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RESTRACT

This paper presents gencralfzations of Baypes
Tikelihood=-ratio wpdating rule which facilitate an
asynchrorous propagation of the fmpacts of new
beliefs andfor nes evidence in Rierarchically or-
ganized fnference structures with multi=hypotheses
varfables. The computational scheme proposed
specifies a set of belief parameters, comminica-
tion meszages and updating roles which guarantes
that the diffusion of updeted bellefs 1s accom-
plished in a single pass amd complies with the
tenets of Bayes caloculus,

Introduction

Thiz paper addresses the issue of efficiantly
propagating the (mpact of mew evidence and beliefs
through a complex network of kierarchically orgen-
fzed inferente rules. Suech networks I'1|1d wide
applications in expert-systoms [1], 1)apeech
re:-:?ﬂthm [4], situation asse;smnt 5 . the

ling of reading comprehension [6] and judicial
reasoning [7].

Many Rl researcheérs have dccepted the myth
that a respectable computational model of imexact
reasoning mest distert, madify or {gnore at least
soa principles of probability calowlus. Conse-
quently, mozt Al systeme currently employ ad=hoc
belief propagation rules which may hinder both the
inferential power of these systems and their
acceptance their intended users. The primary
purpese of this paper i5 to examing what computa-
tional precédures are dictated by traditianal
probabilistic doctrines and whether modern require-
ments af lacal asynchronous processing rendér these
doctrings obsolete,

We shall assume that beliefs ere expressed in
probabilistic terms and Ehat Ehe propagatiom of
beliefs 15 governed by the traditfonal Bayes trams-
formations om the relation P(D[H), which stamds for
the judgmental probability of data D [e.g., & come
bination of symptoms] givern the hypothesis H (e.g.,
the exittince of & certain di:eau?ﬂ The unfque

[(*}The peper "An Essay Towerds Solving a Problem inm
the Doctrine of Chances by the lTate Rev. Me. Baves®,
FPhil, Trans. of Royal 5o0c., 1783, marks the begin-
ing of the sclencé of inductive ressoning.
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feature of hierarchical {nference systees i3 that
the relation P{O|H} 5 computable a5 a cascade of
local, mare elementary probability relations in-
volying intervening varfables. Intervening vari-
ables, (e.g., organices cauting & disesse) mey or
may not be directly observable, Thelr computation-
al rela, howaver, is to provide a conceptual
summarization for loosely coupled subsets of obser
vatiomal dats so that the cosputation of PH|D) can
be performed by local processes, each employing a
relatively small number of data sources,

The belief maintenence architecture proposed
in this paper i based on a digtributed asynchra-
rous Interaction between cooperating krowledge
gources without central supervision similar to that
used In the HEARSAY system [4]. MWe assume that
each variable [f.e., & set of hypatheses] {5 repre-
sented by & separate processor which both mafntains
the parameters of belief for the host varfable and
aanages the communicaticon links to and from the st
of neighboring, Yogically refated varisbles. The
communication ¥ines are assumed to be open at all
times, 1.¢., each processor may at any time inter-
rogate it message-board for revisions made by its
ng i ghborssupdate 115 own belief pareneters and post
rew messages on 1ts nefghbors ' boarde In this fashion
the impict of mew evidence may propagate up and
down the retwork entil equilibrium is reached.

The asynchronous nature of this model requires
2 solution to an irstability problem. If a strom-
ger belief in a given hypothesis means a greater
expactation for the occurrencesf b certain Sup-
porting evidence amd 6, in turn; & greater cer=
tainty in the occurreéncecf that ewlidence adds
furthker credence to the hypothesis, how ¢an cne
awoid an infinite updating loop whan the Bwo
processors begin to cosmunicate with ome another?
Thus, 8 second objective of this paper is to pre-
sent an appropriate set of belief parsseters,
comsunication messages and updating rules which
quarantes that the dfffusfon of updated beliefz ig
ceconplished in & single pass and complies with
the temets of Bayes calculus.

A third gbjective i5 to demongtrate that pro-
per Bayes Inference cam be accomplished amongmmuliti
valued variables and that, contrary to the clafms
made by Pednault, Jucker and Muresan [B], this
does not render conditiomal independence incompa-
thible with the azssumption of sutusl exclusivity
ard exhaustivity,



Pafinitiond ard Besenclafory

A node in an inference net represents & varl=
ible name, Each varisble represents s finite par-
tition of the world given by the wirfable values or
states. It may be o nime for & collection of hy-
potheses (e.3., fdentity of orgemism: ORGy, DRGy.
senna) BF Tor & collaction of possible cbservations
(.0, patient's temperature: high, sedium, Tow),
Let & varfable bz labeled by o capltal letter, g.8.
ABCoans and Jts warious states subscripted,
.90 Ry hy

fn infarence ret iz g di bd acyclical
qraph whitre each brasch (g] !'tpf-!!!-ﬂll. &
famlly of rules of the farm: iF &) then By. The
uncertainties 1 these rules &re quintified By @
conditioral probability mtrix, M(B]A), withentries
Hl'l]'.’l.}jj- LTI presence of & branch be-
twees A amd B signifies the exiitence of a dirset
cormunlcation Ting between the two varizbles, The
directionsl ity of the arcos designates A as the set
of hypotheses and B a5 the set of imdicators or
marifestations for these hypotheses. Me thall zay
that & s 4 son of & and confing our attention o
lr‘ﬁ%. whire wvery Bodi las only ane multl-hypothe.
fes fathker and whare the leaf nodes reprasent
ohservable varfables,

In principle, the podel can alisobe ralized
o Irclude some graphs (muitiple parents) kesping
in mind that the states of sach wirfable in the
tree may represent the power et of sulti-parént
greups in the corresponding graph.

Strectoral Assunptions

Consider the following segmant of the tree:
The Tikelihood of the
various 1tates af B
would, in geeeral,
depend of The eatire
cata chaerved so far,
{.2., data From the tree
rooted at B, the tree
rohbed &t C end the tree
above A, Howewer, Lhe
fece that B can commni-
cats directly only with
1ts fathor (A) and iE3
sons [F and £) sesns that the influsnce of tha ens
Lire netwark above B an B 12 completely sumariied
by the Tikelibood it induces on the states of A,
More formally, Tet Dg(B) stand for thedstaobtsised
from thi trée rogted at B,and D9E) for the data ob-
tatned from the rebwork above B. The Emim:l of only
ore 1inkconnecting D¥[8) and (B} tmp) tes:

PByIng. 00 (0]} = PiBylag) (1)
This structural assumption of local communication
Immadiately dictates what 1= mormally called "Con-

ditional Independence™; 1 Cand B are siblings and
A 1% thelr parent, them

PLBy ClAy) = P{By|As) - PLER|Ag) {2}

because the dats =Gy 16 part of 0Y(B] and nence (1)
Trpldes Hnjl':tv"i:' = P(BjlAgd, from which [2)}fe)lows,
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hote the 4ifferemce between the weal form of
corditional ndependence 1a (2} and the over-
restrictive form adapted by Pednault ot al. [8],
who 8150 esserted independente with rospect to the
complements Ay,

Combining Yop and Bottem Evidesces:

Qur structurs] assumption (1) alse dietstes
how evidences above and below somevariable B should
be combined. Apsms we wish to find the T1kelihopd
ef the states of B induced by somo data D, part of
which, D¥(E}. comes from abowe § and part, Da(B),
from below. Dayes theorem, together with (1) yields
the product rule:

Pl8g | 0Y(B) Da(B) ) mab[Dg(B)|B1]- PIBs |OY(B) ], (3)

where o 13 &4 normalization comstant. This is a
generalization ¢f the celebrated Bayes formula for
binary variables:

OiH[E) = alE) ofH) (4)

whare L{EJsP{E|R)/PCEIR) 13 brown a3 the Tikelihood
ratlo; and O{H]=P[H}/P(H} a5 the priar odds [2].

Equation (3) gemeralizes {4) 1n two ways.
First, it permiis the trostment of ron-binery vari-
abies whers the mental task of estimating P(E[R) 15
often wnnatural, and where conditicnal indeperdence
with respect to the negations of the Aypotheses in
narmally violated (1.e.. PE; . E2|R)PPLE; |RIR(ES|RY
fecond, 1t fdentifies & surrogite to the prior
probability ters for any (ntersedizte node in the
tree, even afber obteining some evideatial data,
According te (J), the sultiplicative role of the
prior probability in Equation (4) Is taken over by
the conditional probability of & variable based
%I\r!x on the evidence gathered by the network !ﬁn

o excluding the dats collected from below. e,
the prodoct rule (3] cin be applied to any =ode in
the retwork, without requiring prior probability
asfessments.

The robt 1 the only node which requires &
prior probabllity estimation. Since 1t has mo nol-
work above, 09(B} shosld be interpreted as the
avallable Baciground wnowledoe whicth remains urek-
plicated by tho network bolow, This interpretation
renders PIEg|DU(E)) 1dentical to the classizal mo-
tien of subjective prior probability, The proba=
bilfttes of all othar noded In the tree are unigue-
Iy determired by the arc-matrices, the dabtsobterved
and the prior probability of the root.

Equatfon 3] suggetts that tha probebility
digstribution of every verlable {n the networkcan
be conputed 1Ff the node corresponding to that wiris
able containg the parimelers

Wsq) 8 piogle)feg) (5)
qfei) § plegovie)). (&)
i8] represents the apticipatory support ettributed
to Bf by 1%t3 ancestors and L[B{) represonts tha

eyidontial support recelved by By from {ts dfagrostic
descendants. The total strength of beldef in Bj
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wiinild b glwen by the product

PiB) = ax[By) qlB4). (7]

Whereas only twe parasmeters, A(E) and O{H} were
suffictent far binary variables, an p-state variable
negds to be characteriZed by Two m=-tuples:

1[B) = x{By ). (Ba),... 3 (Bn)

glb} = qlBy)ag{Bz)....0alBp).

Propagation of Information Through the Network

Aszuming that the vectors L and g are ctored
with gach node of the network, cur task Is now %o
prescribe how tEhe 1nflience of miw information
spreads through the network. Traditional probabi-
11ty theory, together with some efflciency congi=-
ﬂrnti-umrf!;}. dictate the follewing propagaticn
schorse which we Tirst report without proofs.

I. Each processpr compubes two message wiclors
P and r. P 15 sent to every Son while £ is deliv-
Fred to the father. The message P is 1dentical to
tha probability distrfbution of the sender and s
comguted from ) and g using Equation (7). r is
corputed from 3 wslng the =atefx sultiplicetion:

Belfed ()

whore § 15 the msatrix quantifying the Tink to the
fathar, Thus, the dissssicnality of-r s equal to
the mumber of hypotheses managed by the Father.
Each companent of r represents the diageostic com-
tribution of the data below the host processor to
the belfef {n one of the fathar's hypothesés.

2. When processor B is called To updite its
parsmeters, 1t simultaneously finspects the P(A)
mussage communicated by the father A and the mes-
SOORS Ky oFagee ey Communicated by esch of fis song
and atﬂlﬂﬁ!ﬁgﬂ receiving the latter. RKsing
these fnputs, it thenupdates x end g a5 Tollows:

3. Zoticm-u tion: A is computed using
B term-by-term uu'ltipﬁuﬂnn of the wvectors vy,
Tiasat

1By) * {ry )y x (Radyx oon ™ E[ﬂh {9)
4, Top-down propagatiom: g 15 computed using:
ql8y) = 8 3‘- PBY|AgIRLA e ) g (10}

whore 8 15 a2 normalization corstant and r" is Ehe
Tazt message from B bo A scknewledged by the father
A, (The divisien by r' smounts to resoving from
PlA] the contribution due to DgiB) as dictated by
the definitfon of g in Equaticn (6)).

5. Using the updatad valwes of 4 and g, the
massages Poand ¢ oare then recomputed as in step 1
and are posted on the messige-boards dedicated for
the sons and the father, respectively, This upda-
ting scheme §5 shown schematically {m the diagras
betow, where multigtications and divisfons of any
two vectors stand for terd-by-term operations,

EUVFELHT AT
L

The terminal rodes im the tree recuire spocial
bawndary conditlons. Here w2 have to distinguish
betwaen the two cases:

1. Anticipatory node: an chearvable variable
whose state i85 sti1] umknewn. For such varfables,
B should be l?uﬂ ko g and, therdfors, we should st
a={1,1,..., 1 alse implying r={1,1,....1)).

2. fata-rode: an chservable variable with a
known state, Following Equation (5}, 1F the jth
state of B was obhjerved to bw tr-ug. set 4 =
10,0...0,1,0:..) with 1 at the JEF position.

similarly, the bpundary conditions for the root
node is obtained by substituting the pripr proba-
i1ty Instesd of the message PA] expected from
the Father.

ken Game T1lustraticon

Figure 2 shows six successive stages of belfef
propagation through & simple binary tree, 2ssusing
that updating 15 activated by changes in the belfef
parameters of neighboring processes, Imtfitl{
[Figure 2a}, tha tree 1z In eguilibrium and al
terminal modes are anEicipatory. Ad o000 ai two
data modes are activated [Figure 2b), white tokéns
are placed on thelr 1inks, directed towards their
fathers, In the next phase, the fathers, activated
by these tekent, absorh the latter and manufactura
the approprizte nunber of tokens for their nedghbors
[Figure 2c). white tokens for thelr fathers and
Black ones for thie children (the 1inks throughwhich
the absorbed tokens have entersd do nobt redoive Ao
tokens, thus reflecting the division of P by r'},
The root node now receives two white Eokens, gne
from each of 1tsdescendants. That triggers the
production of two bilack tokens for top-down delfiw-
ery [Flgura 24}, The process continues in this
fashion until, after 12 cycles, all tokens are
abzorbed and the network reaches & Aew equilibrium,
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Flgure 2

P riies of the £l

1. The Tocal computations required by the pro-
posad schehe are efficlint In both storage and Lime
For an m-ary tree with n states per node, each pro-
cessor should store n¥smneln real numbers, and per-
form In=smnein I.lltiﬂ‘r:lnnn': poT updeteE, These
expressions are on the erder of the rusber of rulew
which each vartable fevokes.

2, The local computations are entirely Indepen-
dent af the control sechanism which activates tha
updating sequonce. Thoy can be activated by efther
dita=driven or goal driven [e.g.; reguests for
m:;::ﬂ control strategles. by & clock or at
r&n .

3. Rew dnformation dfffuses thirough the net-
work 1m o single pess. Infinite relexations heve
bees elfminated by maintaining & two-parameter sys-
tem {?_ml r) to decouple top and bottom evidesces.
The time required for completing the diffutien (in
parallel) 18 ecual to the diemetér of the petwark,

A Summary of Proofs

From the fact that A s only {rfluerced by
changes pagating froa the bottoa and g only by
changes the top, 1t Is clear that the tree
will reach aquilibrium after 2 finite nonber of up-
dating steps. 15 reasing to show that, at aodilibrius,
the vpdated pareseters P{Vy L Inevery sode ¥, corres
spond to Ehe correct probabiiitles P(Vs[09(V),Bgl¥))
or (see Eguation (3}), that the equilibrivmvaluss of
I.lf!quE and q(¥y ) actual 1|f l'?'uﬂ the probabilities
PO V)|V ) and PO [DY(¥) ) This can be shown by |ndue
tion bottos-up for Land then top-down for g.

Yalidity aof x: 1 1§ certalnly valld faor Teaf
nades. &3 was explained above in setting the boun-
dary conditions, Assumming that thes's are valld
at a1l children of node B, the validity of A(B}
computed through steps (B) and (%) follows directly
from the conditional | nte of the dala be-
reath 8°s children (Equatfon (2)).

\'H1g1!¥ of E: if all the 4's are valid, them
Fis wa r the root node. Kisuming row that
F(A) 15 val1d, Tet us dismime the valfdity of gig),

where B 15 any child of &, By definition [equilics
(5)), alB) should satigfy:

q(By}=P(8y|04(8))e EF!hllj!PIhlﬂ“!A}.ﬁdI!}}

where 5 denotes the set of B'5 siblings. The see-
end factor in the semsation differs from Play) =
PRI DA, DaA)) {n that the Tatter hay alsd fn-
corporated B's message (r'}y In the formation of
1{&11 {equation [3)). When'we divide P(A{] by
{£']4s 85 prescribed in (10), the correct proba-
BINTLy endoes,

Losclusians

The paper demonstrates that the centuries-old
Bayes formula 3411 retairs its potency for serving
a3 the basie balief revising rule in large, multf=
hypotheses, inference systens. It 15 proposed,
tharefore, a3 & standard point of daparture for more
sophisticated models of bellef maintanance and
irexact ressoning.
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