CAUSAL INFERENCE IN STATISTICS:

A Gentle Introduction

Judea Pearl
Departments of Computer Science and Statistics UCLA

OUTLINE

1. The causal revolution - from statistics to policy intervention to counterfactuals
2. The fundamental laws of causal inference
3. From counterfactuals to problem solving (gems)

Old \begin{tabular}{l}
gems $\left\{\begin{array}{l}\text { a) } \text { policy evaluation ("treatment effects"...) } \\
\text { b) } \\
\text { c) } \\
\text { ctribution - "but for" }\end{array}\right.$

New | Newation - direct and indirect effects |
| :--- |
| gems |$\left\{\begin{array}{l}\text { d) }\end{array}\right.$ generalizability - external validity

e)

felection bias - non-representative sample

missing data
\end{tabular}

e) selection bias - non-representative sample
f) missing data

FIVE LESSONS FROM THE THEATRE OF CAUSAL INFERENCE

1. Every causal inference task must rely on judgmental, extra-data assumptions (or experiments).
2. We have ways of encoding those assumptions mathematically and test their implications.
3. We have a mathematical machinery to take those assumptions, combine them with data and derive answers to questions of interest.
4. We have a way of doing (2) and (3) in a language that permits us to judge the scientific plausibility of our assumptions and to derive their ramifications swiftly and transparently.
5. Items (2)-(4) make causal inference manageable, fun, and profitable.

WHAT EVERY STUDENT SHOULD KNOW

The five lessons from the causal theatre, especially:
3. We have a mathematical machinery to take meaningful assumptions, combine them with data, and derive answers to questions of interest.
5. This makes causal inference

FUN !

WHY NOT STAT-101?
 THE STATISTICS PARADIGM
 1834-2016

- "The object of statistical methods is the reduction of data" (Fisher 1922).
- Statistical concepts are those expressible in terms of joint distribution of observed variables.
- All others are: "substantive matter," "domain dependent," "metaphysical," "ad hockery," i.e., outside the province of statistics, ruling out all interesting questions.
- Slow awakening since Neyman (1923) and Rubin (1974).
- Traditional Statistics Education = Causalophobia

THE CAUSAL REVOLUTION

1. "More has been learned about causal inference in the last few decades than the sum total of everything that had been learned about it in all prior recorded history."
(Gary King, Harvard, 2014)
2. From liability to respectability

- JSM 2003-13 papers
- JSM 2013-130 papers

3. The gems - for Fun and Profit

- Its fun to solve problems that Pearson, Fisher, Neyman, and my professors . . . were not able to articulate.
- Problems that users pay for.

FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES

e.g., Estimate $P^{\prime}($ sales $)$ if we double the price.

How does P change to P^{\prime} ? New oracle e.g., Estimate $P^{\prime}($ cancer $)$ if we ban smoking.

FROM STATISTICS TO COUNTERFACTUALS: RETROSPECTION

What happens when P changes?
e.g., Estimate the probability that a customer who bought A would buy A if we were to double the price.

TRADITIONAL STATISTICAL INFERENCE PARADIGM

e.g.,

Infer whether customers who bought product A would also buy product B.
$Q=P(B \mid A)$

FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES

What remains invariant when P changes say, to satisfy $P^{\prime}($ price $=2)=1$

Note: $P^{\prime}($ sales $) \neq P($ sales \mid price $=2)$ e.g., Doubling price \neq seeing the price doubled. P does not tell us how it ought to change.
STRUCTURAL CAUSAL MODEL
THE NEW ORACLE

WHAT KIND OF QUESTIONS SHOULD THE NEW ORACLE ANSWER THE CAUSAL HIERARCHY

- Observational Questions:
"What if we see A" (What is?) $P(y \mid A)$
- Action Questions: "What if we do A?" (What if?) $P(y \mid d o(A))$
- Counterfactuals Questions:
"What if we did things differently?" (Why?)
- Options: $P\left(y_{A}, \mid A\right)$
"With what probability?"
SYNTACTIC DISTINCTION

WHAT KIND OF QUESTIONS SHOULD THE NEW ORACLE ANSWER THE CAUSAL HIERARCHY

- Observational Questions: "What if we see A" Bayes Networks
- Action Questions: "What if we do A?" Causal Bayes Networks
- Counterfactuals Questions: Functional Causal "What if we did things differently?" Diagrams
- Options:
"With what probability?"
GRAPHICAL REPRESENTATIONS

FROM STATISTICAL TO CAUSAL ANALYSIS:

3. THE MENTAL BARRIERS

1. Causal and associational concepts do not mix.

purious correlation ASSOCIATIONAL

Randomization / Intervention Regression

Holding constant" / "Fixing"
ssociation / Independence
Confounding / Effect "Controling for" / Conditioning

Instrumental variable Odds and risk ratios Collapsibility / Granger causality Ignorability / Exogeneity Propensity score
2. No causes in - no causes out (Cartwright, 1989)
causal assumptions (or experiments) $\}$
ata $\} \Rightarrow$ causal conclusions
3. Causal assumptions cannot be expressed in the mathematical language of standard statistics
4. Non-standard mathematics:
a) Structural equation models (Wright, 1920; Simon, 1960
b) Counterfactuals (Neyman-Rubin $\left(Y_{x}\right)$, Lewis $(x \quad \square \rightarrow Y)$)

DERIVING COUNTERFACTUALS FROM A MODEL

Graph (G)

Would the pavement be wet HAD the sprinkler been ON?

DERIVING COUNTERFACTUALS FROM A MODEL

Would the pavement be wet had the sprinkler been ON?
Find if $W=1$ in $M_{S=1}$
Find if $f_{W}\left(S=1, R, U_{W}\right)=1$ or $W_{S=1}=1$
What is the probability that we find the pavement is wet if we turn the sprinkler ON?
Find if $P\left(W_{S=1}=1\right)=P(W=1 \mid d o(S=1))$

DERIVING COUNTERFACTUALS FROM A MODEL

Would it rain if we turn the sprinkler ON?
Not necessarily, because $R_{S=1}=R$

DERIVING COUNTERFACTUALS

 FROM A MODEL

Would the pavement be wet had the rain been ON?
Find if $W=1$ in $M_{R=1}$
Find if $f_{W}\left(S, R=1, U_{W}\right)=1$

EVERY COUNTERFACTAUL HAS A VALUE IN M

THE TWO FUNDAMENTAL LAWS OF CAUSAL INFERENCE

1. The Law of Counterfactuals (and Interventions)

$$
Y_{x}(u)=Y_{M_{x}}(u)
$$

(M generates and evaluates all counterfactuals.) and all interventions

$$
A T E=E_{u}\left[Y_{x}(u)\right]=E[Y \mid d o(x)]
$$

THE TWO FUNDAMENTAL LAWS OF CAUSAL INFERENCE

1. The Law of Counterfactuals (and Interventions)

$$
Y_{x}(u)=Y_{M_{x}}(u)
$$

(M generates and evaluates all counterfactuals.)
2. The Law of Conditional Independence (d-separation)
$(X \operatorname{sep} Y \mid Z)_{G(M)} \Rightarrow(X \Perp Y \mid Z)_{P(v)}$
(Separation in the model \Rightarrow independence in the distribution.)
THE LAW OF
CONDITIONAL INDEPENDENCE

D-SEPARATION: NATURE'S LANGUAGE FOR COMMUNICATING ITS STRUCTURE

Every missing arrow advertises an independency, conditional on a separating set.
e.g., $C \Perp W I(S, R) \quad S \Perp R \mid C$
Applications:

1. Model testing
2. Structure learning
3. Reducing "what if I do" questions to symbolic calculus
4. Reducing scientific questions to symbolic calculus

ELIMINATING CONFOUNDING BIAS THE BACK-DOOR CRITERION

$P(y \mid d o(x))$ is estimable if there is a set Z of variables that if conditioned on, would block all $X-Y$ paths that are severed by the intervention and none other. do (x)-intervention
do (x)-emulation

Moreover, $P\left(y \mid d o((x))=\sum_{z} P(y \mid x, z) P(z) \quad\right.$ (Adjustment) Back-door $\Longrightarrow Y_{x} \Perp X \mid Z \Longrightarrow(Y \Perp X \mid Z)_{G_{X}}$

GOING BEYOND ADJUSTMENT

 EFFECT OF WARM-UP ON INJURY (Shrier \& Platt, 2008)

DO-CALCULUS (THE WHEELS OF THE ENGINE)

The following transformations are valid for every interventional distribution generated by a structural causal model M :

Rule 1: Ignoring observations
$P(y \mid d o(x), z, w)=P(y \mid d o(x), w)$,

$$
\text { if } \quad(Y \Perp Z \mid X, W) G_{\bar{X}}^{-}
$$

Rule 2: Action/observation exchange
$P(y \mid d o(x), d o(z), w)=P(y \mid d o(x), z, w)$
if $\quad(Y \Perp Z \mid X, W) G_{\bar{X}}^{\bar{Z}}$
Rule 3: Ignoring actions
$P(y \mid d o(x), d o(z), w)=P(y \mid d o(x), w)$,
if $\quad(Y \Perp Z \mid X, W) G_{\overline{X Z(W)}}$

GEM 1: THE IDENTIFICATION PROBLEM IS SOLVED (NONPARAMETRICALLY)

- The estimability of any expression of the form $Q=P\left(y_{1}, y_{2}, \ldots, y_{n} \mid d o\left(x_{1}, x_{2}, \ldots, x_{m}\right), z_{1}, z_{2}, \ldots, z_{k}\right)$ can be decided in polynomial time
- If Q is estimable, then its estimand can be derived in polynomial time.
- The algorithm is complete.
- Same for ETT (Shpitser 2008).

PROPENSITY SCORE ESTIMATOR

 (Rosenbaum \& Rubin, 1983)$P(y \mid d o(x))=?$

$e\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \stackrel{\Delta}{=} P\left(X=1 \mid z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)$
Theorem:
$\sum_{z} P(y \mid z, x) P(z)=\sum_{e} P(y \mid e, x) P(e)$
Adjustment for $\boldsymbol{e}(z)$ replaces Adjustment for \boldsymbol{Z}

DAGS VS. POTENTIAL COUTCOMES

 AN UNBIASED PERSPECTIVE1. Semantic Equivalence
2. Both are abstractions of Structural Causal Models (SCM).

$$
Y_{x}(u)=Y_{M_{x}}(u)
$$

$$
\begin{aligned}
& X \rightarrow Y \\
& y=f(x, z, u)
\end{aligned}
$$

$Y_{x}(u)=$ All factors that affect Y when X is held constant at $X=x$.
3. In particular, instrumental variables tend to amplify bias.
4. Choosing sufficient set for PS, requires causal knowledge, which PS alone cannot provide.

CHOOSING A LANGUAGE TO ENCODE ASSUMPTIONS

1. English: Smoking (X), Cancer (Y), $\operatorname{Tar}(Z)$, Genotypes (U)

2. Potential Outcome:

$$
\begin{aligned}
Z_{x}(u) & =Z_{y x}(u), \\
X_{y}(u) & =X_{z y}(u)=X_{z}(u)=X(u), \\
Y_{z}(u) & =Y_{z x}(u), \quad Z_{x} \Perp\left\{Y_{z}, X\right\}
\end{aligned}
$$

Not too friendly:
Consistent?, complete?, redundant?, plausible?, testable?

CHOOSING A LANGUAGE TO ENCODE ASSUMPTIONS

1. English: Smoking (X), Cancer (Y), Tar (Z), Genotypes (U)

2. Counterfactuals: $Z_{x}(u)=Z_{y x}(u)$,

$$
\begin{gathered}
X_{y}(u)=X_{z y}(u)=X_{z}(u)=X(u), \\
Y_{z}(u)=Y_{z x}(u), \quad Z_{x} \Perp\left\{Y_{z}, X\right\}
\end{gathered}
$$

3. Structural:

GEM 2: ATTRIBUTION

- Your Honor! My client (Mr. A) died BECAUSE he used that drug.

-

CAN FREQUENCY DATA DETERMINE LIABILITY?

Sometimes:

- WITH PROBABILITY ONE $1 \leq P N \leq 1$
- Combined data tell more that each study alone

GEM 2: ATTRIBUTION

- Your Honor! My client (Mr. A) died BECAUSE he used that drug.

- Court to decide if it is MORE PROBABLE THAN NOT that A would be alive BUT FOR the drug!
- $P N=P\left(\right.$ alive $_{\{n o d r u g s\}} \mid$ dead,$\left.d r u g\right) \geq 0.50$

GEM 3: MEDIATION WHY DECOMPOSE EFFECTS?

1. To understand how Nature works
2. To comply with legal requirements
3. To predict the effects of new type of interventions:

Signal re-routing and mechanism deactivating, rather than variable fixing

LEGAL IMPLICATIONS OF DIRECT EFFECT

Can data prove an employer guilty of hiring discrimination? (Gender)

What is the direct effect of X on Y ? $C D E=E\left(Y \mid d o\left(x_{1}\right), d o(m)\right)-E\left(Y \mid d o\left(x_{0}\right), d o(m)\right)$
(m-dependent) Adjust for M ? No! No!
CDE identification is completely solved

NATURAL INTERPRETATION OF AVERAGE DIRECT EFFECTS

Robins and Greenland (1992) - Pearl (2001)

$m=f(x, u)$
$y=g(x, m, u)$

Natural Direct Effect of X on $Y: \operatorname{DE}\left(x_{0}, x_{1} ; Y\right)$
The expected change in Y, when we change X from x_{0} to x_{1} and, for each u, we keep M constant at whatever value it attained before the change.

$$
E\left[Y_{x_{1} M_{x_{0}}}-Y_{x_{0}}\right]
$$

Note the 3-way symbiosis

DEFINITION OF INDIRECT EFFECTS

$m=f(x, u)$
$y=g(x, m, u)$
No controlled indirect effect

Indirect Effect of X on Y : $\operatorname{IE}\left(x_{0}, x_{1} ; Y\right)$
The expected change in Y when we keep X constant, say at x_{0}, and let M change to whatever value it would have attained had X changed to x_{1}.

$$
E\left[Y_{x_{0} M_{x_{1}}}-Y_{x_{0}}\right]
$$

In linear models, $I E=T E-D E$

POLICY IMPLICATIONS OF INDIRECT EFFECTS

What is the indirect effect of X on Y ?
The effect of Gender on Hiring if sex discrimination is eliminated.

Deactivating a link - a new type of intervention

- The nonparametric estimability of natural (and controlled) direct and indirect effects can be determined in polynomial time given any causal graph G with both measured and unmeasured variables.
- If NDE (or NIE) is estimable, then its estimand can be derived in polynomial time.
- The algorithm is complete and was extended to any path-specific effects (Shpitser, 2013).

THE MEDIATION FORMULAS IN UNCONFOUNDED MODELS

$m=f\left(x, u_{1}\right)$
$y=g\left(x, m, u_{2}\right)$
u_{1} independent of u_{2}
$D E=\sum\left[E\left(Y \mid x_{1}, m\right)-E\left(Y \mid x_{0}, m\right)\right] P\left(m \mid x_{0}\right)$
$I E=\sum\left[E\left(Y \mid x_{0}, m\right)\left[P\left(m \mid x_{1}\right)-P\left(m \mid x_{0}\right)\right]\right.$
m
$T E=E\left(Y \mid x_{1}\right)-E\left(Y \mid x_{0}\right) \quad T E \neq D E+I E$
$I E=$ Fraction of responses explained by mediation (sufficient)
$T E-D E=$ Fraction of responses owed to mediation (necessary)

WHEN CAN WE IDENTIFY

 MEDIATED EFFECTS?
(c)

(d)

(e)

(f)

THE PROBLEM IN REAL LIFE

Target population $\prod^{*} \quad$ Query of interest: $\quad \boldsymbol{Q = \boldsymbol { P } ^ { * } (\boldsymbol { y } | \boldsymbol { d o } (\boldsymbol { x }))}$

(a) Arkansas Survey data available	(b) New York Survey data Resembling target	(c) Los Angeles Survey data Younger population
(d) Boston Age not recorded Mostly successful lawyers	(e) San Francisco High post-treatment blood pressure	(f) Texas Mostly Spanish subjects High attrition
(g) Toronto Randomized trial College students	(h) Utah RCT, paid volunteers, unemployed	(i) Wyoming RCT, young athletes

GEM 4: GENERALIZABILITY AND DATA FUSION

The problem

- How to combine results of several experimental and observational studies, each conducted on a different population and under a different set of conditions,
- so as to construct a valid estimate of effect size in yet a new population, unmatched by any of those studied.

THE PROBLEM IN MATHEMATICS

Target population Π^{*} Query of interest: $\quad \boldsymbol{Q}=\boldsymbol{P *}(\boldsymbol{y} \mid \boldsymbol{d o}(\boldsymbol{x})$)

(b)

THE SOLUTION IS IN ALGORITHMS

Target population Π

(e)

(h)

THE TWO-POPULATION PROBLEM WHAT CAN EXPERIMENTS IN LA TELL US ABOUT NYC?

Needed: $Q=P^{*}(y \mid d o(x))=?=\sum P(y \mid d o(x), z) P^{*}(z)$
Transport Formula: $Q=F\left(P, P_{d o}, P^{*}\right) \quad z$
TRANSPORT FORMULAS DEPEND ON THE CAUSAL STORY

a) \boldsymbol{Z} represents age

$$
P^{*}(y \mid d o(x))=\sum_{z} P(y \mid d o(x), z) P^{*}(z)
$$

b) \boldsymbol{Z} represents language skill

$$
P^{*}(y \mid d o(x))=P(y \mid d o(x))
$$

c) \boldsymbol{Z} represents a bio-marker

$$
P^{*}(y \mid d o(x))=\sum_{z} P(y \mid d o(x), z) P^{*}(z \mid x)
$$

TRANSPORTABILITY REDUCED TO CALCULUS

Theorem
A causal relation \boldsymbol{R} is transportable from Π to Π^{\star} if and only if it is reducible, using the rules of $d o$-calculus, to an expression in which S is separated from $\boldsymbol{d o}($). Query
$R\left(\Pi^{*}\right)=e^{*}(y \mid d o(x))=P(y \mid d o(x), s)$

RESULT: ALGORITHM TO DETERMINE IF AN EFFECT IS TRANSPORTABLE

OUTPUT:

1. Transportable or not?
2. Measurements to be taken in the experimental study
3. Measurements to be taken in the target population
4. A transport formula
$P^{*}(y \mid d o(x))=$
5. Completeness (Bareinboim, 2012)
$\sum_{z} P(y \mid d o(x), z) \sum_{w} P^{*}(z \mid w) \sum_{t} P(w \mid d o(w), t) P^{*}(t)$

SUMMARY OF TRANSPORTABILITY RESULTS

- Nonparametric transportability of experimental results from multiple environments can be determined provided that commonalities and differences are encoded in selection diagrams.
- When transportability is feasible, the transport formula can be derived in polynomial time.
- The algorithm is complete.

WHICH MODEL LICENSES THE TRANSPORT OF THE CAUSAL EFFECT $X \rightarrow Y$
$S_{\boxminus} \rightarrow$ External factors creating disparities

RECOVERING FROM SELECTION BIAS

Query: Find $P(y \mid d o(x))$
Data: $\quad P(y \mid d o(x), z, S=1)$ from study
$P(y, x, z) \quad$ from survey

Theorem:
A query Q can be recovered from selection biased data iff Q can be transformed, using $d o$-calculus to a form provided by the data, i.e.,
(i) All do-expressions are conditioned on $S=1$
(ii) No do-free expression is conditioned on $S=1$

GEM 6: MISSING DATA: A STATISTICAL PROBLEM TURNED CAUSAL

Sam- ple \#	X	Y	Z
1	1	0	0
2	1	0	1
3	1	m	m
4	0	1	m
5	m	1	m
6	m	0	1
7	m	m	0
8	0	1	m
9	0	0	m
10	1	0	m
11	1	0	1
-			

Question:
Is there a consistent estimator of $P(X, Y, Z)$? That is, is $P(X, Y, Z)$ estimable (asymptotically) as if no data were missing.

Conventional Answer:
Run imputation algorithm and, if missingness occurs at random (MAR), (a condition that is untestable and uninterpretable), then it will coverage to a consistent estimate.

GEM 6: MISSING DATA:
A STATISTICAL PROBLEM TURNED CAUSAL

Sam- ple \#	X	Y	Z
1	1	0	0
2	1	0	1
3	1	m	m
4	0	1	m
5	m	1	m
6	m	0	1
7	m	m	0
8	0	1	m
9	0	0	m
10	1	0	m
11	1	0	1
-			

Question
Is there a consistent estimator of $P(X, Y, Z)$? That is, is $P(X, Y, Z)$ estimable (asymptotically) as if no data were missing.

Model-based Answers:

1. There is no Model-free estimator, but,
2. Given a missingness model, we can tell you yes/no, and how.
3. Given a missingness model, we can tell you whether or not it has testable implications.

SMART ESTIMATION OF $P(X, Y, Z)$

Sam- ple \#	X	Y	Z
1	1	0	0
2	1	0	1
3	1	m	m
4	0	1	m
5	m	1	m
6	m	0	1
7	m	m	0
8	0	1	m
9	0	0	m
10	1	0	m
11	1	0	1
-			

Example 1: $P(X, Y, Z)$ is estimable

$\begin{array}{ll}1 & R_{x}=0 \Rightarrow X \text { observed } \\ R_{z} R_{x} & R_{x}=1 \Rightarrow X \text { missing }\end{array}$

$$
P(X, Y, Z)=P\left(Z \mid X, Y, R_{x}=0, R_{y}=0, R_{z}=0\right)
$$

$$
P\left(X \mid Y, R_{x}=0, R_{y}=0\right)
$$

Testable implications: $\quad P\left(Y \mid R_{y}=0\right)$
$Z \Perp R_{y} \mid R_{z}=0$
$R_{z} \Perp R_{x} \mid Y, R_{y}=0$

SMART ESTIMATION OF $P(X, Y, Z)$

Sam- ple \#	X	Y	Z
1	1	0	0
2	1	0	1
3	1	m	m
4	0	1	m
5	m	1	m
6	m	0	1
7	m	m	0
8	0	1	m
9	0	0	m
10	1	0	m
11	1	0	1
-			

Example 1: $P(X, Y, Z)$ is estimable
 $R_{x}=0 \Rightarrow X$ observed
$R_{x}=1 \Rightarrow X$ missing
$R_{z} R_{x} \quad R_{x}=1 \Rightarrow X$ missing
$P(X, Y, Z)=P\left(Z \mid X, Y, R_{x}=0, R_{y}=0, R_{z}=0\right)$

$$
P\left(X \mid Y, R_{x}=0, R_{y}=0\right)
$$

Testable implications: $\quad P\left(Y \mid R_{y}=0\right)$
$X \Perp R_{X} \mid Y$ is not testable
because X is not fully observed.

SMART ESTIMATION OF $P(X, Y, Z)$

Sam- ple \#	X	Y	Z
1	1	0	0
2	1	0	1
3	1	m	m
4	0	1	m
5	m	1	m
6	m	0	1
7	m	m	0
8	0	1	m
9	0	0	m
10	1	0	m
11	1	0	1
-			

Example 1: $P(X, Y, Z)$ is estimable

$R_{x}=0 \Rightarrow X$ observed $R_{x}=1 \Rightarrow X$ missing
$P(X, Y, Z)=P\left(Z \mid X, Y, R_{x}=0, R_{y}=0, R_{z}=0\right)$

$$
P\left(X \mid Y, R_{x}=0, R_{y}=0\right)
$$

$$
P\left(Y \mid R_{y}=0\right)
$$

Example 2: $P(X, Y, Z)$ is non-estimable

CONCLUSIONS

- A revolution is judged by the gems it spawns.
- Each of the six gems of the causal revolution is shining in fun and profit.
- More will be learned about causal inference in the next decade than most of us imagine today.
- Because statistical education is about to catch up with Statistics.

WHAT MAKES MISSING DATA A CAUSAL PROBLEM?

The knowledge required to guarantee consistency is causal i.e., it comes from our understanding of the mechanism that causes missingness (not from hopes for fortunate conditions to hold).

Graphical models of this mechanism provide:

1. Tests for MCAR and MAR,
2. consistent estimates for large classes of MNAR,
3. testable implications of missingness models,
4. closed-form estimands, bounds, and more.
5. Query-smart estimation procedures.

Refs: http://bayes.cs.ucla.edu/jp_home.html

Thank you

Joint work with:
Elias Bareinboim
Karthika Mohan
Ilya Shpitser
Jin Tian
Many more . . .

Time for a short commercial

