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Causing

trouble

The language of science can’t distinguish
between cause and effect. Solving this
problem could put research on firm
foundations, reports Ciaran Gilligan-Lee

onhospital admission datamade a
surprising prediction. It said that people
who presented with pneumonia were more
likely to survive if they also had asthma.
This flew in the face of all medical knowledge,
which said that asthmatic patients were
atincreased risk from the disease. Yet the
data gathered from multiple hospitals
was indisputable: if you had asthma, your
chances were better. What was going on?

It turned out that the algorithm had missed
acrucial piece of the puzzle. Doctors treating
pneumonia patients with asthma were passing
them straight to the intensive care unit,
where the aggressive treatment significantly
reduced their risk of dying from pneumonia.
It was a case of cause and effect being
hopelessly entangled. Fortunately, no changes
wererolled out on the basis of the algorithm.

Unweaving the true connection between
cause and effect is crucial for modern-day
science. It underpins everything from the
development of medication to the design of
infrastructure and even our understanding of
the laws of physics. But for well over a century,
scientists have lacked the tools to get it right.
Not only has the difference between cause and
effect often been impossible to work out from
dataalone, but we have struggled toreliably
distinguish causal links from coincidence.

Now, mathematical work could fix that for
good, giving science the causal language that
it desperately needs. This has far-ranging
applications in our data-rich age, fromdrug
discovery to medical diagnosis, and may be

IN THE mid-1990s, an algorithm trained
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the essential tool to resolve this fatal flaw.
Amantra most scientists can recite in
their sleep is that correlation doesn’t imply
causation. A simple example illustrates why.
Data from seaside towns tells us that the more
ice creams are sold on a day, the more bathers
are attacked by sharks. Does this mean that ice
cream vendors should be shut down in the
interests of public safety? Probably not. Amore
sensible conclusion is that the two trends
are likely to be consequences of an underlying
third factor: more people on the beach.In
that case, therise in ice cream sales and shark
attacks would both be caused by therise in
beachgoers, but only correlated to each other.

What'’s going on?
This analysis seems simple enough. The
trouble is that the data alone can’t point us
intheright direction. We need some external
knowledge -in this case, that a surge in
people enjoying the beach on a hot day can
adequately explain both trends - to correctly
distinguish correlation from causation.
As the data at hand gets more complicated
and less familiar, however, our ability to
distinguish between the two falls short.
These subtleties were lost on some of
the early pioneers of statistics. One notable
offender was Karl Pearson, an English
mathematician and prominent eugenicist
of the early 1900s. Pearson believed the
mathematics of correlation was the true
grammar of science, with causation being
only a special case of correlation, rather than
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aseparate analytical concept. The statistical
tools he developed remain part of the bedrock
of scientific practice, and are taught in every
undergraduate statistics class. As a result, for
overa century, many scientific discoveries
have been based on flimsy correlation rather
than firm causation. This has implications far
beyond the seaside. Dataand correlation can
tell you which of two treatments led patients
to recover faster, but not why. They also can’t
tell you how to make treatments better, or
even what to prescribe a given individual.

“If you want to actually cure a disease,
or make it less likely someone gets a disease,
you need to have a causal understanding,”
says Jonas Peters at the University of
Copenhagen in Denmark. The importance
of understanding causality can't be overstated,
says Elias Bareinboim at Columbia University
in New York. “I don’t think there is any way
of doing science without causality,” he says.

“It is the code running the system.”

At the same time, science is poorly equipped
to deal with questions of cause and effect.
Since Galileo, modern science has been
communicated using the language of algebra
and equations. Physicists can write an
equation describing the relationship between
atmospheric pressure and the readingon
abarometer, but this equation says nothing
about whether it is pressure that causes
the barometer reading or vice versa. The
language of algebra is completely agnostic
to the question of which came first.

Inthe early 1990s, dissatisfied with this
state of affairs, Judea Pearl at the University
of California, Los Angeles, set out to give
science the causal language it desperately
needed. His solution was to introduce a new
mathematical language of “doing”, allowing
us to distinguish between cause and effect.
If1“do” by intervening to force pressure to |
change, then the reading on the barometer 7
will shift. But if I “do” a change in the |
barometer reading, the pressure doesn’t alter ‘
asaconsequence. Intervening on the cause
will change the effect, but any intervention
onthe effect won’t change the cause.

To convey this in mathematical terms,

Pearl invented a new operation to sit alongside
addition, subtraction and the others. Just like
the other operators, his “do operator” can
manipulate variables - like the number of

ice creams sold - in specific ways. Whereas
addition combines the value of two or more
variables, the do operator sets a variable toa
specific value, irrespective of anything else.

To see why this is needed, let’s head back to
the seaside. If we wanted to establish the true >
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relationship between ice cream eating and
shark attacks, the scientific best practice would
be to carry out arandomised control trial. This
would involve randomly assigning beachgoers
into two subgroups of equal size. One group
would be given ice creams and the other
wouldn't. Both would then be let loose in
shark-infested waters, and the number of
shark attacks on each group compared.

The composition of the subgroups is
random, so all other potentially confounding
factors, such as age, height and tastiness of
flesh, are controlled for. Any remaining
correlation can be explained only if there is a
direct causal relationship between eating ice
cream and being attacked by a shark. Pearl’s do
operator mathematically simulates changing
the amount of ice cream someone eats,
regardless of any confounding factors that
would influence both the eating of ice cream
and being attacked by a shark. By changing
ice cream consumption alone, and keeping
everythingelse fixed, any corresponding
change in shark attacks must be due to eating
ice cream, as it is the only variable that changed.

Pearl’s great insight was to show that with
the do operator you could effectively simulate
arandomised control trial using only
observational data and extract causal
connections. This was a game changer, because
performing real-world randomised controlled
trials can be expensive and complicated, not to
mention unethical. To perform a controlled
trial to examine the link between pneumonia
and asthma, for example, half the group would
have to be infected with pneumonia.

The work won Pearl the Turing Award in
2011 -the computer science equivalent of
aNobel prize —and formed the foundations
of what has come to be known as the theory
of causal inference.

Besides putting science on a firmer causal
footing, this mathematical framework is
helping to solve problems in many disciplines,
says Bareinboim, chiefamong which is the
replication crisis that has plagued medicine
and the social sciences. In the past decade,
doubts have arisen about many headline-
grabbing studies in these fields - from the
notion that maths problems are easier for
students to solve if written in a fuzzy font
to the idea that willpower is a finite,
exhaustible resource - because the results
of their underlying experiments couldn’t
be replicated. In 2015, a massive replicability
study in psychology found that results of
60 per cent of studies couldn’t be reproduced,
casting a vast shadow across the discipline.

Bareinboim believes causal inference could
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help clear these problems up. In many cases,
he says, the original tests were susceptible to
confounding factors that the experimenters
may have been unaware of, and subsequent
replication attempts might have dragged new
causal relationships into the mix. One classic
example concerns the effect of happiness on
economic decisions, which was originally
measured by showing participants footage
of US comedian Robin Williams. By the time
the replication experiment was conducted,
Williams had died, potentially skewing the
participants’ response. In addition, the
subjects in the original study were from the US,
but those in the replication one were British.
By not controlling for such confounding
effects, the replication study cannot
legitimately comment on the original finding.
The applications extend well beyond
science. “As soon as you're looking to improve
decision-making, you want to understand
cause and effect. Which is, if  were to do this,
how would the world change?” says Suchi Saria
at Johns Hopkins University in Maryland.
Economists in particular were early to the

“Ifyou don’t
understand
the causal
process, you
are susceptible
to bias”




party, realising that many of the problems
they wished to solve required a causal toolkit.

Such tools could determine the effects of
specific policies, such as whether an increased
tax on cigarettes reduces the health impacts
of smoking. For such a complicated issue,
however, Pearl's mathematical tools become
incredibly challenging. The relationship
between smoking and health is influenced by
apanoply of confounding factors, including age,
sex, diet, family history, occupation and years of
education. To home in on the causal connection .
we care about, we can look only at parts of
the data where the other factors are constant.
But for each confounding variable we control
for, the corresponding data set gets smaller.
Eventually, we are left with so little data that
no robust conclusions can be drawn at all.

To overcome these difficulties, Susan Athey
at Stanford University in California and her
colleagues have developed techniques to
approximate Pearl’s methods while still
holding on to as much data as possible. They
aren’t alone. Tools of this kind are also having
abigimpact in healthcare, an area where
understanding cause and effect can be
life-saving. Knowing that a disease is highly
correlated with certain symptoms, or that
adrugis highly correlated with recovery,
isn’'t enough, and basing medical decisions
onsuch information can be dangerous.

Saria is using causal inference to create
tools to help doctors make decisions by
comparing the effect of different medical
actions. However, working with medical data
comes with challenges. “We may be reflecting
back biases that are not the true underlying
phenomena in nature,” she says. For example,
unequal access to treatment means that
the US spends less money caring for black
patients than for white patients. Some
algorithms conclude from such data that
black patients are healthier than equally
sick white patients, which is patently false.

ForKira Radinsky at the Technion-Israel
Institute of Technology, causal understanding
is key to a more equitable health system.

“If youdon’t understand the causal processes,
youare susceptible to bias in the data,” she
says. “As soon as you do understand them,
youcanclean out the bias.”

This highlights one problem that causal
inference can't solve. Before Pearl’s techniques
canbe employed, the causal relationships need
tobeknown, Left to analyse shark attack and ice
cream sales data, for example, they wouldn't
be able to determine the connection between
the two without knowing that an increase in
beachgoers could explain both trends.
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Shark attacks mayrise along
with seaside ice cream sales,
but are the two trends linked?

To quantitatively compute the effect
of treating someone’s symptoms witha
certain drug, we need to know that a causal
relationship between that drug and those
symptoms exists. The standard approach to

this s to find out from experts on the subject.

But getting this causal knowledge from
experts can be difficult and takes time,
says Radinsky. The approach she and her
collaborators have taken to streamline
this process is to mine causal relationships
from medical papers that actually verified
their existence through experiments. By
applying this causal knowledge to drug
repurposing —using existing medicines
in new ways - they have already found new
treatments for hypertension and diabetes.

Learning from the data

This is a fruitful and powerful approach,
but not every field has alarge collection of
online research papers with proven causal
links just waiting to be exploited. This has
led researchers in other disciplines to
wonder if causal relationships could be
discovered from purely observational data.
The age-old difficulty of distinguishing
correlation from causation would seem
to rule this out. Yet a new generation of
researchers bold enough to investigate
the problemis starting torealise that it
might notbeas impossible as it sounds.

One approach gaining ground involves |
looking for patterns that hold true regardless
of circumstances. Increased atmospheric
pressure always causes a barometer reading to
change, for example, regardless of whether you
are in London or New York, on Earth or Mars.
Likewise, physicians in different hospitals or
countries may differ in how they treat people,
but the underlying causal relationships
between diseases and symptoms don’t vary.
The key idea behind new work being led by
Peters and others is that this consistency can
act as a signature of the underlying causal
process, allowing Pearl’s tools to be deployed.
To put this principle to the test, he and his
colleagues dived into a complex sociological
question: the true causes of a country’s total
fertility rate. These rates vary dramatically
around the world, and understanding the
factors determining them could be aboon
for governments seeking to support their
populations. By looking for consistent patterns
in data from multiple countries, Peters and his
colleagues found that mortality rates of young
children were important drivers of fertility
rates, a finding that tallied with previous
studies from around the world. “When child
mortality is high, families tend to have more
children, even if none of their own children
have died,” says Adrian Raftery, a sociologist
and statistician at the University of
Washington in Seattle. “This may be proactive,
to try to make sure that they do have a family.”
Bareinboim is very excited about the
group’s ability to obtain causal insights from
observational data alone. “When that work
came along, it was amazing,” he says. Peters
and his collaborators are now using the
invariance principle to paint a causal picture
of biosphere and atmosphere interactions,
with potentially dramatic consequences
for our understanding of climate change.
But like Pearson’s statistical analysis over 1
acentury ago, itisn’tasilver bullet. To truly ;
|
|

disentangle cause, effect and correlation,
scientists will always need extra contextual
information. Without knowing how
beachgoers behave, for instance, or how
doctors treat people with pneumonia if they
have asthma, no analysis in the world could
correctly parse even the largest data set.

“The problem is the data-generating process,”
says Athey, “not the limits of our brains.” §

Ciaran Gilligan-Lee is a senior
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