving for
nicotine.

Z
Tar

deposits

Y
Lung
cancer

X
Smoking

U
Genotype

(b)

U
Genotype

Y
Lung
cancer

X
Smoking

(a)

Figure 3.10 A graphical model representing the relationships between smoking (X) and lung cancer
(Y), with unobserved confounder (U) and a mediating variable Z

A graph depicting this example is shown in Figure 3.10(a) This graph does not satisfy the
backdoor condition because the variable U is unobserved and hence cannot be used to block
the backdoor path from X to Y . The causal effect of smoking on lung cancer is not identifiable
in this model; one can never ascertain which portion of the observed correlation between X and
Y is spurious, attributable to their common effect, U, and what portion is genuinely causative.
(We note, however, that even in these circumstances, much compelling work has been done to
quantify how strong the (unobserved) associates between both U and X, and U and Y , must be
in order to entirely explain the observed association between X and Y .)

However, we can go much further by considering the model in Figure 3.10(b), where an
additional measurement is available: the amount of tar deposits in patients

,
lungs. This model

does not satisfy the backdoor criterion, because there is still no variable capable of blocking
the spurious path X ← U → Y . We see, however, that the causal effect P(Y = y|do(X = x)) is
nevertheless identifiable in this model, through two consecutive applications of the backdoor
criterion.

How can the intermediate variable Z help us to assess the effect of X on Y? The answer is
not at all trivial: as the following quantitative example shows, it may lead to heated debate.
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Assume that a careful study was undertaken, in which the following factors were measured
simultaneously on a randomly selected sample of 800,000 subjects considered to be at very
high risk of cancer (because of environmental exposures such as smoking, asbestos, radon 
and the like).

1. Whether the subject smoked
2. Amount of tar in the subject’s lungs
3. Whether lung cancer has been detected in the patient.

The data from this study are presented in Table 3.1, where, for simplicity, all three variables
are assumed to be binary. All numbers are given in thousands.

Table 3.1 A hypothetical data set of randomly selected samples showing the percentage of
cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

Tar No tar All subjects
400 400 800

Smokers Nonsmokers Smokers Nonsmokers Smokers Nonsmokers
380 20 20 380 400 400

No cancer 323 1 18 38 341 39
(85%) (5%) (90%) (10%) (85%) (9.75%)

Cancer 57 19 2 342 59 361
(15%) (95%) (10%) (90%) (15%) (90.25%)

Two opposing interpretations can be offered for these data. The tobacco industry argues
that the table proves the beneficial effect of smoking. They point to the fact that only 15% of
the smokers have developed lung cancer, compared to 90.25% of the nonsmokers. Moreover,
within each of two subgroups, tar and no tar, smokers show a much lower percentage of cancer
than nonsmokers. (These numbers are obviously contrary to empirical observations but well
illustrate our point that observations are not to be trusted.)

However, the antismoking lobbyists argue that the table tells an entirely different story—that
smoking would actually increase, not decrease, one’s risk of lung cancer. Their argument goes
as follows: If you choose to smoke, then your chances of building up tar deposits are 95%,
compared to 5% if you choose not to smoke (380/400 vs 20/400). To evaluate the effect of tar
deposits, we look separately at two groups, smokers and nonsmokers, as done in Table 3.2. All
numbers are given in thousands.

Table 3.2 Reorganization of the data set of Table 3.1 showing the percentage
of cancer cases in each smoking-tar category (numbers in thousands)

Smokers Nonsmokers All subjects
400 400 800

Tar No tar Tar No tar Tar No tar
380 20 20 380 400 400

No cancer 323 18 1 38 324 56
(85%) (90%) (5%) (10%) (81%) (19%)

Cancer 57 2 19 342 76 344
(15%) (10%) (95%) (90%) (19%) (81%)

,
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It appears that tar deposits have a harmful effect in both groups; in smokers it increases
cancer rates from 10% to 15%, and in nonsmokers it increases cancer rates from 90% to 95%.
Thus, regardless of whether I have a natural craving for nicotine, I should avoid the harmful
effect of tar deposits, and no-smoking offers very effective means of avoiding them.

The graph of Figure 3.10(b) enables us to decide between these two groups of statisticians.
First, we note that the effect of X on Z is identifiable, since there is no backdoor path from X
to Z. Thus, we can immediately write

P(Z = z|do(X = x)) = P(Z = z|X = x) (3.12)

Next we note that the effect of Z on Y is also identifiable, since the backdoor path from Z to
Y , namely Z ← X ← U → Y , can be blocked by conditioning on X. Thus, we can write

P(Y = y|do(Z = z)) =
∑

x

P(Y = y|Z = z,X = x)P(X = x) (3.13)

Both (3.12) and (3.13) are obtained through the adjustment formula, the first by conditioning
on the null set, and the second by adjusting for X.

We are now going to chain together the two partial effects to obtain the overall effect of
X on Y . The reasoning goes as follows: If nature chooses to assign Z the value z, then the
probability of Y would be P(Y = y|do(Z = z)). But the probability that nature would choose
to do that, given that we choose to set X at x, is P(Z = z|do(X = x)). Therefore, summing over
all states z of Z, we have

P(Y = y|do(X = x)) =
∑

z

P(Y = y|do(Z = z))P(Z = z|do(X = x)) (3.14)

The terms on the right-hand side of (3.14) were evaluated in (3.12) and (3.13), and we can
substitute them to obtain a do-free expression for P(Y = y|do(X = x)). We also distinguish
between the x that appears in (3.12) and the one that appears in (3.13), the latter of which is
merely an index of summation and might as well be denoted x′. The final expression we have is

P(Y = y|do(X = x)) =∑
z

∑
x′

P(Y = y|Z = z,X = x′)P(X = x′)P(Z = z|X = x) (3.15)

Equation (3.15) is known as the front-door formula.
Applying this formula to the data in Table 3.1, we see that the tobacco industry was wrong;

tar deposits have a harmful effect in that they make lung cancer more likely and smoking, by
increasing tar deposits, increases the chances of causing this harm.

The data in Table 3.1 are obviously unrealistic and were deliberately crafted so as to surprise
readers with counterintuitive conclusions that may emerge from naive analysis of observational
data. In reality, we would expect observational studies to show positive correlation between
smoking and lung cancer. The estimand of (3.15) could then be used for confirming and quan-
tifying the harmful effect of smoking on cancer.

The preceding analysis can be generalized to structures where multiple paths lead from X
to Y .
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Definition 3.4.1 (Front-Door) A set of variables Z is said to satisfy the front-door criterion
relative to an ordered pair of variables (X,Y) if

1. Z intercepts all directed paths from X to Y.
2. There is no backdoor path from X to Z.
3. All backdoor paths from Z to Y are blocked by X.

Theorem 3.4.1 (Front-Door Adjustment) If Z satisfies the front-door criterion relative to
(X,Y) and if P(x, z) > 0, then the causal effect of X on Y is identifiable and is given by the
formula

P(y|do(x)) =
∑

z

P(z|x)∑
x′

P(y|x′, z)P(x′) (3.16)

The conditions stated in Definition 3.4.1 are overly conservative; some of the paths excluded
by conditions (2) and (3) can actually be allowed provided they are blocked by some variables.
There is a powerful symbolic machinery, called the do-calculus, that allows analysis of such
intricate structures. In fact, the do-calculus uncovers all causal effects that can be identified
from a given graph. Unfortunately, it is beyond the scope of this book (see Tian and Pearl
2002, Shpitser and Pearl 2008, Pearl 2009, and Bareinboim and Pearl 2012 for details). But
the combination of the adjustment formula, the backdoor criterion, and the front-door criterion
covers numerous scenarios. It proves the enormous, even revelatory, power that causal graphs
have in not merely representing, but actually discovering causal information.

Study questions

Study question 3.4.1

Assume that in Figure 3.8, only X,Y, and one additional variable can be measured. Which
variable would allow the identification of the effect of X on Y? What would that effect be?

Study question 3.4.2

I went to a pharmacy to buy a certain drug, and I found that it was available in two different
bottles: one priced at $1, the other at $10. I asked the druggist, “What’s the difference?” and
he told me, “The $10 bottle is fresh, whereas the $1 bottle one has been on the shelf for 3 years.
But, you know, data shows that the percentage of recovery is much higher among those who
bought the cheap stuff. Amazing isn’t it?” I asked if the aged drug was ever tested. He said,
“Yes, and this is even more amazing; 95% of the aged drug and only 5% of the fresh drug
has lost the active ingredient, yet the percentage of recovery among those who got bad bottles,
with none of the active ingredient, is still much higher than among those who got good bottles,
with the active ingredient.”

Before ordering a cheap bottle, it occurred to me to have a good look at the data. The data
were, for each previous customer, the type of bottle purchased (aged or fresh), the concentra-
tion of the active ingredient in the bottle (high or low), and whether the customer recovered
from the illness. The data perfectly confirmed the druggist’s story. However, after making some
additional calculations, I decided to buy the expensive bottle after all; even without testing its
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content, I could determine that a fresh bottle would offer the average patient a greater chance
of recovery.

Based on two very reasonable assumptions, the data show clearly that the fresh drug is more
effective. The assumptions are as follows:

(i) Customers had no information about the chemical content (high or low) of the specific
bottle of the drug that they were buying; their choices were influenced by price and
shelf-age alone.

(ii) The effect of the drug on any given individual depends only on its chemical content,
not on its shelf age (fresh or aged).

(a) Determine the relevant variables for the problem, and describe this scenario in a causal
graph.

(b) Construct a data set compatible with the story and the decision to buy the expensive
bottle.

(c) Determine the effect of choosing the fresh versus the aged drug by using assumptions (i)
and (ii), and the data given in (b).

3.5 Conditional Interventions and Covariate-Specific Effects

The interventions considered thus far have been limited to actions that merely force a vari-
able or a group of variables X to take on some specified value x. In general, interventions
may involve dynamic policies in which a variable X is made to respond in a specified way
to some set Z of other variables—say, through a functional relationship x = g(z) or through a
stochastic relationship, whereby X is set to x with probability P∗(x|z). For example, suppose
a doctor decides to administer a drug only to patients whose temperature Z exceeds a certain
level, Z = z. In this case, the action will be conditional upon the value of Z and can be written
do(X = g(Z)), where g(Z) is equal to one when Z > z and zero otherwise (where X = 0 repre-
sents no drug). Since Z is a random variable, the value of X chosen by the action will similarly
be a random variable, tracking variations in Z. The result of implementing such a policy is a
probability distribution written P(Y = y|do(X = g(Z))), which depends only on the function g
and the set Z of variables that drive X.

In order to estimate the effect of such a policy, let us take a closer look at another concept, the
“z-specific effect” of X, which we encountered briefly in Section 3.3 (Eq. (3.11)). This effect,
written P(Y = y|do(X = x),Z = z), measures the distribution of Y in a subset of the population
for which Z achieves the value z after the intervention. For example, we may be interested in
how a treatment affects a specific age group, Z = z, or people with a specific feature, Z = z,
which may be measured after the treatment.

The z-specific effect can be identified by a procedure similar to the backdoor adjustment.
The reasoning goes as follows: When we aim to estimate P(Y = y|do(X = x)), an adjustment
for a set S is justified if S blocks all backdoor paths from X to Y . Now that we wish to identify
P(Y = y|do(X = x),Z = z), we need to ensure that those paths remain blocked when we add
one more variable, Z, to the conditioning set. This yields a simple criterion for the identification
of the z-specific effect:

Rule 2 The z-specific effect P(Y = y|do(X = x),Z = z) is identified whenever we can measure
a set S of variables such that S ∪ Z satisfies the backdoor criterion. Moreover, the z-specific
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effect is given by the following adjustment formula

P(Y = y|do(X = x),Z = z)

=
∑

s

P(Y = y|X = x, S = s,Z = z)P(S = s|Z = z)

This modified adjustment formula is similar to Eq. (3.5) with two exceptions. First,
the adjustment set is S ∪ Z, not just S and, second, the summation goes only over S, not
including Z. The ∪ symbol in the expression S ∪ Z stands for set addition (or union), which
means that, if Z is a subset of S, we have S ∪ Z = S, and S alone need satisfy the backdoor
criterion.

Note that the identifiability criterion for z-specific effects is somewhat stricter than that for
nonspecific effect. Adding Z to the conditioning set might create dependencies that would
prevent the blocking of all backdoor paths. A simple example occurs when Z is a collider;
conditioning on Z will create a new dependency between Z’s parents and may thus violate the
backdoor requirement.

We are now ready to tackle our original task of estimating conditional interventions.
Suppose a policy maker contemplates an age-dependent policy whereby an amount x of drug
is to be administered to patients, depending on their age Z. We write it as do(X = g(Z)).
To find out the distribution of outcome Y that results from this policy, we seek to estimate
P(Y = y|do(X = g(Z))).

We now show that identifying the effect of such policies is equivalent to identifying the
expression for the z-specific effect P(Y = y|do(X = x),Z = z).

To compute P(Y = y|do(X = g(Z))), we condition on Z = z and write

P(Y = y|do(X = g(Z)))

=
∑

z

P(Y = y|do(X = g(Z)),Z = z)P(Z = z|do(X = g(Z)))

=
∑

z

P(Y = y|do(X = g(z)),Z = z)P(Z = z) (3.17)

The equality
P(Z = z|do(X = g(Z))) = P(Z = z)

stems, of course, from the fact that Z occurs before X; hence, any control exerted on X can
have no effect on the distribution of Z. Equation (3.17) can also be written as∑

z

P(Y = y|do(X = x), )|x=g(z)P(Z = z)

which tells us that the causal effect of a conditional policy do(X = g(Z)) can be evaluated
directly from the expression of P(Y = y|do(X = x),

Z = z

) simply by substituting g(z) for x
and taking the expectation over Z (using the observed distribution P(Z = z)).

Study question 3.5.1

Consider the causal model of Figure 3.8.

(a) Find an expression for the c-specific effect of X on Y.

Z = z
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(b) Identify a set of four variables that need to be measured in order to estimate the z-specific
effect of X on Y, and find an expression for the size of that effect.

(c) Using your answer to part (b), determine the expected value of Y under a Z-dependent
strategy, where X is set to 0 when Z is smaller or equal to 2 and X is set to 1 when Z is
larger than 2. (Assume Z takes on integer values from 1 to 5.)

3.6 Inverse Probability Weighing

By now, the astute reader may have noticed a problem with our intervention procedures. The
backdoor and front-door criteria tell us whether it is possible to predict the results of hypothet-
ical interventions from data obtained in an observational study. Moreover, they tell us that we
can make this prediction without simulating the intervention and without even thinking about
it. All we need to do is identify a set Z of covariates satisfying one of the criteria, plug this set
into the adjustment formula, and we’re done: the resulting expression is guaranteed to provide
a valid prediction of how the intervention will affect the outcome.

This is lovely in theory, but in practice, adjusting for Z may prove problematic. It entails
looking at each value or combination of values of Z separately, estimating the conditional
probability of Y given X in that stratum and then averaging the results. As the number of
strata increases, adjusting for Z will encounter both computational and estimational difficulties.
Since the set Z can be comprised of dozens of variables, each spanning dozens of discrete
values, the summation required by the adjustment formula may be formidable, and the number
of data samples falling within each Z = z cell may be too small to provide reliable estimates
of the conditional probabilities involved.

All of our work in this chapter has not been for naught, however. The adjustment procedure
is straightforward, and, therefore, easy to use in the explanation of intervention criteria. But
there is another, more subtle procedure that overcomes the practical difficulties of adjustment.

In this section, we discuss one way of circumventing this problem, provided only that we can
obtain a reliable estimate of the function g(x, z) = P(X = x|Z = z), often called the “propensity
score,” for each x and z. Such an estimate can be obtained by fitting the parameters of a flexible
function g(x, z) to the data at hand, in much the same way that we fitted the coefficients of a
linear regression function, so as to minimize the mean square error with respect to a set of
samples (Figure 1.4). The method used will depend on the nature of the random variable X,
whether it is continuous, discrete or binary, for example.

Assuming that the function P(X = x|Z = z) is available to us, we can use it to generate
artificial samples that act as though they were drawn from the postintervention probability Pm,
rather than P(x, y, z). Once we obtain such fictitious samples, we can evaluate P(Y = y|do(x))
by simply counting the frequency of the event Y = y, for each stratum X = x in the sample. In
this way, we skip the labor associated with summing over all strata Z = z; we essentially let
nature do the summation for us.

The idea of estimating probabilities using fictitious samples is not new to us; it was used all
along, though implicitly, whenever we estimated conditional probabilities from finite samples.

In Chapter 1, we characterized conditioning as a process of filtering—that is, ignoring all
cases for which the condition X = x does not hold, and normalizing the surviving cases, so
that their total probabilities would add up to one. The net result of this operation is that the
probability of each surviving case is boosted by a factor 1∕P(X = x). This can be seen directly
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from Bayes’ rule, which tells us that

P(Y = y,Z = z|X = x) =
P(Y = y,Z = z,X = x)

P(X = x)

In other words, to find the probability of each row in the surviving table, we multiply the
unconditional probability, P(Y = y,Z = z,X = x) by the constant 1∕P(X = x).

Let us now examine the population created by the do(X = x) operation and ask how the
probability of each case changes as a result of this operation. The answer is given to us by the
adjustment formula, which reads

P(y|do(x)) =
∑

z

P(Y = y|X = x,Z = z)P(Z = z)

Multiplying and dividing the expression inside the sum by the propensity score P(X = x|Z =
z), we get

P(y|do(x)) = P(Y = y|X = x,Z = z)P(X = x|Z = z)P(Z = z)
P(X = x|Z = z)

Upon realizing the numerator is none other but the pretreatment distribution of (X,Y ,Z), we
can write

P(y|do(x)) =
∑

z

P(Y = y,X = x,Z = z)
P(X = x|Z = z)

and the answer becomes clear: each case (Y = y,X = x,Z = z) in the population should boost
its probability by a factor equal to 1∕P(X = x|Z = z). (Hence the name “ inverse probability
weighing.”)

This provides us with a simple procedure of estimating P(Y = y|do(X = x)) when we have
finite samples. If we weigh each available sample by a factor = 1∕P(X = x|Z = z), we can then
treat the reweighted samples as if they were generated from Pm, not P, and proceed to estimate
P(Y = y|do(x)) accordingly.

This is best demonstrated in an example.
Table 3.3 returns to our Simpson’s paradox example of the drug that seems to help men and

women but to hurt the general population. We’ll use the same data we used before but presented

Table 3.3 Joint probability distribution P(X,Y , Z) for the drug-
gender-recovery story of Chapter 1 (Table 1.1)

X Y Z % of population

Yes Yes Male 0.116
Yes Yes Female 0.274
Yes No Male 0.009
Yes No Female 0.101
No Yes Male 0.334
No Yes Female 0.079
No No Male 0.051
No No Female 0.036

∑
z
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Table 3.4 Conditional probability distribution P(Y ,Z|X) for drug users
(X = yes) in the population of Table 3.3

X Y Z % of population

Yes Yes Male 0.231
Yes Yes Female 0.549
Yes No Male 0.017
Yes No Female 0.203

this time as a weighted table. In this case, X represents whether or not the patient took the drug,
Y represents whether the patient recovered, and Z represents the patient’s gender.

If we condition on “X = Yes,” we get the data set shown in Table 3.4, which was formed
in two steps. First, all rows with X = No were excluded. Second, the weights given to the
remaining rows were “renormalized,” that is, multiplied by a constant so as to make them
sum to one. This constant, according to Bayes’ rule, is 1∕P(X = yes), and P(X = yes) in our
example, is the combined weight of the first four rows of Table 3.3, which amounts to

P(X = yes) = 0.116 + 0.274 + 0.01 + 0.101 = 0.501

The result is the weight distribution in the four rows of Table 3.4; the weight of each row
has been boosted by a factor 1∕0.501 = 2.00.

Let us now examine the population created by the do(X = yes) operation, representing a
deliberate decision to administer the drug to the same population.

To calculate the distribution of weights in this population, we need to compute the factor
P(X = yes|Z = z) for each z, which, according to Table 3.3, is given by

P(X = yes|Z = Male) = (0.116 + 0.01)
(0.116 + 0.01 + 0.334 + 0.051)

= 0.247

P(X = yes|Z = Female) = (0.274 + 0.101)
(0.274 + 0.101 + 0.079 + 0.036)

= 0.765

Multiplying the gender-matching rows by 1∕0.247 and 1∕0.765, respectively, we obtain
Table 3.5, which represents the postintervention distribution of the population of Table 3.3.
The probability of recovery in this distribution can now be computed directly from the data,
by summing the first two rows:

P(Y = yes|do(X = yes)) = 0.476 + 0.357 = 0.833

Table 3.5 Probability distribution for the population of Table 3.3 under the
intervention do(X = Yes), determined via the inverse probability method

X Y Z % of population

Yes Yes Male 0.475
Yes Yes Female 0.358
Yes No Male 0.035
Yes No Female 0.132
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Three points are worth noting about this procedure. First, the redistribution of weight is no
longer proportional but quite discriminatory. Row #1, for instance, boosted its weight from
0.116 to 0.476, a factor of 4.1, whereas Row #2 is boosted from 0.274 to 0.357, a factor of
only 1.3. This redistribution renders X independent of Z, as in a randomized trial (Figure 3.4).

Second, an astute reader would notice that in this example no computational savings were
realized; to estimate P(Y = yes|do(X = yes)) we still needed to sum over all values of Z, males
and females. Indeed, the savings become significant when the number of Z values is in the
thousands or millions, and the sample size is in the hundreds. In such cases, the number of Z
values that the inverse probability method would encounter is equal to the number of samples
available, not to the number of possible Z values, which is prohibitive.

Finally, an important word of caution. The method of inverse probability weighing is only
valid when the set Z entering the factor 1∕P(X = x|Z = z) satisfies the backdoor criterion.
Lacking this assurance, the method may actually introduce more bias than the one obtained
through naive conditioning, which produces Table 3.4 and the absurdities of Simpson’s
paradox.

Up to this point, and in the following, we focus on unbiased estimation of causal effects. In
other words, we focus on estimates that will converge to the true causal effects as the number
of samples increases indefinitely.

This is obviously important, but it is not the only issue relevant to estimation. In addition,
we must also address precision. Precision refers to the variability of our causal estimates if the
number of samples is finite, and, in particular, how much our estimate would vary from exper-
iment to experiment. Clearly, all other things being equal, we prefer estimation procedures
with high precision in addition to their possessing little or no bias. Practically, high-precision
estimates lead to shorter confidence intervals that quantify our level of certainty as to how our
sample estimates describe the causal effect of interest. Most of our discussion does not address
the “best,” or most precise, way to estimate relevant causal means and effects but focuses on
whether it is possible to estimate such quantities from observed data distributions, when the
number of samples goes to infinity.

For example, suppose we wish to estimate the causal effect of X on Y (in a causal graph as
above), where X and Y both reflect continuous variables. Suppose the effect of Z is to make
both high and low values of X most commonly observed, with values close to the middle of the
range of X much less common. Then, inverse probability weighting down-weights the extreme
values of X on both ends of its range (since these are observed most frequently due to Z) and
essentially focuses entirely on the “middle” values of X. If we then use a regression model
to estimate the causal effect of X on Y (see Section 3.8, for example) using the reweighed
observations to account for the role of Z, the resulting estimates will be very imprecise. In
such cases, we usually seek for alternative estimation strategies that are more precise. While
we do not pursue these alternatives in this book, it is important to emphasize that, in addition
to seeing that causal effects be identified from the data, we must also devise effective strategies
of using finite data to estimate effect sizes.

3.7 Mediation

Often, when one variable causes another, it does so both directly and indirectly, through a
set of mediating variables. For instance, in our blood pressure/treatment/recovery example of
Simpson’s paradox, treatment is both a direct (negative) cause of recovery, and an indirect



�

� �

�

76 Causal Inference in Statistics

(positive) cause, through the mediator of blood pressure—treatment decreases blood pressure,
which increases recovery. In many cases, it is useful to know how much of variable X’s effect
on variable Y is direct and how much is mediated. In practice, however, separating these two
avenues of causation has proved difficult.

Suppose, for example, we want to know whether and to what degree a company discrimi-
nates by gender (X) in its hiring practices (Y). Such discrimination would constitute a direct
effect of gender on hiring, which is illegal in many cases. However, gender also affects hiring
practices in other ways; often, for instance, women are more or less likely to go into a particu-
lar field than men, or to have achieved advanced degrees in that field. So gender may also have
an indirect effect on hiring through the mediating variable of qualifications (Z).

In order to find the direct effect of gender on hiring, we need to somehow hold qualifications
steady, and measure the remaining relationship between gender and hiring; with qualifications
unchanging, any change in hiring would have to be due to gender alone. Traditionally, this has
been done by conditioning on the mediating variable. So if P(Hired|Female, Highly Qualified)
is different from P(Hired|Male,Highly Qualified), the reasoning goes, then there is a direct
effect of gender on hiring.

Qualification

Gender Hiring

Figure 3.11 A graphical model representing the relationship between gender, qualifications, and hiring

In the example in Figure 3.11, this is correct. But consider what happens if there are con-
founders of the mediating variable and the outcome variable. For instance, income: People
from higher income backgrounds are more likely to have gone to college and more likely to
have connections that would help them get hired.

Now, if we condition on qualifications, we are conditioning on a collider. So if we don’t con-
dition on qualifications, indirect dependence can pass from gender to hiring through the path
Gender → Qualifications → Hiring. But if we do condition on qualifications, indirect depen-
dence can pass from gender to hiring through the path Gender → Qualifications ← Income →
Hiring. (To understand the problem intuitively, note that by conditioning on qualification, we
will be comparing men and women at different levels of income, because income must change
to keep qualification constant.) No matter how you look at it, we’re not getting the true direct
effect of gender on hiring. Traditionally, therefore, statistics has had to abandon a huge class
of potential mediation problems, where the concept of “direct effect” could not be defined, let
alone estimated.

Luckily, we now have a conceptual way of holding the mediating variable steady without
conditioning on it: We can intervene on it. If, instead of conditioning, we fix the qualifications,
the arrow between gender and qualifications (and the one between income and qualifications)
disappears, and no spurious dependence can pass through it. (Of course, it would be impos-
sible for us to literally change the qualifications of applicants, but recall, this is a theoretical
intervention of the kind discussed in the previous section, accomplished by choosing a proper
adjustment.) So for any three variables X,Y , and Z, where Z is a mediator between X and Y ,
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the controlled direct effect (CDE) on Y of changing the value of X from x to x′ is defined as

CDE = P(Y = y|do(X = x), do(Z = z)) − P(Y = y|do(X = x′), do(Z = z)) (3.18)

The obvious advantage of this definition over the one based on conditioning is its generality;
it captures the intent of “keeping Z constant” even in cases where the Z → Y relationship is
confounded (the same goes for the X → Z and X → Y relationships). Practically, this definition
assures us that in any case where the intervened probabilities are identifiable from the observed
probabilities, we can estimate the direct effect of X on Y . Note that the direct effect may differ
for different values of Z; for instance, it may be that hiring practices discriminate against
women in jobs with high qualification requirements, but they discriminate against men in jobs
with low qualifications. Therefore, to get the full picture of the direct effect, we’ll have to
perform the calculation for every relevant value z of Z. (In linear models, this will not be
necessary; for more information, see Section 3.8.)

Qualification
Income

Gender Hiring

Figure 3.12 A graphical model showing qualification (Z) as a mediator between gender (X) and hiring 

(Y), and income (I) as a confounder between qualification and hiring.

How do we estimate the direct effect when its expression contains two do-operators? The
technique is more or less the same as the one employed in Section 3.2, where we dealt with a
single do-operator by adjustment. In our example of Figure 3.12, we first notice that there is no
backdoor path from X to Y in the model, hence we can replace do(x) with simply conditioning
on x (this essentially amounts to adjusting for all confounders). This results in

P(Y = y|X = x, do(Z = z)) − P(Y = y|X = x′, do(Z = z))

Next, we attempt to remove the do(z) term and notice that two backdoor paths exist from Z
to Y , one through X and one through I. The first is blocked (since X is conditioned on) and the
second can be blocked if we adjust for I. This gives

∑
i

[P(Y = y|X = x,Z = z, I = i) − P(Y = y|X = x′,Z = z, I = i)]P(I = i)

The last formula is do-free, which means it can be estimated from nonexperimental data.
In general, the CDE of X on Y , mediated by Z, is identifiable if the following two properties

hold:

1. There exists a set S1 of variables that blocks all backdoor paths from Z to Y .
2. There exists a set S2 of variables that blocks all backdoor paths from X to Y , after deleting

all arrows entering Z.
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If these two properties hold in a model M, then we can determine P(Y = y|do(X = x),
do(Z = z)) from the data set by adjusting for the appropriate variables, and estimating the
conditional probabilities that ensue. Note that condition 2 is not necessary in randomized tri-
als, because randomizing X renders X parentless. The same is true in cases where X is judged
to be exogenous (i.e., “as if” randomized), as in the aforementioned gender discrimination
example.

It is even trickier to determine the indirect effect than the direct effect, because there is sim-
ply no way to condition away the direct effect of X on Y . It’s easy enough to find the total effect
and the direct effect, so some may argue that the indirect effect should just be the difference
between those two. This may be true in linear systems, but in nonlinear systems, differences
don’t mean much; the change in Y might, for instance, depend on some interaction between
X and Z—if, as we posited above, women are discriminated against in high-qualification jobs
and men in low-qualification jobs, subtracting the direct effect from the total effect would tell
us very little about the effect of gender on hiring as mediated by qualifications. Clearly, we
need a definition of indirect effect that does not depend on the total or direct effects.

We will show in Chapter 4 that these difficulties can be overcome through the use of coun-
terfactuals, a more refined type of intervention that applies at the individual level and can be
computed from structural models.

3.8 Causal Inference in Linear Systems

One of the advantages of the causal methods we have introduced in this book is that they
work regardless of the type of equations that make up the model in question. d-separation and
the backdoor criterion make no assumptions about the form of the relationship between two
variables—only that the relationship exists.

However, showcasing and explaining causal methods from a nonparametric standpoint
has limited our ability to present the full power of these methods as they play out in linear
systems—the arena where traditional causal analysis has primarily been conducted in the
social and behavioral sciences. This is unfortunate, as many statisticians work extensively in
linear systems, and nearly all statisticians are very familiar with them.

In this section, we examine in depth what causal assumptions and implications look like in
systems of linear equations and how graphical methods can help us answer causal questions
posed in those systems. This will serve as both a reinforcement of the methods we applied in
nonparametric models and as a useful aid for those hoping to apply causal inference specifi-
cally in the context of linear systems.

For instance, we might want to know the effect of birth control use on blood pressure after
adjusting for confounders; the total effect of an after-school study program on test scores; the
direct effect, unmediated by other variables, of the program on test scores; or the effect of
enrollment in an optional work training program on future earnings, when enrollment and
earnings are confounded by a common cause (e.g., motivation). Such questions, invoking
continuous variables, have traditionally been formulated as linear equation models with only
minor attention to the unique causal character of those equations; we make this character
unambiguous.

In all models used in this section, we make the strong assumption that the relationships
between variables are linear, and that all error terms have Gaussian (or “normal”) distributions
(in some cases, we only need to assume symmetric distributions). This assumption provides an
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enormous simplification of the procedure needed for causal analysis. We are all familiar with
the bell-shaped curve that characterizes the normal distribution of one variable. The reason it
is so popular in statistics is that it occurs so frequently in nature whenever a phenomenon is a
byproduct of many noisy microprocesses that add up to produce macroscopic measurements
such as height, weight, income, or mortality. Our interest in the normal distribution, however,
stems primarily from the way several normally distributed variables combine to shape their
joint distribution. The assumption of normality gives rise to four properties that are of enor-
mous use when working with linear systems:

1. Efficient representation
2. Substitutability of expectations for probabilities
3. Linearity of expectations
4. Invariance of regression coefficients.

Starting with two normal variables, X and Y , we know that their joint density forms a
three-dimensional cusp (like a mountain rising above the X–Y plane) and that the planes of
equal height on that cusp are ellipses like those shown in Figure 1.2. Each such ellipse is

    
 1.3.9. The parameters 𝜇X and 𝜇Y specify the location (or the center of gravity) of the 

ellipse in the X–Y plane, the standard deviations 𝜎X and 𝜎Y specify the spread of the ellipse 
along the X and Y dimensions, respectively, and the correlation coefficient 𝜌XY specifies its 
orientation. In three dimensions, the best way to depict the joint distribution is to imagine an 
oval football sus-pended in the X–Y–Z space (Figure 1.2); every plane of constant Z would 
then cut the football in a two-dimensional ellipse like the ones shown in Figure 1.1.

As we go to higher dimensions, and consider a set of N normally distributed variables
X1,X2, … ,XN , we need not concern ourselves with additional parameters; it is sufficient to
specify those that characterize the N(N − 1)∕2 pairs of variables, (Xi,Xj). In other words, the
joint density of (X1,X2, … ,XN) is fully specified once we specify the bivariate density of
(Xi,Xj), with i and j (i ≠ j) ranging from 1 to N. This is an enormously useful property, as it
offers an extremely parsimonious way of specifying the N-variable joint distribution. More-
over, since the joint distribution of each pair is specified by five parameters, we conclude
that the joint distribution requires at most 5 × N(N − 1)∕2 parameters (means, variances, and
covariances), each defined by expectation. In fact, the total number of parameters is even
smaller than this, namely 2N + N(N − 1)∕2; the first term gives the number of mean and vari-
ance parameters, and the second the number of correlations.

This brings us to another useful feature of multivariate normal distributions: they are fully
defined by expectations, so we need not concern ourselves with probability tables as we did
when dealing with discrete variables. Conditional probabilities can be expressed as conditional
expectations, and notions such as conditional independence that define the structure of graphi-
cal models can be expressed in terms of equality relationships among conditional expectations.
For instance, to express the conditional independence of Y and X, given Z,

P(Y|X,Z) = P(Y|Z)
we can write

E[Y|X,Z] = E[Y|Z]
(where Z is a set of variables).

characterized by five parameters: 𝜇X , 𝜇Y , 𝜎X , 𝜎Y , and 𝜌XY , as defined in Sections 1.3.8 and
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This feature of normal systems gives us an incredibly useful ability: Substituting expecta-
tions for probabilities allows us to use regression (a predictive method) to determine causal
information. The next useful feature of normal distributions is their linearity: every conditional
expectation E[Y|X1,X2, … ,Xn] is given by a linear combination of the conditioning variables.
Formally,

E[Y|X1 = x1,X2 = x2, … ,Xn = xn] = r0 + r1x1 + r2x2 + · · · + rnxn

where each of the slopes r1,r2,…,rn is a partial regression coefficient as defined in
Sections 1.3.10 and 1.3.11.

The magnitudes of these slopes do not depend on the values x1, x2, … , xn of the condition-
ing variables, called regressors; they depend only on which variables are chosen as regressors.
In other words, the sensitivity of Y to the measurement Xi = xi does not depend on the measured
values of the other variables in the regression; it depends only on which variables we choose
to measure. It doesn’t matter whether Xi =1, Xi =2, or Xi =312.3; as long as we regress 
Y on X1, X2,..., Xn all slopes will remain the same.

This unique and useful feature of normal distributions is illustrated in Figures 1.1 and 1.2
of Chapter 1. Figure 1.1 shows that regardless of what level of age we choose, the slope of
Y on X at that level is the same. If, however, we do not hold age constant (i.e., we do not
regress on it), the slope becomes vastly different, as is shown in Figure 1.2.

The linearity assumption also permits us to fully specify the functions in the model by anno-
tating the causal graph with a path coefficient (or structural coefficient) along each edge. The
path coefficient 𝛽 along the edge X → Y quantifies the contribution of X in the function that
defines Y in the model. For instance, if the function defines Y = 3X + U, the path coefficient
of X → Y will be 3. The path coefficients 𝛽1, 𝛽2, … , 𝛽n are fundamentally different from the
regression coefficients r1, r2, … , rn that we discussed in Section 1.3. The former are “struc-
tural” or “causal,” whereas the latter are statistical. The difference is explained in the next
section.

Many of the regression methods we discuss are far more general, applying in situations
where the variables X1, … ,Xk follow distribution far from multivariate Normal; for example,
when some of the Xi’s are categorical or even binary. Such generalizations also therefore allow
the conditional mean E(Y|X1 = x1, … ,Xk = xk) to include nonlinear combinations of the Xi’s,
including such terms as X1X2, for example, to allow for effect modification, or interaction.
Since we are conditioning on the values of the Xi’s, it is usually not necessary to enforce a dis-
tributional assumption for such variables. Nevertheless, the full multivariate Normal scenario
provides considerable insight into structural causal models.

3.8.1 Structural versus Regression Coefficients

As we are now about to deal with linear models, and thus, as a matter of course, with
regression-like equations, it is of paramount importance to define the difference between
regression equations and the structural equations we have used in SCMs throughout the book.
A regression equation is descriptive; it makes no assumptions about causation. When we write
y = r1x + r2z + 𝜖, as a regression equation, we are not saying that X and Z cause Y . We merely
confess our need to know which values of r1 and r2 would make the equation y = r1x + r2z
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the best linear approximation to the data, or, equivalently, the best linear approximation of
E(y|x, z).

Because of this fundamental difference between structural and regression equations, some
books distinguish them by writing an arrow, instead of equality sign, in structural equations,
and some distinguish the coefficients by using a different font. We distinguish them by denot-
ing structural coefficients as 𝛼, 𝛽, and so on, and regression coefficients as r1, r2, and so on. In
addition, we distinguish between the stochastic “error terms” that appear in these equations.
Errors in  regression equations are denoted  and so on, as in Eq.

.
 (1.24), and those in  

structural equations by U1, U2, and so on, as in SCM 1.5.2. The former denote the residual 
errors in observation, after fitting the equation y = r x1  +r z2  to data, whereas  the latter  
represent latent factors (sometimes called “disturbances” or “omitted variables”) that 
influence Y and are not themselves affected by X. The former are human-made (due to 
imperfect fitting); the latter are nature-made.

Though they are not causally binding themselves, regression equations are of significant use 
in the study of causality as it pertains to linear systems. Consider: In Section 3.2, we were able 
to express the effects of interventions in terms of conditional probabilities, as, for example, in 
the adjustment formula of Eq. (3.5). In linear systems, the role of conditional probabilities 
will be taken over by regression coefficients, since t hese c oefficients re present th e depen-
dencies induced by the model and, in addition, they are easily estimable using least square 
analyses. Similarly, whereas the testable implications of nonparametric models are expressed 
in the form of conditional independencies, these independencies are signified in linear models 
by vanishing regression coefficients, like those discussed in Section 1.3.11. Specifically, given 
the regression equation

y = r0 + r1x1 + r2x2 + · · · + rnxn + 𝜖

if ri = 0, then Y is independent of Xi conditional on all the other regression variables.

3.8.2 The Causal Interpretation of Structural Coefficients

In a linear system, every path coefficient stands for the direct effect of the independent variable,
X, on the dependent variable, Y . To see why this is so, we refer to the interventional definition
of direct effect given in Section 3.7 (Eq. (3.18)), which calls for computing the change in Y as
X increases by one unit whereas all other parents of Y are held constant. When we apply this
definition to any linear system, regardless of whether the disturbances are correlated or not,
the result will be the path coefficient on the arrow X → Y .

Consider, for example, the model in Figure 3.13, and assume we wish to estimate the direct
effect of Z on Y . The structural equations in the fully specified model read:

X = UX

Z = aX + UZ

W = bX + cZ + UW

Y = dZ + eW + UY

𝜖 , 𝜖1 2, 
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Writing Eq. (3.18) in expectation form, we obtain

DE = E[Y|do(Z = z + 1), do(W = w)] − E[Y|do(Z = z), do(W = w)]

since W is the only other parent of Y in the graph. Applying the do operators by deleting the
appropriate equations from the model, the postincrease term in DE becomes d(z + 1) + ew
and the preincrease term becomes dz + ew. As expected, the difference between the two is
d—the path coefficient between Z and Y . Note that the license to reduce the equation in this
way comes directly from the definition of the do-operator (Eq. (3.18)) making no assumption
about correlations among the U factors; the equality DE = d would be valid even if the error
term UY were correlated with UZ , though this would have made d nonidentifiable. The same
goes for the other direct effects; every structural coefficient represents a direct effect, regardless
of how the error terms are distributed. Note also that variable X, as well as the coefficients a, b,
and c, do not enter into this computation, because the “surgeries” required by the do operators
remove them from the model.

That is all well and good for the direct effect. Suppose, however, we wish to calculate the
total effect of Z on Y .

d

a

UX

UW UZ

UY

X

Y

ZW c

e

b

Figure 3.13 A graphical model illustrating the relationship between path coefficients and total effects

In a linear system, the total effect of X on Y is simply the sum of the products of the coeffi-
cients of the edges on every nonbackdoor path from X to Y .

That’s a bit of a mouthful, so think of it as a process: To find the total effect of X on Y , first
find every nonbackdoor path from X to Y; then, for each path, multiply all coefficients on the
path together; then add up all the products.

The reason for this identity lies in the nature of SCMs. Consider again the graph of
Figure 3.13. Since we want to find the total effect of Z on Y , we should first intervene on Z,
removing all arrows going into Z, then express Y in terms of Z in the remaining model. This
we can do with a little algebra:

Y = dZ + eW + UY

= dZ + e(bX + cZ) + UY + eUW

= (d + ec)Z + ebX + UY + eUW

The final expression is in the form Y = 𝜏Z + U, where 𝜏 = d + ec and U contains only terms
that do not depend on Z in the modified model. An increase of a single unit in Z, therefore,
will increase Y by 𝜏—the definition of the total effect. A quick examination will show that 𝜏
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is the sum of the products of the coefficients on the two nonbackdoor paths from Z to Y . This
will be the case in all linear models; algebra demands it. Moreover, the sum of product rule
will be valid regardless of the distributions of the U variables and regardless of whether they
are dependent or independent.

3.8.3 Identifying Structural Coefficients and Causal Effect

Thus far, we have expressed the total and direct effects in terms of path coefficients, assuming
that the latter are either known to us a priori or estimated from interventional experiments. We
now tackle a much harder problem; estimating total and direct effects from nonexperimental
data. This problem is known as “identifiability” and, mathematically, it amounts to expressing
the path coefficients associated with the total and direct effects in terms of the covariances 𝜎XY
or regression coefficients RYX⋅Z, where X and Y are any two variables in the model, and Z a s e t 
of variables in the model (Eqs. (1.27) and (1.28) and Section 1.3.11).

In many cases, however, it turns out that to identify direct and total effects, we do not need
to identify each and every structural parameter in the model. Let us first demonstrate with the
total effect, 𝜏. The backdoor criterion gives us the set Z of variables we need to adjust for in
order to determine the causal effect of X on Y . How, though, do we make use of the criterion to
determine effects in a linear system? In principle, once we obtain the set, Z, we can estimate
the conditional expectation of Y given X and Z and, then, averaging over Z, we can use the
resultant dependence between Y and X to measure the effect of X on Y . We need only translate
this procedure to the language of regression.

The translation is rather simple. First, we find a set of covariates Z that satisfies the backdoor
criterion from X to Y in the model. Then, we regress Y on X and Z. The coefficient of X in
the resulting equation represents the true causal effect of X on Y . The reasoning for this is
similar to the reasoning we used to justify the backdoor criterion in the first place—regressing
on Z adds those variables into the equation, blocking all backdoor paths from X and Y , thus
preventing the coefficient of X from absorbing the spurious information those paths contain.

For example, consider a linear model that complies with the graph in Figure 3.14. If we want
to find the total causal effect of X on Y , we first determine, using the backdoor criterion, that
we must adjust for T . So we regress Y on X and T , using the regression equation y = rXX +

γ δ

α β

YX

T

W

UW

UT

UYUX

Figure 3.14 A graphical model in which X has no direct effect on Y , but a total effect that is determined
by adjusting for T
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rTT + 𝜖. The coefficient rX represents the total effect of X on Y . Note that this identification
was possible without identifying any of the model parameters and without measuring variable
W; the graph structure in itself gave us the license to ignore W, regress Y on T and X only, and
identify the total effect (of X on Y) with the coefficient of X in that regression.

Suppose now that instead of the total causal effect, we want to find X′s direct effect on Y . In
a linear system, this direct effect is the structural coefficient 𝛼 in the function y = 𝛼x + 𝛽z +
· · · + UY that defines Y in the system. We know from the graph of Figure 3.14 that 𝛼 = 0,
because there is no direct arrow from X to Y . So, in this particular case, the answer is trivial:
the direct effect is zero. But in general, how do we find the magnitude of 𝛼 from data, if the
model does not determine its value?

Z

X

W

Y

γ

UX

UZ

UW

UY

δ

β

α

Figure 3.15 A graphical model in which X has direct effect 𝛼 on Y

We can invoke a procedure similar to backdoor, except that now, we need to block not only
backdoor paths but also indirect paths going from X to Y . First, we remove the edge from X to
Y (if such an edge exists), and call the resulting graph G𝛼 . If, in G𝛼 , there is a set of variables
Z that d-separates X and Y , then we can simply regress Y on X and Z. The coefficient of X in
the resulting equation will equal the structural coefficient 𝛼.

The procedure above, which we might as well call “The Regression Rule for Identification” 
provides us with a quick way of determining whether any given parameter (say 𝛼) can be 
identified by ordinary least square (OLS) regression and, if so, what variables should go into 
the regression equation. For example, in the linear model of Figure 3.15, we can find the direct 
effect of X on Y by this method. First, we remove the edge between X and Y and get the graph 
G𝛼 shown in Figure 3.16. It’s easy to see that in this new graph, W d-separates X and Y . So we
regress Y on X and W, using the regression equation Y = rXX + rWW + 𝜖. The coefficient rX
is the direct effect of X on Y .

Summarizing our observations thus far, two interesting features emerge. First, we see that, in
linear systems, regression serves as the major tool for the identification and estimation of causal
effects. To estimate a given effect, all we need to do is to write down a regression equation and
specify (1) what variables should be included in the equation and (2) which of the coefficients
in that equation represents the effect of interest. The rest is routine least square analysis on the
sampled data which, as we remarked before, is facilitated by a variety of extremely efficient
software packages. Second, we see that, as long as the U variables are independent of each



�

� �

�

The Effects of Interventions 85

Z
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Figure 3.16 By removing the direct edge from X to Y and finding the set of variables {W} that
d-separate them, we find the variables we need to adjust for to determine the direct effect of X on Y

other, and all variables in the graph are measured, every structural parameter can be identified
in this manner, namely, there is at least one identifying regression equation in which one of the
coefficients corresponds to the parameter we seek to estimate. One such equation is obviously
the structural equation itself, with the parents of Y serving as regressors. But there may be
several other identifying equations, with possibly better features for estimation and graphical
analysis can reveal them all (see Study question 3.8.1(c)). Moreover, when some variables
are not measured, or when some error terms are correlated, the task of finding an identifying
regression from the structural equations themselves would normally be insurmountable; the
G𝛼 procedure then becomes indispensable (see Study question 3.8.1(d)).

Remarkably, the regression rule procedure has eluded investigators for almost a century,
possibly because it is extremely difficult to articulate in algebraic, nongraphical terms.

Suppose, however, there is no set of variables that d-separates X and Y in G𝛼 . For instance,
in Figure 3.17, X and Y have an unobserved common cause represented by the dashed

Z

X

Y

UZ

UX

UY

α

β

Figure 3.17 A graphical model in which we cannot find the direct effect of X on Y via adjustment,
because the dashed double-arrow arc represents the presence of a backdoor path between X and Y , con-
sisting of unmeasured variables. In this case, Z is an instrument with regard to the effect of X on Y that
enables the identification of 𝛼
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double-arrowed arc. Since it hasn’t been measured, we can’t condition on it, so X and Y will
always be dependent through it. In this particular case, we may use an instrumental variable
to determine the direct effect. A variable is called an “instrument” if it is d-separated from Y
in G𝛼 and, it is d-connected to X. To see why such a variable enables us to identify structural
coefficients, we take a closer look at Figure 3.17.

In Figure 3.17, Z is an instrument with regard to the effect of X on Y because it is d-connected
to X and d-separated from Y in G𝛼 . We regress X and Y on Z separately, yielding the regression
equations y = r1z + 𝜖 and x = r2z + 𝜖, respectively. Since Z emits no backdoors, r2 equals 𝛽
and r1 equals the total effect of Z on Y , 𝛽𝛼. Therefore, the ratio r1∕r2 provides the desired
coefficient 𝛼. This example illustrates how direct effects can be identified from total effects
but not the other way around.

Graphical models provide us with a procedure for finding all instrumental variables in a
system, though the procedure for enumerating them is beyond the scope of this book. Those
interested in learning more can (see Chen and Pearl 2014; Kyono 2010).

Study questions

Study question 3.8.1

Model 3.1

Y = aW3 + bZ3 + cW2 + U X = t1W1 + t2Z3 + U′

W3 = c3X + U′
3 W1 = a′1Z1 + U′

1

Z3 = a3Z1 + b3Z2 + U3 Z1 = U1

W2 = c2Z2 + U′
2 Z2 = U2

t1

a3 b3

Z2Z1

c2a1

W1 W2

t2 b
Z3

W3 YX c3 a

c

Figure 3.18 Graph corresponding to Model 3.1 in Study question 3.8.1

Given the model depicted above, answer the following questions:
(All answers should be given in terms of regression coefficients in specified regression

equations.)
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(a) Identify three testable implications of this model.
(b) Identify a testable implication assuming that only X, Y, W3, and Z3 are observed.
(c) For each of the parameters in the model, write a regression equation in which one of the

coefficients is equal to that parameter. Identify the parameters for which more than one
such equation exists.

(d) Suppose X, Y, and W3 are the only variables observed. Which parameters can be identified
from the data? Can the total effect of X on Y be estimated?

(e) If we regress Z1 on all other variables in the model, which regression coefficient will be
zero?

(f) The model in Figure 3.18 implies that certain regression coefficients will remain invariant
when an additional variable is added as a regressor. Identify five such coefficients with
their added regressors.

(g) Assume that variables Z2 and W2 cannot be measured. Find a way to estimate b using
regression coefficients. [Hint: Find a way to turn Z1 into an instrumental variable for b.]

3.8.4 Mediation in Linear Systems

When we can assume linear relationships between variables, mediation analysis becomes
much simpler than the analysis conducted in nonlinear or nonparametric systems (Section 3.7).
Estimating the direct effect of X on Y , for instance, amounts to estimating the path coefficient
between the two variables, and this reduces to estimating correlation coefficients, using the
techniques introduced in Section 3.8.3. The indirect effect, similarly, is computed via the dif-
ference IE = 𝜏 − DE, where 𝜏, the total effect, can be estimated by regression in the manner
shown in Figure 3.14. In nonlinear systems, on the other hand, the direct effect is defined
through expressions such as (3.18), or

DE = E[Y|do(x, z)] − E[Y|do(x′, z)]

where Z = z represents a specific stratum of all other parents of Y (besides X). Even when
the identification conditions are satisfied, and we are able to reduce the do() operators (by
adjustments) to ordinary conditional expectations, the result will still depend on the specific
values of x, x′, and z. Moreover, the indirect effect cannot be given a definition in terms as
do-expressions, since we cannot disable the capacity of Y to respond to X by holding variables
constant. Nor can the indirect effect be defined as the difference between the total and direct
effects, since differences do not faithfully reflect operations in nonlinear systems to X.

Such an operation will be introduced in Chapter 4 (Sections 4.4.5 and 4.5.2) using the lan-
guage of counterfactuals.

Bibliographical Notes for Chapter 3

Study question 3.3.2 is a version of Lord’s paradox (Lord 1967), and is described in Glymour
(2006), Hernández-Díaz et al. (2006), Senn (2006), and Wainer (1991). A unifying treatment
is given in Pearl (2016). The definition of the do-operator and “ACE” in terms of a modified
model, has its conceptual origin with the economist Trygve Haavelmo (1943), who was the first
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to simulate interventions by modifying equations in the model (see Pearl (2015c) for histori-
cal account). Strotz and Wold (1960) later advocated “wiping out” the equation determining
X, and Spirtes et al. (1993) gave it a graphical representation in a form of a “manipulated
graph.” The “adjustment formula” of Eq. (3.5) as well as the “truncated product formula” first
appeared in Spirtes et al. (1993), though these are implicit in the G-computation formula of
Robins (1986), which was derived using counterfactual assumptions (see Chapter 4). The back-
door criterion of Definition 3.3.1 and its implications for adjustments were introduced in Pearl
(1993). The front-door criterion and a general calculus for identifying causal effects (named
do-calculus) from observations and experimental data were introduced in Pearl (1995) and
were further improved in Tian and Pearl (2002), Shpitser and Pearl (2007), and Bareinboim
and Pearl (2012). Section 3.7, and the identification of conditional interventions and c-specific
effects is based on (Pearl 2009, pp. 113–114). Its extension to dynamic, time-varying policies
is described in Pearl and Robins (1995) and (Pearl 2009, pp. 119–126). More recently, the
do-calculus was used to solve problems of external validity, data-fusion, and meta-analysis
(Bareinboim and Pearl 2013, Bareinboim and Pearl 2016, and Pearl and Bareinboim 2014).
The role of covariate-specific effects in assessing interaction, moderation or effect modifica-
tion is described in Morgan and Winship (2014) and Vanderweele (2015), whereas applications
of Rule 2 to the detection of latent heterogeneity are described in Pearl (2015b). Additional
discussions on the use of inverse probability weighting (Section 3.6) can be found in Hernán
and Robins (2006). Our discussion of mediation (Section 3.7) and the identification of CDEs
are based on Pearl (2009, pp. 126–130), whereas the fallibility of “conditioning” on a mediator
to assess direct effects is demonstrated in Pearl (1998) as well as Cole and Hernán (2002).

The analysis of mediation has become extremely active in the past 15 years, primarily due
to the advent of counterfactual logic (see Section 4.4.5); a comprehensive account of this
progress is given in Vanderweele (2015). A tutorial survey of causal inference in linear sys-
tems (Section 3.8), focusing on parameter identification, is provided by Chen and Pear1 (2014).
Additional discussion on the confusion of regression versus structural equations can be found
in Bollen and Pearl (2013).

A classic, and still the best textbook on the relationships between structural and regession
coefficients is Heise (1975) (available online: http://www.indiana.edu/~socpsy/public_files/
CausalAnalysis.zip). Other classics are Duncan (1975), Kenny (1979), and Bollen (1989).
Classical texts, however, fall short of providing graphical tools of identification, such as those
invoking backdoor and G𝛼 (see Study question 3.8.1). A recent exception is Kline (2016).

Introductions to instrumental variables can be found in Greenland (2000) and in many text-
books of econometrics (e.g., Bowden and Turkington 1984, Wooldridge 2013). Generalized
instrumental variables, extending the classical definition of Section 3.8.3 were introduced in
Brito and Pearl (2002).

The program DAGitty (which is available online: http://www.dagitty.net/dags.html), permits
users to search the graph for generalized instrumental variables, and reports the resulting IV
estimators (Textor et al. 2011).




