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CAUSAL  INFERENCE  IN  
STATISTICS: 

  

A Gentle Introduction 
    

 
 

Judea Pearl 
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1.  The causal revolution – from statistics to  
      policy intervention to counterfactuals 
2.  The fundamental laws of causal inference 
3.  From counterfactuals to problem solving (gems) 
     

a)  policy evaluation  (“treatment effects”…) 
b)  attribution – “but for” 
c)  mediation – direct and indirect effects 

d)  generalizability – external validity 
e)  selection bias – non-representative sample 
f)  missing data 
   

OUTLINE 

{ Old 
gems 

New 
gems { 

FIVE  LESSONS  FROM  THE  THEATRE   
OF  CAUSAL  INFERENCE

1.  Every causal inference task must rely on judgmental, 
extra-data assumptions (or experiments). 

2.  We have ways of encoding those assumptions 
mathematically and test their implications. 

3.  We have a mathematical machinery to take those 
assumptions, combine them with data and derive 
answers to questions of interest. 

4.  We have a way of doing (2) and (3) in a language 
that permits us to judge the scientific plausibility of 
our assumptions and to derive their ramifications 
swiftly and transparently. 

5.  Items (2)-(4) make causal inference manageable, 
fun, and profitable.  

WHAT  EVERY STUDENT  
SHOULD  KNOW 

The five lessons from the causal 
theatre, especially:  

3.  We have a mathematical machinery to take 
meaningful assumptions, combine them with data, 
and derive answers to questions of interest. 

5.  This makes causal inference  
    FUN ! 

•  “The object of statistical methods is the reduction 
of data” (Fisher 1922). 

•  Statistical concepts are those expressible in terms 
of joint distribution of observed variables. 

•  All others are: “substantive matter,” “domain 
dependent,” “metaphysical,” “ad hockery,” i.e., 
outside the province of statistics,  
ruling out all interesting questions. 

•  Slow awakening since Neyman (1923) and Rubin 
(1974). 

•  Traditional Statistics Education = Causalophobia 

WHY  NOT  STAT-101? 
THE STATISTICS PARADIGM  
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THE  CAUSAL  REVOLUTION 
1.  “More has been learned about causal inference in 

the last few decades than the sum total of 
everything that had been learned about it in all 
prior recorded history.” 

                                  (Gary King, Harvard, 2014) 
2.  From liability to respectability 

•  JSM 2003 – 13 papers 
•  JSM 2013 – 130 papers 

3.  The gems – for Fun and Profit 
•  Its fun to solve problems that Pearson, Fisher, 

Neyman, and my professors . . . were not able 
to articulate. 

•  Problems that users pay for. 

TRADITIONAL STATISTICAL 
INFERENCE PARADIGM 

Data 

Inference 

Q(P) 
(Aspects of P) 

e.g., 
Infer whether customers who bought product A 
would also buy product B. 
Q = P(B | A) 

 

Joint 
Distribution 

  

P 

e.g., Estimate P′(sales) if we double the price. 
How does P change to P′?  New oracle 
e.g., Estimate P′(cancer) if we ban smoking.  

FROM STATISTICAL TO CAUSAL ANALYSIS: 
1.  THE DIFFERENCES 

Data 

Inference 

Q(P′) 
(Aspects of P′) 

change 

 

Joint 
Distribution 

  

P 

 

Joint 
Distribution 

  

P′ 

What remains invariant when P changes say, to 
satisfy P′(price=2)=1 

Data 

Inference 

Q(P′) 
(Aspects of P′) 

change 

Note:  P′(sales) ≠ P (sales | price = 2) 
   

e.g., Doubling price ≠ seeing the price doubled. 
  

P does not tell us how it ought to change. 

FROM STATISTICAL TO CAUSAL ANALYSIS: 
1.  THE DIFFERENCES 

 

Joint 
Distribution 

  

P 

 

Joint 
Distribution 

  

P′ 

What happens when P changes? 
e.g., Estimate the probability that a customer who 
bought A would buy A if we were to double the price. 

FROM STATISTICS TO COUNTERFACTUALS: 
RETROSPECTION 

Data 

Inference 

Q(P′) 
(Aspects of P′) 

change 

 

Joint 
Distribution 

  

P 

 

Joint 
Distribution 

  

P′ 

outcome 
dependent 

Data 

Inference 

Q(M) 
(Aspects of M) 

Data  
Generating 

Model 

M – Invariant strategy (mechanism, recipe, law, 
protocol) by which Nature assigns values to 
variables in the analysis. 

 

Joint 
Distribution 

  

STRUCTURAL  CAUSAL  MODEL 
THE  NEW  ORACLE 

M 

P – model of data, M – model of reality 

P 
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WHAT  KIND  OF  QUESTIONS  SHOULD  
THE  NEW  ORACLE  ANSWER 

THE  CAUSAL  HIERARCHY 

(What is?) 

(What if?) 

(Why?) 

P(y | A) 

P(y | do(A)) 

P(yA’ | A) 

SYNTACTIC DISTINCTION 

•  Observational Questions: 
“What if we see A” 
  

•  Action Questions: 
“What if we do A?” 
  

•  Counterfactuals Questions: 
“What if we did things differently?” 
  

•  Options:  
“With what probability?” 

WHAT  KIND  OF  QUESTIONS  SHOULD  
THE  NEW  ORACLE  ANSWER 

THE  CAUSAL  HIERARCHY 

•  Observational Questions: 
“What if we see A” 
  

•  Action Questions: 
“What if we do A?” 
  

•  Counterfactuals Questions: 
“What if we did things differently?” 
  

•  Options:  
“With what probability?” 

Bayes Networks 

Causal Bayes Networks 

Functional Causal  
Diagrams 

GRAPHICAL  REPRESENTATIONS 

FROM STATISTICAL TO CAUSAL ANALYSIS: 
2.  THE  SHARP  BOUNDARY 

CAUSAL 
Spurious correlation 
Randomization / Intervention 
“Holding constant” / “Fixing” 
Confounding / Effect 
Instrumental variable 
Ignorability / Exogeneity 

ASSOCIATIONAL 
Regression 
Association / Independence 
“Controlling for” / Conditioning 
Odds and risk ratios 
Collapsibility / Granger causality 
Propensity score 

1.  Causal and associational concepts do not mix. 

2.    

3.    

4.    4.  Non-standard mathematics: 
a)  Structural equation models (Wright, 1920; Simon, 1960) 
b)  Counterfactuals (Neyman-Rubin (Yx), Lewis (x        Y)) 

ASSOCIATIONAL 
Regression 
Association / Independence 
“Controlling for” / Conditioning 
Odds and risk ratios 
Collapsibility / Granger causality 
Propensity score 

1.  Causal and associational concepts do not mix. 

3.  Causal assumptions cannot be expressed in the mathematical 
language of standard statistics. 

FROM STATISTICAL TO CAUSAL ANALYSIS: 
3.  THE MENTAL BARRIERS 

2.  No causes in – no causes out (Cartwright, 1989) 

causal conclusions ⇒  } data 
causal assumptions (or experiments)   

CAUSAL 
Spurious correlation 
Randomization / Intervention 
“Holding constant” / “Fixing” 
Confounding / Effect 
Instrumental variable 
Ignorability / Exogeneity 
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C (Climate) 

R  
(Rain) 

                S  
(Sprinkler) 

W (Wetness) 

Graph (G) Model (M) 

 

C = fC (UC )
S = fS (C,US )
R = fR(C,UR )
W = fW (S,R,UW )

A  MODEL  AND  ITS  GRAPH 

C (Climate) 

R  
(Rain) 

                S  
(Sprinkler) 

W (Wetness) 

Graph (G) Model (M) 

Would the pavement be wet HAD the sprinkler been ON? 

 

DERIVING  COUNTERFACTUALS 
FROM  A  MODEL 

 

C = fC (UC )
S = fS (C,US )
R = fR(C,UR )
W = fW (S,R,UW )
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C (Climate) 

R  
(Rain) 

S = 1  
(Sprinkler) 

W (Wetness) 

DERIVING  COUNTERFACTUALS 
FROM  A  MODEL 

Graph (G) 

 

C = fC (UC )
S =1
R = fR(C,UR )
W = fW (S,R,UW )

Mutilated Model (MS=1) 

Would the pavement be wet had the sprinkler been ON? 
Find if W = 1 in MS=1
Find if fW (S = 1, R, UW) = 1 or WS = 1 = 1 
What is the probability that we find the pavement is wet 
if we turn the sprinkler ON? 
Find if P(WS = 1 = 1) = P(W = 1 | do(S = 1))  

C (Climate) 

R  
(Rain) 

S = 1  
(Sprinkler) 

W (Wetness) 

DERIVING  COUNTERFACTUALS 
FROM  A  MODEL 

Graph (G) 

 

C = fC (UC )
S =1
R = fR(C,UR )
W = fW (S,R,UW )

Mutilated Model (MS=1) 

Would it rain if we turn the sprinkler ON? 
Not necessarily, because RS = 1 = R 

C (Climate) 

R = 1  
(Rain) 

S = 1  
(Sprinkler) 

W (Wetness) 

DERIVING  COUNTERFACTUALS 
FROM  A  MODEL 

Graph (G) 

KNIFE CUTTING 

Would the pavement be wet had the rain been ON? 
Find if W = 1 in MR=1
Find if fW (S, R = 1, UW) = 1 
 
 
EVERY COUNTERFACTAUL HAS A VALUE IN M

Mutilated Model (MR=1) 

 

C = fC (UC )
S = fS (C,US )
R = 1
W = fW (S,R,UW )

THE  TWO  FUNDAMENTAL  LAWS 
OF  CAUSAL  INFERENCE 

1.  The Law of Counterfactuals (and Interventions) 
 
 
 
      (M generates and evaluates all counterfactuals.) 
 

and all interventions 
 
 
   
 
 

 
 
 

Yx (u) = YMx (u)

ATE = Eu[Yx (u)] = E[Y | do(x)]

THE  TWO  FUNDAMENTAL  LAWS 
OF  CAUSAL  INFERENCE 

1.  The Law of Counterfactuals (and Interventions) 
 
 
 
      (M generates and evaluates all counterfactuals.) 
 
 
 

2.  The Law of Conditional Independence (d-separation) 
 
 
 
(Separation in the model ⇒ independence in the distribution.) 
 

Yx (u) = YMx (u)

 (X  sep Y | Z )G(M )⇒ (X ⊥⊥ Y | Z )P(v)

C (Climate) 

R  
(Rain) 

                S  
(Sprinkler) 

W (Wetness) 

THE  LAW  OF 
CONDITIONAL  INDEPENDENCE 

Graph (G) Model (M) 

  
 

Gift of the Gods 
  

If the U 's are independent, the observed distribution 
P(C,R,S,W) satisfies constraints that are: 
   (1)   independent of the f 's and of P(U), 
   (2)   readable from the graph. 

 

C = fC (UC )
S = fS (C,US )
R = fR(C,UR )
W = fW (S,R,UW )



5 

S ⊥⊥ R |C e.g., C ⊥⊥ W | (S,R)

D-SEPARATION:  NATURE’S  LANGUAGE  
FOR  COMMUNICATING  ITS  STRUCTURE 

Every missing arrow advertises an independency, conditional 
on a separating set. 

Applications: 
1.  Model testing   
2.  Structure learning 
3.  Reducing "what if I do" questions to symbolic calculus 
4.  Reducing scientific questions to symbolic calculus 

C (Climate) 

R  
(Rain) 

                S  
(Sprinkler) 

W (Wetness) 

Graph (G) Model (M) 

 

C = fC (UC )
S = fS (C,US )
R = fR(C,UR )
W = fW (S,R,UW )

ELIMINATING  CONFOUNDING  BIAS 
THE  BACK-DOOR  CRITERION

 
      P(y | do(x)) is estimable if there is a set Z of variables that  

if conditioned on, would block all X-Y  paths that are 
severed by the intervention and none other.  

Z3 

Z2 

Z5 

Z1 

X = x 

Z4 

Z6 Y 

Z3 

Z2 

Z5 

Z1 

X = x 

Z4 

Z6 Y 

Z

do(x)-intervention do(x)-emulation 

 
Moreover, P(y | do((x)) = P(y | x, z)P(z)

z
∑      (Adjustment)

 
Back-door =⇒ Yx ⊥⊥ X | Z =⇒ (Y ⊥⊥ X | Z )GX

WHAT IF VARIABLES ARE UNOBSERVED?
EFFECT  OF  WARM-UP  ON  INJURY  

(Shrier & Platt, 2008) 

No, no! 

ATE =  ✔ 
ETT = ✔ 
PNC = ✔ 

GOING BEYOND ADJUSTMENT

Smoking Tar Cancer

Genotype  (Unobserved)

Goal: Find the effect of Smoking on Cancer,  
P(c | do(s)), given samples from P(S, T, C), 
when latent variables confound the 
relationship S-C.

Query Data 

Smoking Tar Cancer

P (c | do(s)) = Σt P (c | do(s), t) P (t  | do(s))

= Σs′ Σt P (c | do(t), s′)  P (s′ | do(t)) P(t |s)

= Σt P (c | do(s), do(t)) P (t  | do(s))

= Σt P (c | do(s), do(t)) P (t | s)

= Σt P (c | do(t)) P (t | s)

= Σs′ Σt P (c | t,  s′)  P (s′) P(t |s)

= Σs′ Σt P (c | t,  s′)  P (s′ | do(t)) P(t |s)

Probability Axioms

Probability Axioms

Rule 2

Rule 2

Rule 3

Rule 3

Rule 2

Genotype  (Unobserved)

P (c | do(s))   

Query 

Estimand 

IDENTIFICATION  REDUCED  TO  CALCULUS 
(THE  ENGINE  AT  WORK) 

P(y | do(x), z,w) = P(y | do(x),w),

P(y | do(x),do(z),w) = P(y | do(x), z,w),

P(y | do(x),do(z),w) = P(y | do(x),w),

The following transformations are valid for every interventional 
distribution generated by a structural causal model M: 
 

DO-CALCULUS 
(THE  WHEELS  OF  THE  ENGINE)

Rule 1:  Ignoring observations 
  
 

 
Rule 2:  Action/observation exchange 

    
    

 
Rule 3:  Ignoring actions 
   

 if    (Y ⊥⊥ Z | X,W )GX

 if    (Y ⊥⊥ Z | X,W )GXZ

 
if    (Y ⊥⊥ Z | X,W )GXZ(W )
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Q = P(y1, y2,..., yn | do(x1, x2,..., xm ), z1, z2,..., zk )

GEM  1:  THE  IDENTIFICATION  PROBLEM  IS  
SOLVED  (NONPARAMETRICALLY) 

•  The estimability of any expression of the form 

can be decided in polynomial time. 
 
•  If Q is estimable, then its estimand can be derived in 

polynomial time. 

•  The algorithm is complete. 

•  Same for ETT (Shpitser 2008). 

PROPENSITY  SCORE  ESTIMATOR 
(Rosenbaum & Rubin, 1983) 

Z6 

Z3 

Z2 

Z5 

Z1 

X Y 

Z4 

Adjustment for e (z) replaces Adjustment for Z 

Theorem: 

P(y | do(x)) = ? 

e 

Can e replace {Z1, Z2, Z3, Z4, Z5} ?  

e(z1, z2, z3, z4, z5 ) Δ
= P(X = 1| z1, z2, z3, z4, z5 )

P(y | z, x)P(z) = P(y | e, x)P(e)
e
∑

z
∑

33 

WHAT  PROPENSITY  SCORE  (PS) 
PRACTITIONERS  NEED  TO  KNOW 

1.  The asymptotic bias of PS is EQUAL to that of ordinary 
adjustment (for same Z). 

2.  Including an additional covariate in the analysis CAN 
SPOIL the bias-reduction potential of PS. 

3.  In particular, instrumental variables tend to amplify bias. 
4.  Choosing sufficient set for PS, requires causal knowledge, 

which PS alone cannot provide. 

Z 
X Y X Y X Y 

Z 

X Y 

Z Z 

 e(z) = P(X = 1| Z = z)    

P(y | z, x)P(z) = P(y | e, x)P(e)
e
∑

z
∑

DAGS   VS.  POTENTIAL  COUTCOMES  
AN UNBIASED  PERSPECTIVE 

1.  Semantic Equivalence 

2.  Both are abstractions of Structural Causal 

Models (SCM). 

Yx (u) = YMx
(u) X→Y

y = f (x, z,u)

Yx(u) = All factors that affect Y when X is held  
constant at X=x. 

Zx (u) = Zyx (u),

Xy(u) = Xzy(u) = Xz (u) = X(u),

Yz (u) = Yzx (u), Zx⊥⊥ {Yz ,X}

  

1.  English:  Smoking (X), Cancer (Y), Tar (Z), Genotypes (U) 

X Y Z 

U 

testable? 
Not too friendly: 
  Consistent?, complete?, redundant?, plausible?, 

2.  Potential 
Outcome: 

CHOOSING   A  LANGUAGE   
TO  ENCODE  ASSUMPTIONS 

Zx (u) = Zyx (u),

Xy(u) = Xzy(u) = Xz (u) = X(u),

Yz (u) = Yzx (u), Zx⊥⊥ {Yz ,X}

2.  Counterfactuals:   

1.  English:  Smoking (X), Cancer (Y), Tar (Z), Genotypes (U) 

X Y Z 

U 

3.  Structural: 
x = f1(u,ε1)     y = f3(z,u,ε3)
z = f2(x,ε2 )    ε1 ⊥⊥ ε2 ⊥⊥ ε3

U 

Z X Y 

CHOOSING   A  LANGUAGE   
TO  ENCODE  ASSUMPTIONS 
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•  Your Honor! My client (Mr. A) died BECAUSE  
he used that drug. 

•     

GEM  2:  ATTRIBUTION 
•  Your Honor! My client (Mr. A) died BECAUSE  

he used that drug. 

•   Court to decide if it is MORE PROBABLE THAN 
NOT that A would be alive BUT FOR the drug!  

•     PN = P(alive{no drugs} | dead,drug) ≥ 0.50

GEM  2:  ATTRIBUTION 

CAN  FREQUENCY  DATA  
DETERMINE  LIABILITY? 

   

•  WITH PROBABILITY ONE 

•    Combined data tell more that each study alone 

1≤ PN ≤1

Sometimes: 

40 

1.  To understand how Nature works 

 

2.  To comply with legal requirements  

3.  To predict the effects of new type of interventions:  

Signal re-routing and mechanism deactivating,  

rather than variable fixing 

GEM  3:  MEDIATION 
WHY  DECOMPOSE  EFFECTS? 

41 

X M 

Y 

LEGAL  IMPLICATIONS 
OF  DIRECT  EFFECT 

What is the direct effect of X on Y ? 
 
 
(m-dependent) 

(Qualifications) 

(Hiring) 

(Gender) 

Can data prove an employer guilty of hiring discrimination? 

Adjust for M?  No! No! 
 CDE = E(Y |do(x1),do(m))− E(Y |do(x0 ),do(m))

CDE identification is completely solved 

X M 

Y 

(Qualifications) 

(Hiring) 

(Gender) 

Can data prove an employer guilty of hiring discrimination? 

The Legal Definition: 
Find the probability that “the employer would have 
acted differently had the employee been of different 
sex and qualification had been the same.” 

LEGAL  DEFINITION  OF  
DISCRIMINATION 
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43 

m = f (x, u) 
y = g (x, m, u) 

X M 

Y 

NATURAL  INTERPRETATION  OF 
AVERAGE  DIRECT  EFFECTS 

Natural Direct Effect of X on Y: 
The expected change in Y, when we change X from x0 to 
x1 and, for each u, we keep M constant at whatever value 
it attained before the change. 
 
  

Note the 3-way symbiosis 
 

 
E[Yx1Mx0

−Yx0 ]

Robins and Greenland (1992) – Pearl (2001) 

DE(x0, x1;Y )

44 

m = f (x, u) 
y = g (x, m, u) 

X M 

Y 

DEFINITION  OF 
INDIRECT  EFFECTS 

Indirect Effect of X on Y: 
The expected change in Y when we keep X constant, say 
at x0, and let M change to whatever value it would have 
attained had X changed to x1.  
 
 
In linear models, IE = TE - DE  

E[Yx0Mx1
−Yx0 ]

);,( 10 YxxIE

No controlled indirect effect 

45 

POLICY  IMPLICATIONS   
OF  INDIRECT  EFFECTS 

    f     

GENDER QUALIFICATION 

HIRING 

What is the indirect effect of X on Y? 

The effect of Gender on Hiring if sex discrimination 
is eliminated. 

X M

Y

IGNORE 

Deactivating a link – a new type of intervention 

THE  MEDIATION  FORMULAS 
IN  UNCONFOUNDED  MODELS   

X 

M 

Y 

Fraction of responses explained by mediation 
(sufficient) 

Fraction of responses owed to mediation 
(necessary) 

m = f (x, u1) 
y = g (x, m, u2) 
u1 independent of u2 

TE − DE =

DE = [E(Y | x1,m)− E(Y | x0,m)]P(m | x0 )
m
∑

IE = [E(Y | x0,m)[P(m | x1)− P(m | x0 )
m
∑ ]

TE = E(Y | x1)− E(Y | x0 )
IE =

TE ≠ DE + IE

•  The nonparametric estimability of natural (and 
controlled) direct and indirect effects can be determined 
in polynomial time given any causal graph G with both 
measured and unmeasured variables. 

•  If NDE (or NIE) is estimable, then its estimand can be 
derived in polynomial time. 

•  The algorithm is complete and was extended to any 
path-specific effects (Shpitser, 2013). 

SUMMARY  OF  MEDIATION  (GEM  3)  
Identification is a solved problem 

W2

M

YT
W3

M
W2

YT
W3

M

Y

W2

T
W3

M

Y
W2

T
W3

(b) 
M

Y

W2

T
W3

(a) 
M

Y

W2

T
W3

(c) 

(e) (d) (f) 

WHEN  CAN  WE  IDENTIFY 
MEDIATED  EFFECTS? 

W1
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W2

M

YT
W3

M
W2

YT
W3

M

Y

W2

T
W3

M

Y
W2

T
W3

(b) 
M

Y

W2

T
W3

(a) 
M

Y

W2

T
W3

(c) 

(e) (d) (f) 

WHEN  CAN  WE  IDENTIFY 
MEDIATED  EFFECTS? 

W1

The problem  
  
•  How to combine results of several experimental 

and observational studies, each conducted on a 
different population and under a different set of 
conditions,  

•  so as to construct a valid estimate of effect size 
in yet a new population, unmatched by any of 
those studied. 

 

GEM  4:  GENERALIZABILITY 
AND  DATA  FUSION 

(b)   New York 
 

Survey data  
 

Resembling target 

(c)   Los Angeles 
 

Survey data   
 

Younger population 

(e)  San Francisco 
 

High post-treatment 
blood pressure 

(d)   Boston 
 

Age not recorded 
   

Mostly successful 
lawyers 

(f)  Texas 
 

Mostly  Spanish 
subjects 
 

High attrition 
   

(h)   Utah 
 

RCT, paid 
volunteers, 
unemployed 

(g)   Toronto 
 

Randomized trial 
 

College students 

(i)  Wyoming 
   

RCT, young 
athletes 

THE  PROBLEM IN  REAL  LIFE
Target population           Query of interest:    Q = P*(y | do(x))

(a)   Arkansas 
 

Survey data 
available 

*∏

X Y

(f) Z

W

X Y

(b) Z

W X Y

(c) Z
S

WX Y

(a) Z

W

X Y

(g) Z

W

X Y

(e) Z

W

S S

X Y

(h) Z

W X Y

(i) Z
S

W

S

X Y

(d) Z

W

THE  PROBLEM IN  MATHEMATICS
Target population           Query of interest:    Q = P*(y | do(x))*∏

X Y

(f) Z

W

X Y

(b) Z

W X Y

(c) Z
S

WX Y

(a) Z

W

X Y

(g) Z

W

X Y

(e) Z

W

S S

X Y

(h) Z

W X Y

(i) Z
S

W

S

X Y

(d) Z

W

Target population           Query of interest:    Q = P*(y | do(x))*∏

THE  SOLUTION  IS  IN  ALGORITHMS

Experimental study in LA 
Measured: 
 
     
  

  

P(x, y, z)
P(y | do(x), z)

P*(y | do(x)) =   ?

Observational study in NYC 
Measured: P*(x, y, z)

P*(z) ≠ P(z)

X  
(Intervention) 

Y 
 (Outcome) 

Z  (Age) 

= P(y | do(x), z)P*(z)
z
∑

    Π (LA)         Π* (NY)

THE  TWO–POPULATION  PROBLEM 
WHAT  CAN  EXPERIMENTS  IN  LA  TELL  US  ABOUT  NYC?

Transport Formula:    Q = F(P, Pdo, P*)

  

Needed: Q =



10 

X 

TRANSPORT  FORMULAS  DEPEND   
ON  THE  CAUSAL  STORY 

a)  Z represents age 
 
     

b)  Z represents language skill 
 

     

c)  Z represents a bio-marker  
 

P*(y | do(x)) = P(y | do(x), z)P*(z)
z
∑

P*(y | do(x)) =

X Y 
Z 

(b) 

S 

(a) 
X Y 

(c) 
Z 

S 

P(y | do(x))

P(y | do(x), z)P*(z | x )
z
∑P*(y | do(x)) =

Y 

Z S 
Lesson: Not every dissimilarity deserves re-weighting. 

TRANSPORTABILITY 
REDUCED  TO  CALCULUS 

Theorem 
A causal relation R is transportable from Π to Π* if  and  
only if it is reducible, using the rules of do-calculus,  
to an expression in which S is separated from do( ).  

R *∏( )= P*(y | do(x)) = P(y | do(x), s)
= P(y | do(x), s,w)P(w | do(x), s)
w
∑

= P(y | do(x),w)P(w | s)
w
∑

= P(y | do(x),w)P*(w)
w
∑

X Y 

Z 
S 

W 

Query 

Estimand 

S '
U 

W 

RESULT:  ALGORITHM  TO  DETERMINE 
IF  AN  EFFECT  IS  TRANSPORTABLE 

X Y Z 

V 

S 
T 

INPUT:  Annotated Causal Graph 
 
   
OUTPUT: 
1.  Transportable or not? 
2.  Measurements to be taken in the 

experimental study 
3.  Measurements to be taken in the 

target population 
4.  A transport formula 
5.  Completeness (Bareinboim, 2012) 

S        Factors creating differences 

P*(y | do(x)) =
P(y | do(x), z) P *(z |w)

w
∑

z
∑ P(w | do(w),t)P *(t)

t
∑

X Y
(f)

Z

S

X Y
(d)

Z

S

W

WHICH  MODEL  LICENSES  THE  TRANSPORT  
OF  THE  CAUSAL  EFFECT  X→Y

(c)
X YZ

S

Y
(e)

Z

S

W YZ

S

WX YZ

S

W

(b)
YX

S

(a)
YX

S

S       External factors creating disparities

Yes YesNo

Yes NoYes

SUMMARY OF  
TRANSPORTABILITY RESULTS

•  Nonparametric transportability of experimental 
results from multiple environments can be 
determined provided that commonalities and 
differences are encoded in selection diagrams. 

•  When transportability is feasible, the transport 
formula can be derived in polynomial time.   

•  The algorithm is complete.  
 

GEM  5:  RECOVERING  FROM 
SAMPLING  SELECTION  BIAS

Transportability Selection Bias 

X  
(Treatment)

Y 
 (Outcome)

Z  (Age)
S (Beach proximity)

S  = disparity-producing factors S  = sampling mechanism
S = 1

Z  (Age)

X  
(Treatment)

Y 
 (Outcome)

Nature-made Man-made 
Non-estimable Non-estimable 
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Theorem: 
A query Q can be recovered from selection biased 
data iff Q can be transformed, using do-calculus to 
a form provided by the data, i.e., 
(i)  All do-expressions are conditioned on S = 1 
(ii)  No do-free expression is conditioned on S = 1 

RECOVERING  FROM   
SELECTION  BIAS 

 

Query:  Find  P(y | do(x))
Data:             P(y | do(x), z,S = 1)   from study
                      P(y, x, z)                  from survey

RECOVERING  FROM   
SELECTION  BIAS 

YZX

Example: 

S=1

 

P(y | do(x)) = P(y | do(x), z)P(z | do(x))z∑
= P(y | do(x), z)P(z | x)z∑             (Rule 2)
= P(y | do(x), z,S = 1)P(z | x)z∑     (Rule 1)

GEM  6:  MISSING  DATA: 
A  STATISTICAL  PROBLEM  TURNED  CAUSAL 

Sam-
ple # 

X Y Z 

1 1 0 0 
2 1 0 1 
3 1 m m 
4 0 1 m 
5 m 1 m 
6 m 0 1 
7 m m 0 
8 0 1 m 
9 0 0 m 

10 1 0 m 
11 1 0 1 
- 

Question: 
Is there a consistent estimator of P(X,Y,Z)? 
That is, is P(X,Y,Z) estimable (asymptotically) 
as if no data were missing.  
 
Conventional Answer: 
Run imputation algorithm and, if 
missingness occurs at random (MAR), 
(a condition that is untestable and 
uninterpretable), then it will coverage to a 
consistent estimate. 

GEM  6:  MISSING  DATA: 
A  STATISTICAL  PROBLEM  TURNED  CAUSAL 

Sam-
ple # 

X Y Z 

1 1 0 0 
2 1 0 1 
3 1 m m 
4 0 1 m 
5 m 1 m 
6 m 0 1 
7 m m 0 
8 0 1 m 
9 0 0 m 

10 1 0 m 
11 1 0 1 
- 

Question: 
Is there a consistent estimator of P(X,Y,Z)? 
That is, is P(X,Y,Z) estimable (asymptotically) 
as if no data were missing.  
 
Model-based Answers: 
1.  There is no Model-free estimator, but, 
2.  Given a missingness model, we can tell 

you yes/no, and how. 
3.  Given a missingness model, we can tell 

you whether or not it has testable 
implications. 

SMART  ESTIMATION  OF  P(X,Y,Z)   
Example 1:  P(X,Y,Z) is estimable 
 
 
 
 
 
 
 
 
 
 
 

Rz 

Ry 

Rx 

Z X Y 

 

P(X,Y ,Z ) = P(Z | X,Y ,Rx = 0,Ry = 0,Rz = 0)

               P(X |Y ,Rx = 0,Ry = 0) 

                               P(Y | Ry = 0)

Sam-
ple # 

X Y Z 

1 1 0 0 
2 1 0 1 
3 1 m m 
4 0 1 m 
5 m 1 m 
6 m 0 1 
7 m m 0 
8 0 1 m 
9 0 0 m 

10 1 0 m 
11 1 0 1 
- 

Rx = 0 ⇒ X observed 
Rx = 1 ⇒ X missing 

Testable implications: 
Z ⊥⊥ Ry | Rz = 0

Rz ⊥⊥ Rx |Y ,Ry = 0

SMART  ESTIMATION  OF  P(X,Y,Z)   
Example 1:  P(X,Y,Z) is estimable 
 
 
 
 
 
 
 
 
 
 
 

Rz 

Ry 

Rx 

Z X Y 

 

P(X,Y ,Z ) = P(Z | X,Y ,Rx = 0,Ry = 0,Rz = 0)

               P(X |Y ,Rx = 0,Ry = 0) 

                               P(Y | Ry = 0)

Sam-
ple # 

X Y Z 

1 1 0 0 
2 1 0 1 
3 1 m m 
4 0 1 m 
5 m 1 m 
6 m 0 1 
7 m m 0 
8 0 1 m 
9 0 0 m 

10 1 0 m 
11 1 0 1 
- 

Rx = 0 ⇒ X observed 
Rx = 1 ⇒ X missing 

Testable implications: 
X ⊥⊥ Rx | Y is not testable  
because X is not fully observed. 
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SMART  ESTIMATION  OF  P(X,Y,Z)   
Example 1:  P(X,Y,Z) is estimable 
 
 
 
 
 
 
 
 
 
 
  

Example 2:  P(X,Y,Z) is non-estimable 

Rz 

Ry 

Rx 

Z X Y 

Rz 

Ry 

Rx 

Z X Y 

 

P(X,Y ,Z ) = P(Z | X,Y ,Rx = 0,Ry = 0,Rz = 0)

               P(X |Y ,Rx = 0,Ry = 0) 

                               P(Y | Ry = 0)

Sam-
ple # 

X Y Z 

1 1 0 0 
2 1 0 1 
3 1 m m 
4 0 1 m 
5 m 1 m 
6 m 0 1 
7 m m 0 
8 0 1 m 
9 0 0 m 

10 1 0 m 
11 1 0 1 
- 

Rx = 0 ⇒ X observed 
Rx = 1 ⇒ X missing 

WHAT  MAKES  MISSING  DATA  A  
CAUSAL  PROBLEM?

The knowledge required to guarantee consistency is 
causal i.e., it comes from our understanding of the 
mechanism that causes missingness (not from 
hopes for fortunate conditions to hold). 
 
Graphical models of this mechanism provide: 
1.  Tests for MCAR and MAR, 
2.  consistent estimates for large classes of MNAR, 
3.  testable implications of missingness models, 
4.  closed-form estimands, bounds, and more. 
5.  Query-smart estimation procedures. 

CONCLUSIONS

•  A revolution is judged by the gems it spawns. 
•  Each of the six gems of the causal revolution is 

shining in fun and profit. 

•  More will be learned about causal inference in 
the next decade than most of us imagine today. 

•  Because statistical education is about to catch 
up with Statistics. 

Thank you 
Joint work with:  
Elias Bareinboim 
Karthika Mohan 
Ilya Shpitser 
Jin Tian 
Many more . . .  

Refs:  http://bayes.cs.ucla.edu/jp_home.html 

Time for a short commercial 

Gems 1-2-3 can be enjoyed here: 




