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Inference in Bayesian Networks:

A Historical Perspective

Adnan Darwiche

1 Introduction

Judea Pearl introduced Bayesian networks as a representational device in the early

1980s, allowing one to systematically and locally assemble probabilistic beliefs into

a coherent whole. While some of these beliefs could be read off directly from the

Bayesian network, many were implied by this representation and required compu-

tational work to be made explicit. Computing and explicating such beliefs has

been the subject of much research and became known as the problem of inference

in Bayesian networks. This problem is critical to the practical utility of Bayesian

networks as the computed beliefs form the basis of decision making, which typically

dictates the need for Bayesian networks in the first place.

Over the last few decades, the interest in inference algorithms for Bayesian net-

works remained great and has witnessed a number of shifts in emphasis with regards

to the adopted computational paradigms and the type of queries addressed. My

goal in this paper is to provide a historical perspective on this line of work and the

associated shifts, where we shall see the key role that Judea Pearl has played in

initiating and inspiring many of the technical developments that have formed and

continue to form the basis of work in this area.

2 Starting with trees

It all began with trees — and polytrees! These are network structures that permit

only one undirected path between any two nodes in the network; see Figure 1. If each

node has at most one parent, we have a tree. Otherwise, we have a polytree. Pearl’s

first inference algorithm — and the very first algorithm for Bayesian networks —

was restricted to trees [Pearl 1982] and was immediately followed by a generalization

that became known as the polytree algorithm [Kim and Pearl 1983; Pearl 1986b].

The goal here was to compute a probability distribution for each node in the network

given some evidence, a task which is known as computing node marginals.

The polytree algorithm was based on a message-passing computational paradigm,

where nodes in the network send messages to a neighboring node after they have

received messages from all other neighbors. Each message can be viewed as sum-

marizing results from one part of the network and passing them on to the rest of

the network. Messages that communicated information from parents to their chil-
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Figure 1. From left to right: a tree, a polytree, and a multiply–connected network.

dren were said to quantify the causal support from parents to these children. On

the other hand, messages that communicated information from children to their

parents were said to quantify the diagnostic support from children to parents. The

notions of causal and diagnostic supports were rooted in the causal interpretation

of Bayesian network structures that Pearl insisted on, where parents are viewed as

direct causes of their children. According to this interpretation, the distribution

associated with a node in the Bayesian network is called the belief in that node,

and is a function of the causal support it receives from its direct causes, the diag-

nostic support it receives from its direct effects, and the local information available

about that node. This is why the algorithm is also known as the belief propagation

algorithm, a name which is more common today.

The polytree algorithm has had considerable impact and is of major historical

significance for a number of reasons. First, it was the very first exact inference

algorithm for this class of Bayesian networks. Second, its time and space complexity

were quite modest being linear in the size of the network. Third, the algorithm

formed the basis for a number of other algorithms, both exact and approximate,

that will be discussed later. In addition, the algorithm provided a first example of

reading off independence information from a network structure, and then using it

to decompose a complex computation into smaller and independent computations.

It formally showed the importance of independence, as portrayed by a network

structure, in driving computation and in reducing the complexity of inference.

One should also note that, according to Pearl, this algorithm was motivated by

the work of [Rumelhart 1976] on reading comprehension, which provided compelling

evidence that text comprehension must be a distributed process that combines both

top-down and bottom-up inferences. This dual mode of inference, so characteristic

of Bayesian analysis, did not match the capabilities of the ruling paradigms for

uncertainty management in the 1970s. This led Pearl to develop the polytree algo-
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Figure 2. Networks and corresponding loop-cutsets (bold circles).

rithm [Pearl 1986b], which, as mentioned earlier, appeared first in [Pearl 1982] with

a restriction to trees, and then in [Kim and Pearl 1983] for polytrees.

3 On to more general structures

Soon after the polytree algorithm was introduced, the search began for algorithms

that can handle arbitrary network structures. Since polytrees were also referred to as

singly–connected networks, arbitrary network structures were said to be multiply–

connected; see Figure 1. One of the central ideas for handling these networks is

based on the technique of conditioning. That is, one can set variable X to some

value x and then solve the problem under that particular condition X = x. If this is

repeated for all values of X, then one can recover the answer to the original problem

by assembling the results obtained from the individual cases. The main value of

this technique is that by conditioning variables on some values, one can simplify the

problem. In Bayesian networks, one can effectively delete edges that are outgoing

from a node once the value of that node is known, therefore, creating a simplified

structure that can be as informative as the original structure in terms of answering

queries.

Pearl used this observation to propose the algorithm of loop-cutset condition-

ing [Pearl 1986a; Pearl 1988], which worked by conditioning on enough network

variables to render the network structure singly–connected. The set of variables that

needed to be conditioned on is called a loop–cutset; see Figure 2. The loop–cutset

conditioning algorithm amounted then to a number of invocations to the polytree

algorithm, where this number is exponential in the size of the cutset — one invoca-

tion for each instantiation of the variables constituting the cutset. A key attraction

of this algorithm is its modest space requirements, as it did not need much space

beyond that used by the polytree algorithm. The problem with the algorithm, how-

ever, was in its time requirements when the size of the loop-cutset was large enough.

The algorithm proved impractical in such a case and the search continued for al-
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Figure 3. A Bayesian network structure and its corresponding jointree (tree of

clusters).

ternative conditioning algorithms that could handle multiply–connected structures

more efficiently.

The very first algorithm that found widespread use on multiply–connected net-

works was the jointree algorithm, also known as the tree clustering algorithm [Lau-

ritzen and Spiegelhalter 1988]. This algorithm proved quite effective and remains

practically influential until today — for example, it is the algorithm of choice in

commercial implementations of Bayesian network inference. One way of under-

standing this algorithm is as a version of the polytree algorithm, invoked on a tree

clustering of the multiply–connected network. For an example, consider Figure 3

which depicts a DAG and its corresponding tree of clusters — this is technically

known as a jointree or a tree decomposition [Robertson and Seymour 1986]. One

thing to notice here is that each cluster is a set of variables in the original network.

The jointree algorithm works by passing messages across the tree of clusters, just

as in the polytree algorithm. However, the size of these messages and the amount

of work it takes to propagate them is now tied to the size of clusters.

The jointree is not an arbitrary tree of clusters as it must satisfy some conditions

to legitimize the message passing algorithm. In particular, every node and its

parents in the Bayesian network must belong to some tree cluster. Moreover, if a

variable appears in two clusters, it must also appear in every cluster on the path

connecting them. Ensuring these conditions may lead to clusters that are large.

There is a graph–theoretic notion, known as treewidth, which puts a lower bound

on the size of largest cluster [Robertson and Seymour 1986]. In particular, if the

treewidth of the DAG is w, then any jointree of the DAG must have a cluster whose

size is at least w + 1.1 In some sense, the treewidth can be viewed as a measure of

1In graph theory, treewidth is typically defined for undirected graphs. The treewidth of a

DAG as used here corresponds to the treewidth of its moralized graph: one which is obtained by
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Figure 4. Decomposing a Bayesian network by conditioning on variable B and then

on variable C.

how similar a DAG structure is to a tree structure as it puts a lower bound on the

width of any tree clustering (jointree) of the DAG.

The connection between the complexity of inference algorithms and treewidth

is actually the central complexity result that we have today for exact inference

[Dechter 1996]. In particular, given a jointree whose width is w, node marginals

can be computed in time and space that is exponential only in w. Note that a

network treewidth of w guarantees the existence of such a jointree, but finding

it is generally known to be hard. Hence, much work on this topic concerns the

construction of jointrees with minimal width using both heuristics and complete

search methods (see [Darwiche 2009] for a survey).

4 More computational paradigms

Since a typical implementation of the jointree algorithm will indeed use as much

time and space as is suggested by the complexity analysis, we will not be able to

rely on the jointree algorithm in the case where we do not find a jointree whose

width is small enough. To overcome this treewidth barrier, research on inference

algorithms continued in a number of directions.

With regards to work on conditioning algorithms, the main breakthrough in this

regard was based on observing that one can employ conditioning in other and more

effective ways than loop–cutset conditioning. For example, one can condition on

enough variables to split the network into disconnected sub–networks, which can

then be solved independently. These sub–networks need not be polytrees, as each

one of them can be solved recursively using the same method, until sub–networks

reduce to a single node each; see Figure 4. With appropriate caching schemes

to avoid solving the same sub–network multiple times, this method of recursive

conditioning can be applied with the same complexity as the jointree algorithm. In

connecting every pair of nodes that share a child in the DAG and then dropping the directionality

of all edges.
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particular, one can guarantee that the space and time requirements of the algorithm

are at most exponential in the treewidth of underlying network structure. This

result assumes that one has access to a decomposition structure, known as a dtree,

which is used to control the decomposition process at each level of the recursive

process [Darwiche 2001]. Similar to a jointree, finding an optimal dtree (i.e., one

that realizes the treewidth guarantee on complexity) is hard. Yet, one can easily

construct such a dtree given an optimal jointree, and vice versa [Darwiche 2009].

Even though recursive conditioning and the jointree algorithm are equivalent from

this complexity viewpoint, recursive conditioning provided some new contributions

to inference. On the theoretical side, it showed that conditioning as an inference

paradigm can indeed reach the same complexity as the jointree algorithm — a

question that was open for some time. Second, the algorithm provided a flexible

paradigm for time-space tradeoffs: by simply controlling the degree of caching,

the space requirements of the algorithm can be made to range from being only

linear in the network size to being exponential in the network treewidth (given an

appropriate dtree). Moreover, the algorithm provided a convenient framework for

exploiting local structure as we shall discuss later.

On another front, and in the continued search of an alternative for the jointree

algorithm, a sequence of efforts culminated into what is known today as the variable

elimination algorithm [Zhang and Poole 1994; Dechter 1996]. According to this al-

gorithm, one maintains the probability distribution of the Bayesian network as a set

of factors (initially the set of CPTs) and then successively eliminates variables from

this set one variable at a time.2 The elimination of a variable can be implemented

by simply combining all factors that mention that variable and then removing the

variable from the combined factor. After eliminating a variable, the resulting fac-

tors represent a distribution over all remaining (un-eliminated) variables. Hence,

by repeating this elimination process, one can obtain the marginal distribution over

any subset of variables, including, for example, marginals over single variables.

The main attraction of this computational paradigm is its simplicity — at least as

compared to the initial formulations of the jointree algorithm. Variable elimination,

however, turned out to be no more efficient than the jointree algorithm in the worst

case. In particular, the ideal time and space complexities of the algorithm also

depend on the treewidth — in particular, they are exponential in treewidth when

computing the marginal over a single variable. To achieve this complexity, however,

one needs to use an optimal order for eliminating variables [Bertele and Brioschi

1972]. Again, constructing an optimal elimination order that realizes the treewidth

complexity is hard in general. Yet, one can easily construct such an optimal order

from an optimal jointree or dtree, and vice versa.

Even though variable elimination proved to have the same treewidth complexity

2A factor is a function that maps the instantiations of some set of variables into numbers; see

Figure 5. In this sense, each probability distribution is a factor and so is the marginal of such a

distribution on any set of variables.
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Figure 5. A factor over binary variables X, Y, Z with a tabular representation (left)

and an ADD representation (right).

as the jointree algorithm, it better explained the semantics of the jointree algorithm,

which can now be understood as a sophisticated form of variable elimination. In

particular, one can interpret the jointree algorithm as a refinement on variable elim-

ination in which: (1) multiple variables can be eliminated simultaneously instead

of one variable at a time; (2) a tree structure is used to control the elimination

process and to save the results of intermediate elimination steps. In particular,

each message passed by the jointree algorithm can be interpreted as the result of

an elimination process, which is saved for re-use when computing marginals over

different sets of variables [Darwiche 2009]. As a result of this refinement, the join-

tree algorithm is able to perform successive invocations of the variable elimination

algorithm, for computing multiple marginals, while incurring the cost of only one

invocation, due mainly to the re-use of results across multiple invocations.

Given our current understanding of the variable elimination and jointree algo-

rithms, one now speaks of only two main computational paradigms for exact prob-

abilistic inference: conditioning algorithms (including loop-cutset conditioning and

recursive conditioning) and elimination algorithms (including variable elimination

and the jointree algorithm).

5 Beating the treewidth barrier with local structure

Assuming that we ignore the probabilities that quantify a Bayesian network, the

treewidth guarantee is the best we have today on the complexity of exact inference.

Moreover, the treewidth determines the best-case performance we can expect from

the standard algorithms based on conditioning and elimination.

It has long been believed though that exploiting the local structure of a Bayesian
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network can speed up inference to the point of beating the treewidth barrier, where

local structure refers to the specific properties attained by the probabilities quan-

tifying the network. One of the main intuitions here is that local structure can

imply independence that is not visible at the structural level and this independence

may be utilized computationally [Boutilier et al. 1996]. Another insight is that

determinism in the form of 0/1 probabilities can also be computationally useful as

it allows one to prune possibilities from consideration [Jensen and Andersen 1990].

There are many realizations of these principles today. For elimination algorithms

— which rely heavily on factors and their operations — local structure permits one

to have more compact representations of these factors than representations based

on tables [Zhang and Poole 1996], leading to a more efficient implementation of the

elimination process. One example of this would be the use of Algebraic Decision

Diagrams [R.I. Bahar et al. 1993] and associated operations to represent and ma-

nipulate factors; see Figure 5. For conditioning algorithms, local structure reduces

the number of cases one needs to consider during inference and the number of sub-

computations one needs to cache. As an example of the first, suppose that we have

an and-gate whose output and one of its inputs belong to a loop cutset. When

conditioning the output on 1, both inputs must be 1 as well. Hence, there is no

need to consider multiple values for the input in this case during the conditioning

process [Allen and Darwiche 2003]. This would no longer be true, however, if we

had an or-gate. Moreover, the difference between the two cases is only visible if we

exploit the local structure of corresponding Bayesian networks.

Another effective technique for exploiting local structure, which proved to be a

turning point in speeding up inference, is based on encoding Bayesian networks using

logical constraints and then applying logical inference techniques to the resulting

knowledge base [Darwiche 2002]. One can indeed efficiently encode the network

structure and some of its local structure, including determinism, using knowledge

bases in conjunctive normal form (CNF). One can then either compile the CNF

to produce a circuit representation of the Bayesian network (see below), or apply

model counting techniques and use the results to recover answers to probabilistic

queries [Sang, Beame, and Kautz 2005].

Realizations of the above techniques became practically viable long after the ini-

tial observations about local structure, but have allowed one to reason efficiently

with some networks whose treewidth can be quite large (e.g., [Chavira, Darwiche,

and Jaeger 2006]). Although there is some understanding of the kind of networks

that tend to lend themselves to these techniques, we still do not have strong theoret-

ical results that characterize these classes of networks and the savings that one may

expect from exploiting their local structure. Moreover, not enough work exists on

complexity measures that are sensitive to both network structure and parameters

(the treewidth is only sensitive to structure).

One step in this direction has been the use of arithmetic circuits to compactly

represent the probability distributions of Bayesian networks [Darwiche 2003]. This
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Figure 6. A Bayesian network and a corresponding arithmetic circuit.

representation is sensitive to both network topology and local structure, therefore,

allowing for compact circuit representations in some cases where the treewidth of

the network can be quite large; see Figure 6. Given a circuit representation, in-

ference can be performed quite efficiently through simple circuit evaluation and

differentiation techniques. Hence, the size of a circuit representation can be viewed

as an indicator of the complexity of inference with respect to the given network.

Again, however, we do not have enough theoretical results to broadly predict the

size of these circuit representations or bound the complexity of constructing them.3

6 More queries for Bayesian networks

Pearl introduced another computational problem for Bayesian networks, known as

the MPE for Most Probable Explanations. The goal here is to find the most likely

instantiation of the network variables, given that some of these variables are fixed

3Note, however, that an arithmetic circuit can always be constructed in time which is expo-

nential only in the treewidth, given a jointree of corresponding width.
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to some given value. Pearl actually proposed the first algorithm for this purpose,

which was a variation on the polytree algorithm [Pearl 1987a].

A more general problem is MAP which stands for Maximum a Posteriori hypoth-

esis. This problem searches for an instantiation of a subset of the network variables

that is most probable. Interestingly, MAP and MPE are complete for two different

complexity classes, which are also distinct from the class to which node marginals

is complete for. In particular, given the standard assumptions of complexity the-

ory, MPE is the easiest and MAP is the most difficult, with node marginals in the

middle.4

The standard techniques based on variable elimination and conditioning can solve

MPE and MAP as well [Dechter 1999]. MPE can be solved with the standard

treewidth guarantee. MAP, however, has a worse complexity in terms of what

is known as constrained treewidth, which depends on both the network topology

and MAP variables (that is, variables for which we are trying to find a most likely

instantiation of) [Park and Darwiche 2004]. The constrained treewidth can be much

larger than treewidth, depending on the set of MAP variables.

MPE and MAP problems have search components which lend themselves to

branch-and-bound techniques [Kask and Dechter 2001]. Over the years, many so-

phisticated MPE and MAP bounds have been introduced, allowing branch-and-

bound solvers to prune the search space more effectively. Consequently, this allows

one to solve some MPE and MAP problems efficiently, even when the network

treewidth or constrained treewidth are relatively high. In fact, only relatively re-

cently did practical MAP algorithms surface, due to some innovative bounds that

were employed in branch-and-bound algorithms [Park and Darwiche 2003].

MPE algorithms have traditionally received more attention than MAP algo-

rithms. Recently, techniques based on LP relaxations, in addition to reductions

to the MAXSAT problem, have been employed successfully for solving MPE. LP

relaxations are based on the observation that MPE has a straightforward formu-

lation in terms of integer programming, which is known to be hard [Wainwright,

Jaakkola, and Willsky 2005; Yanover, Meltzer, and Weiss 2006]. By relaxing the

integral constraints, the problem becomes a linear program, which is tractable but

provides only a bound for MPE. Work in this area has been focused on techniques

that compensate partially for the lost integral constraints using larger linear pro-

grams, and on developing refined algorithms for handling the resulting “specialized”

linear programs.5 The MAXSAT problem has also been receiving a lot of attention

in the logic community [Bonet, Levy, and Manyà 2007; Larrosa, Heras, and de Givry

2008], which developed effective techniques for this purpose. In fact, reductions of

certain MPE problems (those with excessive logical constraints) to MAXSAT seem

4The decision problems for MPE, node marginals, and MAP are NP–complete, PP–complete,

and NP PP –complete, respectively.
5In the community working on LP relaxations and related methods, “MAP” is used to mean

“MPE” as we have discussed it in this article.
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Figure 7. A Bayesian network annotated with an ordering of LBP messages (leading

to a sequential message passing schedule).

to be the state of the art for some problems in this category.

7 Approximations may be good enough

In addition to work on exact inference algorithms for Bayesian networks, much work

has also been dedicated to approximate inference algorithms which are generally

more efficient but settle for less than accurate answers. Interestingly enough, the two

major paradigms for approximate inference as practiced today were also initiated

by Judea Pearl.

In particular, immediately after proposing the polytree algorithm, Pearl also pro-

posed the use of Gibbs sampling as a method for approximate inference in Bayesian

networks [Pearl 1987b]. This paper started a tradition in applying MCMC tech-

niques for solving Bayesian networks and is considered as the founding paper in this

direction. Further stochastic simulation methods were also proposed after realizing

that sampling from Bayesian networks can be done easily by simply traversing the

network structure [Henrion 1988].

In his seminal book on Bayesian networks [Pearl 1988], Pearl also proposed apply-

ing the belief propagation (polytree) algorithm to networks that have an arbitrary

structure (in Exercise 4.7). This proposal required some initialization of network

messages and entailed that a node may have to keep sending messages to each of

its neighbors until convergence is reached (i.e., the messages are no longer chang-

ing); see Figure 7. Interestingly enough, such an algorithm, which is now known as

loopy belief propagation (LBP), tends to converge, yielding good approximations to

a variety of problems. In fact, this particular algorithm was found to correspond

to a state–of–the–art algorithm used in the channel coding community and today

is widely viewed as a key method of choice for approximate inference [Frey and

MacKay 1997].

This connection and the viability of LBP as an approximation algorithm came
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to light around the mid 1990s, almost a decade after Pearl first suggested the al-

gorithm. Work on LBP and related methods has been dominating the field of

approximate inference for more than a decade now. One of the central questions

was: if LBP converges, what is it converging to? This question was answered in a

number of ways [Minka 2001; Wainwright, Jaakkola, and Willsky 2003; Choi and

Darwiche 2006], but the first characterization was put forth in [Yedidia, Freeman,

and Weiss 2000]. According to this characterization, one can understand LBP as

approximating the distribution of a Bayesian network by a distribution that has

a polytree structure [Yedidia, Freeman, and Weiss 2003]. The iterations of the

algorithm can then be interpreted as searching for the node marginals of that ap-

proximate distribution, while minimizing the KL–divergence between the original

and approximate distributions.

LBP has actually two built-in components. The first corresponds to a particular

approximation that it seeks, which is formally characterized as discussed before. The

second component is a particular method for seeking the approximation, through

a process of message passing. One can try to seek the same approximation using

other optimization methods, which has also been the subject of much research. Even

the message passing scheme leaves a lot of room for variation, which is captured

formally using the notion of a message passing schedule — for example, messages

can be passed sequentially, in parallel, or combinations therefore. One therefore

talks about the “convergence” properties of such algorithms, where the goal is to

seek methods that have better convergence properties.

LBP turns out to be an example of a more general class of approximation algo-

rithms that poses the approximate inference problem as a constrained optimization

problem. These methods, which are sometimes known as variational algorithms,

assume a tractable class of distributions, and seeks to find an instance in this

class that best fits the original distribution [Jordan et al. 1999; Jaakkola 2001].

For example, we may want to assume an approximating Bayesian network that is

fully-disconnected, and that the distribution it induces should have as small a KL–

divergence as possible, when compared to the distribution being approximated. The

goal of the constrained optimization problem is then to find the CPT parameters of

the approximate network that minimizes the KL–divergence between it and the orig-

inal network (subject to the appropriate normalization constraints). Work in this

area typically varies across two dimensions: proposing forms for the approximating

distribution, and devising methods for solving the corresponding optimization prob-

lem. Moreover, by varying these two dimensions, we are given access to a spectrum

of approximations, where we are able to trade the quality of an approximation with

the complexity of computing it.

8 Closing Remarks

During the first decade or two after Pearl’s introduction of Bayesian networks, infer-

ence research was very focused on exact algorithms. The efforts on these algorithms
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slowed down towards the mid to late 1990s, to pick up again early in the century.

The slowdown was mostly due to the treewidth barrier, at a time where large enough

networks were being constructed to make standard algorithms impractical at that

time. The main developments leading to the revival of exact inference algorithms

has been the extended reach of conditioning methods, the deeper understanding of

elimination methods, and the more effective exploitation of local structure. Even

though these developments have increased the reach of exact algorithms consid-

erably, we still do not understand the extent to which this reach can be pushed

further. In particular, the main hope appears to be in further utilization of local

structure to speed up inference, but we clearly need better theories for providing

guarantees on such speedups and a better characterization of the networks that lend

themselves to such techniques.

On the approximate inference side, stochastic simulation methods witnessed a

surge after the initial work on this subject, with continued interest throughout, yet

not to the level enjoyed recently by methods based on belief propagation and related

methods. This class of algorithms remains dominant, with many questions begging

for answers. On the theoretical side, we do not seem to know enough on when

approximations tend to give good answers, especially that this seems to be tied

not only to the given network but also to the posed query. On the practical side,

we have yet to translate some of the theoretical results on generalizations of belief

propagation — which provides a spectrum that tradeoffs approximation quality

with computational resources — into tools that are used routinely by practitioners.

There has been a lot of progress on inference in Bayesian networks since Pearl

first made this computational problem relevant. There is clearly a lot more to be

done as we seem to always exceed the ability of existing algorithms by building

more complex networks. In my opinion, however, what is greatly missed since

Pearl’s initial work on this subject is his insistence on semantics, where he spared no

effort in establishing connections to cognition, and in grounding the most intricate

mathematical manipulations in human intuition. The derivation of the polytree

algorithm stands as a great example of this research methodology, as it provided

high level and cognitive interpretations of almost all intermediate computations

performed by the algorithm. It is no wonder then that the polytree algorithm not

only started the area of inference in Bayesian networks a few decades ago, but it

also remains a basis for some of the latest developments and inspirations in this

area of research.

Acknowledgments: I wish to thank Arthur Choi for many valuable discussions

while writing this article.
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Graphical Models of the Visual Cortex

Thomas Dean

1 Pivotal Encounters with Judea

Post graduate school, three chance encounters reshaped my academic career, and all

three involved Judea Pearl directly or otherwise. The first encounter was meeting

Judea on a visit to the UCLA campus at a time when I was developing what I called

temporal Bayesian networks and would later be called dynamic belief networks (an

unfortunate choice of names for reasons I’ll get to shortly). Judea was writing his

book Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence [1988] and his enthusiasm for the subject matter was positively infectious. I

determined from that meeting that I was clueless about all things probabilistic and

proceeded to read each of Judea’s latest papers on Bayesian networks multiple times,

gaining an initial understanding of joint and marginal probabilities, conditional in-

dependence, etc. In those days, a thorough grounding in probability and statistics

was rarely encouraged for graduate students working in artificial intelligence.

The second encounter was with Michael Jordan at a conference where he asked

me a question that I was at a loss to answer and made it clear to me that I didn’t

really understand Bayesian probability theory at all, despite what I’d picked up

from Judea’s papers. My reaction to that encounter was to read Judea’s book cover

to cover and discover the work of I.J. Good. Despite being a math major and

having met I.J. Good at Virginia Tech where I was an undergraduate and Good

was a professor of statistics, I never took a course in probability or statistics. My

embarrassment at being flummoxed by Mike’s question forced me to initiate a crash

course in probability theory based on the textbooks of Morris DeGroot [1970, 1986].

I didn’t recognize it at the time, but Judea, Mike and like-minded researchers in

central areas of artificial intelligence were in the vanguard of those changing the

landscape of our discipline.

The third encounter was with David Mumford when our paths crossed in the

midst of a tenure hearing at Brown University and David told me of his work on

models of the visual cortex. I read David’s paper with Tai Sing Lee [2003] as well

as David’s earlier related work [1991, 1992] and näıvely set out to implement their

ideas as a probabilistic graphical model [Dean 2005]. Indeed, I wanted to extend

their work since it did not address the representation of time passing, and I was

interested in building a model that dealt with how a robot might make sense of its

observations as it explores its environment.
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Moreover, the theory makes no mention of how a robot might learn such a model,

and, from years of working with robots, I was convinced that building a model by

hand would turn out to be a lot of work and very likely prove to be unsuccessful.

Here it was Judea’s graphical-models perspective that, initially, made it easy for me

to think about David’s work, and, later, extend it. I also came to appreciate the

relevance of Judea’s work on causality and, in particular, the role of intervention

in thinking about how biological systems engage the world to resolve perceptual

ambiguity.

This chapter concerns how probabilistic graphical models might be used to model

the visual cortex, and how the challenges faced in developing such models suggest

areas where current theory falls short and might be extended. A graphical model is a

useful formalism for compactly describing a joint probability distribution character-

ized by very large number of random variables. We are taking what is known about

the anatomy and physiology of the primate visual cortex and attempting to apply

that knowledge to construct probabilistic graphical models that we can ultimately

use to simulate some functions of primate vision. It may be that the resulting prob-

abilistic model also captures some important characteristics of individual neurons

or their ensembles. For practical purposes, this need not be the case, though clearly

we believe there are potential advantages to incorporating some lessons from biol-

ogy into our models. Graphical models also suggest, but do not dictate, how one

might use such a model along with various algorithms and computing hardware to

perform inference and thereby carry out practical simulations. It is this latter use

of graphical models that we refer to when we talk about implementing a model of

the visual cortex.

2 Primate Visual Cortex

Visual information processing starts in the retina and is routed via the optic tract

to the lateral geniculate nuclei (LGN) and then on to the striate cortex also known

as visual area one (V1) located in the occipital lobe at the rear of the cortex. There

are two primary visual pathways in the primate cortex: The ventral pathway leads

from the occipital lobe into the temporal lobe where association areas in the in-

ferotemporal cortex combine visual information with information originating from

the auditory cortex. The dorsal pathway leads from the occipital to the parietal

lobe which, among other functions, facilitates navigation and manipulation by in-

tegrating visual, tactile and proprioceptive signals to provide our spatial sense and

perception of shape.

It is only in the earliest portion of these pathways that we have any reasonably

accurate understanding of how visual information is processed, and even in the very

earliest areas, the striate cortex, our understanding is spotty and subject to debate.

It seems that cells in V1 are mapped to cells in the retina so as to preserve spatial

relationships, and are tuned to respond to stimuli that appear roughly like oriented

bars. Hubel and Wiesel’s research on macaque monkeys provides evidence for and
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one retinal and three cortical regions as

P (xO, xV1, xV2, xV4, xIT) = P (xO, xV1)P (xV1, xV2)P (xV2, xV4)P (xV4, xIT)P (xIT)

where xO represents the retinal or observation layer. Moreover, we know that,

although the edges all point in the same direction, information flows both ways in

the hierarchy via Bayes rule (see Figure 2).

Despite the apparent simplicity when we collapse each layer of variables into a

single, joint variable, exact inference in such a model is intractable. One might

imagine, however, using a variant of the forward-backward algorithm to approxi-

mate the joint distribution over all variables. Such an algorithm might work one

layer at a time, by isolating each layer in turn, performing an approximation on

the isolated Markov network using Gibbs sampling or mean-field approximation,

propagating the result either forward or backward and repeating until convergence.

Simon Osindero and Geoff Hinton [2008] experimented with just such a model and

demonstrated that it works reasonably well at capturing the statistics of patches of

natural images.

One major problem with such a graphical model as a model of the visual cortex

is that the Markov property of the collapsed-layer simplification fails to capture the

inter-layer dependencies implied by the connections observed in the visual cortex.

In the cortex as in the rest of the brain, connections correspond to the dendritic

branches of one neuron connected at a synaptic cleft to the axonal trunk of a second

neuron. We are reasonably comfortable modeling such a cellular edge as an edge

in a probabilistic graphical model because for every cellular edge running forward

along the visual pathways starting from V1 there is likely at least one and probably

quite a few cellular edges leading backward along the visual pathways. Not only

do these backward-pointing cellular edges far outnumber the forward-pointing ones,

they also pay no heed to the Markov property, typically spanning several layers of

our erstwhile simple hierarchy. Jin and Geman [2006] address this very problem in

their hierarchical, compositional model, but at a considerable computational price.

Advances in the development of adaptive Monte Carlo Markov chain (MCMC)

algorithms may make inference in such graphical models more practical, but, for

the time being, inference on graphical models of a size comparable to the number

of neurons in the visual cortex remains out of reach.

4 Temporal Relationships

Each neuron in the visual cortex indirectly receives input from some, typically con-

tiguous, region of retinal ganglion cells. This region is called the neuron’s receptive

field . By introducing lags and thereby retaining traces of earlier stimuli, a neuron

can be said to have a receptive field that spans both space and time — it has a

spatiotemporal receptive field. A large fraction of the cells in visual cortex and V1

in particular have spatiotemporal receptive fields. Humans, like most animals, are

very attentive to motion and routinely exploit motion to resolve visual ambiguity,
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visual experience that biology has evolved to exploit to its advantage. However, in

this chapter, I want to explore a different facet of how we make sense of and, in some

cases, take advantage of spatial and temporal structure to survive and thrive, and

how these aspects of our environment offer new challenges for applying graphical

models.

5 Dynamic Graphical Models

Whether called temporal Bayesian networks [Dean and Wellman 1991] or dynamic

Bayesian networks [Russell and Norvig 2003], these graphical models are designed

to model properties of our environment that change over time and the events that

precipitate those changes. The networks themselves are not dynamic: the numbers

of nodes and edges, and the distributions that quantify the dependencies among the

random variables that correspond to the nodes are fixed. At first blush, graphical

models may seem a poor choice to model the neural substrate of the visual cortex

which is anything but static. However, while the graph that comprises a graphical

model is fixed, a graphical model can be used to represent processes that are highly

dynamic, and contingent on the assignments to observed variables in the model.

In the remainder of this section, we describe characteristics of the visual system

that challenge our efforts to model the underlying processes required to simulate

primate vision well enough to perform such tasks such as object recognition and

robot navigation.

The retina and the muscles that control the shape of the lens and the position

of the eyes relative to one another and the head comprise a complex system for

acquiring and processing visual information. A mosaic of photoreceptors activate

several layers of cells, the final layer of which consists of retinal ganglion cells whose

axons comprise the optic nerve. This multi-layer extension of the brain performs a

range of complex computations ranging from light-dark adaptation to local contrast

normalization [Brady and Field 2000]. The information transmitted along the optic

tract is already the product of significant computational processing.

Visual information is retinotopically mapped from the retinal surface to area

V1 so as to preserve the spatial relationships among patches on the retina that

comprise the receptive fields of V1 cells. These retinotopic mappings are primarily

sorted out in utero, but the organization of the visual cortex continues to evolve

significantly throughout development — this is particularly apparent when children

are learning to read [Dehaene 2009]. Retinotopic maps in areas beyond V1 are more

complicated and appear to serve purposes that relate to visual tasks, e.g., the map

in V2 anatomically divides the tissue responsible for processing the upper and lower

parts of the visual fields. These retinotopic maps, particularly those in area V1,

have led some computer-vision researchers to imagine that early visual processing

proceeds via transformations on regular grid-like structures with cells analogous to

pixels.

The fact is that our eyes, head, and the objects that we perceive are constantly
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segments as part of inference is that this model is potentially more elegant, and

even biologically plausible, in that the recursive process might be represented as a

single hierarchical graphical model allowing inference over the entire graph, rather

than over sequences of ever more refined graphs.

The above discussion of segmentation is but one example in which nodes in a

graphical model might serve as generic variables that are bound as required by

circumstances. But perhaps this view is short sighted; why not just assume that

there are enough nodes that every possible (visual) concept corresponds to a unique

combination of existing nodes. In this view, visual interpretation is just mapping

visual stimuli to the closest visual “memory”. Given the combinatorics, the only way

this could be accomplished is to use a hierarchy of features whose base layer consists

of small image fragments at many different spatial scales, and all subsequent layers

consist of compositions of features at layers lower in the hierarchy [Bienenstock and

Geman 1995; Ullman and Soloviev 1999; Ullman, Vidal-Naquet, and Sali 2002].

This view accords well with the idea that most visual stimuli are not determined

to be novel and, hence, we construct our reality from bits and pieces of existing

memories [Hoffman 1998]. Our visual memories are so extensive that we can almost

always create a plausible interpretation by recycling old memories. It may be that

in some aspects of cognition we have to employ generic neural structures to perform

the analog of binding variables, but for much of visual intelligence this may not be

necessary given a large enough memory of reusable fragments. Which raises the

question of how we might implement a graphical model that has anywhere near the

capacity of the visual cortex.

6 Distributed Processing at Cortex Scale

The cortex consists of a layered sheet with a more-or-less uniform cellular structure.

Neuroanatomists have identified what are called columns corresponding to groups of

local cells running perpendicular to the cortical surface. Vernon Mountcastle [2003]

writes “The basic unit of cortical operation is the minicolumn [...] [containing] on

the order of 80–100 neurons [...] The minicolumn measures of the order of 40-50µ

in transverse diameter, separated from adjacent minicolumns by vertical cell-sparse

zones which vary in size in different cortical areas.” These minicolumns are then

grouped into cortical columns which “are formed by the binding together of many

minicolumns by common input and short-range horizontal connections.”

If we take the cortical column — not the minicolumn — as our basic compu-

tational module as in [Anderson and Sutton 1997], then the gross structure of the

neocortex consists of a dense mat of inter-columnar connections in the outer-most

layer of the cortex and another web of connections at the base of the columns. The

inter-columnar connectivity is relatively sparse (something on the order of 1015 con-

nections spanning approximately 1011 neurons) and there is evidence [Sporns and

Zwi 2004] to suggest that the induced inter-columnar connection graph exhibits the

properties of a small-world graph [Newman, Watts, and Strogatz 2002]. In partic-
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ular, evidence suggests the inter-columnar connection graph has low diameter (the

length of the longest shortest path separating a pair of vertices in the graph) thereby

enabling relatively low-latency communication between any two cortical columns.

It is estimated that there are about a quarter of a billion neurons in the primary

visual cortex — think V1 through V4 — counting both hemispheres, but probably

only around a million or so cortical columns. If we could roughly model each cortical

column with a handful of random variables, then it is at least conceivable that we

could implement a graphical model of early vision.

To actually implement a graphical model of visual cortex using current technol-

ogy, the computations would have to be distributed over many machines. Training

such a model might not take as long as raising a child, but it could take many

days — if not years — using the current computer technology, and, once trained,

we presumably would like to apply the learned model for much longer. Given such

extended intervals of training and application, since the mean-time-til-failure for

the commodity-hardware-plus-software that comprise most distributed processing

clusters is relatively short, we would have to allow for some means of periodically

saving local state in the form of the parameters quantifying the model.

The data centers that power the search engines of Google, Yahoo! and Microsoft

are the best bet that we currently have for such massive and long-lived computa-

tions. Software developed to run applications on such large server farms already

have tools that could opportunistically allocate resources to modify the structure of

graphical model in an analog of neurogenesis. These systems are also resistant to

both software and equipment failures and capable of reallocating resources in the

aftermath of catastrophic failure to mimic neural plasticity in the face of cell death.

In their current configuration, industrial data centers may not be well suited to

the full range of human visual processing. Portions of the network that handle very

early visual processing will undoubtedly require shorter latencies than is typical in

such server farms, even among machines on the same rack connected with high-

speed Ethernet. Riesenhuber and Poggio [1999] use the term immediate recognition

to refer to object recognition and scene categorization that occur in the first 100-

200ms or so from the onset of the stimuli. In that short span of time — less

than the time it takes for a typical saccade, we do an incredibly accurate job of

recognizing objects and inferring the gist of a scene. The timing suggests that only

a few steps of neural processing are involved in this form of recognition, assuming

10–20ms per synaptic transmission, though given the small diameter of the inter-

columnar connection graph, many millions of neurons are likely involved in the

processing. It would seem that at least the earliest stages of visual processing will

have to be carried out in architectures capable of performing an enormous number

of computations involving a large amount of state — corresponding to existing

pattern memory — with very low latencies among the processing units. Hybrid

architectures that combine conventional processors with co-processors that provide

fast matrix-matrix and matrix-vector operations will likely be necessary to handle
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even a single video stream in real-time.

Geoff Hinton [2005, 2006] has suggested that a single learning rule and a rela-

tively simple layer-by-layer method of training suffices for learning invariant features

in text, images, sound and even video. Yoshua Bengio, Yann LeCun and others

have also had success with such models [LeCun and Bengio 1995; Bengio, Lamblin,

Popovici, and Larochelle 2007; Ranzato, Boureau, and LeCun 2007]. Hyvärinen et

al [2003], Bruno Olshausen and Charles Cadieu [2007, 2008], Dean et al [2009] and

others have developed hierarchical generative models to learn sparse codes resem-

bling the responses of neurons in the medial temporal cortex of the dorsal pathway.

In each case, the relevant computations can be most easily characterized in terms

of linear algebra and implemented using fast vector-matrix operations best carried

out on a single machine with lots of memory and many cores (graphics processors

are particularly well suited to this sort of computation).

A more vexing problem concerns how we might efficiently implement any of the

current models of Hebbian learning in an architecture that spans tens of thousands

of machines and incurs latencies measured in terms of milliseconds. Using super

computers at the national labs, Eugene Izhikevich and Gerald Edelman [2008] have

performed spike-level simulations of millions of so-called leaky integrate and fire

neurons with fixed, static connections to study the dynamics of learning in such

ensembles. Paul Rhodes and his team of researchers at Evolved Machines have

taken things a step further in implementing a model that allows for the dynamic

creation of edges by simulating dendritic tree growth and the chemical gradients

that serve to implement Hebbian learning. In each case, the basic model for a neuron

is incredibly simple when compared to the real biology. It is not at all surprising

that Henry Markram and his colleagues at EPFL (Ecole Polytechnique Fédérale

de Lausanne) require a powerful supercomputer to simulate even a single cortical

column at the molecular level. In all three of these examples, the researchers use

high-performance computing alternatives to the cluster-of-commodity-computers

distributed architectures that characterize most industrial data warehouses. While

the best computing architecture for simulating cortical models may not be clear,

it is commonly believed that we either how have or soon will have the computing

power to simulate significant portions of cortex at some level of abstraction. This

assumes, of course, that we can figure out what the cortex is actually computing.

7 Beyond Early Visual Processing

The grid of columnar processing units which constitutes the primate cortex and

the retinotopic maps that characterize the areas participating in early vision, might

suggest more familiar engineered vision systems consisting of frame buffers and

graphics processors. But this analogy doesn’t even apply to the simplest case in

which the human subject is staring at a static image. As pointed out earlier, our

eyes make large — up to 90◦ of visual angle — movements several times a second

and tiny adjustments much more often.
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A typical saccade of, say, 18◦ of visual angle takes 60–80ms to complete [Harwood,

Mezey, and Harris 1999], a period during which we are essentially blind. During

the subsequent 200–500ms interval until the next saccade, the image on the fovea is

relatively stable, accounting for small adjustments due to micro saccades. So even

a rough model for the simplest sort of human visual processing has to be set against

the background of two or three fixations per second, each spanning less than half a

second, and separated by short — less than 1/10 of a second — periods of blindness.

During each fixation we have 200–500ms in which to make sense of the events

projected on the fovea; simplifying enormously, that’s time enough to view around

10–15 frames of a video shown at 30 frames per second. In most of our experience,

during such a period there is a lot going on in our visual field; our eyes, head

and body are often moving and the many objects in our field of view are also in

movement, more often than not, moving independent of one another. Either by

focusing on a small patch of an object that is motionless relative to our frame

of reference or by performing smooth pursuit, we have a brief period in which

to analyze what amounts to a very short movie as seen through a tiny aperture.

Most individual neurons have receptive fields that span an even smaller spatial and

temporal extent.

If we try to interpret movement with too restrictive a spatial extent, we can

mistake the direction of travel of a small patch of texture. If we try to work on

too restrictive a temporal extent, then we are inundated with small movements

many of which are due to noise or uninteresting as they arise from the analog of

smooth camera motion. During that half second or so we need to identify stable

artifacts, consisting of the orientation, direction, velocity, etc., of small patches

of texture and color, and then combine these artifacts to capture features of the

somewhat larger region of the fovea we are fixating on. Such a combination need

not entail recognizing shape; it could, for example, consist of identifying a set of

candidate patches, that may or may not belong to the same object, and summarizing

the processing performed during the fixation interval as a collection of statistics

pertaining to such patches, including their relative — but not absolute — positions,

velocities, etc.

In parallel with processing foveal stimuli, attentional machinery in several neural

circuits and, in particular, the lateral intraparietal cortex — which is retinotopically

mapped when the eyes are fixated — estimates the saliency of spatial locations

throughout the retina, including its periphery where acuity and color sensitivity

are poor. These estimates of “interestingness” are used to decide what location to

saccade to next. The oculomotor system keeps track of the dislocations associated

with each saccade, and this locational information can be fused together using

statistics collected over a series of saccades. How such information is combined and

the exact nature of the resulting internal representations is largely a mystery.

The main point of the above discussion is that, while human visual processing

may begin early in the dorsal and ventral pathways with something vaguely related
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to computer image processing using a fixed, spatially-mapped grid of processing and

memory units, it very quickly evolves into a process that requires us to combine

disjoint intervals of relatively stable imagery into a pastiche from which we can infer

properties critical to our survival. Imagine starting with a collection of snapshots

taken through a telephoto lens rather than a single high-resolution image taken with

a wide-angle lens. This is similar to what several popular web sites do with millions

of random, uncalibrated tourist photos.

The neural substrate responsible for performing these combinations must be able

to handle a wide range of temporal and spatial scales, numbers and arrangements

of inferred parts and surfaces, and a myriad of possible distractions and clutter

irrelevant to the task at hand. We know that this processing can be carried out on

a more-or-less regular grid of processors — the arrangement of cortical columns is

highly suggestive of such a grid. We are even starting to learn the major pathways

— bundles of axons sheathed with myelin insulation to speed transmission — con-

necting these biological processors using diffusion-tensor-imaging techniques. What

we don’t know is how the cortex allocates its computational resources beyond those

areas most directly tied to the peripheral nervous system and that are registered

spatially with the locations of the sensors arrayed on the periphery.

From a purely theoretical standpoint, we can simulate any Turing machine with a

large enough Boolean circuit, and we can approximate any first-order predicate logic

representation that has a finite domain using a propositional representation. Even

so, it seems unlikely that even the cortex, with its 1011 neurons and 1015 connections,

has enough capacity to cover the combinatorially many possible arrangements of

primitive features that are likely inferred in early vision. This implies that different

portions of the cortex must be allocated dynamically to perform processing on very

different arrangements of such features.

Bruno Olshausen [1993] theorized that neural circuits could be used to route

information so that stimuli corresponding to objects and their parts could be trans-

formed to a standard scale and pose, thereby simplifying pattern recognition. Such

transformations could, in principle, be carried out by a graphical model. The neu-

ral circuitry that serves as the target of such transformations — think of it as a

specialized frame buffer of sorts — could be allocated so that different regions are

assigned to different parts — this allocation being an instance of the so-called sym-

bol binding problem in connectionist models [Rumelhart and McClelland 1986] of

distributed processing.

8 Escaping Retinotopic Tyranny

While much of the computational neuroscience of primate vision seems mired in the

first 200 milliseconds or so of early vision when the stimulus is reasonably stable and

the image registered on the fovea is mapped retinotopically to areas in V1 through

V4, other research on the brain is revealing how we keep track of spatial relationships

involving the frames of reference of our head, body, nearby objects, and the larger
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world in which we operate. The brain maintains detailed maps of the body and

its surrounding physical space in the hippocampus and somatosensory, motor, and

parietal cortex [Rizzolatti, Sinigaglia, and Anderson 2007; Blakeslee and Blakeslee

2007]. Recall that the dorsal — “where” and “how” — visual pathway leads to the

parietal cortex, which plays an important role in visual attention and our perception

of shape. These maps are dynamic, constantly adapting to changes in the body as

well as reflecting both short- and long-term knowledge of our surroundings and

related spatial relationships.

When attempting to gain insight from biology in building engineered vision sys-

tems, it is worth keeping in mind the basic tasks of evolved biological vision sys-

tems. Much of primate vision serves three broad and overlapping categories of tasks:

recognition, navigation and manipulation. Recognition for foraging, mating, and a

host of related social and survival tasks; navigation for exploration, localization and

controlling territory; manipulation for grasping, climbing, throwing, tool making,

etc.

The view [Lengyel 1998] that computer vision is really just inverse graphics ig-

nores the fact that most of these tasks don’t require you to be able to construct an

accurate 3-D representation of your visual experience. For many recognition tasks

it suffices to identify objects, faces, and landmarks you’ve seen before and associate

with these items task-related knowledge gained from prior experience. Navigation

to avoid obstacles requires the ability to determine some depth information but

not necessarily to recover full 3-D structure. Manipulation is probably the most

demanding task in terms of the richness of shape information apparently required,

but even so it may be that we are over-emphasizing the role of static shape memory

and under-emphasizing the role of dynamic visual servoing — see the discussion

in [Rizzolatti, Sinigaglia, and Anderson 2007] for an excellent introduction to what

is known about how we understand shape in terms of affordances for manipulation.

But when it comes right down to it, we don’t know a great deal about how

the visual system handles shape [Tarr and Bülthoff 1998] despite some tantalizing

glimpses into what might be going on the inferotemporal cortex [Tsunoda, Yamane,

Nishizaki, and Tanifuji 2001; Yamane, Tsunoda, Matsumoto, Phillips, and Tanifuji

2006]. Let’s suppose for the sake of discussion that we can build a graphical model

of the cortex that handles much of the low-level feature extraction managed by the

early visual pathways (V1 through V4) using existing algorithms for performing

inference on Markov and conditional random fields and related graphical models.

How might we construct a graphical model that captures the part of visual memory

that pools together all these low-level features to provide us with such a rich visual

experience? Lacking any clear direction from computational neuroscience, we’ll take

a somewhat unorthodox path from here on out.

As mentioned earlier, several popular web sites offer rich visual experiences that

are constructed by combining large image corpora. Photo-sharing web sites like

Flickr, Google Picasa and Microsoft Live Labs PhotoSynth are able to combine
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some fixed-width receptive field and relates them by using low-level features ex-

tracted in V1 through V4 as keypoints to estimate geometric and other meaningful

relationships among patches? The use of the word “novel” in this context is meant

to convey that some method for statistical pooling of similar patches is required

to avoid literally storing every possible patch. This is essentially what Jing and

Baluja [2008] do by taking a large corpus of images, extracting low-level features

from each image, and then quantifying the similarity between pairs of images by

analyzing the features that they have in common. The result is a large graph whose

vertices are images and whose edges quantify pair-wise similarity (see Figure 6). By

using the low-level features as indices, Jing and Baluja only have to search a small

subset of the possible pairs of images, and of those only the ones that pass a specified

threshold for similarity are connected by edges. Jing and Baluja further enhance

the graph by using a form of spectral graph analysis to rank images in much the

same way as Google ranks web pages. Torralba et al [2007] have demonstrated that

even small image patches contain a great deal of useful information, and further-

more that very large collections of images can be quickly and efficiently searched

to retrieve semantically similar images given a target image as a query [Torralba,

Fergus, and Weiss 2008].

In principle, such a graph could be represented as a probabilistic graphical model

and the spectral analysis reformulated in terms of inference on graphical models.

The process whereby the graph is grown over time, incorporating new images and

new relationships, currently cannot be formulated as inference on a graphical model,

but it is interesting to speculate about very large, yet finite graphs that could evolve

over time in response to new evidence. Learning the densities used to quantify the

edges in graphical models can can be formulated in terms of hyper-parameters

directly incorporated into the model and carried out by traditional inference algo-

rithms [Buntine 1994; Heckerman 1995]. Learning graphs whose size and topol-

ogy change over time is somewhat more challenging to cast in terms of traditional

methods for learning graphical models. Graph size is probably not the determining

technical barrier however. Very large graphical models consisting of documents,

queries, genes, and other entities are now quite common, and, while exact inference

in such graphs is typically infeasible, approximate inference is often good enough

to provide the foundation for industrial-strength tools.

Unfortunately, there is no way to tie up the many loose ends which have been

left dangling in this short survey. Progress depends in part on our better under-

standing the brain and in particular the parts of the brain that are further from

the periphery of the body where our senses are directly exposed to external stimuli.

Neuroscience has made significant progress in understanding the brain at the cel-

lular and molecular level, even to the point that we are now able to run large-scale

simulations with some confidence that our models reflect important properties of

the biology. Computational neuroscientists have also made considerable progress

developing models — and graphical models in particular — that account for fea-
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tures that appear to play an important role in early visual processing. The barrier

to further progress seems to be the same impediment that we run into in so many

other areas of computer vision, machine learning and artificial intelligence more

generally, namely the problem of representation. How and what does the brain rep-

resent about the blooming, buzzing world in which we are embedded? The answer

to that question will take some time to figure out, but no doubt probabilistic graph-

ical models will continue to provide a powerful tool in this inquiry, thanks in no

small measure to the work of Judea Pearl, his students and his many collaborators.
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On the Power of Belief Propagation:
A Constraint Propagation Perspective

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

1 Introduction

In his seminal paper, Pearl [1986] introduced the notion of Bayesian networks and

the first processing algorithm, Belief Propagation (BP), that computes posterior

marginals, called beliefs, for each variable when the network is singly connected.

The paper provided the foundation for the whole area of Bayesian networks. It was

the first in a series of influential papers by Pearl, his students and his collaborators

that culminated a few years later in his book on probabilistic reasoning [Pearl 1988].

In his early paper Pearl showed that for singly connected networks (e.g., polytrees)

the distributed message-passing algorithm converges to the correct marginals in a

number of iterations equal to the diameter of the network. In his book Pearl goes

further to suggest the use of BP for loopy networks as an approximation algorithm

(see page 195 and exercise 4.7 in [Pearl 1988]). During the decade that followed

researchers focused on extending BP to general loopy networks using two principles.

The first is tree-clustering, namely, the transformation of a general network into a

tree of large-domain variables called clusters on which BP can be applied. This led

to the join-tree or junction-tree clustering and to the bucket-elimination schemes

[Pearl 1988; Dechter 2003] whose time and space complexity is exponential in the

tree-width of the network. The second principle is that of cutset-conditioning that

decomposes the original network into a collection of independent singly-connected

networks all of which must be processed by BP. The cutset-conditioning approach

is time exponential in the network’s loop-cutset size and require linear space [Pearl

1988; Dechter 2003].

The idea of applying belief propagation directly to multiply connected networks

caught up only a decade after the book was published, when it was observed by

researchers in coding theory that high performing probabilistic decoding algorithms

such as turbo codes and low density parity-check codes, which significantly outper-

formed the best decoders at the time, are equivalent to an iterative application of

Pearl’s belief propagation algorithm [McEliece, MacKay, and Cheng 1998]. This

success intrigued researchers and started massive explorations of the potential of

these local computation algorithms for general applications. There is now a signifi-

cant body of research seeking the understanding and improvement of the inference

power of iterative belief propagation (IBP).
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The early work on IBP showed its convergence for a single loop, provided empir-

ical evidence of its successes and failures on various classes of networks [Rish, Kask,

and Dechter 1998; Murphy, Weiss, and Jordan 2000] and explored the relationship

between energy minimization and belief-propagation shedding light on convergence

and stable points [Yedidia, Freeman, and Weiss 2000]. Current state of the art in

convergence analysis are the works by [Ihler, Fisher, and Willsky 2005; Mooij and

Kappen 2007] that characterize convergence in networks having no determinism.

The work by [Roosta, Wainwright, and Sastry 2008] also includes an analysis of

the possible effects of strong evidence on convergence which can act to suppress

the effects of cycles. As far as accuracy, the work of [Ihler 2007] considers how

weak potentials can make the graph sufficiently tree-like to provide error bounds, a

work which is extended and improved in [Mooij and Kappen 2009]. For additional

information see [Koller 2010].

While a significant progress has been made in understanding the relationship be-

tween belief propagation and energy minimization, and while many extensions and

variations were proposed, some with remarkable performance (e.g., survey propa-

gation for solving satisfiability for random SAT problems), the following questions

remain even now:

• Why does belief propagation work so well on coding networks?

• Can we characterize additional classes of problems for which IBP is effective?

• Can we assess the quality of the algorithm’s performance once and if it con-

verges.

In this paper we try to shed light on the power (and limits) of belief propagation

algorithms and on the above questions by explicating its relationship with constraint

propagation algorithms such as arc-consistency. Our results are relevant primarily

to networks that have determinism and extreme probabilities. Specifically, we show

that: (1) Belief propagation converges for zero beliefs; (2) All IBP-inferred zero be-

liefs are correct; (3) IBP’s power to infer zero beliefs is as weak and as strong as that

of arc-consistency; (4) Evidence and inferred singleton beliefs act like cutsets during

IBP’s performance. From points (2) and (4) it follows that if the inferred evidence

breaks all the cycles, then IBP converges to the exact beliefs for all variables.

Subsequently, we investigate empirically the behavior of IBP for inferred near-

zero beliefs. Specifically, we explore the hypothesis that: (5) If IBP infers that the

belief of a variable is close to zero then this inference is relatively accurate. We will

see that while our empirical results support the hypothesis on benchmarks having

no determinism, the results are quite mixed for networks with determinism.

Finally, (6) We investigate if variables that have extreme probabilities in all its

domain values (i.e., extreme support) also nearly cut off information flow. If that

hypothesis is true, whenever the set of variables with extreme support constitute a
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loop-cutset, IBP is likely to converge and, if the inferred beliefs for those variables

are sound, it will converge to accurate beliefs throughout the network.

On coding networks that posses significant determinism, we do see this desired

behavior. So, we could view this hypothesis as the first to provide a plausible expla-

nation to the success of belief propagation on coding networks. In coding networks

the channel noise is modeled through a normal distribution centered at the trans-

mitted character and controlled by a small standard deviation. The problem is

modeled as a layered belief network whose sink nodes are all evidence that trans-

mit extreme support to their parents, which constitute all the rest of the variables.

The remaining dependencies are functional and arc-consistency on this type of net-

works is strong and often complete. Alas, as we show, on some other deterministic

networks IBP’s performance inferring near zero values is utterly inaccurate, and

therefore the strength of this explanation is questionable.

The paper is based for the most part on [Dechter and Mateescu 2003] and also on

[Bidyuk and Dechter 2001]. The empirical portion of the paper includes significant

new analysis of recent empirical evaluations carried on in UAI 2006 and UAI 20081.

2 Arc-consistency

DEFINITION 1 (constraint network). A constraint network C is a triple C =

〈X,D, C〉, where X = {X1, ..., Xn} is a set of variables associated with a set of

discrete-valued domains D = {D1, ..., Dn} and a set of constraints C = {C1, ..., Cr}.

Each constraint Ci is a pair 〈Si, Ri〉 where Ri is a relation Ri ⊆ DSi
defined on

a subset of variables Si ⊆ X and DSi
is the Cartesian product of the domains of

variables Si. The relation Ri denotes all tuples of DSi
allowed by the constraint.

The projection operator π creates a new relation, πSj
(Ri) = {x | x ∈ DSj

and

∃y, y ∈ DSi\Sj
and x ∪ y ∈ Ri}, where Sj ⊆ Si. Constraints can be combined with

the join operator 1, resulting in a new relation, Ri 1 Rj = {x | x ∈ DSi∪Sj
and

πSi
(x) ∈ Ri and πSj

(x) ∈ Rj}.

DEFINITION 2 (constraint satisfaction problem). The constraint satisfaction prob-

lem (CSP) defined over a constraint network C = 〈X,D, C〉, is the task of finding a

solution, that is, an assignment of values to all the variables x = (x1, ..., xn), xi ∈ Di,

such that ∀Ci ∈ C, πSi
(x) ∈ Ri. The set of all solutions of the constraint network

C is sol(C) =1 Ri.

2.1 Describing Arc-Consistency Algorithms

Arc-consistency algorithms belong to the well-known class of constraint propagation

algorithms [Mackworth 1977; Dechter 2003]. All constraint propagation algorithms

are polynomial time algorithms that are at the center of constraint processing tech-

niques.

DEFINITION 3 (arc-consistency). [Mackworth 1977] Given a binary constraint net-

1http://graphmod.ics.uci.edu/uai08/Evaluation/Report
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Figure 1. Part of the execution of RDAC algorithm

work C = 〈X, D,C〉, C is arc-consistent iff for every binary constraint Ri ∈ C s.t.

Si = {Xj , Xk}, every value xj ∈ Dj has a value xk ∈ Dk s.t. (xj , xk) ∈ Ri.

When a binary constraint network is not arc-consistent, arc-consistency algo-

rithms remove values from the domains of the variables until an arc-consistent net-

work is generated. A variety of such algorithms were developed over the past three

decades [Dechter 2003]. We will consider here a simple and not the most efficient

version, which we call relational distributed arc-consistency algorithm. Rather than

defining it on binary constraint networks we will define it directly over the dual

graph, extending the arc-consistency condition to non-binary networks.

DEFINITION 4 (dual graph). Given a set of functions/constraints F = {f1, ..., fr}

over scopes S1, ..., Sr, the dual graph of F is a graph DF = (V, E,L) that associates

a node with each function, namely V = F , and an arc connects any two nodes

whose scope share a variable, E = {(fi, fj)|Si ∩ Sj 6= ∅} . L is a set of labels for

the arcs, where each arc is labeled by the shared variables of its nodes, L = {lij =

Si ∩ Sj |(i, j) ∈ E}.

Algorithm Relational distributed arc-consistency (RDAC) is a message passing

algorithm defined over the dual graph DC of a constraint network C = 〈X,D, C〉. It

enforces what is known as relational arc-consistency [Dechter 2003]. Each node (a

constraint) in DCi
, for a constraint Ci ∈ C maintains a current set of viable tuples

Ri. Let ne(i) be the set of neighbors of Ci in DC . Every node Ci sends a message to

any node Cj ∈ ne(i), which consists of the tuples over their label variables lij that

are allowed by the current relation Ri. Formally, let Ri and Rj be two constraints

sharing scopes, whose arc in DC is labeled by lij . The message that Ri sends to Rj

denoted hj
i is defined by:

(1) hj
i ← πlij

(Ri 1 (1k∈ne(i) hi
k))

and each node updates its current relation according to:

(2) Ri ← Ri 1 (1k∈ne(i) hi
k)

EXAMPLE 5. Figure 1 describes part of the execution of RDAC for a graph col-
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oring problem, having the constraint graph shown on the left. All variables have

the same domain, {1,2,3}, except for variable C whose domain is 2, and variable G

whose domain is 3. The arcs correspond to not equal constraints, and the relations

are RA, RAB , RAC , RABD, RBCF , RDFG, where the subscript corresponds to their

scopes. The dual graph of this problem is given on the right side of the figure,

and each table shows the initial constraints (there are unary, binary and ternary

constraints). To initialize the algorithm, the first messages sent out by each node

are universal relations over the labels. For this example, RDAC actually solves the

problem and finds the unique solution A=1, B=3, C=2, D=2, F=1, G=3.

Relational distributed arc-consistency algorithm converges after O(r ·t) iterations

to the largest relational arc-consistent network that is equivalent to the original

network, where r is the number of constraints and t bounds the number of tuples

in each constraint. Its complexity can be shown to be O(r2t2 log t) [Dechter 2003].

3 Iterative Belief Propagation

DEFINITION 6 (belief network). A belief network is a quadruple B = 〈X, D, G, P 〉

where X = {X1, . . . , Xn} is a set of random variables, D = {D1, ..., Dn} is the set

of the corresponding domains, G = (X,E) is a directed acyclic graph over X and

P = {p1, ..., pn} is a set of conditional probability tables (CPTs) pi = P (Xi|pa(Xi)),

where pa(Xi) are the parents of Xi in G. The belief network represents a probability

distribution over X having the product form P (x1, . . . , xn) =
∏n

i=1 P (xi|xpa(Xi)).

An evidence set e is an instantiated subset of variables. The family of Xi, denoted

by fa(Xi), includes Xi and its parent variables. Namely, fa(Xi) = {Xi} ∪ pa(Xi).

DEFINITION 7 (belief updating problem). The belief updating problem defined

over a belief network B = 〈X, D, G, P 〉 is the task of computing the posterior

probability P (Y |e) of query nodes Y ⊆ X given evidence e. We will sometime

denote by PB the exact probability according the Baysian network B. When Y

consists of a single variable Xi, PB(Xi|e) is also denoted as Bel(Xi) and called

belief, or posterior marginal, or just marginal.

3.1 Describing Iterative Belief Propagation

Iterative belief propagation (IBP) is an iterative application of Pearl’s algorithm

that was defined for poly-trees [Pearl 1988]. Since it is a distributed algorithm, it

is well defined for any network. We will define IBP as operating over the belief

network’s dual join-graph.

DEFINITION 8 (dual join-graph). Given a belief network B = 〈X,D, G, P 〉, a dual

join-graph is an arc subgraph of the dual graph DB whose arc labels are subsets of

the labels of DB satisfying the running intersection property, namely, that any two

nodes that share a variable in the dual join-graph be connected by a path of arcs

whose labels contain the shared variable. An arc-minimal dual join-graph is one

for which none of the labels can be further reduced while maintaining the running
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Algorithm IBP

Input: An arc-labeled dual join-graph DJ = (V, E, L) for a belief network B =

〈X, D, G, P 〉. Evidence e.

Output: An augmented graph whose nodes include the original CPTs and the messages

received from neighbors. Approximations of P (Xi|e) and P (fa(Xi)|e), ∀Xi ∈ X.

Denote by: hv
u the message from u to v; ne(u) the neighbors of u in V ; nev(u) =

ne(u) − {v}; luv the label of (u, v) ∈ E; elim(u, v) = fa(Xi) − fa(Xj), where u and v

are the vertexs of family fa(Xi) and fa(Xj) in DJ , respectively.

• One iteration of IBP

For every node u in DJ in a topological order and back, do:

1. Process observed variables

Assign evidence variables to each pi and remove them from the labeled arcs.

2. Compute and send to v the function:

hv
u =

∑

elim(u,v)

(pu ·
∏

{hu
i

,i∈nev(u)}

hu
i )

EndFor

• Compute approximations of P (Xi|e) and P (fa(Xi)|e):

For every Xi ∈ X (let u be the vertex of family fa(Xi) in DJ), do:

P (fa(Xi)|e) = α(
∏

hu
i

,u∈ne(i) hu
i ) · pu

P (Xi|e) = α
∑

fa(Xi)−{Xi}
P (fa(Xi)|e)

EndFor

Figure 2. Algorithm Iterative Belief Propagation

intersection property.

In IBP each node in the dual join-graph sends a message over an adjacent arc

whose scope is identical to its label. Pearl’s original algorithm sends messages whose

scopes are singleton variables only. It is easy to show that any dual graph (which

itself is a dual join-graph) has an arc-minimal singleton dual join-graph which can

be constructed directly by labeling the arc between the CPT of a variable and the

CPT of its parent, by its parent variable. Algorithm IBP defined for any dual join-

graph is given in Figure 2. One iteration of IBP is time and space linear in the size

of the belief network, and when IBP is applied to the singleton labeled dual graph

it coincides with Pearl’s belief propagation. The inferred approximation of belief

P (X|e) output by IBP, will be denoted by PIBP (X|e).

4 Belief Propagation’s Inferred Zeros

We will now make connections between distributed relational arc-consistency and

iterative belief propagation. We first associate any belief network with a constraint

network that captures its zero probability tuples and define algorithm IBP-RDAC,

an IBP-like algorithm that achieves relational arc-consistency on the associated con-

straint network. Then, we show that IBP-RDAC and IBP are equivalent in terms

of removing inconsistent domain values and computing zero marginal probabilities,

respectively. Since arc-consistency algorithms are well understood, this correspon-
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dence between IBP-RDAC and IBP yields the main claims and provides insight into

the behavior of IBP for inferred zero beliefs. In particular, this relationship justi-

fies the iterative application of belief propagation algorithms, while also illuminates

their “distance” from being complete.

More precisely, in this section we will show that: (a) If a variable-value pair

is assessed in some iteration by IBP as having a zero-belief, it remains zero in

subsequent iterations; (b) Any IBP-inferred zero-belief is correct with respect to

the corresponding belief network’s marginal; and (c) IBP converges in finite time

for all its inferred zeros.

4.1 Flattening the Belief Network

Given a belief network B = 〈X,D, G, P 〉, we define the flattening of a belief network

B, called flat(B), as the constraint network where all the zero entries in a probability

table are removed from the corresponding relation. Formally,

DEFINITION 9 (flattening). Given a belief network B = 〈X, D,G, P 〉, its flattening

is a constraint network flat(B) = 〈X,D, flat(P )〉. Each CPT pi ∈ P over fa(Xi)

is associated with a constraint 〈Si, Ri〉 s.t. Si = fa(Xi) and Ri = {(xi, xpa(Xi)) ∈

DSi
|P (xi|xpa(Xi)) > 0}. The set flat(P ) is the set of the constraints 〈Si, Ri〉,

∀pi ∈ P .

EXAMPLE 10. Figure 3 shows (a) a belief network and (b) its corresponding flat-

tening.

THEOREM 11. Given a belief network B = 〈X,D, G, P 〉, where X = {X1, . . . , Xn},

for any tuple x = (x1, . . . , xn): PB(x) > 0 ⇔ x ∈ sol(flat(B)), where sol(flat(B))

is the set of solutions of flat(B).

Proof. PB(x) > 0 ⇔ Πn
i=1P (xi|xpa(Xi)) > 0 ⇔ ∀i ∈ {1, . . . , n}, P (xi|xpa(Xi)) > 0

⇔ ∀i ∈ {1, . . . , n}, (xi, xpa(Xi)) ∈ RFi
⇔ x ∈ sol(flat(B)). ⊓⊔

Clearly this can extend to Bayesian networks with evidence:

COROLLARY 12. Given a belief network B = 〈X, D,G, P 〉, and evidence e

PB(x|e) > 0 ⇔ x ∈ sol(flat(B) ∧ e).

We next define algorithm IBP-RDAC and show that it achieves relational arc-

consistency on the flat network.

DEFINITION 13 (Algorithm IBP-RDAC). Given B = 〈X, D,G, P 〉 and evidence e,

let DB be a dual join-graph and Dflat(B) be a corresponding dual join-graph of the

constraint network flat(B). Algorithm IBP-RDAC applied to Dflat(B) is defined

using IBP’s specification in Figure 2 with the following modifications:

1. Pre-processing evidence: when processing evidence, we remove from each Ri ∈

flat(P ) those tuples that do not agree with the assignments in evidence e.

2. Instead of
∏

, we use the join operator 1.
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Figure 3. Flattening of a Bayesian network

3. Instead of
∑

, we use the projection operator π.

4. At the termination, we update the domains of variables by:

Di ← Di ∩ πXi
((1v∈ne(u) h(v,u)) 1 Ri)

By construction, it should be easy to see that,

PROPOSITION 14. Given a belief network B = 〈X, D,G, P 〉, algorithm IBP-

RDAC is identical to algorithm RDAC when applied to Dflat(B). Therefore, IBP-

RDAC enforces relational arc-consistency over flat(B).

Due to the convergence of RDAC, we get that:

PROPOSITION 15. Given a belief network B, algorithm IBP-RDAC over flat(B)

converges in O(n · t) iterations, where n is the number of nodes in B and t is the

maximum number of tuples over the labeling variables between two nodes that have

positive probability.

4.2 The Main Claim

In the following we will establish an equivalence between IBP and IBP-RDAC in

terms of zero probabilities.

PROPOSITION 16. When IBP and IBP-RDAC are applied in the same order of

computation to B and flat(B) respectively, the messages computed by IBP are iden-

tical to those computed by IBP-RDAC in terms of zero / non-zero probabilities.

That is, for any pair of corresponding messages, h(u,v)(t) 6= 0 in IBP iff t ∈ h(u,v)

in IBP-RDAC.

Proof. The proof is by induction. The base case is trivially true since messages h

in IBP are initialized to a uniform distribution and messages h in IBP-RDAC are

initialized to complete relations.
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The induction step. Suppose that hIBP
(u,v) is the message sent from u to v by

IBP. We will show that if hIBP
(u,v)(x) 6= 0, then x ∈ hIBP−RDAC

(u,v) where hIBP−RDAC
(u,v)

is the message sent by IBP-RDAC from u to v. Assume that the claim holds

for all messages received by u from its neighbors. Let f ∈ u in IBP and Rf

be the corresponding relation in IBP-RDAC, and t be an assignment of values

to variables in elim(u, v). We have hIBP
(u,v)(x) 6= 0 ⇔

∑

elim(u,v)

∏

f f(x) 6= 0

⇔ ∃t,
∏

f f(x, t) 6= 0 ⇔ ∃t, ∀f, f(x, t) 6= 0 ⇔ ∃t,∀f, πscope(Rf )(x, t) ∈ Rf ⇔

∃t, πelim(u,v)(1Rf
πscope(Rf )(x, t)) ∈ hIBP−RDAC

(u,v) ⇔ x ∈ hIBP−RDAC
(u,v) . ⊓⊔

Moving from tuples to domain values, we will show that whenever IBP computes

a marginal probability PIBP (xi|e) = 0, IBP-RDAC removes xi from the domain of

variable Xi, and vice-versa.

PROPOSITION 17. Given a belief network B and evidence e, IBP applied to B

derives PIBP (xi|e) = 0 iff IBP-RDAC over flat(B) decides that xi 6∈ Di.

Proof. According to Proposition 16, the messages computed by IBP and IBP-

RDAC are identical in terms of zero probabilities. Let f ∈ cluster(u) in IBP and

Rf be the corresponding relation in IBP-RDAC, and t be an assignment of values

to variables in χ(u)\Xi. We will show that when IBP computes P (Xi = xi) = 0

(upon convergence), then IBP-RDAC computes xi 6∈ Di. We have P (Xi = xi) =
∑

X\Xi

∏

f f(xi) = 0 ⇔ ∀t,
∏

f f(xi, t) = 0 ⇔ ∀t,∃f, f(xi, t) = 0 ⇔

∀t,∃Rf , πscope(Rf )(xi, t) 6∈ Rf ⇔ ∀t, (xi, t) 6∈ (1Rf
Rf (xi, t)) ⇔ xi 6∈ Di ∩ πXi

(1Rf

Rf (xi, t)) ⇔ xi 6∈ Di. Since arc-consistency is sound, so is the decision of zero

probabilities. ⊓⊔

We can now conclude that:

THEOREM 18. Given evidence e, whenever IBP applied to B infers PIBP (xi|e) =

0, the marginal Bel(xi) = PB(xi|e) = 0.

Proof. By Proposition 17, if IBP over B computes PIBP (xi|e) = 0, then IBP-

RDAC over flat(B) removes the value xi from the domain Di. Therefore, xi ∈ Di

is a no-good of the constraint network flat(B) and from Theorem 11 it follows that

Bel(xi) = 0. ⊓⊔

Next, we show that the time it takes IBP to find its inferred zeros is bounded.

PROPOSITION 19. Given a belief network B and evidence e, IBP finds all its xi

for which PIBP (xi|e) = 0 in finite time, that is, there exists a number k such that

no PIBP (xi|e) = 0 will be generated after k iterations.

Proof. This follows from the fact that the number of iterations it takes for IBP to

compute PIBP (Xi = xi|e) = 0 over B is exactly the same number of iterations IBP-

RDAC needs to remove xi from the domain Di over flat(B) (Propositions 16 and

17) and the fact that IBP-RDAC’s number of iterations is bounded (Proposition

15). ⊓⊔
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Figure 4. a) A belief network; b) Example of a finite precision problem; and (c) An

arc-minimal dual join-graph.

4.3 A Finite Precision Problem

Algorithms should always be implemented with care on finite precision machines.

In the following example we show that IBP’s messages converge in the limit (i.e. in

an infinite number of iterations), but they do not stabilize in any finite number of

iterations.

EXAMPLE 20. Consider the belief network in Figure 4a defined over 6 variables

X1, X2, X3, H1, H2, H3. The domain of the X variables is {1, 2, 3} and the domain

of the H variables is {0, 1}. The priors on X variables are:

P (Xi) =











0.45, if Xi = 1;

0.45, if Xi = 2;

0.1, if Xi = 3;

There are three CPTs over the scopes: {H1, X1, X2}, {H2, X2, X3}, and {H3, X1, X3}.

The values of the CPTs for every triplet of variables {Hk, Xi, Xj} are:

P (hk = 1|xi, xj) =











1, if (3 6= xi 6= xj 6= 3);

1, if (xi = xj = 3);

0, otherwise ;

P (hk = 0|xi, xj) = 1 − P (hk = 1|xi, xj).

Consider the evidence set e = {H1 = H2 = H3 = 1}. This Bayesian network

expresses the probability distribution that is concentrated in a single tuple:

P (x1, x2, x3|e) =

{

1, if x1 = x2 = x3 = 3;

0, otherwise.

The belief for any of the X variables as a function of the number of iteration is

given in Figure 4b. After about 300 iterations, the finite precision of our computer

is not able to represent the value for Bel(Xi = 3), and this appears to be zero,
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yielding the final updated belief (.5, .5, 0), when in fact the true updated belief

should be (0, 0, 1). Notice that (.5, .5, 0) cannot be regarded as a legitimate fixed

point for IBP. Namely, if we would initialize IBP with the values (.5, .5, 0), then

the algorithm would maintain them, appearing to have a fixed point. However,

initializing IBP with zero values cannot be expected to be correct. Indeed, when

we initialize with zeros we forcibly introduce determinism in the model, and IBP

will always maintain it afterwards.

However, this example does not contradict our theory because, mathematically,

Bel(Xi = 3) never becomes a true zero, and IBP never reaches a quiescent state.

The example shows however that a close to zero inferred belief by IBP can be

arbitrarily inaccurate. In this case the inaccuracy seems to be due to the initial

prior belief which are so different from the posterior ones.

4.4 Zeros Inferred by Generalized Belief Propagation

Belief propagation algorithms were extended yielding the class of generalized be-

lief propagation (GBP) algorithms [Yedidia, Freeman, and Weiss 2000]. These al-

gorithms fully process subparts of the networks, transforming it closer to a tree

structure on which IBP can be more effective [Dechter, Mateescu, and Kask 2002;

Mateescu, Kask, Gogate, and Dechter 2010]. The above results for IBP can now be

extended to GBP and in particular to the variant of iterative join-graph propagation,

IJGP [Dechter, Mateescu, and Kask 2002]. The algorithm applies message passing

over a partition of the CPTs into clusters, called a join-graph, rather than over

the dual graph. The set of clusters in such a partition defines a unique dual graph

(i.e., each cluster is a node). This dual graph can be associated with various dual

join-graphs, each defined by the labeling on the arcs between neighboring cluster

nodes.

Algorithm IJGP has an accuracy parameter i, called i-bound, which restricts the

maximum number of variables that can appear in a cluster and it is more accurate

as i grows. The extension of all the previous observations regarding zeros to IJGP

is straightforward and is summarized next, where the inferred approximation of the

belief PcalB(Xi|e) computed by IJGP is denoted by PIJGP (Xi|e).

THEOREM 21. Given a belief network B to which IJGP is applied then:

1. IJGP generates all its PIJGP (xi|e) = 0 in finite time, that is, there exists a

number k, such that no PIJGP (xi) = 0 will be generated after k iterations.

2. Whenever IJGP determines PIJGP (xi|e) = 0, it stays 0 during all subsequent

iterations.

3. Whenever IJGP determines PIJGP (xi|e) = 0, then Bel(xi) = 0.

5 The Impact of IBP’s Inferred Zeros

This section discusses the ramifications of having sound inferred zero beliefs.
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5.1 The Inference Power of IBP

We now show that the inference power of IBP for zeros is sometimes very limited

and other times strong, exactly wherever arc-consistency is weak or strong.

Cases of weak inference power. Consider the belief network described in Ex-

ample 20. The flat constraint network of that belief network is defined over the

scopes S1={H1, X1, X2}, S2={H2, X2, X3}, S3={H3, X1, X3}. The constraints are

defined by: RSi
= {(1, 1, 2), (1, 2, 1), (1, 3, 3), (0, 1, 1), (0, 1, 3), (0, 2, 2), (0, 2, 3),

(0, 3, 1), (0, 3, 2)}. The prior probabilities for Xi’s imply unary constraints equal

to the full domain {1,2,3}. An arc-minimal dual join-graph that is identical to the

constraint network is given in Figure 4b. In this case, IBP-RDAC sends as messages

the full domains of the variables and thus no tuple is removed from any constraint.

Since IBP infers the same zeros as arc-consistency, IBP will also not infer any zeros.

Since the true probability of most tuples is zero, we can conclude that the inference

power of IBP on this example is weak or non-existent.

The weakness of arc-consistency in this example is not surprising. Arc-consistency

is known to be far from complete. Since every constraint network can be expressed

as a belief network (by adding a variable for each constraint as we did in the above

example) and since arc-consistency can be arbitrarily weak on some constraint net-

works, so could be IBP.

Cases of strong inference power. The relationship between IBP and arc-

consistency ensures that IBP is zero-complete, whenever arc-consistency is. In

general, if for a flat constraint network of a belief network B, arc-consistency re-

moves all the inconsistent domain values, then IBP will also discover all the true

zeros of B. Examples of constraint networks that are complete for arc-consistency

are max-closed constraints. These constraints have the property that if 2 tuples are

in the relation so is their intersection. Linear constraints are often max-closed and

so are Horn clauses (see [Dechter 2003]). Clearly, IBP is zero complete for acyclic

networks which include binary trees, polytrees and networks whose dual graph is a

hypertree [Dechter 2003]. This is not too illuminating though as we know that IBP

is fully complete (not only for zeros) for such networks.

An interesting case is when the belief network has no evidence. In this case,

the flat network always corresponds to the causal constraint network defined in

[Dechter and Pearl 1991]. The inconsistent tuples or domain values are already

explicitly described in each relation and no new zeros can be inferred. What is

more interesting is that in the absence of evidence IBP is also complete for non-zero

beliefs for many variables as we show later.

5.2 IBP and Loop-Cutset

It is well-known that if evidence nodes form a loop-cutset, then we can transform

any multiply-connected belief network into an equivalent singly-connected network
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which can be solved by belief propagation, leading to the loop-cutset conditioning

method [Pearl 1988]. Now that we established that inferred zeros, and in particular

inferred evidence (i.e., when only a single value in the domain of a variable has a non-

zero probability) are sound, we show that evidence play the cutset role automatically

during IBP’s performance. Indeed, we can show that during IBP’s operation, an

observed node Xi in a Bayesian network blocks the path between its parents and its

children as defined in the d-separation criteria. All the proofs of claims appearing

in Section 5.2 and Section 5.3 can be found in [Bidyuk and Dechter 2001].

PROPOSITION 22. Let Xi be an observed node in a belief network B. Then for

any child Yj of node Xi, the belief of Yj computed by IBP is not dependent on the

messages that Xi receives from its parents pa(Xi) or the messages that node Xi

receives from its other children Yk, k 6= j.

From this we can conclude that:

THEOREM 23. If evidence nodes, original or inferred, constitute a loop-cutset,

then IBP converges to the correct beliefs in linear time.

5.3 IBP on Irrelevant Nodes

An orthogonal property is that unobserved nodes that have only unobserved descen-

dents are irrelevant to the beliefs of the remaining nodes and therefore, processing

can be restricted to the relevant subgraphs. In IBP, this property is expressed by

the fact that irrelevant nodes send messages to their parents that equally support

each value in the domain of a parent and thus do not affect the computation of

marginal posteriors of its parents.

PROPOSITION 24. Let Xi be an unobserved node without observed descendents

in B and let B′ be a subnetwork obtained by removing Xi and its descendents from

B. Then, ∀Y ∈ B′ the belief of Y computed by IBP over B equals the belief of Y

computed by IBP over B′.

Thus, in a loopy network without evidence, IBP always converges after 1 iteration

since only propagation of top-down messages affects the computation of beliefs and

those messages do not change. Also in that case, IBP converges to the correct

marginals for any node Xi such that there exists only one directed path from any

ancestor of Xi to Xi. This is because the relevant subnetwork that contains only the

node and its ancestors is singly-connected and by Proposition 24 they are the same

as the beliefs computed by applying IBP to the complete network. In summary,

THEOREM 25. Let B′ be a subnetwork obtained from B by recursively eliminating

all its unobserved leaf nodes. If observed nodes constitute a loop-cutset of B′, then

IBP applied to B converges to the correct beliefs for all nodes in B′.

THEOREM 26. If a belief network does not contain any observed nodes or only has

observed root nodes, then IBP always converges.

In summary, in Sections 5.2 and 5.3 we observed that IBP exploits the two prop-
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erties of observed and unobserved nodes, automatically, without any outside inter-

vention for network transformation. As a result, the correctness and convergence of

IBP on a node Xi in a multiply-connected belief network will be determined by the

structure restricted to Xi’s relevant subgraph. If the relevant subnetwork of Xi is

singly-connected relative to the evidence (observed or inferred), IBP will converge

to the correct beliefs for node Xi.

6 Experimental Evaluation

The goal of the experiments is two-fold. First, since zero values inferred by IBP/IJGP

are proved correct, we want to explore the behavior of IBP/IJGP for near zero

inferred beliefs. Second, we want to explore the hypothesis that the loop-cutset

impact on IBP’s performance, as discussed in Section 5.2, also extends to variables

with extreme support. The next two subsections are devoted to these two issues,

respectively.

6.1 On the Accuracy of IBP in Near Zero Marginals

We test the performance of IBP and IJGP both on cases of strong and weak inference

power. In particular, we look at networks where probabilities are extreme and

investigate empirically the accuracy of IBP/IJGP across the range of belief values

from 0 to 1. Since zero values inferred by IBP/IJGP are proved correct, we focus

especially on the behavior of IBP/IJGP for near zero inferred beliefs.

Using names inspired by the well known measures in information retrieval, we

report Recall Absolute Error and Precision Absolute Error over small intervals span-

ning [0, 1]. Recall is the absolute error averaged over all the exact beliefs that fall

into the interval, and can therefore be viewed as capturing the level of completeness.

For precision, the average is taken over all the belief values computed by IBP/IJGP

that fall into the interval, and can be viewed as capturing soundness.

The X coordinate in Figure 5 and Figure 10 denotes the interval [X, X + 0.05).

For the rest of the figures, the X coordinate denotes the interval (X−0.05, X], where

the 0 interval is [0, 0]. The left Y axis corresponds to the histograms (the bars),

while the right Y axis corresponds to the absolute error (the lines). For problems

with binary variables, we only show the interval [0, 0.5] because the graphs are

symmetric around 0.5. The number of variables, number of evidence variables and

induced width w* are reported in each graph.

Since the behavior within each benchmark is similar, we report a subset of the

results (for an extended report see [Rollon and Dechter 2009].

Coding networks. Coding networks are the famous case where IBP has impressive

performance. The instances are from the class of linear block codes, with 50 nodes

per layer and 3 parent nodes for each variable. We experiment with instances having

three different values of channel noise: 0.2, 0.4 and 0.6. For each channel value, we

generate 1000 samples.

Figure 5 shows the results. When the noise level is 0.2, all the beliefs computed
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Figure 5. Coding, N=200, evidence=100, w*=15, 1000 instances.

by IBP are extreme. The Recall and Precision are very small, of the order of 10−11.

So, in this case, all the beliefs are very small (i.e., ǫ small) and IBP is able to infer

them correctly, resulting in almost perfect accuracy (IBP is indeed perfect in this

case for the bit error rate). As noise increases, the Recall and Precision get closer

to a bell shape, indicating higher error for values close to 0.5 and smaller error for

extreme values. The histograms show that fewer belief values are extreme as noise

increases.

Linkage Analysis networks. Genetic linkage analysis is a statistical method for

mapping genes onto a chromosome. The problem can be modeled as a belief net-

work. We experimented with four pedigree instances from the UAI08 competition.

The domain size ranges between 1 to 4. For these instances exact results are avail-

able. Figure 6 shows the results. We observe that the number of exact 0 beliefs

is small and IJGP correctly infers all of them. The behavior of IJGP for ǫ small

beliefs varies accross instances. For pedigree1, the Exact and IJGP histograms are

about the same (for all intervals). Moreover, Recall and Precision errors are rela-

tively small. For the rest of the instances, the accuracy of IJGP for extreme inferred

marginals decreases. Notice that IJGP infers more ǫ small beliefs than the number

of exact extremes in the corresponding intervals, leading to relatively high Preci-

sion error while small Recall error. The behaviour for beliefs in the 0.5 interval is

reversed, leading to high Recall error while small Precision error. As expected, the

accuracy of IJGP improves as the value of the control parameter i-bound increases.

Grid networks. Grid networks are characterized by two parameters (N, D), where

N × N is the size of the network and D is the percentage of determinism (i.e., the

percentage of values in all CPTs assigned to either 0 or 1). We experiment with

grids2 instances from the UAI08 competition. They are characterized by parameters

({16, . . . , 42}, {50, 75, 90}). For each parameter configuration, there are samples of

size 10 generated by randomly assigning value 1 to one leaf node.

Figure 7 and Figure 8 report the results. IJGP correctly infers all 0 beliefs.
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Figure 6. Results on pedigree instances. Each row is the result for one instance.

Each column is the result of running IJGP with i-bound equal to 3 and 7, respec-

tively. The number of variables N , number of evidence variables NE, and induced

width w* of each instance is as follows. Pedigree1: N = 334, NE = 36 and w*=21;

pedigree23: N = 402, NE = 93 and w*=30; pedigree37: N = 1032, NE = 306 and

w*=30; pedigree38: N = 724, NE = 143 and w*=18.
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Figure 7. Results on grids2 instances. First row shows the results for parameter

configuration (16, 50). Second row shows the results for (16, 75). Each column is

the result of running IJGP with i-bound equal to 3, 5, and 7, respectively. Each

plot indicates the mean value for up to 10 instances. Both parameter configurations

have 256 variables, one evidence variable, and induced width w*=22.

However, its performance for ǫ small beliefs is quite poor. Only for networks with

parameters (16, 50) the Precision error is relatively small (less than 0.05). If we fix

the size of the network and the i-bound, both Precision and Recall errors increase

as the determinism level D increases. The histograms clearly show the gap between

the number of true ǫ small beliefs and the ones inferred by IJGP. As before, the

accuracy of IJGP improves as the value of the control parameter i-bound increases.

Two-layer noisy-OR networks. Variables are organized in two layers where the

ones in the second layer have 10 parents. Each probability table represents a noisy

OR-function. Each parent variable yj has a value Pj ∈ [0..Pnoise]. The CPT for each

variable in the second layer is then defined as, P (x = 0|y1, . . . , yP ) =
∏

yj=1 Pj and

P (x = 1|y1, . . . , yP ) = 1 − P (x = 0|y1, . . . , yP ). We experiment on bn2o instances

from the UAI08 competition.

Figure 9 reports the results for 3 instances. In this case, IJGP is very accurate

for all instances. In particular, the accuracy in ǫ small beliefs is very high.

CPCS networks. These are medical diagnosis networks derived from the Computer-

Based Patient Care Simulation system (CPCS) expert system. We tested on two
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Figure 8. Results on grids2 instances. First row shows the results for parameter

configuration (26, 75). Second row shows the results for (26, 90). Each column is

the result of running IJGP with i-bound equal to 3, 5 and 7, respectively. Each

plot indicates the mean value for up to 10 instances. Both parameter configurations

have 676 variables, one evidence variable, and induced width w*=40.

networks, cpcs54 and cpcs360, with 54 and 360 variables, respectively. For the first

network, we generate samples of size 100 by randomly assigning 10 variables as

evidence. For the second network, we also generate samples of the same size by

randomly assigning 20 and 30 variables as evidence.

Figure 10 shows the results. The histograms show opposing trends in the distri-

bution of beliefs. Although irregular, the absolute error tends to increase towards

0.5 for cpcs54. In general, the error is quite small throughout all intervals and, in

particular, for inferred extreme marginals.

6.2 On the Impact of Epsilon Loop-Cutset

In [Bidyuk and Dechter 2001] we explored also the hypothesis that the loop-cutset

impact on IBP’s performance, as discussed in Section 5.2, extends to variables with

extreme support. Extreme support is expressed in the form of either extreme prior

value P (xi) < ǫ or strong correlation with an observed variable. We hypothesize

that a variable Xi with extreme support nearly-cuts the information flow from its

parents to its children similar to an observed variable. Subsequently, we conjecture

that when a subset of variables with extreme support, called ǫ-cutset, form a loop-
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Figure 9. Results on bn2o instances. Each row is the result for one instance. Each

column in each row is the result of running IJGP with i-bound equal to 3, 5 and

7, respectively. The number of variables N , number of evidence variables NE,

and induced width w* of each instance is as follows. bn2o-30-15-150-1a: N = 45,

NE = 15, and w*=24; bn2o-30-20-200-1a: N = 50, NE = 20, and w*=27; bn2o-

30-25-250-1a: N = 55, NE = 25, and w*=26.

cutset of the graph, IBP converges and computes beliefs that approach exact ones.

We will briefly recap the empirical evidence supporting the hypothesis in 2-layer

noisy-OR networks. The number of root nodes m and total number of nodes n

was fixed in each test set (indexed m − n). Generating the networks, each leaf

node Yj was added to the list of children of a root node Ui with probability 0.5.

All nodes were bi-valued. All leaf nodes were observed. We used average absolute

error in the posterior marginals (averaged over all unobserved variables) to measure

IBP’s accuracy and the percent of variables for which IBP converged as a measure

of convergence. In each group of experiments, the results were averaged over 100

instances.

In one set of experiments, we measured the performance of IBP while changing
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Figure 10. CPCS54, 100 instances, w*=15; CPCS360, 5 instances, w*=20

the number of observed loop-cutset variables (we fixed all priors to (.5, .5) and

picked observed value for loop-cutset variables at random). The results are shown

in Figure 11, top. As expected, the number of converged nodes increased and the

absolute average error decreased monotonically as number of observed loop-cutset

nodes increased.

Then, we repeated the experiment except now, instead of instantiating a loop-

cutset variable, we set its priors to extreme (ǫ, 1-ǫ) with ǫ=1E − 10, i.e., instead of

increasing the number of observed loop-cuset variables, we increased the number of

ǫ-cutset variables. If our hypothesis is correct, increasing the size of ǫ-cutset should

produce an effect similar to increasing the number of observed loop-cutset variables,

namely, improved convergence and better accuracy in IBP computed beliefs. The

results, in Figure 11, bottom, demonstrate that initially, as the number of ǫ-cutset

variables grows, the performance of IBP improves just as we conjectured. However,

the percentage of nodes with converged beliefs never reaches 100% just like the

average absolute error converges to some δ > 0. In the case of 10-40 network, the

number of converged beliefs (average absolute error) reaches maximum of ≈ 95%

(minimum of ≈ .001) at 3 ǫ-cutset nodes and then drops to ≈ 80% (increases to

≈ .003) as the size of ǫ-cutset increases.

To further investigate the effect of the strength of ǫ-support on the performance of

IBP, we experimented on the same 2-layer networks varying the prior values of the

loop-cutset nodes from (ǫ, 1-ǫ) to (1-ǫ, ǫ) for ǫ ∈ [1E−10, .5]. As shown in Figure 12,

initially, as ǫ decreased, the convergence and accuracy of IBP worsened. This effect

was previously reported by Murphy, Weiss, and Jordan [Murphy, Weiss, and Jordan

2000]. However, as the priors of loop-cutset nodes continue to approach 0 and 1,

the average error value approaches 0 and the number of converged nodes reaches

100%. Note that convergence is not symmetric with respect to ǫ. The average

absolute error and percentage of converged nodes approach 0 and 1 respectively for

ǫ=1-(1E-10) but not for ǫ=1E-10 (which we also observed in Figure 11, bottom).
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Figure 11. Results for 2-layer Noisy-OR networks. The average error and the

number of converged nodes vs the number of truly observed loop-cutset nodes (top)

and the size of of ǫ-cutset (bottom).

7 Conclusion

The paper provides insight into the power of the Iterative Belief Propagation (IBP)

algorithm by making its relationship with constraint propagation explicit. We show

that the power of belief propagation for zero beliefs is identical to the power of arc-

consistency in removing inconsistent domain values. Therefore, the strength and

weakness of this scheme can be gleaned from understanding the inference power of

arc-consistency. In particular we show that the inference of zero beliefs (marginals)

by IBP and IJGP is always sound. These algorithms are guaranteed to converge

for inferred zeros and are as efficient as the corresponding constraint propagation

algorithms.

Then the paper empirically investigates whether the sound inference of zeros by

IBP is extended to near zeros. We show that while the inference of near zeros is

often quite accurate, it can sometimes be extremely inaccurate for networks hav-

ing significant determinism. Specifically, for networks without determinism IBP’s

near zero inference was sound in the sense that the average absolute error was con-

tained within the length of the 0.05 interval (see two layer noisy-OR and CPCS

benchmarks). However, the behavior was different on benchmark networks having

determinism. For example, experiments on coding networks show that IBP is al-

most perfect, while for pedigree and grid networks the results are quite inaccurate
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Figure 12. Results for 2-layer Noisy-OR networks. The average error and the

percent of converged nodes vs ǫ-support.

near zeros.

Finally, we show that evidence, observed or inferred, automatically acts as a

cycle-cutting mechanism and improves the performance of IBP. We also provide

preliminary empirical evaluation showing that the effect of loop-cutset on the accu-

racy of IBP extends to variables that have extreme probabilities.
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Bayesian Nonparametric Learning:

Expressive Priors for Intelligent Systems

Michael I. Jordan

1 Introduction

One of the milestones in the development of artificial intelligence (AI) is the em-

brace of uncertainty and inductive reasoning as primary concerns of the field. This

embrace has been a surprisingly slow process, perhaps because the naive interpre-

tation of “uncertain” seems to convey an image that is the opposite of “intelligent.”

That the field has matured beyond this naive opposition is one of the singular

achievements of Judea Pearl. While the pre-Pearl AI researcher tended to focus on

mimicking the deductive capabilities of human intelligence, a post-Pearl researcher

has been sensitized to the inevitable uncertainty that intelligent systems face in

any realistic environment, and the need to explicitly represent that uncertainty so

as to be able to mitigate its effects. Not only does this embrace of uncertainty

accord more fully with the human condition, but it also recognizes that the first ar-

tificially intelligent systems—necessarily limited in their cognitive capabilities—will

be if anything more uncertain regarding their environments than us humans. It is

only by embracing uncertainty that a bridge can be built from systems of limited

intelligence to those having robust human-level intelligence.

A computational perspective on uncertainty has two aspects: the explicit rep-

resentation of uncertainty and the algorithmic manipulation of this representation

so as to transform and (often) to reduce uncertainty. In his seminal 1988 book,

Probabilistic Reasoning in Intelligent Systems, Pearl showed that these aspects are

intimately related. In particular, obtaining a compact representation of uncer-

tainty has important computational consequences, leading to efficient algorithms

for marginalization and conditioning. Moreover, marginalization and conditioning

are the core inductive operations that tend to reduce uncertainty. Thus, by devel-

oping an effective theory of the representation of uncertainty, Pearl was able to also

develop an effective computational approach to probabilistic reasoning.

Uncertainty about an environment can also be reduced by simply observing that

environment; i.e., by learning from data. Indeed, another response to the early focus

on deduction in AI has been to emphasize learning as a pathway to the development

of intelligent systems. In the 1980’s, concurrently with Pearl’s work on probabilis-

tic expert systems, this perspective was taken up in earnest, building on an earlier

tradition in pattern recognition (which itself built on even earlier traditions in statis-
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tics). The underlying inductive principle was essentially the law of large numbers,

a principle of probability theory which states that the statistical aggregation of

independent, identically distributed samples yields a decrease of uncertainty that

goes (roughly speaking) at a rate inversely proportional to the square root of the

number of samples. The question has been how to perform this “aggregation,” and

the learning field has been avidly empirical, exploring a variety of computational

architectures, including extremely simple representations (e.g., nearest neighbor),

ideas borrowed from deductive traditions (e.g., decision trees), ideas closely related

to classical statistical models (e.g., boosting and the support vector machine), and

architectures motivated at least in part by complex biological and physical systems

(e.g., neural networks). Several of these architectures have factorized or graphical

representations, and numerous connections to graphical models have been made.

A narrow reader of Pearl’s book might wish to argue that learning is not distinct

from the perspective on reasoning presented in that book; in particular, observing

the environment is simply a form of conditioning. This perspective on learning is

indeed reasonable if we assume that a learner maintains an explicit probabilistic

model of the environment; in that case, making an observation merely involves

instantiating some variable in the model. However, many learning researchers do

not wish to make the assumption that the learner maintains an explicit probabilistic

model of the environment, and many algorithms developed in the learning field

involve some sort of algorithmic procedure that is not necessarily interpretable as

computing a conditional probability. These procedures are instead justified in terms

of their unconditional performance when used again and again on various data sets.

Here we are of course touching on the distinction between the Bayesian and the

frequentist approaches to statistical inference. While this is not the place to develop

that distinction in detail, it is worth noting that statistics—the field concerned

with the theory and practice of inference—involves the interplay of the conditional

(Bayesian) and the unconditional (frequentist) perspectives and this interplay also

underlies many developments in AI research. Indeed, the trend since Pearl’s work

in the 1980’s has been to blend reasoning and learning: put simply, one does not

need to learn (from data) what one can infer (from the current model). Moreover,

one does not need to infer what one can learn (intractable inferential procedures

can be circumvented by collecting data). Thus learning (whether conditional or

not) and reasoning interact. The most difficult problems in AI are currently being

approached with methods that blend reasoning with learning. While the extremes

of classical expert systems and classical tabula rasa learning are still present and

still have their value in specialized situations, they are not the centerpieces of the

field. Moreover, the caricatures of probabilistic reasoning and statistical inference

that fed earlier ill-informed debates in AI have largely vanished. For this we owe

much to Judea Pearl.

There remain, however, a number of limitations—both perceived and real—of

probabilistic and statistical approaches to AI. In this essay, I wish to focus on some
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of these limitations and provide some suggestions as to the way forward.

It is both a perception and reality that to use probabilistic methods in AI one

is generally forced to write down long lists of assumptions. This is often a helpful

exercise, in that it focuses a designer to bring hidden assumptions to the foreground.

Moreover, these assumptions are often qualitative in nature, with the quantitative

details coming from elicitation methods (i.e., from domain experts) and learning

methods. Nonetheless, the assumptions are not always well motivated. In par-

ticular, independence assumptions are often imposed for reasons of computational

convenience, not because they are viewed as being true, and the effect on inference

is not necessarily clear. More subtly, and thus of particular concern, is the fact

that the tail behavior of probability distributions is often not easy to obtain (from

elicitation or from data), and choices of convenience are often made.

A related issue is that probabilistic methods are often not viewed as sufficiently

expressive. One common response to this issue has involved trying to bring ideas

from first-order logic to bear on probabilistic modeling. This line of work has,

however, mainly involved using logical representations as a high-level interface for

model specification and then compiling these representations down to flat proba-

bilistic representations for inference. It is not yet clear how to bring together the

powerful inferential methods of logic and probability into an effective computational

architecture.

In the current paper, we will pursue a different approach to expressive probabilis-

tic representation and to a less assumption-laden approach to inference. The idea

is to move beyond the simple fixed-dimensional random variables that have been

generally used in graphical models (multinomials, Gaussians and other exponential

family distributions) and to consider a wider range of probabilistic representations.

We are motivated by the ubiquity of flexible data structures in computer science—

the field is based heavily on objects such as trees, lists and collections of sets that

are able to expand and contract as needed. Moreover, these data structures are

often associated with combinatorial and algebraic identities that lead to efficient

algorithms. We would like to mimic this flexibility within the world of probabilistic

representations.

In fact, the existing field of stochastic processes provides essentially this kind

of flexibility. Recall that a stochastic process is an indexed collection of random

variables, where the index set can be infinite (countably infinite or uncountably

infinite) [Karlin and Taylor 1975]. Within the general theory of stochastic processes

it is quite natural to define probability distributions on objects such trees, lists

and collections of sets. It is also possible to define probability distributions on

spaces of probability distributions, yielding an appealing recursivity. Moreover,

many stochastic processes have interesting ties to combinatorics (and to other areas

of mathematics concerned with compact structure, such as algebra). Probability

theorists have spent many decades developing these ties and a rich literature on

“combinatorial stochastic processes” has emerged [Pitman 2002]. It is natural to
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take this literature as a point of departure for the development of expressive data

structures for computationally efficient reasoning and learning.

One general way to use stochastic processes in inference is to take a Bayesian per-

spective and replace the parametric distributions used as priors in classical Bayesian

analysis with stochastic processes. Thus, for example, we could consider a model

in which the prior distribution is a stochastic process that ranges over trees of ar-

bitrary depth and branching factor. Combining this prior with a likelihood, we

obtain a posterior distribution that is also a stochastic process that ranges over

trees of arbitrary depth and branching factor. Bayesian learning amounts to up-

dating one flexible representation (the prior stochastic process) into another flexible

representation (the posterior stochastic process).

This idea is not new, indeed it is the core idea in an area of research known as

Bayesian nonparametrics, and there is a small but growing community of researchers

who work in the area. The word “nonparametrics” needs a bit of explanation. The

word does not mean “no parameters”; indeed, many stochastic processes can be

usefully viewed in terms of parameters (often, infinite collections of parameters).

Rather, it means “not parametric,” in the sense that Bayesian nonparametric in-

ference is not restricted to objects whose dimensionality stays fixed as more data is

observed. The spirit of Bayesian nonparametrics is that of flexible data structures—

representations can grow as needed. Moreover, stochastic processes yield a much

broader class of probability distributions than the class of exponential family distri-

butions that is the focus of the graphical model literature. In this sense, Bayesian

nonparametric learning is less assumption-laden than classical Bayesian parametric

learning.

In this paper we offer an invitation to Bayesian nonparametrics. Our presenta-

tion is meant to evoke Pearl’s presentation of Bayesian networks in that our focus

is on foundational representational issues. As in the case of graphical models, if

the representational issues are handled well, then there are favorable algorithmic

consequences. Indeed, the parallel is quite strong—in the case of graphical mod-

els, these algorithmic consequences are combinatorial in nature (they involve the

combinatorics of sums and products), and in the case of Bayesian nonparametrics

favorable algorithmic consequences also arise from the combinatorial properties of

certain stochastic process priors.

2 De Finetti’s theorem and the foundations of Bayesian

inference

A natural point of departure for our discussion is a classical theorem due to Bruno

De Finetti that is one of the pillars of Bayesian inference. This core result not

only suggests the need for prior distributions in statistical models but it also leads

directly to the consideration of stochastic processes as Bayesian priors.

Consider an infinite sequence of random variables, (X1, X2, . . .). To simplify our

discussion somewhat, let us assume that these random variables are discrete. We say

170



Bayesian Nonparametric Learning

that such a sequence is infinitely exchangeable if the joint probability distribution

of any finite subset of those random variables is invariant to permutation. That

is, for any N , we have p(x1, x2, . . . , xN ) = p(xπ(1), xπ(2), . . . , xπ(N)), where π is a

permutation and p is a probability mass function. De Finetti’s theorem states that

(X1, X2, . . .) are infinitely exchangeable if and only the joint probability distribution

of any finite subset can be written as a marginal probability in the following way:

p(x1, x2, . . . , xN ) =

∫ N
∏

i=1

p(xi |G)P (dG). (1)

In one direction this theorem is straightforward: If the joint distribution can be

written as in integral in this way, then we clearly have invariance to permutation

(because the product is invariant to permutation). It is the other direction that

is non-trivial. It states that for exchangeable random variables, there necessarily

exists an underlying random element G, and a probability distribution P , such that

the random variables Xi are conditionally independent given G, and such that their

joint distribution is obtained by integrating over the distribution P . If we view G as

a “parameter,” then this theorem can be interpreted as stating that exchangeability

implies the existence of an underlying parameter and a prior distribution on that

parameter. As such, De Finetti’s theorem is often viewed as providing foundational

support for the Bayesian paradigm.

We placed “parameter” in quotes in the preceding paragraph because there is no

restriction that G should be a finite-dimensional object. Indeed, the full import of

De Finetti’s theorem is clear when we realize that in many instances G is in fact an

infinite-dimensional object, and P defines a stochastic process.

Let us give a simple example. The Pólya urn model is a simple probability

model for sequentially labeling the balls in an urn. Consider an empty urn and a

countably infinite collection of colors. Pick a color at random according to some

fixed distribution G0 and place a ball having that color in the urn. For all subsequent

balls, either choose a ball from the urn (uniformly at random) and return that ball

to the urn with another ball of the same color, or choose a new color from G0 and

place a ball of that color in the urn. Mathematically, we have:

p(Xi = k |x1, . . . xi−1) ∝

{

nk if xj = k for some j ∈ {1, . . . , i − 1}

α0 otherwise,
(2)

where α0 > 0 is a parameter of the process.

It turns out that the Pólya urn model is exchangeable. That is, even though we

defined the model by picking a particular ordering of the balls, the resulting distri-

bution is independent of the order. This is proved by writing the joint distribution

p(x1, x2, . . . , xN ) as a product of conditionals of the form in Eq. (2) and noting

(after some manipulation) that the resulting expression is independent of order.

While the Pólya urn model defines a distribution on labels, it can also be used to

induce a distribution on partitions. This is achieved by simply partitioning the balls
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into groups that have the same color. This distribution on partitions is known as the

Chinese restaurant process [Aldous 1985]. As we discuss in more detail in Section 4,

the Chinese restaurant process and the Pólya urn model can be used as the basis of

a Bayesian nonparametric model of clustering where the random partition provides

a prior on clusterings and the color associated with a given cell can be viewed as a

parameter vector for a distribution associated with a given cluster.

The exchangeability of the Pólya urn model implies—by De Finetti’s theorem—

the existence of an underlying random element G that renders the ball colors con-

ditionally independent. This random element is not a classical fixed-dimension

random variable; rather, it is a stochastic process known as the Dirichlet process.

In the following section we provide a brief introduction to the Dirichlet process.

3 The Dirichlet process

In thinking about how to place random distributions on infinite objects, it is natural

to begin with the special case of the positive integers. A distribution π = (π1, π2, . . .)

on the integers can be viewed as a sequence of nonnegative numbers that sum to

one. How can we obtain random sequences that sum to one?

One solution to this problem is provided by a procedure known as “stick-breaking.”

Define an infinite sequence of independent random variables as follows:

βk ∼ Beta(1, α0) k = 1, 2, . . . , (3)

where α0 > 0 is a parameter. Now define an infinite random sequence as follows:

π1 = β1, πk = βk

k−1
∏

l=1

(1 − βl) k = 2, 3, . . . . (4)

It is not difficult to show that
∑

∞

k=1 πk = 1 (with probability one).

We can exploit this construction to generate a large class of random distributions

on sets other than the integers. Consider an arbitrary measurable space Ω and let

G0 be a probability distribution on Ω. Draw an infinite sequence of points {φk}

independently from G0. Now define:

G =
∞
∑

k=1

πkδφk
, (5)

where δφk
is a unit mass at the point φk. Clearly G is a measure. Indeed, for any

measurable subset B of Ω, G(A) just adds up the values πk for those k such that

φk ∈ B, and this process satisfies the countable additivity needed in the definition

of a measure. Moreover, G is a probability measure, because G(Ω) = 1.

Note that G is random in two ways—the weights πk are obtained by a random

process, and the locations φk are also obtained by a random process. While it seems

clear that such an object is not a classical finite-dimensional random variable, in
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what sense is G is a stochastic process; i.e., an indexed collection of random vari-

ables? The answer is that G is a stochastic process where the indexing variables

are the measurable subsets of Ω. Indeed, for any fixed A ⊆ Ω, G(A) is a random

variable. Moreover (and this is not an obvious fact), ranging over sets of subsets,

{A1, A2, . . . , AK}, the joint distributions on the collections of random variables

{G(Ai)} are consistent with each other. This shows, via an argument in the spirit

of the Kolmogorov theorem that G is a stochastic process. A more concrete under-

standing of this fact can be obtained by specializing to sets {A1, A2, . . . , AK} that

form a partition of Ω. In this case, the random vector (G(A1), G(A2), . . . , G(AK))

can be shown to have a classical finite-dimensional Dirichlet distribution:

(G(A1), . . . , G(AK)) ∼ Dir(α0G0(A1), . . . , α0G0(AK)), (6)

from which the needed consistency properties follow immediately from classical

properties of the Dirichlet distribution. For this reason, the stochastic process

defined by Eq. (5) is known as a Dirichlet process. Eq. (6) can be summarized as

saying that a Dirichlet process has Dirichlet marginals.

Having defined a stochastic process G, we can now turn De Finetti’s theorem

around and ask what distribution is induced on a sequence (X1, X2, . . . , XN ) if

we draw these variables independently from G and then integrate out G. The

answer: the Pólya urn. We say that the Dirichlet process is the De Finetti mixing

distribution underlying the Pólya urn.

In the remainder of this chapter, we denote the stochastic process defined by

Eq. (5) as follows:

G ∼ DP(α0, G0). (7)

The Dirichlet process has two parameters, a concentration parameter α0, which is

proportional to the probability of obtaining a new color in the Pólya urn, and the

base measure G0, which is the source of the “atoms” φk.

The set of ideas introduced in this section emerged slowly over several decades.

The basic definition of the Dirichlet process as a stochastic process is due to Fergu-

son [1973], based on earlier work by Freedman [1963]. The fact that the Dirichlet

process is the De Finetti mixing distribution underlying the Pólya urn model is due

to Blackwell and MacQueen [1973]. The stick-breaking construction of the Dirich-

let process was presented by Sethuraman [1994]. The application of these ideas to

Bayesian modeling and inference required some additional work as described in the

following section.

The Dirichlet process and the stick-breaking process are essential tools in Bayesian

nonparametrics. It is as important for a Bayesian nonparametrician to master them

as it is for a graphical modeler to master Pearl’s book. See Hjort et al. [2010] for a

book-length treatment of the Dirichlet process and related ideas.
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4 Dirichlet process mixtures

With an interesting class of stochastic process priors in hand, let us now describe

an application of these priors to a Bayesian nonparametric modeling problem. In

particular, as alluded to in the previous section, the Dirichlet process defines a

prior on partitions of objects, and this prior can be used to develop a Bayesian

nonparametric approach to clustering. A notable aspect of this approach is that

one does not have to fix the number of clusters a priori.

Let (X1, X2, . . . , XN ) be a sequence of random vectors, whose realizations we

want to model in terms of an underlying set of clusters. We treat these variables as

exchangeable (i.e., as embedded in an infinitely-exchangeable sequence) and, as sug-

gested by De Finetti’s theorem, treat these variables as conditionally independent

given an underlying random element G. In particular, letting G be a draw from a

Dirichlet process, we define a Dirichlet process mixture model (DP-MM) [Antoniak

1974; Lo 1984] as follows:

G ∼ DP(α0, G0)

θi |G ∼ G, i = 1, . . . , N

xi | θi ∼ p(xi | θi), i = 1, . . . , N,

where p(xi | θi) is a cluster-specific distribution (e.g., a Gaussian distribution, where

θi is a mean vector and covariance matrix). This probabilistic specification is indeed

directly related to De Finetti’s theorem—the use of the intermediate variable θi is

simply an expanded way to write the factor p(xi |G) in Eq. (1). In particular, G

is a sum across atoms, and thus θi is simply one of the atoms in G, chosen with

probability equal to the weight associated with that atom.

We provide a graphical model representation of the DP-MM in Figure 1. As this

figure suggests, it is entirely possible to use the graphical model formalism to display

Bayesian nonparametric models. Nodes in such a graph are associated with general

random elements, and the distributions on these random elements can be general

stochastic processes. By going to stochastic process priors we have not strayed

beyond probability theory, and all of the conditional independence semantics of

graphical models continue to apply.

5 Inference for Dirichlet process mixtures

Inference with stochastic processes is an entire topic of its own, and we limit our-

selves here to a brief description of one particular Markov chain Monte Carlo

(MCMC) inference procedure for the DP-MM. This particular procedure is due

to Escobar [1994], and its virtue is simplicity of exposition, but it should not be

viewed as the state of the art. See Neal [2000] for a discussion of a variety of other

MCMC inference procedures for DP-MMs.

We begin by noting that the specification in Eq. (8) induces a Pólya urn marginal

distribution on θ = (θ1, θ2, . . . , θN ). The joint distribution of θ and X = (X1, X2, . . . , XN )
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Gα 0

G0

θi

xi

Figure 1. A graphical model representation of the Dirichlet process mixture model.

Recall that the plate representation means that the parameters θi are drawn in-

dependently conditional on G. On the right side of the figure we have depicted

specific instantiations of the random elements G and θi and the distribution of the

observation xi.

is thus the following product:

p(θ, x) = p(θ1, θ2, . . . , θN )
N
∏

i=1

p(xi | θi), (8)

where the first factor is the Pólya urn model. This can be viewed as a product of

a prior (the first factor) and a likelihood (the remaining factors).

The variable x is held fixed in inference (it is the observed data) and the goal is

to sample θ. We develop a Gibbs sampler for this purpose. The main problem is to

sample a particular component θi while holding all of the other components fixed. It

is here that the property of exchangeability is essential. Because the joint probability

of (θ1, . . . , θN ) is invariant to permutation, we can permute the vector to move θi to

the end of the list. But the prior probability of the last component given all of the

preceding variables is given by the urn model specification in Eq. (2). We multiply

each of the distributions in this expression by the likelihood p(xi | θ) and integrate

with respect to θ. (We are assuming that G0 and the likelihood are conjugate that

this integral can be done in closed form.) The result is the conditional distribution

of θi given the other components and given xi. This conditional is sampled to yield

the updated value of θi. This is done for all of the indices i ∈ {1, . . . , N} and the
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process iterates.

This link between exchangeability and an efficient inference algorithm is an im-

portant one. In other more complex Bayesian nonparametric models, while we may

no longer assume exchangeability, we generally aim to maintain some weaker notion

(e.g., partial exchangeability) so as to have some hope of tractable inference.

6 Hierarchical Dirichlet processes

The spirit of the graphical model formalism—in particular the Bayesian network

formalism based on directed graphs—is that of hierarchical Bayesian modeling. In a

hierarchical Bayesian model, the joint distribution of all of the variables in the model

is obtained as a product over conditional distributions, where each conditional may

depend on other variables in the model. While the graphical model literature has

focused almost exclusively on parametric hierarchies—where each of the conditionals

is a finite-dimensional distribution—it is also possible to build hierarchies in which

the components are stochastic processes. In this section we consider how to do this

for the Dirichlet process.

One of the simplest and most useful ways in which hierarchies arise in Bayesian

models is in the form of a conditional independence motif in which a set of variables,

(θ1, θ2, . . . , θm), are coupled via an underlying variable θ0. For example, θi might be

a Gaussian variable whose mean is equal to θ0, which is also Gaussian; moreover, the

θi are conditionally independent given θ0. The inferential effect of this construction

is to “shrink” the posterior distributions of θi towards each other. This is often

a desirable effect, particularly when m is large relative to the number of observed

data points.

The same tying of distributions can be done with Dirichlet processes. Recall that

a Dirichlet process, Gi ∼ DP(α0, G0), is a random measure Gi that has a “param-

eter” G0 that is itself a measure. If we treat G0 as itself a draw from a Dirichlet

process, and let the measures {G1, G2, . . . , Gm} be conditionally independent given

G0, we obtain the following hierarchy:

G0 | γ, H ∼ DP(γ, H)

Gi |α, G0 ∼ DP(α0, G0) i = 1, . . . ,m,

where γ and H are concentration and base measure parameters at the top of the

hierarchy. This construction—which is known as a hierarchical Dirichlet process

(HDP)—yields an interesting kind of “shrinkage.” Recall that G0 is a discrete

random measure, with its support on a countably infinite set of atoms. Drawing

Gi ∼ DP(α0, G0) means that Gi will also have its support on the same set of atoms,

and this will be true for each of {G1, G2, . . . , Gm}. Thus these measures will share

atoms. They will differ in the weights assigned to these atoms. The weights are

obtained via conditionally independent stick-breaking processes.

One application of this sharing of atoms is to share mixture components across

multiple clustering problems. Consider in particular a problem in which we have
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m groups of data, {(x11, x12, . . . , x1N1
), . . . , (xm1, xm2, . . . xmNm

)}, where we wish

to cluster the points {xij} in the ith group. Suppose, moreover, that we view the

groups as related, and we think that clusters discovered in one group might also be

useful in other groups. To achieve this, we define the following hierarchical Dirichlet

process mixture model (HDP-MM):

G0 | γ, H ∼ DP(γ, H)

Gi |α, G0 ∼ DP(α0, G0) i = 1, . . . ,m,

θij |Gi ∼ Gi j = 1, . . . , Ni,

xij | θij ∼ F (xij , θij) j = 1, . . . , Ni.

This model is shown in graphical form in Figure 2. To see how the model achieves

our goal of sharing clusters across groups, recall that the Dirichlet process clusters

points within a single group by assigning the same parameter vector to those points.

That is, if θij = θij′ , the points xij and xij′ are viewed as belonging to the same

cluster. This equality of parameter vectors is possible because both θij and θij′ are

drawn from Gi, and Gi is a discrete measure. Now if Gi and Gi′ share atoms, as

they do in the HDP-MM, then points in different groups can be assigned to the

same cluster. Thus we can share clusters across groups.

The HDP was introduced by Teh, Jordan, Beal and Blei [2006] and it has since

appeared as a building block in a variety of applications. One application is to the

class of models known as grade of membership models [Erosheva 2003], an instance

of which is the latent Dirichlet allocation (LDA) model [Blei, Ng, and Jordan 2003].

In these models, each entity is associated not with a single cluster but with a

set of clusters (in LDA terminology, each “document” is associated with a set of

“topics”). To obtain a Bayesian nonparametric version of these models, the DP

does not suffice; rather, the HDP is required. In particular, the topics for the ith

document are drawn from a random measure Gi, and the random measures Gi are

drawn from a DP with a random base measure G0; this allows the same topics to

appear in multiple documents.

Another application is to the hidden Markov model (HMM) where the number of

states is unknown a priori. At the core of the HMM is the transition matrix, each

row of which contains the conditional probabilities of transitioning to the “next

state” given the “current state.” Viewing states as clusters, we obtain a set of

clustering problems, one for each row of the transition matrix. Using a DP for each

row, we obtain a model in which the number of next states is open-ended. Using

an HDP to couple these DPs, the same pool of next states is available from each of

the current states. The resulting model is known as the HDP-HMM [Teh, Jordan,

Beal, and Blei 2006]. Marginalizing out the HDP component of this model yields an

urn model that is known as the infinite HMM [Beal, Ghahramani, and Rasmussen

2002].

Similarly, it is also possible to use the HDP to define an architecture known as
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Gα 0

G0

θ

x

i

ij

ij

γ

H

Figure 2. A graphical model representation of the hierarchical Dirichlet process

mixture model. The nested plate representation means that G0 is first drawn and

held fixed, then the random measures {Gi} are drawn independently (conditional

on G0), and finally the parameters {θij} are drawn independently (conditional on

Gi). On the right side of the figure we have depicted draws from G0 and the {Gi}.

Note that the atoms in these measures are at the same locations; only the weights

associated with the atoms differ.
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the HDP hidden Markov tree (HDP-HMT), a Markovian tree in which the number

of states at each node in the tree is unknown a priori and the state space is shared

across the nodes. The HDP-HMT has been shown to be useful in image denoising

and scene recognition problems [Kivinen, Sudderth, and Jordan 2007].

Let us also mention that the HDP can be also used to develop a Bayesian non-

parametric approach to probabilistic context free grammars. In particular, the

HDP-PCFG of Liang, Jordan and Klein [2010] involves an HDP-based lexicalized

grammar in which the number of nonterminal symbols is open-ended and inferred

from data (see also Finkel, Grenager and Manning [2007] and Johnson, Griffiths and

Goldwater [2007]). When a new nonterminal symbol is created at some location in

a parse tree, the tying achieved by the HDP makes this symbol available at other

locations in the parse tree.

There are other ways to connect multiple Dirichlet processes. One broadly useful

idea is to use a Dirichlet process to define a distribution on Dirichlet processes.

In particular, let {G∗

1, G
∗

2, . . .} be independent draws from a Dirichlet process,

DP(γ, H), and then let G be equal to G∗

k with probability πk, where the weights

{πk} are drawn from the stick-breaking process in Eq. (4). This construction (which

can be extended to multiple levels) is known as a nested Dirichlet process [Rodŕıguez,

Dunson, and Gelfand 2008]. Marginalizing over the Dirichlet processes the resulting

urn model is known as the nested Chinese restaurant process [Blei, Griffiths, and

Jordan 2010], which is a model that can be viewed as a tree of Chinese restaurants.

A customer enters the tree at a root Chinese restaurant and sits at a table. This

points to another Chinese restaurant, where the customer goes to dine on the fol-

lowing evening. The construction then recurses. Thus a given customer follows a

path through the tree of restaurants, and successive customers tend to follow the

same paths, eventually branching off.

These nested constructions differ from the HDP in that they do not share atoms

among the multiple instances of lower-level DPs. That is, the draws {G∗

1, G
∗

2, . . .}

involve disjoint sets of atoms. The higher-level DP involves a choice among these

disjoint sets.

A general discussion of some of these constructions involving multiple DPs and

their relationships to directed graphical model representations can be found in

Welling, Porteous and Bart [2008]. Finally, let us mention the work of MacEach-

ern [1999], whose dependent Dirichlet processes provide a general formalism for

expressing probabilistic dependencies among both the stick-breaking weights and

the atom locations in the stick-breaking representation of the Dirichlet process.

7 Completely random measures

The Dirichlet process is not the only tool in the Bayesian nonparametric toolbox. In

this section we briefly consider another class of stochastic processes that significantly

expands the range of models that can be considered.

From the graphical model literature we learn that probabilistic independence of
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random variables has desirable representational and computational consequences.

In the Bayesian nonparametric setting, random variables arise by evaluating a ran-

dom measure G on subsets of a measurable space Ω; in particular, for fixed subsets

A1 and A2, G(A1) and G(A2) are random variables. If A1 and A2 are disjoint it

seems reasonable to ask that G(A1) and G(A2) be independent. Such an indepen-

dence relation would suggest a divide-and-conquer approach to inference.

The class of stochastic processes known as completely random measures are char-

acterized by this kind of independence—for a completely random measure the

random masses assigned to disjoint subsets of the sample space Ω are indepen-

dent [Kingman 1967]. Note that the Dirichlet process is not a completely random

measure—the fact that the total mass is one couples the random variables {G(Ai)}.

The Dirichlet process provides a latent representation for a clustering problem,

where each entity is assigned to one and only cluster. This couples the cluster

assignments and suggests (correctly) that the underlying stochastic process is not

completely random. If, on the other hand, we consider a latent trait model—one

in which entities are described via a set of non-mutually-exclusive binary traits—

it is natural to consider completely random processes as latent representations. In

particular, the beta process is a completely random measure in which a draw consists

of a countably infinite collection of atoms, each associated with a probability, where

these probabilities are independent [Hjort 1990; Thibaux and Jordan 2007]. In

effect, a draw from a beta process yields an infinite collection of independent coins.

Tossing these coins once yields a binary featural representation for a single entity.

Tossing the coins multiple times yields an exchangeable featural representation for

a set of entities.

The beta process arises via the following general construction. Consider the

product space Ω⊗(0, 1). Place a product measure on this space, where the measure

associated with Ω is the base measure B0, and the measure associated with (0, 1)

is obtained from the improper beta density, cp−1(1 − p)c−1, where c > 0 is a

parameter. Treating this product measure as a rate measure for a nonhomogeneous

Poisson process, draw a set of points {(ωi, pi)} in the product space Ω⊗(0, 1). From

these points, form a random measure on Ω as follows:

B =
∞
∑

i=1

piδωi
. (9)

The fact that we obtain an infinite collection of atoms is due to the fact that we

have used a beta density that integrates to infinity. This construction is depicted

graphically in Figure 3.

If we replace the beta density in this construction with other densities (generally

defined on the positive real line rather than the unit interval (0,1)), we obtain

other completely random measures. In particular, we obtain the gamma process

by using an improper gamma density in place of the beta density. The gamma

process provides a natural latent representation for models in which entities are
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a binary-valued matrix in which the rows are customers and the columns are the

dishes, and where Zn,k = 1 if customer n samples dish k. Customer n samples

dish k with probability mk/n, where mk is the number of customers who have

previously sampled dish k; that is, Zn,k ∼ Ber(mk/n). (Note that this rule can

be interpreted in terms of classical Bayesian analysis as sampling the predictive

distribution obtained from a sequence of Bernoulli draws based on an improper

beta prior.) Having sampled from the dishes previously sampled by other customers,

customer n then goes on to sample an additional number of new dishes determined

by a draw from a Poiss(α/n) distribution.

The connection to the beta process delineated by Thibaux and Jordan [2007] is

as follows (see Teh and Jordan [2010] for an expanded discussion). Dishes in the

IBP correspond to atoms in the beta process, and the independent beta/Bernoulli

updating of the dish probabilities in the IBP reflects the independent nature of

the atoms in the beta process. Moreover, the fact that a Poisson distribution is

adopted for the number of dishes in the IBP reflects the fact that the beta process

is defined in terms of an underlying Poisson process. The exchangeability of the

IBP (which requires considering equivalence classes of matrices if argued directly

on the IBP representation) follows immediately from the beta process construction

(by the conditional independence of the rows of Z given the underlying draw from

the beta process).

It is also possible to define hierarchical beta processes for models involving mul-

tiple beta processes that are tied in some manner [Thibaux and Jordan 2007]. This

is done by simply letting the base measure for the beta process itself be drawn from

the beta process:

B0 ∼ BP(c0, B00)

B ∼ BP(c,B0),

where BP(c,B0) denotes the beta process with concentration parameter c and base

measure B0. This construction can be used in a manner akin to the hierarchical

Dirichlet process; for example, we can use it to model groups of entities that are

described by sparse binary vectors, where we wish to share the sparsity pattern

among groups.

8 Conclusions

Judea Pearl’s work on probabilistic graphical models yielded a formalism that was

significantly more expressive than existing probabilistic representations in AI, but

yet retained enough mathematical structure that it was possible to design efficient

computational procedures for a wide class of useful models. In this short article,

we have argued that Bayesian nonparametrics provides a framework in which this

agenda can be taken further. By replacing the traditional parametric prior distri-

butions of Bayesian analysis with stochastic processes, we obtain a rich vocabulary,
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encompassing probability distributions on objects such as trees of infinite depth,

partitions, subsets of features, measures and functions. We also obtain natural

notions of recursion. In addition to this structural expressiveness, the Bayesian

nonparametric framework also permits a wide range of distributional shapes. Fi-

nally, although we have devoted little attention to computation in this article, the

stochastic processes that have been used in Bayesian nonparametrics have proper-

ties (e.g., exchangeability, independence of measure on disjoint sets) that permit

the design of efficient inference algorithms. Certainly the framework is rich enough

to design some intractable models, but the same holds true for graphical models.

The point is that the Bayesian nonparametric framework opens the door to a richer

class of useful models for AI. The growing list of successful applications of Bayesian

nonparametrics testifies to the practical value of the framework [Hjort, Holmes,

Mueller, and Walker 2010].

A skeptical reader might question the value of Bayesian nonparametric model-

ing given that for any given finite data set the posterior distribution of a Bayesian

nonparametric model will concentrate on a finite set of degrees of freedom, and it

would be possible in principle to build a parametric model that mimics the non-

parametric model on those degrees of freedom. While this skepticism should not

be dismissed out of hand—and we certainly do not wish to suggest that parametric

modeling should be abandoned—this skeptical argument has something of the flavor

of a computer scientist arguing that data structures such as linked lists and heaps

are not needed because they can always be mimicked by fixed-dimension arrays.

The nonparametric approach can lead to conceptual insights that are only available

at the level of an underlying stochastic process. Moreover, by embedding a model

for a fixed number of data points in a sequence of models for a growing number

of data points, one can often learn something about the statistical properties of

the model—this is the spirit of nonparametric statistics in general. Finally, infinite

limits often lead to simpler mathematical objects.

In short, we view Bayesian nonparametrics as providing an expressive, useful

language for probabilistic modeling, one which follows on directly from the tradition

of graphical models. We hope and expect to see Bayesian nonparametrics have as

broad of an effect on AI as that of graphical models.

References

Aldous, D. (1985). Exchangeability and related topics. In Ecole d’Eté de Proba-
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Judea Pearl and Graphical Models

for Economics

Michael Kearns

Judea Pearl’s tremendous influence on the fields of artificial intelligence and ma-

chine learning began with the fundamental insight that much of traditional statis-

tical modeling lacked expressive means for articulating known or learned structure

and relationships between probabilistic entities. Judea and his early colleagues

focused their efforts on a type of structure that proved to be particularly impor-

tant — namely network structure, or the graph-theoretic structure that arises from

pairwise influences between random variables. Judea’s legacy includes not only the

introduction of Bayesian networks — perhaps the most important class of proba-

bilistic graphical models — but a rich series of results establishing firm semantics

for inference, independence and causality, and efficient algorithms and heuristics for

fundamental probabilistic computations. His body of work is one of those rare in-

stances in which the contributions range from the most conceptual and philosophical

to the eminently practical.

Inspired by the program established by Judea for statistical models, about a

decade ago a number of us became intrigued by the possibility of replicating it in

the domains of strategic, economic and game-theoretic modeling. At its highest

level, the proposed metaphor was both simple and natural. Rather than a large

number of random variables related by a joint distribution, imagine we have a

large number of players in a (normal-form) game. Instead of the edges of a network

representing direct probabilistic influences between random variables, they represent

direct influences on payoffs by the actions of neighboring players. As opposed to

being concerned primarily with conditional inferences on the joint distribution, we

are interested in the computation of Nash and other types of equilibrium for the

game. As with probabilistic graphical models, although the network succinctly

articulates only local influences, in the game-theoretic setting, at equilibrium there

are certainly global influences and coordination via the propagation of local effects.

And finally, if we were lucky, we might hope to capture for game theory some of

the algorithmic benefits that models like Bayesian networks brought to statistical

modeling.

The early work following this metaphor was broadly successful in its goals. The

first models proposed, which included graphical games [Kearns, Littman, and Singh

2001; Kearns 2007] and Multi-Agent Influence Diagrams [Koller and Milch 2003;

Vickrey and Koller 2002], provided succinct languages for expressing strategic struc-
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ture in the form of networks over the players. The NashProp algorithm for com-

puting (approximate) Nash equilibria in graphical games was the strategic analogue

of the belief propagation algorithm developed by Judea and others, and like that

algorithm it came in both provably efficient form for restricted network topologies,

or in more heuristic but more general form for “loopy” or highly cyclical struc-

tures [Ortiz and Kearns 2003]. There are also works carefully relating probabilistic

and game-theoretic graphical models in interesting ways, as in a result showing

that the distributions forming the correlated equlibria of a graphical game can be

succinctly represented by a (probabilistic) Markov network using (almost) the same

underlying graph structure [Kakade, Kearns, Langford, and Ortiz 2003]. Graphical

games have also played an important role in some recent complexity-theoretic work,

most notably the breakthrough proof establishing that the problem of computing

Nash equilibria in general games for even 2 players is PPAD-complete and thus

potentially intractable [Daskalakis, Goldberg, and Papadimitriou 2006].

In short, we now have a rather rich set of network-based models for game the-

ory, and a firm understanding of their semantic and algorithmic properties. The

execution of this agenda relied on Judea’s work in many places for inspiration and

guidance, from the very conception of the models studied to the usage of cutset

conditioning and distributed dynamic programming techniques in the development

of NashProp and its variants.

Encouraged by this success, more recent works have sought to expand its scope

to include more specifically economic models, developing networked variants of

the classical exchange economies studied by Arrow and Debreu, Fisher, and oth-

ers [Kakade, Kearns, and Ortiz 2004]. Now network structure represents permissible

trading partners or relationships, and again the primary solution concept of interest

is an equilibrium — but now an equilibrium in prices or exchange rates that permits

self-interested traders to clear the market in all goods. While, as to be expected,

there are different technical details, we can again establish the algorithmic benefits

of such models in the form of a price propagation algorithm for computing an ap-

proximate equilibrium. Perhaps more interesting are examinations of how network

topology and equilibrium properties interact. It is worth noting that for probabilis-

tic graphical models such as Bayesian networks, the question of what the “typical”

structure looks like is somewhat nonsensical — the reply might be that there is no

“typical” structure, and topology will depend highly on the domain (whether it be

machine vision, medical diagnosis, and so on). In contrast, the emerging literature

on social and economic networks is indeed beginning to establish at least broad

topological features that arise frequently in empirical networks. This invites, for

example, results establishing that if the network structure exhibits a heavy-tailed

distribution of connectivity (degrees), agent wealths at equilibrium will also be

distributed in highly unequal fashion [Kakade, Kearns, Ortiz, Pemantle, and Suri

2005] . Thus social network structure may be (just one) explanation for observed

disparities in wealth.
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The lines of research sketched above continue to grow and deepen, and have

become one of the many topics of mutual interest between computer scientists,

economists and sociologists. Those of us who were exposed to and inspired by

Judea’s work in probabilistic graphical models were indeed most fortunate to have

had the opportunity to help initiate a fundamental and interdisciplinary subject

only shortly before social, economic and technological network structure became a

topic of such general interest.

Thank you Judea!
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Belief Propagation in Loopy Graphs

Daphne Koller

1 Introduction and Historical Perspective

Of Judea Pearl’s many seminal contributions, perhaps the one that has had the

greatest impact (so far) is the development of key ideas in the representation, se-

mantics, and inference of probabilistic graphical models. This formalism provides an

elegant and practical framework for representing a probability distribution over a

high-dimensional space defined as the set of possible assignments to a set of random

variables X1, . . . , Xn. The number of such assignments grows exponentially in n,

but due to the key insights of Pearl and others, we now understand how conditional

independence properties of the joint probability distribution P (X1, . . . , Xn) allow

it to be represented compactly and naturally using a graph annotated with local

probabilistic interactions (see section 2). The family of probabilistic graphical mod-

els includes Bayesian networks, which are based on directed graphs, and Markov

networks (also called Markov random fields), which use undirected graphs.

The number of applications of this framework is far too large to enumerate. One

of the earliest applications is in the area of medical diagnosis. Here, we might have

hundreds of random variables, representing predisposing factors, possible diseases,

symptoms, and test results. The framework of Bayesian networks allows such a

distribution to be encoded using a limited set of local (directed) interactions, such

as those between a disease and its predisposing factors, or those between a symp-

tom and the diseases that cause it (e.g., [Heckerman, Horvitz, and Nathwani 1992;

Shwe, Middleton, Heckerman, Henrion, Horvitz, Lehmann, and Cooper 1991]). In a

very different application, we might want to encode a probability distribution over

possible segmentations of an image — labelings of the pixels in the image into dif-

ferent semantic categories (such as sky, grass, building, person, etc.). Here, we have

a random variable for each pixel in the image (hundreds of thousands even for the

smallest images), representing its possible labels. And yet, the distribution over the

space of possible segmentations is often well-represented in a Markov network, using

only terms that encode each pixel’s individual preferences over possible labels and

(undirected) local interactions between the labels of adjacent pixels (see Szeliski,

Zabih, Scharstein, Veksler, Kolmogorov, Agarwala, Tappen, and Rother [2008] for

a survey).

A key question, however, is how to use this compact representation to answer

questions about the distribution. The most common types of questions are condi-
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tional probability queries, where we wish to infer the probability distribution over

some (small) subset of variables given evidence concerning some of the others; for

example, in the medical diagnosis setting, we might want to infer the distribution

over each possible disease given observations about the patient’s predisposing fac-

tors, symptoms, and some test results. A second common type of query is the

maximum a posteriori (or MAP) query, where we wish to find the most likely joint

assignment to all of our random variables; for example, we often wish to find the

most likely joint segmentation to all of the pixels in an image.

In general, it is not difficult to show that both of these inference problems are

NP-hard [Cooper 1990; Shimony 1994], yet (as always) this is not end of the story.

In their seminal paper, Kim and Pearl [1983] presented an algorithm that passes

messages between the nodes in the Bayesian network graph to propagate beliefs

between them. The algorithm was developed in the context of singly connected

directed graphs, also known as polytrees, where there is at most one path (ignoring

edge directionality) between each pair of nodes. In this case, the message passing

process produces correct posterior beliefs for each node in the graph.

Pearl also considered what happens when the algorithm is executed (without

change) over a loopy (multiply connected) graph. In his seminal book, Pearl [1988]

says:

When loops are present, the network is no longer singly connected and

local propagation schemes will invariably run into trouble . . . If we ignore

the existence of loops and permit the nodes to continue communicating

with each other as if the network were singly connected, messages may

circulate indefinitely around the loops and the process may not con-

verge to a stable equilibrium . . . Such oscillations do not normally occur

in probabilistic networks . . . which tend to bring all messages to some

stable equilibrium as time goes on. However, this asymptotic equilib-

rium is not coherent, in the sense that it does not represent the posterior

probabilities of all nodes of the networks.

As a consequence of these problems, the idea of loopy belief propagation was largely

abandoned for many years.

The revival of this approach is surprisingly due to a seemingly unrelated advance

in coding theory. The area of coding addresses the problem of sending messages over

a noisy channel, and recovering it from the garbled result. We send a k-bit message,

redundantly coded using n bits. These n bits are sent over the noisy channel, so the

received bits are possibly corrupted. The decoding task is to recover the original

message from the bits received. The bit error rate is the probability that a bit is

ultimately decoded incorrectly. This error rate depends on the code and decoding

algorithm used and on the amount of noise in the channel. The rate of a code is

k/n — the ratio between the number of bits in the message and the number of bits

used to transmit it. In 1948, Claude Shannon provided a theoretical analysis of
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the coding problem [Shannon 1948]. For a given rate, Shannon provided an upper

bound on the maximum noise level that can be tolerated while still achieving a

certain bit error rate, no matter which code is used. Shannon also showed that

there exist channel codes that achieve this limit, but his proof was nonconstructive

— he did not present practical encoders and decoders that achieve this limit.

Since Shannon’s landmark result, multiple codes were suggested. However, de-

spite a gradual improvement in the quality of the code (bit-error rate for a given

noise level), none of the codes even came close to the Shannon limit. The big

breakthrough came in the early 1990s, when Berrou, Glavieux, and Thitimajshima

[1993] came up with a new scheme that they called a turbocode, which, empirically,

came much closer to achieving the Shannon limit than any other code proposed up

to that point. However, their decoding algorithm had no theoretical justification,

and, while it seemed to work well in real examples, could be made to diverge or

converge to the wrong answer. The second big breakthrough was the subsequent

realization, due to McEliece, MacKay, and Cheng [1998] and Frey and MacKay

[1997] that the turbocoding procedure was simply performing loopy belief propaga-

tion message passing on a Bayesian network representing the probability model for

the code and the channel noise!

This revelation had a tremendous impact on both the coding theory community

and the graphical models community. For the former, loopy belief propagation

provides a general-purpose algorithm for decoding a large family of codes. By sep-

arating the algorithmic question of decoding from the question of the code design,

it allowed the development of many new coding schemes with improved properties.

These codes have come much, much closer to the Shannon limit than any previous

codes, and they have revolutionized both the theory and the practice of coding.

For the graphical models community, it was the astounding success of loopy belief

propagation for this application that led to the resurgence of interest in these ap-

proaches. Subsequent work showed that this algorithm works very well in practice

on a broad range of other problems (see, for example, Weiss [1996] and Murphy,

Weiss, and Jordan [1999]), leading to a large amount of work on this topic. In this

short paper, we review only some of the key ideas underlying this important class

of methods; see section 6 for some discussion and further references.

2 Background

2.1 Probabilistic Graphical Models

Probabilistic graphical models are a general family of representations for probability

distributions over high-dimensional spaces. Specifically, our goal is to encode a joint

probability distribution over the possible assignments to a set of random variables

X = {X1, . . . , Xn}. We focus on the discrete setting, where each random variable

Xi takes values in some set Val(Xi). In this case, the number of possible assignments

grows exponentially with the number of variables n, making an explicit enumeration

of the joint distribution infeasible.
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Probabilistic graphical models use a factored representation to avoid the expo-

nential representation of the joint distribution. In the most general setting, the

distribution is defined via a set of factors Φ. A factor φk is defined over a scope

Scope[φk] = Xk ⊆ X; the factor is a function φk : Val(Xk) 7→ IR+. The joint

distribution PΦ is defined by multiplying together all the factors in Φ, and renor-

malizing to form a distribution:

P̃Φ(x) =
∏

k

φk(xk)

Z =
∑

x∈Val(X)

P̃Φ(x)

PΦ(x) =
1

Z
P̃Φ(x).

For example, if we have a distribution over {X1, . . . , X3}, defined by two pairwise

factors φ1(X1, X2) and φ2(X2, X3), then P̃Φ(x1, x2, x3) = φ1(x1, x2) · φ2(x2, x3).

The normalizing constant Z is historically called the partition function.

This factorization is generally tied to a graph whose nodes represent the vari-

ables X1, . . . , Xn and whose edge structure corresponds to the factorization of the

distribution. In particular, the Markov network representation uses an undirected

graph H over the nodes X1, . . . , Xn. A factorized distribution PΦ is said to fac-

torize over H if, for every factor φk ∈ PΦ, we have that Scope[φk] is a completely

connected subgraph in H (so that every Xi, Xj ∈ Scope[φk] are connected by an

undirected edge in H). A Bayesian network uses a directed acyclic graph G to

represent the distribution. In this case, each variable Xi has a set of Parents PaG

Xi
.

The distribution is now parameterized using a set of factors Φ which take the form

P (Xi | PaG

Xi
). In other words, in this factorization, we have precisely one factor

for each variable Xi containing {Xi} ∪ PaG

Xi
, and this factor is locally normalized

so that
∑

xi∈Val(Xi)
P (xi | ui) = 1 for each assignment ui ∈ Val(PaG

Xi
). For this

set of factors, the partition function is guaranteed to be 1, and so we can now say

that a distribution P factorizes over G if it can be written as:

P (X1, . . . , Xn) =
∏

i

P (Xi | PaG

Xi
),

a formula typically known as the chain rule for Bayesian networks.

We note that the graph structure associated with a distribution PΦ reveal in-

dependence properties that hold in PΦ. That is, an examination of the network

structure over which PΦ factorizes provides us with a set of independencies that are

guaranteed to hold for PΦ, regardless of the specific parameterization. The connec-

tion between the graph structure and the independencies in the distribution was a

large focus of the early work on graphical models, and many of the key contributions

were developed by Pearl and his students. However, this topic is outside the scope

of this paper.
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2.2 Inference Tasks

Our probabilistic model P (X1, . . . , Xn) often defines a general-purpose distribution

that can be applied in multiple cases. For example, in a medical diagnosis setting,

we typically have a distribution over diseases, symptoms, and test results that

might hold for an entire patient population. Given a particular patient, we might

observe values values for some subset of the variables (say some symptoms and test

results), so that we know E = e. Thus, we now have a conditional distribution

P (W | E = e), where W = X − E. This conditional distribution has the form

P (W , e)/P (e), where P (e) =
∑

W P (W , e) is a normalizing constant.

Importantly, if our distribution is derived as PΦ for some set of factors Φ, we

can easily obtain a factored form for the numerator by simply reducing each factor

in Φ to contain only those entries that are consistent with E = e. The resulting

reduced factors can be multiplied to produce P (W , e). If the original distribution

PΦ factorizes over a Markov network H, the conditional distribution now factorizes

over the Markov network where we simply remove the nodes in E from the graph.

If the original distribution PΦ factorizes over a Bayesian network, the resulting

reduced factors no longer satisfy the local normalization requirements defined by

the directed graph. Since these local normalization requirements (even if they hold)

do not play a role in most inference algorithms, it is generally easier to ignore them

and simply consider a distribution defined by a set of (possibly reduced) factors Φ.

This will be our focus for the rest of the discussion.

In this setting, we generally consider two main inference tasks. The first is

computing the marginal distribution over one or more query variables; for example,

we might want to compute

PΦ(Y ) =
∑

W

PΦ(Y ,W ) =
1

Z

∑

W

∏

k

φk(Y k,W k),

where Y k,W k represents the assignment in Y ,W to Xk = Scope[φk]. The form

of this expression gives rise to the name sum-product for this type of inference task.

This task is used in the many settings (such as medical diagnosis, for example)

where we wish to compute the posterior distribution over some small subset of

variables given our current observations.

A second task is computing a single joint assignment x to all variables X that

achieves the highest joint probability:

xmap = argmaxxPΦ(x) = argmaxx

1

Z
P̃Φ(x) = argmaxxP̃Φ(x), (1)

where the partition function cancels since it has no effect on the choice of maximiz-

ing assignment. This assignment xmap is known as the maximum a posteriori, or

MAP, assignment. The form of this expression gives rise to the name max-product

for this inference task. MAP queries are used in tasks where we wish to find a

single consistent joint hypothesis about the unobserved variables in our domain, for
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example, a single consistent segmentation of an image or the most likely utterance

in a speech recognition system.

3 Exact Inference: Clique Trees

One approach to addressing the problem of exact inference in a graphical model is

by using a graphical structure called a clique tree. Let T be an undirected graph,

each of whose nodes i is associated with a subset Ci ⊆ X . We say that T is family-

preserving with respect to Φ if each factor φ ∈ Φ must be associated with a cluster

C, denoted α(φ), such that Scope[φ] ⊆ Ci. Each edge between a pair of clusters

Ci and Cj is associated with a sepset Si,j = Ci ∩Cj . We say that T satisfies the

running intersection property if, whenever there is a variable X such that X ∈ Ci

and X ∈ Cj , then for every edge e in the unique path between Ci and Cj , we

have that X ∈ Se. If T satisfies the family-preservation and running-intersection

properties, we say that it is a clique tree for the graphical model defined by Φ.

We can now specify a general inference algorithm that can be implemented via

message passing in a clique tree. Let T be a clique tree with the cliques C1, . . . ,Ck.

Roughly speaking, we begin by multiplying the factors assigned to each clique,

resulting in our initial potentials. We then use the clique-tree data structure to

pass messages between neighboring cliques.

More precisely, recall that each factor φ ∈ Φ is assigned to some clique α(φ). We

define the initial potential of Cj to be:

π0
j [Cj ] =

∏

φ : α(φ)=j

φ.

Because each factor is assigned to exactly one clique, we have that

∏

φ

φ =
∏

j

π0
j .

We now use the clique tree structure to pass messages. The message from Ci

to another clique Cj is computed using the following sum-product message passing

operation:

δi→j =
∑

Ci−Si,j

π0
i ×

∏

k∈(Ni−{j})

δk→i. (2)

In words, the clique Ci multiplies all incoming messages from its other neighbors

with its initial clique potential, resulting in a factor ψ whose scope is the clique.

It then sums out all variables except those in the sepset between Ci and Cj , and

sends the resulting factor as a message to Cj .

This computation can be scheduled in a variety of ways. Most generally, we say

that Ci is ready to transmit a message to Cj when Ci has messages from all of its

neighbors except from Cj . In such a setting, Ci can compute the message δi→j(Si,j)

by multiplying its initial potential with all of its incoming messages except the one

from Cj , and then eliminate the variables in Ci − Si,j . Although the algorithm is
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defined asynchronously, the message-passing process performed by the algorithm is

equivalent to a much more systematic process that consists of an upward pass where

all messages are sent toward a clique known as the root, and then a downward pass

where messages are sent to all the leaves.

At the end of this process, all cliques have all of their incoming messages, at

which point each clique can compute a factor called the beliefs:

πr[Ci] = π0
i ×

∏

k∈NCi

δk→i.

This algorithm, when applied to a clique tree that satisfies the family preservation

and running intersection property, computes messages and beliefs repesenting well-

defined expressions. In particular, we can show that the message passed from Ci

to Cj is the product of all the factors in F≺(i→j), marginalized over the variables

in the sepset (that is, summing out all the others):

δi→j(Si,j) =
∑

V≺(i→j)

∏

φ∈F≺(i→j)

φ.

It then follows that, when the algorithm terminates, we have, for each clique i

πi[Ci] =
∑

X−Ci

P̃Φ(X ), (3)

that is, the value of the unnormalized measure P̃Φ, marginalized over the variables

in Ci.

We note that this expression holds for all cliques; thus, in one upward-downward

pass of the algorithm, we obtain all of the marginals of all of the cliques in the

network, from which we can also obtain the marginals over all variables: to compute

the marginal probability over a particular variable X, we can select a clique whose

scope contains X, and marginalize all variables other than X. This capability is

very valuable in many applications; for example, in a medical-diagnosis setting, we

generally want the probability of several possible diseases.

An important consequence of (3) is that we obtain the same marginal distribution

over X regardless of the from which we extracted it. More generally, for any two

adjacent cliques Ci, we must have that

∑

Ci−Si,j

πi[Ci] =
∑

Cj−Si,j

πj [Cj ].

In this case, we say that Ci and Cj are calibrated.

These message passing rules, albeit in a simplified form, were first developed in

Pearl’s analysis [Kim and Pearl 1983; Pearl 1988] on inference in singly connected

(polytree) Bayesian networks. In this case, each clique represents a family — a set

comprising an individual variable and its parents — and the connections between the

cliques follow the structure of the original Bayesian network. With that mapping,
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Figure 1. Two examples of generalized cluster graph for an MRF with

potentials over {A,B,C}, {B,C,D}, {B,D,F}, {B,D} and {D,E}.

the clique tree message passing algorithm we described is precisely Pearl’s belief

propagation algorithm. The more general case of this particular algorithm was

developed by Shafer and Shenoy [1990], who described it in a much broader form

that applies to many factored models other than probabilistic graphical models.

An alternative but ultimately equivalent message passing scheme (which uses a

sum-product-divide sequence for each message passing step) was was developed in

parallel, in a series of papers by Lauritzen and Spiegelhalter [1988] and Jensen,

Olesen, and Andersen [1990].

4 Belief Propagation in Loopy Graphs

While very compelling, the clique tree algorithm often hits against significant com-

putational barriers. There are many graphical models for which any legal clique tree

— one that satisfies family preservation and running intersection — has cliques that

are very large. For example, any clique tree for a pairwise Markov network encoding

an n × n grid (a class of network commonly used in computer vision applications)

has cliques involving at least n variables. In such cases, inference in a clique tree

requires computation that is exponential in the size of the graphical model. In a

sense, this is inevitable in the worst case, given that the exact inference problem

is NP-hard. However, since this exponential blowup arises in many applications of

significant practical impact, another solution is necessary.

4.1 Cluster Graphs

One generalization of the basic algorithm relaxes the requirements on the message

passing structure. In particular, we generalize the clique tree structure to that of a

cluster graph. This structure is also comprised of a set of clusters Ci ⊆ X connected

by edges. There are three important differences: (1) a cluster graph need not be

a tree; (2) the sepsets are required only to satisfy Si,j ⊆ Ci ∩ Cj ; and (3) we

have a modified version of the running intersection property, where we require that

whenever X ∈ Ci and X ∈ Cj , there is exactly one path between Ci and Cj for

which X ∈ Se for all edges e in the path. The generalized running intersection

property implies that all edges associated with X form a tree that spans all the

clusters that contain X. Thus, intuitively, there is only a single path by which

information that is directly about X can flow in the graph. Both parts of this

assumption are significant. The fact that some path must exist forces information

198



Belief Propagation in Loopy Graphs

about X to flow between all clusters that contain it, so that, in a calibrated cluster

graph, all clusters must agree about the marginal distribution of X. The fact

that there is at most one path prevents loops in the cluster graph where all of the

clusters contain X. In graphs that contain such loops, a message passing algorithm

can propagate information about X endlessly around the loop, making the beliefs

more extreme due to “cyclic arguments.”

Importantly, however, since the graph is not necessarily a tree, the same pair of

clusters might also be connected by other paths. For example, in the cluster graph

of figure 1a, we see that the edges labeled with B form a subtree that spans all

the clusters that contain B. However, there are loops in the graph. For example,

there are two paths from C3 = {B,D,F} to C2 = {B,C,D}. The first, through

C4, propagates information about B, and the second, through C5, propagates

information about D. Thus, we can still get circular reasoning, albeit less directly

than we would in a graph that did not satisfy the running intersection property.

Note that while in the case of trees the definition of running intersection implied

that Si,j = Ci ∩Cj , in a graph this equality is no longer enforced by the running

intersection property. For example, cliques C1 and C2 in figure 1a have B in

common, but S1,2 = {C}.

We note that there are many possible choices for the cluster graph, and the

decision on which to use can make a significant difference to the algorithm. In

particular, different graphs can lead to very different computational cost, different

convergence behavior and even different answers.

EXAMPLE 1. Consider, for example, the cluster graphs U1 and U2 of figure 1a and

figure 1b. Both are fairly similar, yet in U2 the edge between C1 and C2 involves

the marginal distribution over B and C. On the other hand, in U1, we propagate

the marginal only over C. Intuitively, we expect inference in U2 to better capture

the dependencies between B and C. For example, assume that the potential of

C1 introduces strong correlations between B and C (say B = C). In U2, this

correlation is conveyed to C2 directly. In U1, the marginal on C is conveyed on

the edge (1–2), while the marginal on B is conveyed through C4. In this case, the

strong dependency between the two variables is lost. In particular, if the marginal

on C is diffuse (close to uniform), then the message C1 sends to C4 will also have

a uniform distribution on B, and from C2’s perspective the messages on B and C

will appear as two independent variables.

One class of networks for which a simple cluster graph construction exists is the

class of pairwise Markov networks. In these networks, we have a univariate potential

φi[Xi] over each variable Xi, and in addition a pairwise potential φ(i,j)[Xi, Xj ] over

some pairs of variables. These pairwise potentials correspond to edges in the Markov

network. Many problems are naturally formulated as pairwise Markov networks,

such as the grid networks common in computer vision applications. Indeed, if we

are willing to transform our variables, any distribution can be reformulated as a
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pairwise Markov network.

One straightforward transformation of a pairwise Markov network into a cluster

graph is as follows: For each potential, we introduce a corresponding cluster, and

put edges between the clusters that have overlapping scope. In other words, there

is an edge between the cluster C(i,j) that corresponds to the edge Xi—Xj and

the clusters Ci and Cj that correspond to the univariate factors over Xi and Xj .

Because there is a direct correspondence between the clusters in the cluster graphs

and variables or edges in the original Markov network, it is often convenient to think

of the propagation steps as operations on the original network. Moreover, since each

pairwise cluster has only two neighbors, we can consider two propagation steps along

the path Ci—C(i,j)—Cj as propagating information between Xi and Xj .

A highly related transformation applies to Bayesian networks. Here, as in the

case of polytrees, we define a cluster Ci for each family {Xi}∪PaXi
. For every edge

Xi → Xj , we connect Ci to Cj via a sepset whose scope is Xi. With this cluster

graph construction, the message passing algorithm described below is performing

precisely the loopy belief propagation for Bayesian networks first proposed by Pearl.

A related but more general construction that applies to arbitrary sets of factors

is the Bethe cluster graph. This construction uses a bipartite graph: The first

layer consists of “large” clusters, with one cluster for each factor φ in Φ, whose

scope is Scope[φ]. These clusters ensure that we satisfy the family-preservation

property. The second layer consists of “small” univariate clusters, one for each

random variable. Finally, we place an edge between each univariate cluster X on

the second layer and each cluster in the first layer that includes X; the scope of

this edge is X itself. We can easily verify that this cluster graph is a proper one.

First, by construction, it satisfies the family preservation property. Second, the

edges that mention a variable X form a star-shaped subgraph with edges from the

univariate cluster for X to all the large clusters that contain X. The construction

of this cluster graph is simple and can easily be automated.

The broader notion of message passing on a more general cluster graph was first

proposed by Yedidia, Freeman, and Weiss [2000] and Dechter, Kask, and Mateescu

[2002]. Indeed, Yedidia, Freeman, and Weiss [2000, 2005] defined an even more

general notion of message passing on a region graph, which is outside the scope of

this paper.

4.2 Message Passing in Cluster Graphs

How do we perform inference in a cluster graph rather than a clique tree? From

the local perspective of a single cluster Ci, there is not much difference between a

cluster graph and a clique tree. The cluster is related to each neighbor through an

edge that conveys information on variables in the sepset. Thus, we can transmit

information by simply having one cluster pass a message to the other. Of course, as

the graph may have no leaves, we might initially not have any cliques that are ready

to transmit. We address this issue by initializing all messages δi→j = 1. Clusters

200



Belief Propagation in Loopy Graphs

Procedure CGraph-SP-Calibrate (

Φ, // Set of factors

U // Generalized cluster graph Φ

)

1 for each cluster Ci

2 πi ←
∏

φ : α(φ)=i φ

3 for each edge (i–j) ∈ EU
4 δi→j ← 1; δj→i ← 1

5

6 while graph is not calibrated

7 Select (i–j) ∈ EU

8 δi→j(Si,j)←
∑

Ci−Si,j

(

π0
i ×

∏

k∈(Ni−{j}) δk→i

)

9

10 for each clique i

11 πi ← π0
i ×

∏

k∈Ni
δk→i

12 return {πi}

Figure 2. Calibration using sum-product belief propagation in a cluster graph

then pass messages to their neighbors, summarizing the current beliefs derived from

their own initial potentials and from the messages received by their neighbors. The

algorithm is shown in figure 2. Convergence is achieved when the cluster graph is

calibrated ; that is, if for each edge (i–j), connecting the clusters Ci and Cj , we

have that
∑

Ci−Si,j

πi =
∑

Cj−Si,j

πj .

Note that this definition is weaker than cluster tree calibration, since the clusters do

not necessarily agree on the joint marginal of all the variables they have in common,

but only on those variables in the sepset. However, if a calibrated cluster graph

satisfies the running intersection property, then the marginal of a variable X is

identical in all the clusters that contain it. This algorithm clearly generalizes the

clique-tree message-passing algorithm described earlier.

EXAMPLE 2. With this framework in hand, we can now revisit the message de-

coding task. Assume that we wish to send a k-bit message u1, . . . , uk. We code

the message using a number of bits x1, . . . , xn, which are then sent over the noisy

channel, resulting in a set of (possibly corrupted) outputs y1, . . . , yn. The message

decoding task is to recover an estimate û1, . . . , ûk from y1, . . . , yn. We first observe

that message decoding can easily be reformulated as a probabilistic inference task:

We have a prior over the message bits U = 〈U1, . . . , Uk〉, a (usually deterministic)

function that defines how a message is converted into a sequence of transmitted

bits X1, . . . , Xn, and another (stochastic) model that defines how the channel ran-
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(b)(a)

Y1 Y2 Y3 Y4

X1 X2 X3 X4

U1 U2 U3 U4

W1

U1

Y1 Y7Y3 Y5

Z1

X2

W2

U2

Z2

W3

Permuter

U3

Z3

X6

Y2 Y6

W4

U4

Y4 Y8

X4 X8

Z4

X5 X6 X7

Y5 Y6 Y7

Figure 3. Two examples of codes (a) A k = 4, n = 7 parity check code, where

every four message bits are sent along with three bits that encode parity checks.

(b) A k = 4, n = 8 turbocode. Here, the Xa bits X1, X3, X5, X7 are simply the

original bits U1, U2, U3, U4 and are omitted for clarity of the diagram; the Xb bits

use a shift register — a state bit that changes with each bit of the message, where

the ith state bit depends on the (i− 1)st state bit and on the ith message bit. The

code uses two shift registers, one applied to the original message bits and one to a

set of permuted message bits (using some predetermined permutations). The sent

bits contain both the original message bits and some number of the state bits.

domly corrupts the Xi’s to produce Yi’s. The decoding task can then be viewed

as finding the most likely joint assignment to U given the observed message bits

y = 〈y1, . . . , yn〉, or (alternatively) as finding the posterior P (Ui | y) for each bit

Ui. The first task is a MAP inference task, and the second task one of computing

posterior probabilities. Unfortunately, the probability distribution is of high dimen-

sion, and the network structure of the associated graphical model is quite densely

connected and with many loops.

The turbocode approach, as first proposed, comprised both a particular coding

scheme, and the use of a message passing algorithm to decode it. The coding

scheme transmits two sets of bits: one set comprises the original message bits Xa =

〈Xa
1 , . . . , X

a
k 〉 = u, and the second some set Xb = 〈Xb

1, . . . , X
b
k〉 of transformed bits
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(like the parity check bits, but more complicated). The received bits then can also

be partitioned into the noisy ya,yb. Importantly, the code is designed so that the

message can be decoded (albeit with errors) using either ya or yb. The turbocoding

algorithm then works as follows: It uses the model of Xa (trivial in this case)

and of the channel noise to compute a posterior probability over U given ya. It

then uses that posterior πa(U1), . . . , πa(Uk) as a prior over U and computes a new

posterior over U , using the model for Xb and the channel, and yb as the evidence,

to compute a new posterior πb(U1), . . . , πb(Uk). The “new information,” which is

πb(Ui)/πa(Ui), is then transmitted back to the first decoder, and the process repeats

until a stopping criterion is reached. In effect, the turbocoding idea was to use two

weak coding schemes, but to “turbocharge” them using a feedback loop. Each

decoder is used to decode one subset of received bits, generating a more informed

distribution over the message bits to be subsequently updated by the other. The

specific method proposed used particular coding scheme for the Xb bits, illustrated

in figure 3b.

This process looked a lot like black magic, and in the beginning, many people

did not even believe that the algorithm worked. However, when the empirical

success of these properties was demonstrated conclusively, an attempt was made

to understand its theoretical properties. McEliece, MacKay, and Cheng [1998] and

Frey and MacKay [1997] subsequently showed that the specific message passing

procedure proposed by Berrou et al. is precisely an application of belief propagation

(with a particular message passing schedule) to the Bayesian network representing

the turbocode (as in figure 3b).

4.3 Convergence of Loopy Belief Propagation

Pearl’s main reason for rejecting the loopy belief propagation algorithm was the fact

that it may fail to converge. Indeed, this is one of the thorniest issues associated

with the use of belief propagation in practical applications — much more so than

the fact that the resulting beliefs may not be exact. Nonconvergence is particularly

problematic when we build systems that use inference as a subroutine within other

tasks, for example, as the inner loop of a learning algorithm. Much work has

been done on analyzing the convergence properties of generalized belief propagation

algorithms, producing some valuable theoretical insights into its properties (such as

the recent work of Ihler, Fisher, and Willsky [2005] and Mooij and Kappen [2007]).

In practice, several approaches have been used for addressing the nonconvergence

issue, some of which we now describe.

A first observation is that nonconvergence is often a local problem. In many prac-

tical cases, most of the beliefs in the network do converge, and only a small portion

of the network remains problematic. In such cases, it is often quite reasonable sim-

ply to stop the algorithm at some point (for example, when some predetermined

amount of time has elapsed) and use the beliefs at that point, or a running average

of the beliefs over some time window. This heuristic is particularly reasonable when
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we are not interested in individual beliefs, but rather in some aggregate over the

entire network, for example, in a learning setting.

A second observation is that nonconvergence is often due to oscillations in the

beliefs. As proposed by Murphy, Weiss, and Jordan [1999] and Heskes [2002], we

can dampen the oscillations by reducing the difference between two subsequent

updates. In particular, we can replace the update rule in (2) by a smoothed version

that averages the update δi→j with the previous message between the two cliques:

δi→j ← λ





∑

Ci−Si,j

∏

k 6=j

δk→i



 + (1− λ)δoldi→j , (4)

where λ is the damping weight and δoldi→j is the previous value of the message. When

λ = 1, this update is equivalent to standard belief propagation. For 0 < λ < 1,

the update is partial and although it shifts πj toward agreement with πi, it leaves

some momentum for the old value of the belief, a dampening effect that in turn

reduces the fluctuations in the beliefs. It turns out that this smoothed update rule

is “equivalent” to the original update rule, in that a set of beliefs is a convergence

point of the smoothed update if and only if it is a convergence point of standard

updates. Moreover, one can show that, if run from a point close enough to a

stable convergence point of the algorithm, with a sufficiently small λ, this smoothed

update rule is guaranteed to converge. Of course, this guarantee is not very useful

in practice, but there are indeed many cases where the smoothed update rule is

convergent, whereas the original update rule oscillates indefinitely (see figure 4).

A broader-spectrum heuristic, which plays an important role not only in en-

suring convergence but also in speeding it up considerably, is intelligent message

scheduling. The simplest and perhaps most natural approach is to implement BP

message passing as a synchronous algorithm, where all messages are updated at

once. Asynchronous message passing updates messages one at a time, using the

most recent version of the incoming messages to generate the outgoing message. It

turns out that, in most cases, the synchronous schedule is far from optimal, both in

terms of reaching convergence, and in the number of messages required for conver-

gence. As one simple example, consider a cluster graph with m edges, and diameter

d, synchronous message passing requires m(d − 1) messages to pass information

from one side of the graph to the other. By contrast, asynchronous message pass-

ing, appropriately scheduled, can pass information between two clusters at opposite

ends of the graph using d − 1 messages. Moreover, the fact that, in synchronous

message passing, each cluster uses messages from its neighbors that are based on

their previous beliefs appears to increase the chances of oscillatory behavior and

nonconvergence in general.

In practice, an asynchronous message passing schedule works significantly better

than the synchronous approach (see figure 4). Moreover, even greater improvements

can be obtained by scheduling messages in a guided way. One approach, called tree
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reparameterization (TRP) [Wainwright, Jaakkola, and Willsky 2003], selects a set of

trees, each of which spans a large number of the clusters, and whose union covers all

of the edges in the network. The TRP algorithm then iteratively selects a tree and

does an upward-downward calibration of the tree, keeping all other messages fixed.

Of course, calibrating this tree has the effect of “uncalibrating” other trees, and so

this process repeats. This approach has the advantage of passing information more

globally within the graph. It therefore converges more often, and more quickly, than

other asynchronous schedules, particularly if the trees are selected using a careful

design that accounts for the properties of the problem.

An even more flexible approach attempts to detect dynamically in which parts of

the network messages would be most useful. Specifically, as we observed, often some

parts of the network converge fairly quickly, whereas others require more messages.

We can schedule messages in a way that accounts for their potential usefulness; for

example, we can pass a message between clusters where the beliefs disagree most

strongly on the sepset. This approach, called residual belief propagation [Elidan,

McGraw, and Koller 2006] is convenient, since it is fully general and does not require

a deep understanding of the properties of the network. It also works well across a

range of different real-world networks.

To illustrate these issues, we show the behavior of loopy belief propagation on an

11× 11 grid with binary-valued variables; the network is parameterized as an Ising

model — one where the pairwise potentials are defined as: φi,j(xi, xj) = expwi,jxixj .

The network potentials were randomly sampled as follows: Each univariate potential

was sampled uniformly in the interval [0, 1]; for each pair of variables Xi, Zj , wi,j is

sampled uniformly in the range [−C,C]. This sampling process creates an energy

function where some potentials are attractive (wi,j > 0), causing adjacent variables

to prefer taking the same value, and some are repulsive (wi,j < 0). This regime can

result in very difficult inference problems. The magnitude of C (11 in this example)

controls the magnitude of the forces and higher values correspond, on average, to

more challenging inference problems.

Figure 4 illustrates the convergence behavior on this problem. (a) shows the per-

centage of messages converged as a function of time for three variants of the belief

propagation algorithm: synchronous BP with smoothing (dashed line), where only

a small fraction of the messages ever converge; asynchronous BP with smoothing

that converges (solid line); asynchronous BP with no smoothing (dash-dot line)

that does not fully converge. The benefit of using asynchronous propagation over

synchronous updating is obvious. At early round, smoothing tends to slow conver-

gence, because some messages converge quickly when updates are not slowed down

by smoothing. However, as the algorithm progresses, smoothing allows all mes-

sages to achieve convergence, whereas the unsmoothed algorithm never converges.

We note that smoothing is equally beneficial for synchronous updates; indeed, the

graph for unsmoothed synchronous updates is not shown because virtually none of

the messages achieve convergence.
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Figure 4. Example of behavior of BP in practice on an 11 × 11 Ising

grid. Comparison of three different BP variants: synchronous BP with smoothing

(dashed line), asynchronous BP with smoothing (solid line), and asynchronous BP

with no smoothing (dash-dot line — only shown in (a)). (a) Percentage of messages

converged as a function of time. (b) A marginal where both variants converge

rapidly. (c–e) Marginals where the synchronous BP marginals oscillate around the

asynchronous BP marginals. (f) A marginal where both variants are inaccurate.

The remaining panels illustrate the progression of the marginal beliefs over the

course of the algorithm. (b) shows a marginal where both the synchronous and

asynchronous updates converge quite rapidly and are close to the true marginal (thin

solid black). Such behavior is atypical, and it comprises only around 10 percent

of the marginals in this example. In the vast majority of the cases (almost 80

percent in this example), the synchronous beliefs oscillate around the asynchronous

ones ((c)–(e)). In many cases, such as the ones shown in (e), the entropy of the

synchronous beliefs is quite significant. For about 10 percent of the marginals (for

example (f)), both the asynchronous and synchronous marginals are inaccurate. In

these cases, using more informed message schedules can significantly improve the

algorithms performance.

These qualitative differences between the BP variants are quite consistent across

many random and real-life models. Typically, the more complex the inference prob-

lem, the larger the gaps in performance. For very complex real-life networks in-
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volving tens of thousands of variables and multiple cycles, even asynchronous BP is

not very useful and more elaborate propagation methods or convergent alternatives

must be adopted.

5 Max-Product Message Passing for MAP Inference

We now consider the application of belief propagation algorithms to the task of

computing the MAP assignment, as in (1).

5.1 Computing Max-Marginals

The MAP task goes hand in hand with finding the value of the unnormalized prob-

ability of the most likely assignment: maxx P̃Φ(x). We note that, given an assign-

ment x, we can easily compute its unnormalized probability simply by multiplying

all of the factors in Φ, evaluated at x. However, we cannot retrieve the actual

probability of x without computing the partition function, a problem that requires

that we also solve the sum-product task. Because P̃Φ is a product of factors, tasks

that involve maximizing P̃Φ are often called max-product inference tasks.

A large subset of algorithms for the MAP problem operate by first computing

a set of factors that are max-marginals. For a general function f , we define the

max-marginal of f relative to a set of variables Y as

MaxMargf (y) = max
x〈Y 〉=y

f(x), (5)

for any assignment y ∈ Val(Y ). For example, the max-marginal MaxMargP̃Φ
(Y )

is a factor that determines a value for each assignment y to Y ; this value is the

unnormalized probability of the most likely joint assignment consistent with y.

The same belief propagation algorithms that we showed for sum-product can

easily be adapted to the case of max-product. In particular, the max-product belief

propagation algorithm in clique trees executes precisely the same initialization and

overall message scheduling as in the sum-product clique tree algoirthm; the only

difference is that we replace (2) with the following:

δi→j = max
Ci−Si,j

π0
i ×

∏

k∈(Ni−{j})

δk→i. (6)

As for sum-product message passing, the algorithm will converge after a single

upward and downward pass. After those steps, the resulting clique tree T will

contain the appropriate max-marginal in every clique. In particular, for each clique

Ci and each assignment ci to Ci, we will have that

πi[ci] = MaxMargP̃Φ
(ci). (7)

That is, the clique belief contains, for each assignment ci to the clique variables,

the (unnormalized) measure P̃Φ(x) of the most likely assignment x consistent with

ci. Note that, because the max-product message passing process does not compute
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the partition function, we cannot derive from these max-marginals the actual prob-

ability of any assignment; however, because the partition function is a constant,

we can still compare the values associated with different assignments, and therefore

compute the assignment x that maximizes P̃Φ(x).

Because max-product message passing over a clique tree produces max-marginals

in every clique, and because max-marginals must agree, it follows that any two

adjacent cliques must agree on their sepset:

max
Ci−Si,j

πi = max
Cj−Si,j

πj = µi,j(Si,j). (8)

In this case, the clusters are said to be max-calibrated. We say that a clique tree is

max-calibrated if all pairs of adjacent cliques are max-calibrated.

The same transformation from sum-product to max-product can be applied to

the case of loopy belief propagation. Here, the algorithm is the same as in figure 2,

except that we replace the sum-product message computation with the max-product

computation of (6). As for sum-product, there are no guarantees that this algorithm

will converge. Indeed, in practice, it tends to converge somewhat less often than

the sum-product algorithm, perhaps because the averaging effect of the summation

operation tends to smooth out messages, and reduce oscillations. The same ideas

that we discussed in section 4.3 can be used to improve convergence in this algorithm

as well.

At convergence, the result will be a set of calibrated clusters: As for sum-product,

if the clusters are not calibrated, convergence has not been achieved, and the algo-

rithm will continue iterating. However, the resulting beliefs will not generally be

the exact max-marginals; these beliefs are often called pseudo-max-marginals.

5.2 Locally Optimal Assignments

How do we go from a set of (approximate) max-marginals to a consistent joint

assignment that has high probability? One obvious solution is to use the max-

marginal for each variable Xi to compute its own optimal assignment, and thereby

compose a full joint assignment to all variables. However, this simplistic approach

may not always work, even if we have exact max-marginals.

EXAMPLE 3. Consider a simple XOR-like distribution P (X1, X2) that gives prob-

ability 0.1 to the assignments where X1 = X2 and 0.4 to the assignments where

X1 6= X2. In this case, for each assignment to X1, there is a corresponding as-

signment to X2 whose probability is 0.4. Thus, the max-marginal of X1 is the

symmetric factor (0.4, 0.4), and similarly for X2. Indeed, we can choose either of

the two values for X1 and complete it to a MAP assignment, and similarly for X2.

However, if we choose the values for X1 and X2 in an inconsistent way, we may get

an assignment whose probability is much lower. Thus, our joint assignment cannot

be chosen by separately optimizing the individual max-marginals.

Such examples cannot arise if the max-marginals are unambiguous: For each
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variable Xi, there is a unique x∗i that maximizes:

x∗i = max
xi∈Val(Xi)

MaxMargf (xi). (9)

This condition prevents symmetric cases like the one in the preceding example.

Indeed, it is not difficult to show that the following two conditions are equivalent:

• The set of node beliefs {MaxMargP̃Φ
(Xi) : Xi ∈ X} is unambiguous, with

x∗i = argmaxxi
MaxMargP̃Φ

(Xi)

the unique optimizing value for Xi;

• P̃Φ has a unique MAP assignment (x∗1, . . . , x
∗

n).

For generic probability measures, the assumption of unambiguity is not overly strin-

gent, since we can always break ties by introducing a slight random perturbation

into all of the factors, making all of the elements in the joint distribution have

slightly different probabilities. However, if the distribution has special structure —

deterministic relationships or shared parameters — that we want to preserve, this

type of ambiguity may be unavoidable.

The situation where there are ties in the node beliefs is more complex. In this

case, we say that an assignment x∗ has the local optimality property if, for each

cluster Ci in the tree, we have that

x∗〈Ci〉 ∈ argmaxci
πi[ci], (10)

that is, the assignment to Ci in x∗ optimizes the Ci belief. The task of finding

a locally optimal assignment x∗ given a max-calibrated set of beliefs is called the

decoding task.

Importantly, for approximate max-marginals derived from loopy belief propaga-

tion, a locally optimal joint assignment may not exist:

EXAMPLE 4. Consider a cluster graph with the three clusters {A,B}, {B,C}, {A,C}

and the beliefs

a1 a0

b1 1 2

b0 2 1

b1 b0

c1 1 2

c0 2 1

a1 a0

c1 1 2

c0 2 1

These beliefs are max-calibrated, in that all messages are (2, 2). However, there is

no joint assignment that maximizes all of the cluster beliefs simultaneously. For

example, if we select a0, b1, we maximize the value in the A,B belief. We can

now select c0 to maximize the value in the B,C belief. However, we now have a

nonmaximizing assignment a0, c0 in the A,C belief. No matter which assignment

of values we select in this example, we do not obtain a single joint assignment that

maximizes all three beliefs. Loops such as this are often called frustrated.
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How do we find a locally optimal joint assignment, if one exists? Recall from the

definition that an assignment is locally optimal if and only if it selects one of the

optimizing assignments in every single cluster. Thus, we can essentially label the

assignments in each cluster as either “legal” if they optimize the belief or “illegal” if

they do not. We now must search for an assignment to X that results in a legal value

for each cluster. This problem is precisely an instance of a constraint satisfaction

problem (CSP). A constraint satisfaction problem can be defined in terms of a

Markov network (or factor graph) where all of the entries in the beliefs are either 0

or 1. The CSP problem is now one of finding an assignment whose (unnormalized)

measure is 1, if one exists, and otherwise reporting failure. In other words, the

CSP problem is simply that of finding the MAP assignment in this model with

{0, 1}-valued beliefs. The field of CSP algorithms is a large one, and a detailed

survey is outside the scope of the paper; see Dechter [2003] for a recent survey.

Interestingly, it is an area to which Pearl also made important early contributions

[Dechter and Pearl 1987]. Recent work has reinvigorated this trajectory, studying

the surprisingly deep connections between CSP methods and belief propagation, and

exploiting it (for example, within the context of the survey propagation algorithm

[Maneva, Mossel, and Wainwright 2007]).

Thus, given a max-product calibrated cluster graph, we can convert it to a

discrete-valued CSP by simply taking the belief in each cluster, changing each as-

signment that locally optimizes the belief to 1 and all other assignments to 0. We

then run some CSP solution method. If the outcome is an assignment that achieves

1 in every belief, this assignment is guaranteed to be a locally optimal assignment.

Otherwise, there is no locally optimal assignment. Importantly, as we discuss below,

for the case of calibrated clique trees, we are guaranteed that this approach finds a

globally optimal assignment.

In the case where there is no locally optimal assignment, we must resort to the

use of alternative solution methods. One heuristic in this latter situation is to use

information obtained from the max-product propagation to construct a partial as-

signment. For example, assume that a variable Xi is unambiguous in the calibrated

cluster graph, so that the only value that locally optimizes its node marginal is xi.

In this case, we may decide to restrict attention only to assignments where Xi = xi.

In many real-world problems, a large fraction of the variables in the network are

unambiguous in the calibrated max-product cluster graph. Thus, this heuristic can

greatly simplify the model, potentially even allowing exact methods (such as clique

tree inference) to be used for the resulting restricted model. We note, however, that

the resulting assignment would not necessarily satisfy the local optimality condition,

and all of the guarantees we will present hold only under that assumption.

5.3 Optimality Guarantees

The local optimality property comes with some fairly strong guarantees. In partic-

ular, for exact max-marginals, one can show the following result:
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1: A, B, C 4: B, E

(a) (b)

2: B, C, D

B

B
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C C E

1: A, B, C 4: B, E

2: B, C, D 5: D, E

3: B, D, F

Figure 5. Two induced subgraphs derived from figure 1a. (a) Graph over

{B,C}; (b) Graph over {C,E}.

THEOREM 5. Let πi[Ci] be a set of max-marginals for the distribution P̃Φ, and

let µi,j be the associated sepset beliefs. Then an assignment x∗ satisfies the local

optimality property relative to the beliefs {πi[Ci]}i∈VT
if and only if it is the global

MAP assignment relative to P̃Φ.

What type of guarantee can we provide for a decoded assignment from the

pseudo-max-marginals produced by the max-product belief propagation algorithm?

It is certainly not the case that this assignment is the MAP assignment; nor is it

even the case that we can guarantee that the probability of this assignment is “close”

in any sense to that of the true MAP assignment. However, if we can construct a

locally optimal assignment x∗ relative to the beliefs produced by max-product BP,

we can prove that x∗ is a strong local maximum, in the following sense: For certain

subsets of variables Y ⊂ X , there is no assignment x′ that is higher-scoring than

x∗ and differs from it only in the assignment to Y . These subsets Y are those that

induce any disjoint union of subgraphs each of which contains at most a single loop

(including trees, which contain no loops).

More precisely, for a subset of variables Y , we define the induced subgraph UY

to be the subgraph of clusters and sepsets in U that contain some variable in Y .

In the straightforward cluster graph for a pairwise Markov network (as described

earlier), the induced subgraph for a set Y is simply the set of nodes corresponding

to Y and any edges that contain them. Figure 5 shows two examples of an induced

subgraph for a more general cluster graph.

We can now state the following important theorem:

THEOREM 6. Let U be a max-product calibrated cluster graph for P̃Φ, and let x∗

be a locally optimal assignment for U . Let Z be any set of variables for which UZ

is a collection of disjoint subgraphs each of which contains at most a single loop.

Then for any assignment x′ which is the same as x∗ except for the assignment to

the variables in Z, we have that P̃Φ(x′) ≤ P̃Φ(x∗).

This result generalizes one by Weiss and Freeman [2001], who showed a corre-

sponding version in the unambiguous case, for a pairwise Markov network. Its proof

in the more general case rests heavily on the analysis of Wainwright, Jaakkola, and

Willsky [2005], who proved that a different variant of max-product message passing,
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if it converges to an unambiguous solution, is guaranteed to produce the true MAP

assignment.

This theorem implies as a corollary the (well-known) result that, for a max-

product calibrated clique tree, the decoding process is guaranteed to produce a

globally optimal (MAP) assignment. However, its more important implications are

in the context of a loopy cluster graph.

EXAMPLE 7. Consider a 4 × 4 grid network, and assume that we use the pair-

wise cluster graph construction described earlier. In this case, theorem 6 implies

that the MAP solution found by max-product belief propagation has higher prob-

ability than any assignment obtained by changing the assignment to any of the

following subsets of variables Y : a set of variables in any single row, such as

Y = {A1,1, A1,2, A1,3, A1,4}; a set of variables in any single column; a “comb”

structure such as the variables in row 1, column 2 and column 4; a single loop,

such as Y = {A1,1, A1,2, A2,2, A2,1}; or a collection of disconnected subsets of the

preceding form.

This result is a powerful one, inasmuch as it shows that the solution obtained

from max-product belief propagation is robust against large perturbations. Thus,

although one can construct examples where max-product belief propagation obtains

the wrong solutions, these solutions are strong local maxima, and therefore they of-

ten have high probability. Conversely, it is important to realize the limitations of

this result. For one, it only applies if the max-product belief propagation algorithm

converges to a fixed point, which is not always the case; indeed, as we mentioned

earlier, convergence here is generally harder to achieve than in the sum-product

variant. Second, even if convergence is achieved, one has to be able to decode the

resulting pseudo-max-marginals in order to obtain a locally-optimal joint assign-

ment. It is only if these two conditions hold that this result can be brought to

bear.

6 Conclusions

This paper has reviewed a small fraction of the recent results regarding the belief

propagation algorithm. This line of work has been hugely influential in the area

of probabilistic modeling, both in practice and in theory. On the practical side,

belief propagation algorithms are among the most commonly used for inference in

graphical models for which exact inference is intractable. They have been used

successfully for a broad range of applications, including message decoding, natural

language processing, computer vision, computational biology, web analysis, and

many more. There have also been tremendous developments on the algorithmic

side, with many important extensions to the basic approach.

On the theoretical side, the work of many people has served to provide a much

deeper understanding of the theoretical foundations of this algorithm, which has

tremendously influenced our entire perspective on probabilistic inference. One sem-
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inal line of work along these lines was initiated by the landmark paper of Yedidia,

Freeman, and Weiss [2000, 2005], showing that beliefs obtained as fixed points of

the belief propagation algorithm are also solutions to an optimization problem; this

problem is an approximation to another optimization problem whose solutions are

the exact marginals that would be obtained from clique tree inference. Thus, both

exact (clique tree) and approximate (cluster graph) inference can be viewed in terms

of optimization of an objective. This observation was the basis for the development

of a whole range of novel methods that explored different variations on the for-

mulation of the optimization problem, or different algorithms for performing the

optimization. One such line of work uses convex versions of the optimization prob-

lem underlying belief propagation, a trajectory initiated by Wainwright, Jaakkola,

and Willsky [2002]. Algorithms based on this approach (e.g., [Heskes 2006; Hazan

and Shashua 2008]) can also guarantee convergence as well as provide bounds on

the partition function.

For the MAP problem, a similar optimization-based view has also recently come

to dominate the field. Here, the original MAP problem is reformulated as an inte-

ger programming problem, where the (discrete-valued) variables in the optimization

represent the space of possible assignments x. This discrete optimization is then re-

laxed to produce a continuous-valued optimization problem that is a linear program

(LP). This LP-relaxation approach was first proposed by Schlesinger [1976], and

then subsequently rediscovered independently by several researchers. Most notably,

Wainwright, Jaakkola, and Willsky [2005] established the first connection between

the dual problem to this LP and message passing algorithms, and proposed a new

message-passing algorithm (TRW) based on this connection. Many recent works

build on these ideas and develop a suite of increasingly better algorithms for solv-

ing the MAP inference problem. Some of these algorithms utilize message-passing

techniques; others merely adopt the idea of using the LP dual but utilize other

optimization methods for solving it. Importantly, for several of these algorithms,

one can guarantee that a solution, if one is found, is guaranteed to be the optimal

MAP assignment.

In summary, the simple message-passing algorithm first proposed by Pearl has

recently returned to revolutionize the world of inference in graphical models. It

has dramatically affected both the practice in the field and has led to a new,

optimization-based perspective on the foundations of the inference task. This new

understanding has, in turn, given rise to the development of much better algorithms,

which continue to improve our ability to apply probabilistic graphical models to

challenging, real-world applications.
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13

Extending Bayesian Networks to the

Open-Universe Case

Brian Milch and Stuart Russell

1 Introduction

One of Judea Pearl’s now-classic examples of a Bayesian network involves a home

alarm system that may be set off by a burglary or an earthquake, and two neighbors

who may call the homeowner if they hear the alarm. Like most scenarios modeled

with BNs, this example involves a known set of objects (one house, one alarm,

and two neighbors) with known relations between them (the alarm is triggered by

events that affect this house; the neighbors can hear this alarm). These objects and

relations determine the relevant random variables and their dependencies, which

are then represented by nodes and edges in the BN.

In many real-world scenarios, however, the relevant objects and relations are ini-

tially unknown. For instance, suppose we have a set of ASCII strings containing

irregularly formatted and possibly erroneous academic citations extracted from on-

line documents, and we wish to make a list of the distinct publications that are

referred to, with correct author names and titles. In this case, the publications,

authors, venues, and so on are not known in advance, nor is the mapping between

publications and citations. The same challenge of making inferences about unknown

objects is called coreference resolution in natural language processing, data associ-

ation in multitarget tracking, and record linkage in database systems. The issue is

actually much more widespread than this short list suggests; it arises in any data

interpretation problem in which objects or events come without unique identifiers.

In this chapter, we show how the Bayesian network (BN) formalism that Judea

Pearl pioneered has been extended to handle such scenarios. The key contribution

on which we build is the use of acyclic directed graphs of local conditional distri-

butions to generate well-defined, global probability distributions. We begin with a

review of relational probability models (RPMs), which specify how to construct a BN

for a given set of objects and relations. We then describe open-universe probability

models, or OUPMs, which represent uncertainty about what objects exist. OUPMs

may not boil down to finite, acyclic BNs; we present results from Milch [2006]

showing how to extend the factorization and conditional independence semantics

of BNs to models that are only context-specifically finite and acyclic. Finally, we

discuss how Markov chain Monte Carlo (MCMC) methods can be used to perform

approximate inference on OUPMs and briefly describe some applications.
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Title(Pub2)Title(Pub1)

CitTitle(C1) CitTitle(C2) CitTitle(C3)

Figure 1. A BN for a bibliography scenario where we know that citations Cit1 and

Cit3 refer to Pub1, while citation Cit2 refers to Pub2.

Title(p) ∼ TitlePrior()

CitTitle(c) ∼ TitleEditCPD(Title(PubCited(c)))

Figure 2. Dependency statements for a bibliography scenario, where p ranges over

publications and c ranges over citations. This model assumes that the PubCited

function and the sets of publications and citations are known.

2 Relational probability models

Suppose we are interested in inferring the true titles of publications given some

observed citations, and we know the set of publications and the mapping from

citations to publications. Assuming we have a prior distribution for true title strings

(perhaps a word n-gram model) and a conditional probability distribution (CPD)

for citation titles given true titles, we can construct a BN for this scenario, as shown

in Figure 1.

2.1 The RPM formalism

A relational probability model represents such a BN compactly using dependency

statements (see Figure 2), which specify the CPDs and parent sets for whole classes

of variables at once. In this chapter, we will not specify any particular syntax for

dependency statements, although we use a syntax based loosely on Blog [Milch

et al. 2005]. The important point is that dependencies are specified via relations

among objects. For example, the dependency statement for CitTitle in Figure 2

specifies that each CitTitle(c) variable depends (according to the conditional distri-

bution TitleEditCPD that describes how titles may be erroneously transcribed) on

Title(PubCited(c))—that is, on the true title of the publication that c cites. The

PubCited relation is nonrandom, and thus forms part of the known relational skele-

ton of the RPM. In this case, the skeleton also includes the sets of citations and

publications.

Formally, it is convenient to think of an RPM M as defining a probability distri-

bution over a set of model structures of a typed first-order logical language. These

structures are called the possible worlds of M and denoted ΩM . The function sym-
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bols of the logical language (including constant and predicate symbols) are divided

into a set of nonrandom function symbols whose interpretations are specified by

the relational skeleton, and a set of random function symbols whose interpretations

vary between possible worlds. An RPM includes one dependency statement for each

random function symbol.

Each RPM M defines a set of basic random variables VM , one for each application

of a random function to a tuple of arguments. We will write X(ω) for the value

of a random variable X in world ω. If X represents the value of the random

function f on some arguments, then the dependency statement for f defines a

parent set and CPD for X. The parent set for X, denoted Pa(X), is the set of basic

variables that are needed to evaluate the expressions in the dependency statement

in any possible world. For instance, if we know that PubCited(Cit1) = Pub1, then

the dependency statement in Figure 2 yields the single parent Title(Pub1) for the

variable CitTitle(Cit1). The CPD for a basic variable X is a function ϕX (x, pa)

that defines a conditional probability distribution over values x of X given each

instantiation pa of Pa(X). We obtain this CPD by evaluating the expressions in

the dependency statement (such as Title(PubCited(Cit1))) and passing them to an

elementary distribution function such as TitleEditCPD.

Thus, an RPM defines a BN over its basic random variables. If this BN is

acyclic, it defines a joint distribution for the basic RVs. Since there is a one-to-

one correspondence between full instantiations of VM and worlds in ΩM , this BN

also gives us a probability measure over ΩM . We define this to be the probability

measure represented by the RPM.

2.2 Relational uncertainty

This formalism also allows us to model cases of relational uncertainty, such as a

scenario where the mapping from citations to publications is unknown. We can

handle this by making PubCited a random function and giving it a dependency

statement such as:

PubCited(c) ∼ Uniform({Pub p}) .

This statement says that each citation refers to a publication chosen uniformly at

random from the set of all publications p. The dependency statement for CitTitle

in Figure 2 now represents a context-specific dependency: for a given citation Ci,

the Title(p) variable that CitTitle(Ci) depends on varies from world to world.

In the BN defined by this model, shown in Figure 3, the parents of each CitTitle(c)

variable include all variables that might be needed to evaluate the dependency

statement for CitTitle(c) in any possible world. This includes PubCited(c) and all

the Title(p) variables. The CPD in the BN is a multiplexer that conditions on the

appropriate Title(p) variable for each value of PubCited(c). If the BN constructed

this way is still finite and acyclic, the usual BN semantics hold.
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Title(Pub2)Title(Pub1)

CitTitle(C1) CitTitle(C2)

Title(Pub3)

PubCited(C1) PubCited(C2)

Figure 3. A BN arising from an RPM with relational uncertainty.

2.3 Names, objects, and identity uncertainty

We said earlier that the function symbols of an RPM include the constants and pred-

icate symbols. For predicates, this simply means that a predicate can be thought

of as a Boolean function that returns true or false for each tuple of arguments. The

constants, on the other hand, are 0-ary functions that refer to objects. In most RPM

languages, all constants are nonrandom and assumed to refer to distinct objects—

the unique names assumption for constants. With this assumption, there is no need

to distinguish between constant symbols and the objects they refer to, which is why

we are able to name the basic random variables Title(Pub1), Title(Pub2) and so

on, even though, strictly speaking, the arguments should be objects in the domain

rather than constant symbols.

If the RPM language allows constants to be random functions, then the equivalent

BN will include a node for each such constant. For example, suppose that Milch

asks Russell to “fix the typo in the Pfeffer citation.” Russell’s mental software may

already have formed nonrandom constant symbols C1, C2, and so on for all the

citations at the end of the chapter, and these are in one-to-one correspondence with

all the objects in this particular universe. It may then form a new constant symbol

ThePfefferCitation, which co-refers with one of these. Because there is more than

one citation to a work by Pfeffer, there is identity uncertainty concerning which

citation object the new symbol refers to. Identity uncertainty is a degenerate form

of relational uncertainty, but often has a quite distinct flavor.

3 Open-universe probability models

For all RPMs, even those with relational and identity uncertainty, the objects are

known and are the same across all possible worlds. If the set of objects is unknown,

however—e.g., if we don’t know the set of publications that exist and might be

cited—then RPMs as we have described them do not suffice. Whereas an RPM

can be seen as defining a generative process that chooses a value for each random

function on each tuple of arguments, an open-universe probability model (OUPM)

includes generative steps that add objects to the world. These steps set the values

of number variables.
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Title((Pub,2))Title((Pub,1))

CitTitle(C1) CitTitle(C2)

Title((Pub,3))

PubCited(C1) PubCited(C2)

#Pub

Figure 4. A BN that defines a probability distribution over worlds with unbounded

numbers of publications.

3.1 Number variables

For the bibliography example, we introduce just one number variable, defining the

total number of publications. There is no reason to place any a priori upper bound

on the number of publications; we might be interested in asking how many publi-

cations there are for which we have found no citations (this question becomes more

well-defined and pressing if we ask, say, how many aircraft are in an area but have

not generated a blip on our radar screens). Thus, this number variable may have a

distribution that assigns positive probability to all natural numbers.

We can specify the conditional probability distribution for a number variable

using a dependency statement. In our bibliography example, we might use a very

simple statement:

#Pub ∼ NumPubsPrior() .

Number variables can also depend on other variables; we will consider an example

of this below.

In the RPM where we had a fixed set of publications, the relational skeleton

specified a constant symbol such as Pub1 for each publication. In an OUPM where

the set of publications is unknown, it does not make sense for the language to include

such constant symbols. The possible worlds contain publication objects—which will

assume are pairs 〈Pub, 1 〉, 〈Pub, 2 〉, etc.—but now they are not necessarily in one-

to-one correspondence with any constant symbols.

The set of basic variables now includes the number variable #Pub itself, and

variables for the application of each random function to all arguments that exist in

any possible world. Figure 4 shows the BN over these variables. Note that we have

an infinite sequence of Title variables: if we had a finite number, our BN would

not define probabilities for worlds with more than that number of publications. We

stipulate that if a basic variable has an object o as an argument, then in worlds

where o does not exist, the variable takes on the special value null. Thus, #Pub

is a parent of each Title(p) variable, determining whether that variable takes the

value null or not. The set of publications available for selection in the dependency
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#Researcher ∼ NumResearchersPrior()

Position(r) ∼ [0.7 : GradStudent, 0.2 : PostDoc, 0.1 : Prof]

#Pub(FirstAuthor = r) ∼ NumPubsCPD(Position(r))

Figure 5. Dependency statements that augment our bibliography model to represent

a set of researchers, the position of each researcher, and the set of first-authored

publications by each researcher.

statement for PubCited(c) also depends on the number variable.

Objects of a given type may be generated by more than one event in the generative

process. For instance, if we include objects of type Researcher in our model and

add a function FirstAuthor(p) that maps publications to researchers, we may wish

to say that each researcher independently generates a crop of papers on which

he or she is the first author. The number of papers generated may depend on

the researcher’s position (graduate student, professor, etc.). We now get a family

of number variables #Pub(FirstAuthor = r), where r ranges over researchers. The

number of researchers may itself be governed by a number variable. Figure 5 shows

the dependency statements for these aspects of the scenario.

In this model, FirstAuthor(p) is an origin function: in the generative model un-

derlying the OUPM, it is set when p is created, not in a separate generative step.

The values of origin functions on an object tell us which number variable gov-

erns that object’s existence; for example, if FirstAuthor(p) is 〈Researcher , 5 〉, then

#Pub(FirstAuthor = 〈Researcher , 5 〉) governs the existence of p. Origin functions

can also be used in dependency statements, just like any other function: for in-

stance, we might change the dependency statement for PubCited(c) so that more

significant publications are more likely to be cited, with the significance of a publi-

cation p being influenced by Position(FirstAuthor(p)).

In the scenario we have considered so far, each possible world contains finitely

many Researcher and Pub objects. OUPMs can also accommodate infinite numbers

of objects. For instance, we could define a model for academia where each researcher

r generates a random number of new researchers r′ such that Advisor(r′) = r. Some

possible worlds in this model may contain infinitely many researchers.

3.2 Possible worlds and basic random variables

In defining the semantics of RPMs, we said that a model M defines a BN over its

basic random variables VM , and then we exploited the one-to-one correspondence

between full instantiations of those variables and possible worlds. In an OUPM,

however, there may be instantiations of the basic random variables that do not

correspond to any possible world. An example in our bibliography scenario is an
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instantiation where #Pub = 100, but Title(p) takes on a non-null value for 200

publications.

To facilitate using the basic variables to define a probability measure over the

possible worlds, we would like to have a one-to-one mapping between ΩM and a

set of achievable instantiations of VM . This is straightforward in cases like our

first OUPM, where there is only one number variable for each type of object. Then

our semantics specifies that the non-guaranteed objects of each type—that is, the

objects that exist in some possible worlds and not others, like the publications in our

example—are pairs 〈Pub, 1 〉, 〈Pub, 2 〉, . . .. In each world, the set of non-guaranteed

objects of each type that exist is required to be a prefix of this numbered sequence.

Thus, if we know that #Pub = 4 in a world ω, we know that the publications in ω

are 〈Pub, 1 〉 through 〈Pub, 4 〉, not some other set of non-guaranteed objects.

Things are more complicated when we have multiple number variables for a type,

as in our example with researchers generating publications. Given values for all the

number variables of the form #Pub(FirstAuthor = r), we do not want there to be

any uncertainty about which non-guaranteed objects have each FirstAuthor value.

We can achieve this by letting the non-guaranteed objects be nested tuples that

encode their generation history. For the publications with 〈Researcher , 5 〉 as their

first author, we use tuples

〈Pub, 〈FirstAuthor, 〈Researcher, 5〉〉, 1 〉

〈Pub, 〈FirstAuthor, 〈Researcher, 5〉〉, 2 〉

and so on. As before, in each possible world, the set of tuples in each sequence must

form a prefix of the sequence. This construction yields the following lemma.

LEMMA 1. In any OUPM M , each complete instantiation of VM is consistent

with at most one possible world in ΩM .

Section 4.3 of Milch [2006] gives a more rigorous formulation and proof of this

result. Given this lemma, the probability measure defined by an OUPM M on ΩM

is well-defined if the OUPM specifies a joint probability distribution for VM that

is concentrated on the set of achievable instantiations. Since the OUPM’s CPDs

implicitly force a variable to take the value null when any of its arguments do not

exist, any distribution consistent with the CPDs will indeed put probability one on

achievable instantiations.

Informally, the probability distribution for the basic random variables can be de-

fined by a generative process that builds up an instantiation step-by-step, sampling

a value for each variable according to its dependency statement. In the next section,

we show how this intuitive semantics can be formalized using an extended version

of Bayesian networks.

4 Extending BN semantics

There are two equivalent ways of defining the probability distribution represented

by a BN B. The first is based on conditional independence statements; specifically,
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#Pub ∼ NumPubsPrior()

Title(p) ∼ TitlePrior()

Date(c) ∼ DatePrior()

SourceCopied(c) ∼ [0.9 : null,

0.1 : Uniform({Citation c2 :

(PubCited(c2) =PubCited(c))

∧ (Date(c2) < Date(c))})]

CitTitle(c) ∼ if SourceCopied(c) = null

then TitleEditCPD(Title(PubCited(c)))

else TitleEditCPD(CitTitle(SourceCopied(c)))

Figure 6. Dependency statements for a model where each citation was written on

some date, and a citation may copy the title from an earlier citation of the same

publication rather than copying the publication title directly.

the directed local Markov property: each variable is conditionally independent of

its non-descendants given its parents. The second is based on a product expression

for the joint distribution; if σ is any instantiation of the full set of variables VB in

the BN, then

P (σ) =
∏

X∈VB

ϕX (σ[X], σ [Pa(X)]) .

The remarkable property of BNs is that if the graph is finite and acyclic, then there

is guaranteed to be exactly one joint distribution that satisfies these conditions.

4.1 Infinite sets of variables

Note that in the BN in Figure 4, the CitTitle(c) variables have infinitely many par-

ents. The fact that the BN has infinitely many nodes means that we can no longer

use the standard product-expression semantics for the BN, because the product of

the CPDs for all variables is an infinite product, and will typically be zero for all

values of the variables. We would like to specify probabilities for certain partial, fi-

nite instantiations of the variables that are sufficient to define the joint distribution.

As noted by Kersting and DeRaedt [2001], if it is possible to number the nodes of

the BN in topological order, then it suffices to specify the product expression for

each finite prefix of this numbering. However, if a variable has infinitely many par-

ents, then the BN has no topological numbering—if we try numbering the nodes in

topological order, we will spend forever on X’s parents and never reach X.
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Source(C2)Source(C1)

CitTitle(C1) CitTitle(C2)

Date(C1)

Date(C2)

Figure 7. Part of the BN defined by the OUPM in Figure 6, for two citations.

4.2 Cyclic sets of potential dependencies

In OUPMs and even RPMs with relational uncertainty, it is fairly easy to write

dependency statements that define a cyclic BN. For instance, suppose that some

citations are composed by copying another citation, and we do not know who copied

whom. We can specify a model where each citation was written at some unknown

date, and with probability 0.1, a citation copies an earlier citation to the same

publication if one exists. Figure 6 shows the dependency statements for this model.

(Note that Date here is the date the citation was written, i.e., the date of the citing

paper, not the date of the paper being cited.)

The BN defined by this OUPM is cyclic, as shown in Figure 7. In general, a

cyclic BN may fail to define a distribution; there may be no joint distribution with

the specified CPDs. However, in this case, it is intuitively clear that that cannot

happen. Since a citation can only copy another citation with a strictly earlier date,

the dependencies that are active in any positive-probability world must be acyclic.

There are actually elements of the possible world set ΩM where the dependencies

are cyclic: these are worlds where, for some citation c, SourceCopied(c) does not

have an earlier date than c. But the CPD for SourceCopied forces these worlds to

have probability zero.

The difficult aspect of semantics for this class of cyclic BNs is the directed local

Markov property. It is no longer sufficient to assert that X is independent of its non-

descendants in the full BN given its parents, because its set of non-descendants in

the full BN may be too small. In this model, all the CitTitle nodes are descendants of

each other, so the standard directed local Markov property would yield no assertions

of conditional independence between them.
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4.3 Partition-based semantics for OUPMs

We can solve these difficulties by exploiting the context-specific nature of dependen-

cies in an OUPM, as revealed by dependency statements.1 For each basic random

variable X, an OUPM defines a partition ΛX of ΩM . Two worlds are in the same

block of this partition if evaluating the dependency statement for X in these two

worlds yields the same conditional distribution for X. For instance, in our OUPM

for the bibliography domain, the partition blocks for CitTitle(Cit1) are sets of worlds

that agree on the value of Title(PubCited(Cit1)). For each block λ ∈ ΛX , the OUPM

defines a probability distribution ϕX (x, λ) over values of X.

One defining property of the probability measure PM specified by an OUPM M

is that for each basic random variable X ∈ VM and each partition block λ ∈ ΛX ,

PM (X = x |λ) = ϕX (x, λ) (1)

To fully define PM , however, we need to make an assertion analogous to a BN’s

factorization property or directed local Markov property. We will say that a partial

instantiation σ supports a random variable X if there is some block λ ∈ ΛX such

that σ ⊆ λ. An instantiation that supports X in an OUPM is an analogous to

an instantiation that assigns values to all the parents of X in a BN. We define an

instantiation σ to be self-supporting if for each variable X ∈ vars(σ), the restriction

of σ to vars(σ) \ {X} (denoted σ−X) supports X. We can now state a factorization

property for OUPMs.

PROPERTY 2 (Factorization property for an OUPM M). For each finite, self-

supporting instantiation σ on VM ,

PM (σ) =
∏

X∈vars(σ)

ϕX (σ[X], λX(σ−X))

where λX(σ−X) is the partition block in ΛX that has σ−X as a subset.

We can also define an analogue of the directed local Markov property for OUPMs.

Recall that in the BN case, the directed local Markov property asserts that X is

conditionally independent of every subset of its non-descendants given Pa(X). In

fact, it turns out to be sufficient to make this assertion for only a special class of

non-descendant subsets, namely those that are ancestral (closed under the parent

relation). Any ancestral set of variables that does not contain X contains only

non-descendants of X. So in the BN case, we can reformulate the directed local

Markov property to assert that given Pa(X), X is conditionally independent of any

ancestral set of variables that does not contain X.

In OUPMs, the equivalent of a variable set that is closed under the parent relation

is a self-supporting instantiation. We can formulate the directed local Markov

property for an OUPM M as follows:

1We will assume all random variables are discrete in this treatment, but the ideas can be

extended to the continuous case.
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PROPERTY 3 (Directed local Markov property for an OUPM M). For each basic

random variable X ∈ VM , each block λ ∈ ΛX , and each self-supporting instanti-

ation σ on VM such that X /∈ vars(σ), X is conditionally independent of σ given

λ.

Under what conditions is there a unique probability measure PM on ΩM that

satisfies Properties 2 and 3? In the BN case, it suffices for the graph to admit a

topological numbering. We can define a similar notion that is specific to individual

worlds: a supportive numbering for a world ω ∈ ΩM is a numbering X0, X1, . . . of

VM such that for each natural number n, the instantiation (X0(ω), . . . , Xn−1(ω))

supports Xn.

THEOREM 4. Let M be an OUPM such that for every world ω ∈ ΩM , either:

• ω has a supportive numbering, or

• for some basic random variable X ∈ VM , ϕX (X(ω), λX(ω)) = 0.

Then there is exactly one probability measure on ΩM satisfying the factorization

property (Property 2), and it is also the unique probability measure that satisfies

both Equation 1 and the directed local Markov property (Property 3).

This theorem follows from Lemma 1 and results proved in Section 3.4 of Milch

[2006]. Note that the theorem does not require supportive numberings for worlds

that are directly disallowed—that is, those that are forced to have probability zero

by the CPD for some variable.

In our basic bibliography scenario with unknown publications, we can construct a

supportive numbering for each possible world ω by taking first the number variable

#Pub, then the PubCited(c) variables, then the Title(p) variables for the publications

that serve as values of PubCited(c) variables in ω, then the CitTitle(c) variables,

and finally the infinitely many Title(p) variables for publications that are uncited

or do not exist in ω. For the scenario where citation titles can be copied from

earlier citations, we have to add the Date(c) variables and then the SourceCopied(c)

variables before the CitTitle(c) variables. We order the CitTitle(c) variables in a way

that is consistent with Date(c). This procedure yields a supportive numbering in

all worlds except those where ∃c Date(SourceCopied(c)) ≥ Date(c), but such worlds

are directly disallowed by the CPD for SourceCopied(c).

4.4 Representing OUPMs as contingent Bayesian networks

The semantics we have given for OUPMs so far does not make reference to any

graph. But we can also view an OUPM as defining a contingent Bayesian network

(CBN) [Milch et al. 2005], which is a BN where each edge is labeled with an event.

The event indicates when the edge is active, in a sense we will soon make precise.

Figures 8 and 9 show CBNs corresponding to the infinite BN in Figure 4 and the

cyclic BN in Figure 7, respectively.
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Figure 8. A contingent BN for the bibliography scenario with unknown objects.

Source(C2)Source(C1)

CitTitle(C1) CitTitle(C2)

Date(C1)

Date(C2)

Source(C2)=C1

Source(C1)=C2

Figure 9. Part of a contingent BN for the OUPM in Figure 6.

A CBN can be viewed as a partition-based model where the partition ΛX for each

random variable X is defined by a decision tree. The internal nodes in this decision

tree are labeled with random variables; the edges are labeled with variable values;

and the leaves specify conditional probability distributions for X. The blocks in

ΛX correspond to the leaves in this tree (we assume the tree has no infinite paths,

so the leaves cover all possible worlds). The restriction to decision trees allows us

to define a notion of a parent being active in a particular world: if we walk along

X’s tree from the root, following edges consistent with a given world ω, then the

random variables on the nodes we visit are the active parents of X in ω. The label

on an edge W → X in a CBN is the event consisting of those worlds where W is an

active parent of X. (In diagrams, we omit the trivial label A = ΩM , which indicates

that the dependency is always active.)
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The abstract notions of a self-supporting instantiation and a supportive number-

ing have simple graphical analogues in a CBN. We will use Bσ to denote the BN

obtained from a CBN B by keeping only those edges whose conditions are entailed

by σ. An instantiation σ supports a variable X if and only if all the parents of X

in Bσ are in vars(σ), and it is self-supporting if and only if vars(σ) is an ancestral

set in Bσ. A supportive numbering for a world ω is a topological numbering of

the BN Bω obtained by keeping only those edges whose conditions are satisfied by

ω. Thus, the well-definedness condition in Theorem 4 can be stated for CBNs as

follows: for each world ω ∈ ΩM that is not directly disallowed, Bω must have a

topological numbering.

Not all partitions can be represented exactly as the leaves of a decision tree, so

there are sets of context-specific independence properties that can be captured by

OUPMs and not CBNs. However, when we perform inference on an OUPM, we

typically use a function that evaluates the dependency statement for each variable,

looking up the values of other random variables in a given world (or partial instan-

tiation) as needed. For example, a function evaluating the dependency statement

for CitTitle(Cit1) will always access PubCited(Cit1), and then it will access a partic-

ular Title variable depending on the value of the PubCited variable. This evaluation

process implicitly defines a decision tree; the order of splits in the tree depends on

the evaluation order used. When we discuss inference for OUPMs, we will assume

that we are operating on the CBN implicitly defined by some evaluation function.

5 Inference

Given an OUPM, we would like to be able to compute the probability of a query

event Q given an evidence event E. For example, Q could be the event that

PubCited(Cit1) = PubCited(Cit2) and E could be the event that CitTitle(Cit1) =

“Learning Probabilistic Relational Models” and CitTitle(Cit2) = “Learning Prob-

abilitsic Relation Models”. The ideas we present can be extended to other tasks

such as computing the posterior distribution of a random variable, or finding the

maximum a posteriori (MAP) assignment of values to a set of random variables.

5.1 MCMC over partial worlds

Sampling-based or Monte Carlo inference algorithms are well-suited for OUPMs

because each sample specifies what objects exist and what relations hold among

them. We focus on Markov chain Monte Carlo (MCMC), where we simulate a

Markov chain over possible worlds consistent with the evidence E, such that the

stationary distribution of the chain is the posterior distribution over worlds given E.

Such a chain can be constructed using the Metropolis–Hastings method, where we

use an arbitrary proposal distribution q(ω′|ωt), but accept or reject each proposal

based on the relative probabilities of ω′ and ωt.

Specifically, at each step t in our Markov chain, we sample ω′ from q(ω′|ωt) and
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then compute the acceptance probability :

α = min

(

1,
PM (ω′)q(ωt|ω

′)

PM (ωt)q(ω′|ωt)

)

.

With probability α, we accept the proposal and let ωt+1 = ω′; otherwise we reject

the proposal and let ωt+1 = ωt.

The difficulty in OUPMs is that each world may be very large. For instance, if we

have a world where #Pub = 1000, but only 100 publications are referred to by our

observed citations, then the world must also specify the titles of the 900 unobserved

publications. Sampling values for these 900 Title variables and computing their

probabilities will slow down our algorithm unnecessarily. In scenarios where some

possible worlds have infinitely many objects, specifying a possible world completely

may be impossible.

Thus, we would like to run MCMC over partial descriptions that specify values

only for certain random variables. The set of instantiated variables may vary from

world to world. Since a partial instantiation σ defines an event (the set of worlds

that are consistent with it), a Markov chain over partial instantiations can be viewed

as a chain over events. Thus, we use the acceptance probability:

α = min

(

1,
PM (σ′)q(σt|σ

′)

PM (σt)q(σ′|σt)

)

where PM (σ) is the probability of the event σ. As long as the set Σ of partial

instantiations that can be returned by q forms a partition of E, and each partial

instantiation is specific enough to determine whether Q is true, we can estimate

P (Q|E) using a Markov chain on Σ with stationary distribution proportional to

PM (σ) [Milch and Russell 2006].

In general, computing the probability PM (σ) involves summing over all the vari-

ables not instantiated in σ—which is precisely what we want to avoid by using

a Monte Carlo inference algorithm. Fortunately, if each instantiation in Σ is self-

supporting, we can compute its probability using the product expression from Prop-

erty 2. Thus, our partial worlds are self-supporting instantiations that include the

query and evidence variables. We also make sure to use minimal instantiations sat-

isfying this condition—that is, instantiations that would cease to be self-supporting

if we removed any non-query, non-evidence variable. It can be shown that in a

CBN, such minimal self-supporting instantiations are mutually exclusive . So if our

set of partial worlds Σ covers all of E, we are guaranteed to have a partition of E,

as required. An example of a partial world in our bibliography scenario is:

#Pub = 50, CitTitle(Cit1) = “Calculus”, CitTitle(Cit2) = “Intro to Calculus”,

PubCited(Cit1) = 〈Pub, 17 〉, PubCited(Cit2) = 〈Pub, 31 〉,

Title(〈Pub, 17 〉) = “Calculus”, Title(〈Pub, 31 〉) = “Intro to Calculus”
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5.2 Abstract partial worlds

In the partial instantiation above, we specify the tuple representation of each publi-

cation, as in PubCited(Cit1) = 〈Pub, 17 〉. If partial worlds are represented this way,

then the code that implements the proposal distribution has to choose numbers for

any new objects it adds, keep track of the probability of its choices, and compute

the probability of the reverse proposal. Some kinds of moves are impossible unless

the proposer renumbers the objects: for instance, the total number of publications

cannot be decreased from 1000 to 900 when publication 941 is in use.

To simplify the proposal distribution, we can use partial worlds that abstract

away the identities of objects using existential quantifiers:

∃ distinct x, y

#Pub = 50, CitTitle(Cit1) = “Calculus”, CitTitle(Cit2) = “Intro to Calculus”,

PubCited(Cit1) = x,PubCited(Cit2) = y,

Title(x) = “Calculus”, Title(y) = “Intro to Calculus”

The probability of the event corresponding to an abstract partial world depends on

the number of ways the logical variables can be mapped to distinct objects. For

simplicity, we will assume that there is only one number variable for each type.

If an abstract partial world σ uses logical variables for a type τ , we require it to

instantiate the number variable for that type. We also require that for each logical

variable x, there is a distinct ground term tx such that σ implies tx = x; this ensures

that each mapping from logical variables to tuple representations yields a distinct

possible world. Let T be the set of types of logical variables in σ, and for each type

τ ∈ T , let nτ be the value of #τ in σ and ℓτ be the number of logical variables of

type τ in σ. Then we have:

P (σ) = Pc(σ)
∏

τ∈T

nτ !

(nτ − ℓτ )!

where Pc(σ) is the probability of any one of the “concrete” instantiations obtained

by substituting distinct tuple representations for the logical variables in σ.

5.3 Locality of computation

Given a current instantiation σt and a proposed instantiation σ′, computing the

acceptance probability involves computing the ratio:

PM (σ′)q(σt|σ
′)

PM (σt)q(σ′|σt)
=

q(σt|σ
′)

∏

X∈vars(σ′) ϕX (σ′[X], σ′ [Paσ′(X)])

q(σ′|σt)
∏

X∈vars(σt)
ϕX (σt[X], σt [Paσt

(X)])

where Paσ(X) is the set of parents of X whose edge conditions are entailed by

σ. This expression is daunting, because even though the instantiations σt and

σ′ are only partial descriptions of possible worlds, they may still assign values to

large sets of random variables — and the number of instantiated variables grows at

least linearly with the number of observations we have. Since we may want to run
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millions of MCMC steps, having each step take time proportional to the number of

observations would make inference prohibitively expensive.

Fortunately, with most proposal distributions used in practice, each step changes

the values of only a small set of random variables. Furthermore, if the edges that

are active in any given possible world are fairly sparse, then σ [Paσ′(X)] will also

be the same as σt [Paσt
(X)] for many variables X. Thus, many factors will cancel

out in the ratio above.

We need to compute the “new” and “old” probability factors for a variable X

only if either σ′[X] 6= σt[X], or there is some active parent W ∈ Paσt
(X) such that

σ′[W ] 6= σt[W ]. (We take these inequalities to include the case where σ′ assigns a

value to the variable and σt does not, or vice versa.) Note that it is not possible

for Paσ′(X) to be different from Paσt
(X) unless one of the “old” active parents in

Paσt
(X) has changed: given that σt is a self-supporting instantiation, the values

of X’s instantiated parents in σt determine the truth values of the conditions on

all the edges into X, so the set of active edges into X cannot change unless one of

these parent variables changes.

This fact is exploited in the Blog system [Milch and Russell 2006] to efficiently

detect which probability factors need to be computed for a given proposal. The

system maintains a graph of the edges that are active in the current instantiation σt.

The proposer provides a list of the variables that are changed in σ′, and the system

follows the active edges in the graph to identify the children of these variables,

whose probability factors also need to be computed. Thus, the graphical locality

that is central to many other BN inference algorithms also plays a role in MCMC

over relational structures.

6 Related work

The connection between probability and first-order languages was first studied by

Carnap [1950]. Gaifman [1964] and Scott and Krauss [1966] defined a formal se-

mantics whereby probabilities could be associated with first-order sentences and for

which models were probability measures on possible worlds. Within AI, this idea

was developed for propositional logic by Nilsson [1986] and for first-order logic by

Halpern [1990]. The basic idea is that each sentence constrains the distribution over

possible worlds; one sentence entails another if it expresses a stronger constraint.

For example, the sentence ∀xP (Hungry(x)) > 0.2 rules out distributions in which

any object is hungry with probability less than 0.2; thus, it entails the sentence

∀xP (Hungry(x)) > 0.1. Bacchus [1990] investigated knowledge representation is-

sues in such languages. It turns out that writing a consistent set of sentences in

these languages is quite difficult and constructing a unique probability model nearly

impossible unless one adopts the representational approach of Bayesian networks

by writing suitable sentences about conditional probabilities.

The impetus for the next phase of work came from researchers working with

BNs directly. Rather than laboriously constructing large BNs by hand, they built
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them by composing and instantiating “templates” with logical variables that de-

scribed local causal models associated with objects [Breese 1992; Wellman et al.

1992]. The most important such language was Bugs (Bayesian inference Using

Gibbs Sampling) [Gilks et al. 1994], which combined Bayesian networks with the

indexed-random-variable notation common in statistics. These languages inherited

the key property of Bayesian networks: every well-formed knowledge base defines a

unique, consistent probability model. Languages with well-defined semantics based

on unique names and domain closure drew on the representational capabilities of

logic programming [Poole 1993; Sato and Kameya 1997; Kersting and De Raedt

2001] and semantic networks [Koller and Pfeffer 1998; Pfeffer 2000]. Initially, in-

ference in these models was performed on the equivalent Bayesian network. Lifted

inference techniques borrow from first-order logic the idea of performing an inference

once to cover an entire equivalence class of objects [Poole 2003; de Salvo Braz et al.

2007; Kisynski and Poole 2009]. MCMC over relational structures was introduced

by Pasula and Russell [2001]. Getoor and Taskar [2007] collect many important

papers on first-order probability models and their use in machine learning.

Probabilistic reasoning about identity uncertainty has two distinct origins. In

statistics, the problem of record linkage arises when data records do not contain

standard unique identifiers—for example, in financial, medical, census, and other

data [Dunn 1946; Fellegi and Sunter 1969]. In control theory, the problem of data

association arises in multitarget tracking when each detected signal does not identify

the object that generated it [Sittler 1964]. For most of its history, work in symbolic

AI assumed erroneously that sensors could supply sentences with unique identifiers

for objects. The issue was studied in the context of language understanding by

Charniak and Goldman [1993] and in the context of surveillance by Huang and

Russell [1998] and Pasula et al. [1999]. Pasula et al. [2003] developed a complex

generative model for authors, papers, and citation strings, involving both relational

and identity uncertainty, and demonstrated high accuracy for citation information

extraction. The first formally defined language for open-universe probability models

was Blog [Milch et al. 2005], from which the material in the current chapter was

developed. Laskey [2008] describes another open-universe modeling language called

multi-entity Bayesian networks.

Another important thread goes under the name of probabilistic programming

languages, which include Ibal [Pfeffer 2007] and Church [Goodman et al. 2008].

These languages represent first-order probability models using a programming lan-

guage extended with a randomization primitive; any given “run” of a program can

be seen as constructing a possible world, and the probability of that world is the

probability of all runs that construct it.

The OUPMs we have described here bear some resemblance to probabilistic pro-

grams, since each dependency statement can be viewed as a program fragment for

sampling a value for a child variable. However, expressions in dependency state-

ments have different semantics from those in a probabilistic functional language
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such as Ibal: if an expression such as Title(Pub5) is evaluated in several depen-

dency statements in a given possible world, it returns the same value every time,

whereas the value of an expression in Ibal is sampled independently each time it ap-

pears. The Church language incorporates aspects of both approaches: it includes

a stochastic memoization construct that lets the programmer designate certain ex-

pressions as having values that are sampled once and then reused. McAllester et al.

[2008] define a probabilistic programming language that makes sources of random

bits explicit and has a possible-worlds semantics similar to OUPMs.

This chapter has described generative, directed models. The combination of

relational and first-order notations with (undirected) Markov networks is also inter-

esting [Taskar et al. 2002; Richardson and Domingos 2006]. Undirected formalisms

are convenient because there is no need to avoid cycles. On the other hand, an es-

sential assumption underlying relational probability models is that one set of CPD

parameters is appropriate for a wide range of relational structures. For instance, in

our RPMs, the prior for a publication’s title does not depend on how many citations

refer to it. But in an undirected model, adding more citations to a publication (and

thus more potentials linking Title(p) to CitTitle(c) variables) will usually change

the marginal on Title(p), even when none of the CitTitle(c) values are observed.

This suggests that all the potentials must be learned jointly on a training set with

roughly the same distribution of relational structures as the test set; in the directed

case, we are free to learn different CPDs from different data sources.

7 Discussion

This chapter has stressed the importance of unifying probability theory with first-

order logic—particularly for cases with unknown objects—and has presented one

possible approach based on open-universe probability models, or OUPMs. OUPMs

draw on the key idea introduced into AI by Judea Pearl: generative probability

models based on local conditional distributions. Whereas BNs generate worlds by

assigning values to variables one at a time, relational models can assign values to a

whole class of variables through a single dependency assertion, while OUPMs add

object creation as one of the generative steps.

OUPMs appear to enable the straightforward representation of a wide range

of situations. In addition to the citation model mentioned in this chapter (see

Milch [2006] for full details), models have been written for multitarget tracking,

plan recognition, sibyl attacks (a security threat in which a reputation system is

compromised by individuals who create many fake identities), and detection of

nuclear explosions using networks of seismic sensors [Russell and Vaidya 2009]. In

each case, the model is essentially a transliteration of the obvious English description

of the generative process.

Inference, however, is another matter. The generic Metropolis–Hastings inference

engine written for Blog in 2006 is far too slow to support any of the applications

described in the preceding paragraph. For the citation problem, Milch [2006] de-
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scribes an application-specific proposal distribution for the generic M–H sampler

that achieves speeds comparable to a completely hand-coded, application-specific

inference engine. This approach is feasible in general but requires a significant cod-

ing effort by the user. Current efforts in the Blog project are aimed instead at

improving the generic engine: implementing a generalized Gibbs sampler for struc-

turally varying models; enabling the user to specify blocks of variables that are to be

sampled jointly to avoid problems with slow mixing; borrowing compiler techniques

from the logic programming field to reduce the constant factors; and building in

parametric learning. With these changes, we expect Blog to be usable over a wide

range of applications with only minimal user intervention.
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A Heuristic Procedure for Finding Hidden

Variables

Azaria Paz

1 Introduction

This paper investigates Probabilistic Distribution (PD) induced independency rela-

tions which are representable by Directed Acyclic Graphs (DAGs), and are marginal-

ized over a subset of their variables. PD-induced relations have been shown in the

literature to be representable as relations that can be defined on various graphical

models. All those graphical models have two basic properties: They are compact,

i.e., the space required for storing such a model is polynomial in the number of vari-

ables, and they are decidable, i.e., a polynomial algorithm exists for testing whether

a given independency is represented in the model. In particular, two such mod-

els will be encountered in this paper; the DAG model and the Annotated Graph

(AG) model. The reader is supposed to be familiar with the DAG-model which was

studied extensively in the literature. An ample introduction to the DAG model is

included in Pearl [7, 1988], Pearl [8, 2000], and Lauritzen [2, 1996].1

The AG-model in a general form was introduced by Paz, Geva, and Studeny in

[5, 2000] and a restricted form of this model, which is all we need for this paper,

was introduced by Paz [3, 2003a] and investigated further in Paz [4, 2003b]. For

the sake of completeness, we shall reproduce here some of the basic definitions and

properties of those models which are relevant for this paper.

Given a DAG-representable PD-induced relation it is often the case that we need

to marginalize the relation over a subset of variables. Unfortunately it is seldom

the case that such a marginalized relation can be represented by a DAG, which is

an easy to manage and a well understood model.

In the paper [4, 2003] the author proved a set of necessary corelations for a given

AG to be equivalent to a DAG (see Lemma 1 in the next section). In the same paper

a decision procedure is given for checking whether a given AG which satisfies the

necessary conditions is equivalent to a DAG. Moreover, if the answer is ”yes”, the

procedure constructs an equivalent DAG to the given AG. In a subsequent paper

[6, 2006], the author generalizes the AG model and gives a procedure which enables

the representation of any marginalized DAG representable relation by a generalized

model.

1The main part of this work was done while the author visited the Cognitive Systems Laboratory

at UCLA and was supported in part by grants from Air Force, NSF and ONR (MURI).
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2 Preliminaries

2.1 Definitions and notations

UGs will denote undirected graphs G = (V,E) where V is a set of vertices and E is

a set of undirected edges connecting between two vertices. Two vertices connected

by an edge are adjacent or neighbors. A path in G of length k is a sequence of

vertices v1 . . . vk+1 such that (vi, vi+1) is an edge in E for i < 1, . . . , k. A DAG is

an acyclic directed graph D = (V,E) where V is a set of vertices and E is a set of

directed arcs connecting between two vertices in V . A trail of length k in D is a

sequence v1 . . . vk+1 of vertices in V such that (vi, vi+1) is an arc in E for i = 1 . . . k.

If all the arcs on the trail are directed in the same direction then the trail is called

a directed path. If a directed path exists in D from vi to vj then vj is a descendant

of vi and vi is a predecessor or ancestor of vj . If the path is of length one then vi

is a parent of vj who is a child of vi.

The skeleton of a DAG is the UG derived from the DAG when the orientations

of the arcs are removed. A pattern of the form vi → vj ← vk is a collider pattern

where vj is the collider. If there is no arc between vi and vk then vj is an uncoupled

collider. The moralizing procedure is the procedure generating a UG from a DAG,

by first joining both parents of uncoupled colliders in the DAG by an arc, and then

removing the orientation of all arcs. The edges resulting from the coupling of the

uncoupled collider are called moral edges. As mentioned in the introduction UG’s

and DAG’s represent PD-induced relations whose elements are triplets t = (X; Y |Z)

over the set of vertices of the graphs. For a given triplet t we denote by v(t) the set

of vertices v(t) = X ∪ Y ∪ Z. Two graph models are equivalent if they represent

the same relation.

2.2 DAG-model

Let D = (V,E) be a DAG whose vertices are V and whose arcs are E. D represents

the relation R(D) = {t = (X; Y |Z)|t ∈ D} where X, Y, Z are disjoint subsets of V ,

the vertices in V represent variables in a PD, t is interpreted as “X is independent

of Y given Z” and t ∈ D means: t is represented in D. To check whether a given

triplet t is represented in D we use the Algorithm L1 below due to Lauritzen et al.

[1, 1990].

Algorithm L1:

Input : D = (V,E) and t = (X; Y |Z).

1. Let V ′ be the set of ancestors of v(t) = X ∪ Y ∪ Z and let D′(t) be the

subgraph of D over V ′.

2. Moralize D′(t) (i.e., join all uncoupled parents of uncoupled colliders in D′(t)).

Denote the resulting graph by D′′(t).

3. Remove all orientations in D′′(t) and denote the resulting UG by G(D′′(t)).

4. t ∈ G(D′′(t)) iff t ∈ D.
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REMARK 1. t ∈ G where G is a UG if and only if Z is a cutset in G (not necessarily

minimal) between X and Y .

The definition above and the L1 Algorithm show that the DAG model is both

compact and decidable.

2.3 Annotated Graph – model

Let D = (V,E) be a DAG. We derive from D an AG A = (G, K) where G is a UG

And K is a set of elements K = {e = (d, r(d))} as follows: G is derived from D by

moralizing D and removing all orientations from it.

For every moral edge d in G we put an element e = (d, r(d)) in K such that

d(a, b), the domain of e, is the pair of endpoints of the moral edge and r(d), the

range of e, is the set of vertices including all the uncoupled colliders in D whose

parents are a and b, and all the successors of those colliders. Notice that d denotes

both a moral edge and the pair of its endpoints. The relation R(A) defined by the

AG A is the relation below:

R(A) = {t = (X; Y |Z)|t ∈ A}

In order to check whether t ∈ A we use the algorithm L2 due to Paz [3, 2003a]

below.

Algorithm L2

Input : An AG A = (G, K).

1. For every element e = (d, r(d)) in K such that r(d)∩v(t) = ∅ (v(t) = X ∪Y ∪

Z). Disconnect the edge (a, b) in G corresponding to d and remove from G

all the vertices in r(d) and incident edges. Denote the resulting UG by G(t).

2. t ∈ A if and only if t ∈ G(t).

REMARK 2. It is clear from the definitions and from the L2 Algorithm that the

AG model is both compact and decidable. In addition, it was shown in [3, 2003a]

that the AG model has the following uniqueness property: R(A1) = R(A2) implies

that A1 = A2 when A1 and A2 are AG’s. This property does not hold for DAG

models where it is possible for two different (and equivalent) DAGs to define the

same relation. In fact the AG (D) derived from a DAG D represents the equivalence

class of all DAGs which are equivalent to the given DAG D.

REMARK 3. The AGs derived from DAG’s are a particular case of AGs as defined

in Paz et al. [5, 2000] and there are additional ways to derive AGs that represent

PD-induced relations which are not DAG-representable. Consider e.g., the example

below. It was shown by Pearl [7, 1988 Ch. 3] that every DAG representable relation

is a PD-induced relation. Therefore the relation defined by the DAG in Fig. 1

represents a PD-induced relation.
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f

e

dcba

Figure 1. DAG representing relation

If we marginalize this relation over the vertices e and f we get another rela-

tion, PD-induced, that can be represented by the AG A in Fig. 2, as will be

shown in the sequel, under the semantics of the L2 Algorithm, with R(A) =

c dba K= }
((b,d), {a})

((a,b),{c,d})
{

Figure 2. AG A representing a marginalized relation

{(a; b|∅), (b; d|c) + symmetric images}. But R(A) above cannot be represented by

a DAG. This follows from the following lemma that was proven in [4, 2003b].

LEMMA 1. Let (G(D),K(D)) be the annotated graph representation of a DAG

D. K(D) has the following properties:

1. For every element ((a, b), r) ∈ K(D), there is a vertex v ∈ r which is a child

of both a and b and every vertex w ∈ r is connected to some vertex v in r

whose parents are both a and b.

2. For any two elements (d1, r1), (d2, r2) in K(D), if d1 = d2 then r1 = r2.

3. For every ((a, b), r) ∈ K(D), (a, b) is an edge in G(D).

4. The set of elements K(D) is a poset (=partially ordered set) with regards to

the relation “�” defined as follows: For any two elements (dp, rp) and (dq, rq).

If dp∩rq 6= ∅ then (dp, rp) ≻ (dq, rq), in words “(dp, rp) is strictly greater than

(dq, rq)”. Moreover (dp, rp) ≻ (dq, rq) implies that rp ⊂ rq.

5. For any two elements (d1, r1) and (d2, r2) If r1 ∩ r2 6= ∅ and r1, r2 are not

a subset of one another, then there is an element (d3, r3) in K(D) such that

r3 ⊆ r1 ∩ r2.
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As is easy to see the annotation, K in Fig. 2 does not satisfy the condition 4 of

the lemma since the first element in K is bigger than the second but it’s range is not

a subset of the range of the second element. Therefore A is not DAG-representable.

REMARK 4. An algorithm is provided in [3, 2003a] that tests whether a given AG,

possibly derived from a marginalized DAG relation, which satisfies the (necessary

but not sufficient) conditions in Lemma 1 above, is DAG-representable. The main

result of this work is to provide a polynomial algorithm which generates a “gener-

alized annotated graph” representation (concept to be defined in the sequel) which

is both compact and decidable. In some cases the generalized annotated graph re-

duces to a regular annotated graph which satisfies the condition of Lemma 1. If

this is the case than, using the testing algorithm in [4, 2003b] we can check whether

the given AG is DAG-representable. It is certainly not DAG-representable if the

generalized annotated graph is not a regular AG or is a regular AG but does not

satisfy the conditions of Lemma 1.

REMARK 5. When a given AG A is derived from a DAG then the annotation set

K = {(d, r(d))} can be interpreted as follows: The edge (a, b), in G, corresponding

to d, (a moral edge) represents a conditional dependency. That is: there is some

set of vertices, disjoint of r(d), Sab such that (aib|Sab) is represented in A but a

and b become dependent if any proper subset of r(d) is observed i.e., ¬(a; b|S) if

∅ 6= S ⊆ r(d).

In this paper we are concerned with the following problem: Given a relation which

is represented by a generalized UG model and is not representable by a DAG (see

[4, 2003]). Is it possible to find hidden variables such that the given relation results

from the marginalization of the DAG representable relation over the expanded set

of variables, including the hidden variables in addition to the given AG variables.

We do not have a full solution to this problem which is so far an open problem.

We present only a heuristic procedure, illustrated by several examples, for partially

solving the problem.

3 PD-induced relations not representable as a marginalized

DAG-representable relations-an example

While DAG’s are widely used as a model that can represent PD-induced relations

one may ask whether it might be possible to represent every PD-induced relation

either by a DAG or, assuming the existence of latent variables, by a marginalized

DAG. The answer to this question is negative as should be expected. A counterex-

ample is given below.

Consider the following PD-induced relation, over 3 variable x, y, and z, consisting

of two triplets only:

R = {(x; y|∅), (x; y|z) + symmetric triplets}

Then R cannot be represented by a marginalized DAG. To prove this claim
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assume that there is a DAG D with n variables, including x, y and z such that

when D is marginalized over {x, y, z}, the marginalized DAG represents R. This

assumption leads to a contradiction: Since (x; z|∅) and (y; z|∅) are not in R there

must be trails πxz and πyz in D with no colliders included in them. Let πxy be the

concatenation of the two trails πxz and πzy (which is the trail πyz reversed). Then

πxy connects between x and y and has no colliders on it except perhaps the vertex

z. If z is a collider then (x; y|z) is not represented in D. If z is not a collider then

πxy has no colliders on it and therefore (x; y|∅) is not represented in D. Therefore

R cannot be represented by marginalizing D over {x, y, z}, a contradiction. That R

is a PD-induced relation was shown by Milan Studeny [9, private communication,

2000] as follows:

Consider the PD over the binary variables x, y and the ternary variable z. The

probability of the three variables for the different values of x, y, z is given below

p(0, 0, 0) = p(0, 0, 1) = p(1, 0, 1) = p(1, 0, 2) = 1
8

p(0, 1, 0) = p(1, 1, 1) = 1
4

p(x, y, z) = 0 for all other configurations

The reader can convince himself that the relation induced by the above PD is

the relation R = {(x; y|∅), (x; y|z)}. Notice however that the relation R above is

represented by the annotated graph below

G : x—z—y K = {((x, y), {z})}

see Paz [4, 2003b].

4 Finding Hidden Variables

In this section we consider the following problem. Given an AG which represents

a relation that is not DAG representable, e.g. the relation represented by the AG

shown in Fig. 2. Is it possible to find hidden variables which when added to the

variables of the given relation will enable the representation of the given relation

as a marginalized DAG representable relation, over the extra hidden variables. At

this stage of the research we do not have an algorithmic procedure for solving this

problem,a nd we do not have a characterization lemma, similar to Lemma 1 for AGs

representing marginalized DAG representable relations. We can however present a

heuristic procedure for tackling with this problem. We hope that it will be possible

to extend the procedure into a full algorithm in the future. The procedure will be

illustrated here by examples. The examples we will use however are such that we

know in advance that the problem can be solved for them. This is due to the fact

that we can not characterize so far the AG’s for which the problem is solvable, as

mentioned above. On the other hand we should keep in mind that not every PD-

induced relation can be represented as a marginalized DAG-representable relation,

as shown in the previous section.
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4.1 Example 1

Consider the DAG D shown in Fig. 3. An equivalent AG, representing the same

relation [4, 2003b] is shown in Fig. 4 where the broken lines (edges) represent con-

ditional dependencies and correspond to uncoupled parents of colliders in Fig. 3.

Assume now that we want to marginalize the relation represented by the AG

shown in Fig. 4 over the variables p and q. Using the procedure given in [6, 2006]

we get a relation represented by the AG shown in Fig. 5 below.

The Derivation of the AG in Fig. 5 can be explained as follows:

a c
b

f

qp

e

Figure 3. DAG D

caG(D):

fe

p q

b
K=

((a,p),{e})

((a,b), {e})

((q,c), {f})

((p,q), {b,e})

{ }

Figure 4. The annotated graph A(D)
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(a,b), {e}

(b,c), {f}

(a,f), {e}

(e,c), {f}

(a,c), {e,f}

{ }K =

e f

ca
b

Figure 5. AG for the marginalized relation

• The solid edge b-f is induced by the path, in the AG shown in Fig. 4, b-q-f ,

through the marginalized variable q.

• Similarly, the solid edge e-f in Fig. 5 is induced by the path, in Fig. 4, e −

p− q − f through the marginalized variables p and q.

• The element ((a, b), {e}) in Fig. 5 was transferred from Fig. 4 since it involves

only non marginalized variables.

• The element ((b, c), {f}) in Fig. 5 is induced by the path b − q − c in Fig. 4

which is activated if f is observed.

• ((a, f){e}) is induced by the path a− p− q− f which is activated in Fig. 4 if

e is observed.

• ((e, c), {f}) is induced by the path in Fig. 4 e − p − q − c which is activated

if f is observed.

• Finally ((a, c), {e ∧ f} is induced by the path a− p− q − c in Fig. 4 which is

activated if both e and f are observed.

REMARK 6. The dependency conditional shown in the fifth element of K in Fig.

5 is different from the conditionals in any AG representing DAG-representable rela-

tions in the following sense.The conditionals for DAG-representable relations consist

of a set of variables such that, if any variable in the set is observed then the condi-

tional is activated. In Fig. 5, in order to activate the conditional of the fifth element

in K both variables e and f must be observed.

Assume now that we are given the AG shown in Fig. 5 with no prior knowledge

that it represents a marginalized DAG-representable relation. We can see imme-

diately that the relation represented in it is not DAG-representable. This follows

from the remark above and also from the fact that K does not satisfy the necessary

conditions of Lemma 1. E.g. the conditional {f} in the second element is included

in the pair {a, f} of the third element but {e} is not a subset of the conditional {f}

as required by Lemma 1, part 4.
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(a,b), {e}

(b,c), {f}

(a,u), {e}

(u,c), {f}

(u,b), {e,f}

{

u

}K =

e f

ca
b

Figure 6. Extended AG

u

e f

ca
b

Figure 7. DAG which is equivalent to the AG in Fig. 6

Given the fact that the relation is not DAG-representable, we ask ourselves

whether it is possible to add hidden variables to the variables of the relation

such that the extended relation is DAG-representable and is such that when it

is marginalized over the added (hidden) variables, it reduces to the given no DAG-

representable relation. Consider first the fifth element (see Fig. 5) (a, c){e ∧ f}

of K for the given relation. The conditional {e ∧ f} of this element does not fit

DAG-representable relation.

We notice that this element can be eliminated if we add a hidden variableu that

is connected by solid lines (unconditional dependant) to the variables e and f and

is conditionally dependant on a with conditional e and is conditionally dependant

on c with conditional f . The resulting graph is shown in Fig. 6.

The reader will easily convince himself that the annotation K shown in Fig. 6

fits the extended graph, where the first 2 elements are inherited from Fig. 5 and

the other 3 elements are induced by the (hidden) new variable u.The solid edge

(e, f) in Fig. 5 is removed in Fig. 6 since it is implied by the path e− u− f when

the extended relation is marginalized over u. The reader will also easily convince

himself that if the relation shown in Fig. 6 is marginalized over u we get back the

relation shown in Fig. 5. Moreover the annotation K in Fig. 6 complies with the

necessary conditions of Lemma 1. Indeed the relation represented by the AG in Fig.

6 is DAG representable: Just direct all solid edges incident with e into e, direct all
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1

8 9

4

2 3

10

67 5

Figure 8. DAG for Example 2

1

8 9

4

2 3

10
{

(1,4), {8 ^ 9}

(1,9), {8,10}

(8,4), {9,10}
}K =

Figure 9. UG equivalent with the DAG in Fig. 8

solid edges incident with f into f and remove all broken edges. The result is shown

in Fig. 7.

Notice that the DAG in Fig. 7 is quite different from the DAG shown in Fig. 3,

but both reduce to the same relation when marginalized over their extra variables.

4.2 Example 2

Consider the DAG shown in Fig. 8. Using methods similar to the methods we used

in the previous example we can get an equivalent AG which when marginalized over

the vertices 5, 6 and 7 results in the UG shown in Fig. 9.

Here again we can check and verify that K does not satisfy the conditions of

Lemma 1, in particular the first element in K is a compound statement that does

not fit DAG representable relations. So the relation represented by the AG in Fig. 9

is not DAG representable.Trying to eliminate the first element in K, we may assume

the existence of a hidden variable u which is connected by solid edges to both 8

and 9, but is conditionally dependent on 1 with conditional 8 and is conditionally

dependent on 4 with conditional 9. The resulting extended AG is shown in Fig. 10.

The K in Fig. 10 satisfies the conditions of Lemma 1 and one can see that the AG

in DAG is equivalent. Moreover marginalizing it over u reduces to the UG shown

in Fig. 9. The equivalent DAG is shown in Fig. 11.

Notice that the DAG in Fig. 11 is quite different from the DAG in Fig. 8, but both

result in the same AG when marginalizing over their corresponding extra variables.
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{

(1,u), {8,10}

(u,4), {9,10}

(8,9), {10}

u
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Figure 10. Expanded DAG equivalent AG
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4

2 3
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{

(1,u), {8,10}

(u,4), {9,10}

(8,9), {u}

u

}K =

Figure 11. DAG equivalent to the AG in Fig. 10

4.3 Example 3

In this last example we consider the AG shown in Fig. 2 which is reproduced here,

for convenience as Fig. 12.

While the K sets in the previous examples included elements with compound

conditionals, both conditionals in this example are simple but the conditions of

Lemma 1 are not satisfied: d in the first element is included in the second conditional

and a of the second element is included in the first conditional, but the conditionals

are no a subset of each other. Consider first the second element. We can introduce

an additional variable u so that u will be conditionally dependent on b, and the

element (u, b), {c, d} will replace the element (a, b), {c, d}. The resulting AG is

shown in Fig. 13 below.

It is easy to see that the graph in Fig. 13 reduces to graph in Fig. 12 when

marginalized over u. We still need to take care of the first element since it is not

satisfying the conditions of Lemma 1. We can now add additional new variable v

and replace the first element (b, d), {a} by the element (u, v), {a}. The resulting

larger AG is shown in Fig. 14. Notice that the graph in Fig. 14 will reduce to the

graph in Fig. 12.

To verify this we observe that marginalization over u and v induces the element

(b, d), {a} since when a and d are observed b gets connected to u (by d and the

second element) and u is connected to v by the first element so that the path

b− u− v − d is activated through the extra variables (b, d and a exist in Fig. 12).

One can also verify that the AG in Fig. 14 is DAG equivalent after some simples
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{ }K=

((a,b),{c,d})

((b,d), {a})

c dba

Figure 12. AG from Fig. 2

u

(u,b), {c,d}
c dba

(b,d), {a}

}K= {

Figure 13. First extension of the AG in Fig. 12

modifications: we can remove the edges (a, c) and (a, d) since they are implied when

marginalizing over u and v and we need to add the element (v, c), {d} and a corre-

sponding broken edge between v and c, which will be discarded when marginalizing.

The equivalent DAG is shown in Fig. 15 and is identical with the DAG shown in

Fig. 1.
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Probabilistic Programming Languages:

Independent Choices and Deterministic

Systems

David Poole

Pearl [2000, p. 26] attributes to Laplace [1814] the idea of a probabilistic model as a

deterministic system with stochastic inputs. Pearl defines causal models in terms of

deterministic systems with stochastic inputs. In this paper, I show how determinis-

tic systems with (independent) probabilistic inputs can also be seen as the basis of

modern probabilistic programming languages. Probabilistic programs can be seen

as consisting of independent choices (over which there are probability distributions)

and deterministic programs that give the consequences of these choices. The work

on developing such languages has gone in parallel with the development of causal

models, and many of the foundations are remarkably similar. Most of the work in

probabilistic programming languages has been in the context of specific languages.

This paper abstracts the work on probabilistic programming languages from specific

languages and explains some design choices in the design of these languages.

Probabilistic programming languages have a rich history starting from the use of

simulation languages such as Simula [Dahl and Nygaard 1966]. Simula was designed

for discrete event simulations, and the built-in random number generator allowed

for stochastic simulations. Modern probabilistic programming languages bring three

extra features:

conditioning: the ability to make observations about some variables in the simu-

lation and to compute the posterior probability of arbitrary propositions given

these observations. The semantics can be seen in terms of rejection sampling:

accept only the simulations that produce the observed values, but there are

other (equivalent) semantics that have been developed.

inference: more efficient inference for determining posterior probabilities than re-

jection sampling.

learning: the ability to learn probabilities from data.

In this paper, I explain how we can get from Bayesian networks [Pearl 1988] to in-

dependent choices plus a deterministic system (by augmenting the set of variables).

I explain the results from [Poole 1991; Poole 1993b], abstracted to be language

independent, and show how they can form the foundations for a diverse set of

probabilistic programming languages.
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Consider how to represent a probabilistic model in terms of a deterministic system

with independent inputs. In essence, given the probabilistic model, we construct

a random variable for each free parameter of the original model. A deterministic

system can be used to obtain the original variables from the new variables. There

are two possible worlds structures, the original concise set of possible worlds in terms

of the original variables, and the augmented set of possible worlds in terms of the

new random variables. The dimensionality of the augmented space is the number

of free parameters which is greater than the dimensionality of the original space

(unless all variables were independent). However, the variables in the augmented

worlds can be assumed to be independent, which makes them practical to use in a

programming environment. The original worlds can be obtained using abduction.

Independent choices with a deterministic programming language can be seen as

the basis for most of the probabilistic programming languages, where the determin-

istic system can be a logic program [Poole 1993b; Sato and Kameya 1997; De Raedt,

Kimmig, and Toivonen 2007], a functional program [Koller, McAllester, and Pfeffer

1997; Pfeffer 2001; Goodman, Mansinghka, Roy, Bonawitz, and Tenenbaum 2008],

or even a low-level language like C [Thrun 2000].

There had been parallel developments in the development of causality [Pearl

2000], with causal models being deterministic systems with stochastic inputs. The

augmented variables in the probabilistic programming languages are the variables

needed for counterfactual reasoning.

1 Probabilistic Models and Deterministic Systems

In order to understand probabilistic programming languages, it is instructive to

see how a probabilistic model in terms of a Bayesian network [Pearl 1988] can be

represented as a deterministic system with probabilistic inputs.

Consider the following simple belief network, with Boolean random variables:

A B C

There are 5 free parameters to be assigned for this model; for concreteness assume

the following values (where A = true is written as a, and similarly for the other

variables):

P (a) = 0.1

P (b|a) = 0.8

p(b|¬a) = 0.3

P (c|b) = 0.4

p(c|¬b) = 0.75

To represent such a belief network in a probabilistic programming language, there

are probabilistic inputs corresponding to the free parameters, and the programming
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language specifies what follows from them. For example, in Simula [Dahl and Ny-

gaard 1966], this could be represented as:

begin

Boolean a,b,c;

a := draw(0.1);

if a then

b := draw(0.8);

else

b := draw(0.3);

if b then

c := draw(0.4);

else

c := draw(0.75);

end

where draw(p) is a Simula system predicate that returns true with probability p;

each time it is called, there is an independent drawing.

Suppose c was observed, and we want the posterior probability of b. The con-

ditional probability P (b|c) is the proportion of those runs with c true that have b

true. This could be computed using the Simula compiler by doing rejection sam-

pling: running the program many times, and rejecting those runs that do not assign

c to true. Out of the non-rejected runs, it returns the proportion that have b true.

Of course, conditioning does not need to implemented that way; much of the de-

velopment of probabilistic programming languages over the last twenty years is in

devising more efficient ways to implement conditioning.

Another equivalent model to the Simula program can be given in terms of logic.

There can be 5 random variables, corresponding to the independent draws, let’s

call them A, Bifa, Bifna, Cifb Cifnb. These are independent with P (a) = 0.1,

P (bifa) = 0.8, P (bifna) = 0.3, P (cifb) = 0.4, and P (cifnb) = 0.75. The other

variables can be defined in terms of these:

b ⇐⇒ (a ∧ bifa) ∨ (¬a ∧ bifna) (1)

c ⇐⇒ (b ∧ cifb) ∨ (¬b ∧ cifnbc) (2)

These two formulations are essentially the same, they differ in how the determin-

istic system is specified, whether it is in Simula or in logic.

Any discrete belief network can be represented as a deterministic system with

independent inputs. This was proven by Poole [1991, 1993b] and Druzdzel and

Simon [1993]. These papers used different languages for the deterministic systems,

but gave essentially the same construction.
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2 Possible Worlds Semantics

A probabilistic programming language needs a specification of a deterministic sys-

tem (given in some programming language) and a way to specify distributions over

(independent) probabilistic inputs, or a syntactic variant of this. We will also as-

sume that there are some observations, and that there are some query proposition

for which we want the posterior probability.

In developing the semantics of a probabilistic programming language, we first

define the set of possible worlds, and then a probability measure over sets of possible

worlds [Halpern 2003].

In probabilistic programming, there are (at least) two sets of possible world that

interact semantically. It is easiest to see these in terms of the above example. In

the above belief network, there were three random variables A, B and C, which had

complex inter-dependencies amongst them. With three binary random variables,

there are 8 possible worlds. These eight possible worlds give a concise characteriza-

tion of the probability distribution over these variables. I will call this the concise

space of possible worlds.

In the corresponding probabilistic program, there is an augmented space with

five inputs, each of which can be considered a random variable (these are A, Bifa,

Bifna, Cifb and Cifnb in the logic representation). With five binary random vari-

ables, there are 32 possible worlds. The reason to increase the number of variables,

and thus possible worlds, is that in this the augmented space, the random variables

can be independent.

Note that the variables in the augmented space do not have to be indepen-

dent. For example, P (bifna|a) can be assigned arbitrarily since, when a is true,

no other variable depends on bifna. In the augmented space, there is enough free-

dom to make the variables independent. Thus, we can arbitrarily set P (bifna|a) =

P (bifna|¬a), which will be the same as P (b|¬a). The independence assumption

makes the semantics and the computation simpler.

There are three semantics that could be given to a probabilistic program:

• The rejection sampling semantics; running the program with a random num-

ber generator, removing those runs that do not predict the observations, the

posterior probability of a proposition is the limit, as the number of runs in-

creases, of the proportion of the non-rejected runs that have the proposition

true.

• The independent-choice semantics, where a possible world specifies the out-

come of all possible draws. Each of these draws is considered to be indepen-

dent. Given a world, the (deterministic) program would specify what follows.

In this semantics, a possible world would select values for all five of the input

variables in the example above, and thus gives rise to the augmented space of

the above program with 32 worlds.
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• The program-trace semantics, where a possible world specifies a sequence

of outcomes for the draws encountered in one run of the program. In this

semantics, a world would specify the values for three of the draws in the above

program, as only three draws are encountered in any run of the program, and

thus there would be 8 worlds.

In the logical definition of the belief network (or in the Simula definition if the

draws are named), there are 32 worlds in the independent choice semantics:

World A Bifa Bifna Cifb Cifnb Probability

w0 false false false false false 0.9 × 0.2 × 0.7 × 0.6 × 0.25

w1 false false false false true 0.9 × 0.2 × 0.7 × 0.6 × 0.75

. . .

w30 true true true true false 0.1 × 0.8 × 0.3 × 0.4 × 0.75

w31 true true true true true 0.1 × 0.8 × 0.3 × 0.4 × 0.75

The probability of each world is the product of the probability of each variable (as

each of these variables is assumed to be independent). Note that in worlds w30 and

w31, the original variables A, B and C are all true; the value of Cifnb is not used

when B is true. These variables are also all true in the worlds that only differ in

the value of Bifna, as again, Bifna is not used when A is true.

In the program-trace semantics there are 8 worlds for this example, but not all

of the augmented variables are defined in all worlds.

World A Bifa Bifna Cifb Cifnb Probability

w0 false ⊥ false ⊥ false 0.9 × 0.7 × 0.25

w1 false ⊥ false ⊥ true 0.9 × 0.7 × 0.75

. . .

w7 true true ⊥ false ⊥ 0.1 × 0.8 × 0.6

w8 true true ⊥ true ⊥ 0.1 × 0.8 × 0.4

where ⊥ means the variable is not defined in this world. These worlds cover all 8

cases of truth values for the original worlds that give values for A, B and C. The

values of A, B and C can be obtained from the program. The idea is that a run

of the program is never going to encounter an undefined value. The augmented

worlds can be obtained from the worlds defined by the program trace by splitting

the worlds on each value of the undefined variables. Thus each augmented world

corresponds to a set of possible worlds, where the distinctions that are ignored do

not make a difference in the probability of the original variables.

While it may seem that we have not made any progress, after all this is just a

simple Bayesian network, we can do the same thing for any program with prob-

abilistic inputs. We just need to define the independent inputs (often these are

called noise inputs), and a deterministic program that gives the consequences of

the choices of values for these inputs. It is reasonably easy to see that any belief

network can be represented in this way, where the number of independent inputs is
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equal to the number of free parameters of the belief network. However, we are not

restricted to belief networks. The programs can be arbitrarily complex. We also

do not need special “original variables”, but can define the augmented worlds with

respect to any variables of interest. Observations and queries (about which we want

the posterior probability) can be propositions about the behavior of the program

(e.g., that some assignment of the program variables becomes true).

When the language is Turing-equivalent, the worlds can be countably infinite,

and thus there can be uncountably many worlds. A typical assumption is that

the program eventually infers the observations and the query, that is, each run of

the program will eventually (with probability 1) assign a truth value to any given

observation and query. This is not always the case, such as when the query is to

determine the fixed point of a Markov chain (see e.g., Pfeffer and Koller [2000]). We

could also have non-discrete choices using continuous variables, which complicates

but does not invalidate the discussion here.

A probability measure is over sets of possible worlds that form an algebra or a

σ-algebra, depending on whether we want finite additivity or countable additivity

[Halpern 2003]. For a programming language, we typically want countable additiv-

ity, as this allows us to not have a bound on the number of steps it takes to prove

a query. For example, consider a person who plays the lottery until they win. The

person will win eventually. This case is easy to represent as a probabilistic program,

but requires reasoning about an infinite set of worlds.

The typical σ-algebra is the set of worlds that can be finitely described, and their

(countable) union. Finitely describable means there is a finite set of draws that have

their outcomes specified. Thus the probability measure is over sets of worlds that

all have the same outcomes for a finite set of draws, and the union of such sets of

worlds. We have a measure over such sets by treating the draws to be independent.

3 Abductive Characterization

Abduction is a form of reasoning characterized by “reasoning to the best explana-

tion”. It is typically characterized by finding a minimal consistent set of assumables

that imply some observation. This set of assumables is called an explanation of the

observation.

Poole [1991, 1993b] gave an abductive characterization of a probabilistic pro-

gramming language, which gave a mapping between the independent possible world

structure, and the descriptions of the worlds produced by abduction. This notion of

abduction lets us construct a concise set of sets of possible worlds that is adequate

to infer the posterior probability of a query.

The idea is that the the independent inputs become assumables. Given a prob-

abilistic program, a particular observation obs and a query q, we characterize a

(minimal) partition of possible worlds, where

• in each partition either ¬obs, obs ∧ q or obs ∧ ¬q can be inferred, and
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• in each partition the same (finite) set of choices for the values of some of the

inputs is made.

This is similar to the program-trace semantics, but will only need to make distinc-

tions relevant to computing P (q|obs). Given a probabilistic program, an observation

and a query, the “explanations” of the observation conjoined with the query or its

negation, produces such a partition of possible worlds.

In the example above, if the observation was C = true, and the query was B, we

want the minimal set of assignments of values to the independent choices that gives

C = true ∧ B = true or C = true ∧ B = false. There are 4 such explanations:

• A = true, Bifa = true, Cifb = true

• A = true, Bifa = false, Cifnb = true

• A = false, Bifna = true, Cifb = true

• A = false, Bifna = false, Cifnb = true

The probability of each of these explanations is the product of the choices made,

as these choices are independent. The posterior probability P (B|C = true) can be

easily computed by the weighted sum of the explanations in which B is true. Note

also that the same explanations would be true even if C has unobserved descendants.

As the number of descendants could be infinite if they were generated by a program,

it is better to construct the finite relevant parts than prune the infinite irrelevant

parts.

In an analogous way to how the probability of a real-variable is defined as a

limit of discretizations, we can compute the posterior probability of a query given

a probabilistic programming language. This may seem unremarkable until it is

realized that for programs that are guaranteed to halt, there can be countably

many possible worlds, and so there are uncountably many sets of possible worlds,

over which to place a measure. For programs that are not guaranteed to halt, such

as a sequence of lotteries, there are uncountably many possible worlds, and even

more sets of possible worlds upon which to place a measure. Abduction gives us the

sets of possible worlds in which to answer a conditional probability query. When

the programs are not guaranteed to halt, the posterior probability of a query can

be defined as the limit of the sets of possible worlds created by abduction, as long

as the query can be derived in finite time for all but a set of worlds with measure

zero.

In terms of the Simula program, explanations correspond to execution paths. In

particular, an explanation corresponds to the outcomes of the draws in one trace

of the program that infers the observations and a query or its negation. The set

of traces of the program gives a set of possible worlds from which to compute

probabilities.
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When the program is a logic program, it isn’t obvious what the program-trace

semantics is. However, the semantics in terms of independent choices and abduction

is well-defined. Thus it seems like the semantics in terms of abduction is more

general than the program-trace semantics, as it is more generally applicable. It is

also possible to define the abductive characterization independently of the details of

the programming language, whereas defining a trace or run of a program depends

on the details of the programming language.

Note that this abductive characterization is unrelated to MAP or MPE queries;

we are defining the marginal posterior probability distribution over the query vari-

ables.

4 Inference

Earlier algorithms (e.g. Poole [1993a]) extract the minimal explanations and com-

pute conditional probabilities from these. Later algorithms, such as used in IBAL

[Pfeffer 2001], use sophisticated variable elimination to carry out inference in this

space. IBAL’s computation graph corresponds to a graphical representation of the

explanations. Problog [De Raedt, Kimmig, and Toivonen 2007] compiles the com-

putation graph into BDDs.

In algorithms that exploit the conditional independent structure, like variable

elimination or recursive conditioning, the order that variables are summed out or

split on makes a big difference to efficiency. In the independent choice semantics,

there are more options available for summing out variables, thus there are more

options available for making inference efficient. For example, consider the following

fragment of a Simula program:

begin

Boolean x;

x := draw(0.1);

if x then

begin

Boolean y := draw(0.2);

...

end

else

begin

Boolean z := draw(0.7);

...

end

...

end

Here y is only defined when x is true and z is only defined when x is false. In

the program-trace semantics, y and z are never both defined in any world. In
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the independent-choice semantics, y and z are defined in all worlds. Efficiency

considerations may mean that we want to sum out X first. In the independent-

choice semantics, there is no problem, the joint probability on X and Y makes

perfect sense. However, in the program trace semantics, it isn’t clear what the joint

probability of X and Y means. In order to allow for flexible elimination orderings in

variable elimination or splitting ordering in recursive conditioning, the independent

choice semantics is the natural choice.

Another possible way to implement probabilistic programming is to use MCMC

[Milch, Marthi, Russell, Sontag, Ong, and Kolobov 2005; Goodman, Mansinghka,

Roy, Bonawitz, and Tenenbaum 2008; McCallum, Schultz, and Singh 2009]. It

is possible to do MCMC in either of the spaces of worlds above. The difference

arises in conditionals. In the augmented space, for the example above, an MCMC

state would include values for all of X, Y and Z. In the program-trace semantics,

it would contain values for X and Y when X = true, and values for X and Z

when X = false, as Y and Z are never simultaneously defined. Suppose X’s

value changes from true to false. In the augmented space, it would just use the

remembered values for Z. In the program-trace semantics, Z was not defined when

Z was true, thus changing X from true to false means re-sampling all of the

variables defined in that branch, including Z.

BLOG [Milch, Marthi, Russell, Sontag, Ong, and Kolobov 2005] and Church

[Goodman, Mansinghka, Roy, Bonawitz, and Tenenbaum 2008] assign values to all

of the variables in the augmented space. FACTORIE [McCallum, Schultz, and

Singh 2009] works in what we have called the abductive space. Which is these is

more efficient is an empirical question.

5 Learning Probabilities

The other aspect of modern probabilistic programming languages is the ability to

learn the probabilities. As the input variables are rarely observed, the standard

way to learn the probabilities is to use EM. Learning probabilities using EM in

probabilistic programming languages is described by Sato [1995] and Koller and

Pfeffer [1997]. In terms of available programming languages, EM forms the basis

for learning in Prism [Sato and Kameya 1997; Sato and Kameya 2001], IBAL [Pfeffer

2001; Pfeffer 2007] and many subsequent languages.

One can do EM learning in either of the semantic structures. The difference is

whether some data updates the probabilities of parameters that were not involved

in computing the data. By making this choice explicit, it is easy to see that one

should use the abductive characterization to only update the probabilities of the

choices that were used to derive the data.

Structure learning for probabilistic programming languages has really only been

explored in the context of logic programs, where the techniques of inductive logic

programming can be applied. De Raedt, Frasconi, Kersting, and Muggleton [2008]

overview this active research area.
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6 Causal Models

It is interesting that the research on causal modelling and probabilistic programming

languages have gone on in parallel, with similar foundations, but only recently have

researchers started to combine them by adding causal constructs to probabilistic

programming languages [Finzi and Lukasiewicz 2003; Baral and Hunsaker 2007;

Vennekens, Denecker, and Bruynooghe 2009].

In some sense, the programming languages can be seen as representations for

all of the counterfactual situations. A programming language gives a model when

some condition is true, but also defines the “else” part of a condition; what happens

when the condition is false.

In the future, I expect that programming languages will be the preferred way to

specify causal models, and for interventions and counterfactual reasoning to become

part of the repertoire of probabilistic programming languages.

7 Observation Languages

These languages can be used to compute conditional probabilities by having an

“observer” (either humans or sensors) making observations of the world that are

conditioned on. One problem that has long gone unrecognized is that it is often

not obvious how to condition when the language allows for multiple individuals and

relations among them. There are two main problems:

• The observer has to know what to specify and what vocabulary to use. Unfor-

tunately, we can’t expect an observer to “tell us everything that is observed”.

First, there are an unbounded number of true things one can say about a

world. Second, the observer does not know what vocabulary to use to describe

their observations of the world. As probabilistic models get more integrated

into society, the models have to be able to use observations from multiple

people and sensors. Often these observations are historic, or are created asyn-

chronously by people who don’t even know the model exists and are unknown

when the model is being built.

• When there are are unique names, so that the observer knows which object(s)

a model is referring to, an observer can provide a value to the random variable

corresponding to the property of the individual. However, models often refer

to roles [Poole 2007]. The problem is that the observer does not know which

individual in the world fills a role referred to in the program (indeed there

is often a probability distribution over which individuals fill a role). There

needs to be some other mechanism other than asking for the observed value

of a random variable or program variable, or the value of a property of an

individual.

The first problem can be solved using ontologies. An ontology is a specification

of the meaning of the symbols used in an information system. There are two main
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areas that have spun off from the expert systems work of the 1970’s and 1980’s.

One is the probabilistic revolution pioneered by Pearl. The other is often under the

umbrella of knowledge representation and reasoning [Brachman and Levesque 2004].

A major aspect of this work is in the representation of ontologies that specify the

meaning of symbols. An ontology language that has come to prominence recently is

the language OWL [Hitzler, Krötzsch, Parsia, Patel-Schneider, and Rudolph 2009]

which is one of the foundations of the semantic web [Berners-Lee, Hendler, and

Lassila 2001]. There has recently been work on representing ontologies to integrate

with probabilistic inference [da Costa, Laskey, and Laskey 2005; Lukasiewicz 2008;

Poole, Smyth, and Sharma 2009]. This is important for Bayesian reasoning, where

we need to condition on all available evidence; potentially applicable evidence is

(or should be) published all over the world. Finding and using this evidence is a

major challenge. This problem in being investigated under the umbrella of semantic

science [Poole, Smyth, and Sharma 2008].

To understand the second problem, suppose we want to build a probabilistic

program to model what apartments people will like for an online apartment finding

service. This is an example where models of what people want and descriptions

of the world are built asynchronously. Rather than modelling people’s preferences,

suppose we want to model whether they would want to move in and be happy

there in 6 months time (this is what the landlord cares about, and presumably

what the tenant wants too). Suppose Mary is looking for an apartment for her and

her daughter, Sam. Whether Mary likes an apartment depends on the existence

and the properties of Mary’s bedroom and of Sam’s bedroom (and whether they

are the same room). Whether Mary likes a room depends on whether it is large.

Whether Sam likes a room depends on whether it is green. Figure 1 gives one

possible probability model, using a belief network, that follows the above story.

If we observe a particular apartment, such as the one on the right of Figure

1, it isn’t obvious how to condition on the observations to determine the posterior

probability that the apartment is suitable for Mary. The problem is that apartments

don’t come labelled with Mary’s bedroom and Sam’s bedroom. We need some role

assignment that specifies which bedroom is Mary’s and which bedroom is Sam’s.

However, which room Sam chooses depends on the colour of the room. We may

also like to know the probability that a bachelor’s apartment (that contains no

bedrooms) would be suitable.

To solve the second problem, we need a representation of observations. These

observations and the programs need to refer to interoperating ontologies. The ob-

servations need to refer to the existence of objects, and so would seem to need some

subset of the first-order predicate calculus. However, we probably don’t want to

allow arbitrary first-order predicate calculus descriptions of observations. Arguably,

people do not observe arbitrary disjunctions. One simple, yet powerful, observation

language, based on RDF [Manola and Miller 2004] was proposed by Sharma, Poole,

and Smyth [2010]. It is designed to allow for the specification of observations of
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that there is not a fourth bedroom. This can be represented as:

〈apr, hasBedroom, R1, true〉

〈R1, size, medium, true〉

〈R1, color, red, true〉

〈apr, hasBedroom, R2, true〉

. . .

〈apr, hasBedroom, R4, false〉

Thus this language is analogous to observing conjunctions of propositional atoms.

However, it also lets us observe the existence and non-existence of objects, without

allowing for representing arbitrary disjunctions.

Such observational languages are an important complement to probabilistic pro-

gramming languages.

8 Pivotal Probabilistic Programming Language References

Probabilistic Horn abduction [Poole 1991; Poole 1993b] is the first language with

a probabilistic semantics that allows for conditioning. Much of the results of this

paper were presented there, in the context of logic programs. Probabilistic Horn

abduction was refined into the Independent Choice Logic [Poole 1997] that allowed

for choices made by multiple agents, and there is a clean integration with negation

as failure [Poole 2000]. Prism introduced learning into essentially the same frame-

work [Sato and Kameya 1997; Sato and Kameya 2001]. More recently, Problog

[De Raedt, Kimmig, and Toivonen 2007] has become a focus to implement many

logical languages into a common framework.

In parallel to the work on probabilistic logic programming languages, has been

work on developing probabilistic functional programming languages starting with

Stochastic Lisp [Koller, McAllester, and Pfeffer 1997], including IBAL [Pfeffer 2001;

Pfeffer 2007], A-Lisp [Andre and Russell 2002] and Church [Goodman, Mansinghka,

Roy, Bonawitz, and Tenenbaum 2008].

Other probabilistic programming languages are based on more imperative lan-

guages such as CES [Thrun 2000], based on C, and the languages BLOG [Milch,

Marthi, Russell, Sontag, Ong, and Kolobov 2005] and FACTORIE [McCallum,

Schultz, and Singh 2009] based on object-oriented languages. BLOG concentrates

on number and identity uncertainty, where the probabilistic inputs include the num-

ber of objects and whether two names refer to the same object or not.

9 Conclusion

This paper has concentrated on similarities, rather than the differences, between

the probabilistic programing languages. Much of the research in the area has con-

centrated on specific languages, and this paper is an attempt to put a unifying

structure on this work, in terms of independent choices and abduction.
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Unfortunately, it is difficult to implement an efficient learning probabilistic pro-

gramming language. Most of the languages that exist have just one implementation;

the one developed by the designers of the language. As these are typically research

code, the various implementations have concentrated on different aspects. For exam-

ple, the Prism implementation has concentrated on incorporating different learning

algorithms, the IBAL implementation has concentrated on efficient inference, my

AILog2 implementation of ICL has concentrated on debugging and explanation and

use by beginning students1. Fortunately, many of the implementations are publicly

available and open-source, so that they are available for others to modify.

One of the problems with the current research is that the language and the

implementation are often conflated. This means that researchers feel the need to

invent a new language in order to investigate a new learning or inference technique.

For example, the current IBAL implementation uses exact inference, but it does

not need to; different inference procedures could be used with the same language.

If we want people to use such languages, they should be able to take advantage of

the advances in inference or learning techniques without changing their code. One

interesting project is the ProbLog project [De Raedt, Kimmig, and Toivonen 2007],

which is building an infrastructure so that many of the different logic programming

systems can be combined, and so that the user can use a standard language, and it

can incorporate advances in inference and learning.

Probabilistic programming languages have an exciting future. We will want to

have rich languages to specify causal mechanisms, processes, and rich models. How

to program these models, learn them, and efficiently implement these are challenging

research problems.

Acknowledgments: Thanks to Peter Carbonetto, Mark Crowley, Jacek Kisyński
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Arguing with a Bayesian Intelligence

Ingrid Zukerman

1 Introduction

Bayesian Networks (BNs) [Pearl 1988] constitute one of the most influential ad-

vances in Artificial Intelligence, with applications in a wide range of domains, e.g.,

meteorology, agriculture, medicine and environment. To further capitalize on its

clear technical advantages, a Bayesian intelligence (a computer system that em-

ploys a BN as its knowledge representation and reasoning formalism) should be

able to communicate with its users, i.e., users should be able to put forward their

views, and the system should be able to generate responses in turn. However, com-

munication between a Bayesian and a human intelligence poses some challenges, as

people generally do not engage in normative probabilistic reasoning when faced with

uncertainty [Evans, Barston, and Pollard 1983; Lichtenstein, Fischhoff, and Phillips

1982; Tversky and Kahneman 1982]. In addition, human discourse is typically en-

thymematic (i.e., it omits easily inferable information), and usually the beliefs and

inference patterns of conversational partners are not perfectly synchronized. As a

result, an addressee’s understanding may differ from the message intended by his

or her conversational partner.

In this chapter, we offer a mechanism that enables a Bayesian intelligence to

interpret human arguments for or against a proposition. This mechanism, which is

implemented in a system called bias (Bayesian Interactive Argumentation System),

constitutes a building block of a future system that will enable a Bayesian reasoner

to communicate with people.1

In order to address the above challenges, we adopt the view that discourse inter-

pretation is the process of integrating the contribution of a conversational partner

into the addressee’s mental model [Kashihara, Hirashima, and Toyoda 1995; Kintsch

1994], which in bias’s case is a BN. Notice, however, that when performing such

an integration, one cannot be sure that one is drawing the intended inferences or

reinstating the exact information omitted by the user. All an addressee can do is

construct an account of the conversational partner’s discourse that makes sense to

him or her. An interpretation of an argument that makes sense to bias is a subnet

of its BN and a set of beliefs.

To illustrate these ideas, consider the argument in Figure 1(a) regarding the guilt

1The complementary building block, a mechanism that generates arguments from BNs, is

described in [Korb, McConachy, and Zukerman 1997; Zukerman, McConachy, and Korb 1998].
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Fingerprints being found on the gun, and forensics matching the fin-

gerprints with Mr Green implies that Mr Green probably had the means

to murder Mr Body.

The Bayesian Times reporting that Mr Body seduced Mr Green’s

girlfriend implies that Mr Green possibly had a motive to murder Mr Body.

Since Mr Green probably had the means to murder Mr Body, and Mr Green

possibly had a motive to murder Mr Body, then Mr Green possibly murdered

Mr Body.

(a) Sample argument

NbourSawGreen
AroundGardenAt11

WitnessSaw

FballAt10:30

NbourHeard
GreenBody

ArgLastNight

Green’sLadderHas
OblongSupports

Oblong

ForensicMatch
BulletsWith
FoundGun

GunFound
InGarden

GreenAt

GreenInGarden

GreenInGardenAt11

GreenBody
Enemies

Green’sGirlfriend
BodySeduce

GreenInGardenAt
TimeOfDeath

BodyKilledFrom
OutsideWindow

InBody’sBody
BulletsFound

BrokenGlass
FoundInside

BrokenGlass
Found

WindowBroken
FromOutside

IndentationsFound

ArgueLastNight
GreenBodyFoundGun

FiredByGreen

MurderWeapon
FoundGunIs

FiredByGreen
MurderWeapon

BayesTimesReportBody
SeduceGreen’sGirlfriend

TimeOfDeath11

FoundOnGun
Fingerprints

Green’sLadder
AtWindow

LastNight
GreenVisitBody

Green’sFingerprints
ForensicMatch

BodyWasMurdered

GreenHasOpportunity

GreenMurderedBodyGreenHasMeans GreenHasMotive

(b) BN and argument interpretation

Figure 1. Argument, domain BN and interpretation of the argument

of Mr Green in the murder of Mr Body (this argument is a gloss of an argument

entered through a web interface).2 The argument is interpreted in the context of

the BN in Figure 1(b), which depicts the scenario for this murder mystery — the

domain where we tested our ideas [Zukerman and George 2005]. The light-shaded

bubble demarcates the BN subnet corresponding to the interpretation preferred

by bias.3 This interpretation contains propositions in the BN which bridge the

2We use the following linguistic terms, which are similar to those used in [Elsaesser 1987], to

convey degree of belief: Very Probable, Probable, Possible and their negations, and Even Chance.

According to our surveys, these terms are the most consistently understood by people [George,

Zukerman, and Niemann 2007].
3The observable evidence nodes are boxed, and the evidence nodes that were actually ob-

served by the user are boldfaced, as are the evidence nodes employed in the argument. The
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reasoning gaps in the user’s (enthymematic) argument.

Our approach casts the problem of finding a good interpretation of a user’s argu-

ment as a model selection problem, where the interpretation is the model and the

argument is the data. The criterion for selecting an interpretation is inspired by

the Minimum Message Length (MML) principle [Wallace 2005] — an operational

form of Occam’s Razor that balances model complexity against data fit. That is, we

aim to select the simplest model (interpretation) that explains well the observed data

(argument). The complexity of a model may be viewed as its probability in light

of background knowledge: models that depart from the background knowledge are

less probable than models that match the background knowledge, and structurally

complex models are less probable than simpler models. Data fit may be viewed as

the probability of the data given the model, i.e., the probability that a user who

intended a particular interpretation presented the given argument.

The model selection problem is represented as a search problem, where a search

procedure generates alternative interpretations, and an evaluation function assesses

the merit of each interpretation. Since interpretations must be generated in real

time, we use an (almost) anytime algorithm [Dean and Boddy 1988; Horvitz, Suer-

mondt, and Cooper 1989] as our search procedure (Section 3). Our evaluation

function is a probabilistic formulation of key aspects of the MML principle (Sec-

tion 4).

This chapter is organized as follows. In the next section, we define an interpreta-

tion. Our algorithm for postulating interpretations is described in Section 3, and our

probabilistic formulation for assessing an interpretation in Section 4. In Section 5

we present results of our evaluations, followed by a discussion of the limitations

of our system, and advances required to support practical Bayesian argumentation

systems.

2 What is an Interpretation?

As mentioned in Section 1, we view the interpretation of an argument as a “self

explanation” — an account of the argument that makes sense to the addressee.

For bias, such an account is specified by a tuple {IG, SC,EE}, where IG is an

interpretation graph, SC is a supposition configuration, and EE are explanatory

extensions.4

• An interpretation graph is a subnet of the domain BN that connects the

propositions in an argument. This subnet bridges inferential leaps in the

argument, but the bridges so constructed may not be those intended by the

user.

nodes corresponding to the consequents in the user’s argument (GreenHasMeans, GreenHasMotive and

GreenMurderedBody) are italicized and oval-shaded.
4In our initial work, our interpretations contained only interpretation graphs [Zukerman and

George 2005]. Subsequent trials with users demonstrated the need for supposition configurations

and explanatory extensions [George, Zukerman, and Niemann 2007].
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• A supposition configuration is a set of beliefs attributed to the user to

account for the beliefs expressed in the argument. A supposition may maintain

a belief shared with the system (i.e., nothing is supposed), instantiate a node

in a BN to true or false, or uninstantiate (forget) a previously instantiated

node.

• Explanatory extensions consist of nodes and links that are added to an

interpretation graph in order to make the inferences in the interpretation more

acceptable to people (in early trials of the system, inferences were deemed

unacceptable if they contained increases in certainty or large jumps in belief

between the antecedents and the consequent). Contrary to suppositions, the

beliefs in explanatory extensions are shared by the user and the system.

To illustrate these components, consider the brief argument in Figure 2(a) in

relation to our murder mystery, and the three segments under it. Each segment,

which highlights one of these components, shows the Bayesian subnet corresponding

to the preferred interpretation and its textual rendition. Figure 2(b) shows the

interpretation graph alone (the node that connects between the propositions in

the argument appears in boldface italics); Figure 2(c) adds a supposition to the

interpretation (in a shaded box); and Figure 2(d) adds an explanatory extension

(white text in a dark box).

Let us now examine in more detail the three segments in Figure 2. Only one

proposition (GreenInGardenAtTimeOfDeath, in boldface italics) needs to be added to

connect the argument propositions in the domain BN, and create the interpretation

graph in Figure 2(b). Note that the beliefs in this interpretation graph (obtained

by Bayesian propagation of the system’s beliefs in the domain BN) do not match

those in the argument. The argument antecedent GreenInGardenAt11 yields a belief

of PossiblyNot in GreenInGardenAtTimeOfDeath, which in turn implies that Mr Green

ProbablyNot had the opportunity to kill Mr Body, and VeryProbablyNot committed

the murder. To address this problem, the system supposes that the user believes

that TimeOfDeath11 is true (instead of the system’s belief of Probably). Figure 2(c)

shows how this supposition (in a shaded box) fits in the interpretation graph, and

depicts its impact on the beliefs in the interpretation. These beliefs now match

those in the argument. However, now the last inference in the argument goes from

Mr Green Possibly having the opportunity to kill Mr Body to Mr Green PossiblyNot

murdering Mr Body — a “jump in belief” which people find unacceptable. This

problem is addressed by an explanatory extension that justifies the consequent on

the basis of beliefs presumably shared with the user.5 In this case, the selected

proposition is that Mr Green ProbablyNot had the means to murder Mr Body.

Figure 2(d) shows how this explanatory extension (white text in a dark box) fits in

5Note that the interpretation graph in Figure 2(a) also requires explanatory extensions for all

the inferences (to overcome the jump in belief in the first inference, and the increases in certainty

in the next two inferences). We omitted these explanatory extensions for clarity of exposition.
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Mr Green probably being in the garden at 11 implies that he possibly had

the opportunity to kill Mr Body, but he possibly did not murder Mr Body.

(a) Sample argument

GreenHadOpportunity
ProbablyNot

VeryProbablyNot
GreenMurderedBody

GreenInGardenAt
TimeOfDeath

PossiblyNot

GreenInGardenAt11
Probably

GreenHadOpportunity
Possibly

Probably
GreenInGardenAt11

GreenMurderedBody
PossiblyNot

TimeOfDeath
GreenInGardenAt

Probably

TRUE
TimeOfDeath11 GreenInGardenAt11

Probably

TimeOfDeath
GreenInGardenAt

Probably

GreenHadOpportunity
Possibly

GreenMurderedBody
PossiblyNot

TimeOfDeath11
TRUE

GreenHadMeans
ProbablyNot

Assuming the time of Assuming the time of

death was 11, death was 11,

Mr Green probably was in Mr Green probably being in Mr Green probably being in

the garden at 11, but the garden at 11 implies that the garden at 11 implies that

he possibly was not in he probably was in he probably was in

the garden at the time of the garden at the time of the garden at the time of

death. death. death.

Hence, he probably did not Hence, he possibly had Hence, he possibly had

have the opportunity to kill the opportunity to kill the opportunity to kill

Mr Body. Mr Body, Mr Body,

but Mr Green probably

did not have the means.

So he very probably did not but he possibly did not Therefore, he possibly did not

murder Mr Body. murder Mr Body. murder Mr Body.

(b) Interpretation graph (c) Interpretation graph + (d) Interpretation graph +

Supposition config. Supposition config. +

Explanatory extension

Figure 2. Interpretation graph, supposition configuration and explanatory extension

the interpretation graph. Note that explanatory extensions do not affect the beliefs

in an interpretation, as they simply state previously held beliefs.

3 Proposing Interpretations

The problem of finding the best interpretation is exponential, as there are many

candidates for each component of an interpretation, and complex interactions be-

tween supposition configurations and interpretation graphs. For example, making

a supposition could invalidate an otherwise sound line of reasoning.

In order to generate reasonable interpretations in real time, we apply Algorithm 1

— an (almost) anytime algorithm [Dean and Boddy 1988; Horvitz, Suermondt, and

Cooper 1989] that iteratively proposes interpretations until time runs out, i.e., until

the system has to act upon a preferred interpretation or show the user one or more

interpretations for validation [George, Zukerman, and Niemann 2007; Zukerman and

George 2005]. At present, our interaction with the user stops when interpretations
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Algorithm 1 Argument Interpretation

Require: User argument, domain knowledge BN

1: while there is time do

2: Propose a supposition configuration SCi — this can be null, an existing

supposition configuration or a new one.

3: Propose a new interpretation graph IGij under supposition configuration

SCi.

4: Propose explanatory extensions EEij for interpretation graph IGij under

supposition configuration SCi as necessary.

5: Estimate the probability of interpretation {SCi, IGij , EEij}.

6: Retain the top K most probable interpretations.

7: end while

8: Present the retained interpretations to the user for validation.

are presented for validation. However, in a complete system, a dialogue module

would have to determine a course of action based on the generated interpretations.

In each iteration, the algorithm proposes an interpretation which consists of

a supposition configuration, an interpretation graph and explanatory extensions

(Steps 2-4). It then estimates the probability of this interpretation (Step 5), and

retains the top K most probable interpretations (Step 6). The procedure for build-

ing interpretation graphs is described in [Zukerman and George 2005], and the

procedures for postulating supposition configurations and generating explanatory

extensions are described in [George, Zukerman, and Niemann 2007]. Here we outline

the general interpretation process and briefly describe these procedures.

Figure 3(a) depicts a portion of the search tree generated by our algorithm,

with multiple supposition configurations considered in the first level, multiple in-

terpretation graphs in the second level, and one set of explanatory extensions per

interpretation graph in the third level. A supposition configuration is proposed

first because suppositions change the beliefs in the domain and affect the manner

in which beliefs influence each other. This happens because suppositions are im-

plemented as instantiations or uninstantiations of nodes, which may block a path

in a BN (precluding the propagation of evidence through this path), or unblock a

previously blocked path. These interactions, which are difficult to predict until an

interpretation graph is complete, motivate the large number of alternatives consid-

ered in the first two levels of the search tree. In contrast, explanatory extensions

do not seem to have complex interactions with interpretation graphs. Hence, they

are generated deterministically in the third level of the search tree — only one set

of explanatory extensions is proposed for each interpretation.

Figure 3(b) shows a portion of the search tree instantiated for the short argument

at the root node of this tree: “Mr Green probably being in the garden at 11 implies

that Mr Green possibly had the opportunity to kill Mr Body”. In this example, the
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EE  −− explanatory extensions
IG  −− interpretation graph
SC −− supposition configuration

SC1 SC2 SC3

IG11 IG12

EE12

IG13 IG21 IG22

EE21 EE22

SC4

Argument (connected propositions)

(a) Search tree in progress

Mr Green probably being in the garden at 11 implies that
Mr Green possibly had the opportunity to kill Mr Body.

NONE
SC1:

GreenInGardenAt11

GreenInGardenAtTimeOfDeath

GreenHasOpportunity

[Probably]

[Possibly]

[Probably]

SC3:
GreenVisitBodyLastNight: TRUE

SC2:
TimeOfDeath11: TRUE

GreenInGardenAt11 [Probably]

GreenInGardenAtTimeOfDeath

GreenHasOpportunity

[EvenChance]

[EvenChance]

IG11 IG21

EE21: NONE[EvenChance]EE11: TimeOfDeath11 

(b) Sample search tree

[Probably]

[EvenChance]

[EvenChance]GreenHasOpportunity

GreenInGardenAtTimeOfDeath

GreenInGardenAt11
EE11: TimeOfDeath11 [EvenChance]

it is the best I could do given what I believe. 

Since it is probable that Mr Green was in the 

I know this is not quite what you said, but

garden at 11, and

time of death was 11

Mr Green was in the garden at the time of

death, which implies that it is even chance

that he had the opportunity to kill Mr Body.

it is even chance that the

, it is even chance that

(c) Interpretation (SC1, IG11, EE11)

GreenInGardenAtTimeOfDeath
[Probably]

Supposing that the time of death was 11 ,

Mr Green probably being in the garden

at 11 implies that he probably was in the

[Probably]GreenInGardenAt11

GreenHasOpportunity [Possibly]

garden at the time of death, which implies

that he possibly had the opportunity to

kill Mr Body.

SC2: TimeOfDeath11          TRUE

(d) Interpretation (SC2, IG21, EE21)

Figure 3. Argument interpretation process

user’s belief in the consequent of the argument differs from the belief obtained by

bias by means of Bayesian propagation from the evidence nodes in the domain BN.

As indicated above, bias attempts to address this problem by making suppositions

about the user’s beliefs. The first level of the sample search tree in Figure 3(b)

contains three supposition configurations SC1, SC2 and SC3. SC1 posits no beliefs

that differ from those in the domain BN, thereby retaining the mismatch between

the user’s belief in the consequent and bias’s belief; SC2 posits that the user believes

that the time of death is 11; and SC3 posits that the user believes that Mr Green

visited Mr Body last night.

The best interpretation graph for SC1 is IG11 (the evaluation of the goodness

of an interpretation is described in Section 4). Here the belief in the consequent

differs from that stated by the user, prompting the generation of a preface that

acknowledges this fact. In addition, the interpretation graph has a large jump in

belief (from Probably to EvenChance), which causes bias to add the mutually be-

lieved proposition TimeOfDeath11[EvenChance] as an explanatory extension. The
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resultant interpretation and its gloss appear in Figure 3(c). The best interpre-

tation graph for SC2 is IG21, which matches the beliefs in the user’s argument.

The resultant interpretation and its gloss appear in Figure 3(d). Note that both

(SC1, IG11, EE11) and (SC2, IG21, EE21) mention TimeOfDeath11, but in the first

interpretation this proposition is used as an explanatory extension (with a belief of

EvenChance obtained by Bayesian propagation), while in the second interpretation

it is used as a supposition (with a belief of true). Upon completion of this pro-

cess, bias retains the K most probable interpretations. In this example, the best

interpretation is {SC2, IG21, EE21}.

3.1 Generating individual components

Owing to the different ways in which supposition configurations, interpretation

graphs and explanatory extensions interact, we employ different techniques to gen-

erate each of these components: a dynamic priority queue is used to generate in-

terpretation graphs; supposition configurations are drawn from a static pool based

on a dynamic priority queue; and a deterministic algorithm is applied to generate

explanatory extensions.

Generating interpretation graphs

A priority queue is initialized with the smallest BN subnet that connects a user’s

statements. An iterative process is then followed, where in each iteration, the

candidate at the top of the queue is selected, its “children” are generated, and

their probability is calculated (Section 4). A child of an interpretation graph is

the smallest interpretation graph (BN subnet) that connects the argument proposi-

tions in a modified BN where an arc from the parent interpretation graph has been

removed. For example, in Figure 1(b), the smallest interpretation graph that con-

nects GreenInGardenAt11 with GreenHasOpportunity goes through GreenInGardenAtTime-

OfDeath. If we remove the arc between GreenInGardenAt11 and GreenInGardenAtTime-

OfDeath, bias generates an interpretation graph that goes from GreenInGardenAt11

to NbourHeardGreenBodyArgLastNight, GreenBodyArgueLastNight and GreenVisitBodyLast-

Night. The newly generated children are then slotted in the priority queue according

to their probability. This process yields good results for interpretation graphs, as

the order in which these graphs appear in the queue is indicative of their goodness

(graphs that appear earlier are usually better).

Generating supposition configurations

Supposition configurations are generated by considering the following options for

every node in the domain BN: (1) suppose nothing; (2) if the node is uninstanti-

ated then instantiate it to true and to false; and (3) if the node is instantiated,

uninstantiate it. The probability of each option is determined by its type (suppose

nothing, instantiate or uninstantiate), and by how close a supposed belief is to the

belief in the node in question, e.g., the probability of instantiating to true a node

with a belief of 0.8 is higher than the probability of instantiating it to false. A
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supposition configuration is generated by first taking the highest probability option

for all the nodes (which is the “suppose nothing” option), then taking the next

best option for each node in turn (leaving the others as they are), and so on. For

instance, in our domain BN, the second most probable option consists of setting

TimeOfDeath11 to true without changing the beliefs in the other nodes, next setting

just GreenVisitBodyLastNight to true, and so on.

This process is based on the closeness between the (new) supposed beliefs and

the system’s beliefs obtained by Bayesian propagation from evidence. However, it

does not take into account how well the system’s resultant beliefs in the argument

propositions match the user’s stated beliefs. Hence, we cannot simply rely on sup-

position configurations that are generated early in the interpretation process, as

later configurations may yield a better belief match overall. In order to be able to

access these later candidates and still achieve close to anytime performance, we cre-

ate a static pool of promising candidates at the start of the interpretation process.

This pool is populated by calling a priority queue of supposition configurations M

times as described above, and retaining the m best candidates (M ≫ m) on the

basis of both (1) how close are the supposed beliefs to the original beliefs in the BN,

and (2) how close are the system’s resultant beliefs in the argument propositions to

those stated by the user (these factors are respectively related to model complex-

ity and data fit, Section 4). During the interpretation process, a new supposition

configuration is probabilistically selected from this pool (the priority queue is never

recalled).

Generating explanatory extensions

We conducted surveys to assess the influence of the beliefs in the antecedents and

consequent of probabilistic inferences on the acceptability of these inferences. The

main insights from our surveys are that people object to two types of inferences:

(1) those which have more certainty regarding the consequent than regarding the

antecedents, e.g., Probably A ⇒ Very Probably C ; and (2) those where there is

a large change in certainty from the antecedents to the consequent, e.g., Probably

A ⇒ EvenChance C [Zukerman and George 2005]. In addition, among accept-

able inferences, people prefer BothSides inferences to SameSide inferences. Both-

Sides inferences have antecedents with beliefs on both “sides” of the belief in the

consequent (higher probability and lower), e.g., A[VeryProbably] & B[PossiblyNot]

⇒ C[Possibly]; while all the antecedents in SameSide inferences have beliefs on

“one side” of the belief in the consequent, e.g., A[VeryProbably] & B[Probably] ⇒

C[Possibly] [George, Zukerman, and Niemann 2007].6

Explanatory extensions are generated by considering the siblings of the an-

6Our surveys were restricted to direct inferences, where a high/low probability for an an-

tecedent yields a high/low probability for the consequent. We posit similar preferences for inverse

inferences, where a low/high probability antecedent yields a high/low probability consequent. The

work described in [George, Zukerman, and Niemann 2007] contains additional, more fine-grained

categories of inferences, but here we restrict our discussion to the main ones.
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tecedents of an unacceptable inference in an interpretation graph (these siblings

are not in the graph), and assigning each sibling to an inference category according

to its effect on the inference. The siblings in the most preferred inference cate-

gory are then added to the interpretation graph as an explanatory extension, e.g.,

if there is a set of siblings that turns an unacceptable inference into a BothSides

inference, then it is chosen. This simple approach yields interpretations that people

find acceptable (Section 5). However, further investigation is required to determine

whether different combinations of siblings would yield better results.

4 Probabilistic Formalism

As mentioned in Section 1, the Minimum Message Length (MML) principle [Wallace

2005] selects the simplest model that explains the observed data. In our case, the

data are the argument given by a user, and the candidate models are interpretations

of this argument. In addition to the data and the model, the MML principle requires

the specification of background knowledge — information shared by the system and

the user prior to the argument, e.g., domain knowledge (including shared beliefs)

and dialogue history.

We posit that the best interpretation is that with the highest posterior probabil-

ity.

IntBest = argmaxi=1,...,qPr(IGi, SCi, EEi|Argument,Background)

where q is the number of interpretations.

After assuming conditional independence between the argument and the back-

ground given an interpretation, this probability is represented as follows.

IntBest = argmaxi=1,...,q{Pr(IGi, SCi, EEi|Background) × (1)

Pr(Argument|IGi, SCi, EEi)}

The first factor, which is also known as model complexity, represents the prior

probability of the model, and the second factor represents data fit.

• The prior probability of a model or model complexity reflects how “easy”

it is to construct the model (interpretation) from background knowledge.

For instance, complex models (e.g., interpretations with larger interpretation

graphs) usually have a lower prior probability than simpler models.

• Data fit measures how similar the data (argument) are to the model (inter-

pretation). The closer the data are to the model, the higher the probability

of the data given the model (i.e., the probability that the user uttered the

argument when he or she intended the interpretation in question).

Both the argument and its interpretation contain structural information and be-

liefs. The beliefs are simply those stated in the argument and in the interpretation,

and suppositions made as part of the interpretation. The structural part of the
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argument comprises the stated propositions and the relationships between them,

while the structural part of the interpretation comprises the interpretation graph

and explanatory extensions. As stated above, smaller, simpler structures usually

have a higher prior probability than larger, more complex ones. However, the

simplest structure is not necessarily the best overall. For instance, the simplest

possible interpretation for any argument consists of a single proposition, but this

interpretation usually yields a poor data fit with most arguments. An increase in

structural complexity (and corresponding reduction in probability) may reduce the

discrepancy between the argument structure and the structure of the interpretation

graph, thereby improving data fit. If this improvement overcomes the reduction

in probability due to the higher model complexity, we obtain a higher-probability

interpretation overall.

The techniques employed to calculate the prior probability and data fit for both

types of information are outlined below (a detailed description appears in [George,

Zukerman, and Niemann 2007; Zukerman and George 2005]).

4.1 Prior probability of an interpretation:

Pr(IGi,SCi,EEi|Background)

As mentioned above, the prior probability of an interpretation reflects how well it

fits the background knowledge. In our case, the background knowledge comprises

(1) domain knowledge – the evidence in the BN (known to the user and the sys-

tem); (2) dialogue history – previously mentioned propositions; and (3) presentation

preferences – features of acceptable inferences (obtained from user surveys).

To estimate the prior probability of an interpretation, we separate the structure

of an interpretation and the beliefs in it (note that SCi comprises only beliefs, and

EEi comprises only structure).

Pr(IGi, SCi, EEi|Background) =

Pr(beliefs in IGi, struct of IGi, SCi, EEi|Background)

After applying the chain rule of probability, we obtain

Pr(IGi, SCi, EEi|Background) = (2)

Pr(beliefs in IGi|struct of IGi, SCi, EEi,Background) ×

Pr(EEi|struct of IGi, SCi,Background) ×

Pr(struct of IGi|SCi,Background) × Pr(SCi|Background)

The factors in Equation 2 are described below (we consider them from last to

first for clarity of exposition).

Supposition configuration: Pr(SCi|Background)

A supposition configuration addresses mismatches between the beliefs expressed

in an argument and those in an interpretation. It comprises beliefs attributed
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to the user in light of the beliefs shared with the system, which are encoded in

the background knowledge. Making suppositions has a lower probability than not

making suppositions (which has no discrepancy with the background knowledge).

However, as seen in the example in Figure 2(c), making a supposition that reduces

or eliminates the discrepancy between the beliefs stated in the argument and those

in the interpretation increases the data fit for beliefs.

Pr(SCi|Background) reflects how close the suppositions in a supposition config-

uration are to the current beliefs in the background knowledge. The closer they

are, the higher the probability of the supposition configuration. Assuming condi-

tional independence between the supposition for each node given the background

knowledge yields

Pr(SCi|Background) =
N
∏

j=1

Pr(sji|BelBkgrd(j))

where N is the number of nodes in the BN, sij is the supposition made for node j

in supposition configuration SCi, and BelBkgrd(j) is the belief in node j according

to the background knowledge. Pr(sji|BelBkgrd(j)) is estimated by means of the

heuristic function H.

Pr(sji|BelBkgrd(j)) = H(Type(sji),Bel(sji)|BelBkgrd(j))

where Type(sji) is the type of supposition sji (supposing nothing, supposing evi-

dence, or forgetting evidence), and Bel(sji) is the value of the supposition (true or

false when evidence is supposed for node j; and the belief in node j obtained from

belief propagation in the BN when evidence is forgotten for node j). Specifically,

we posit that supposing nothing has the highest probability, and supposing the

truth or falsehood of an inferred value is more probable than forgetting seen evi-

dence [George, Zukerman, and Niemann 2007]. In addition, strongly believed (high

probability) propositions are more likely to be supposed true than weakly believed

(lower probability) propositions, and weakly believed propositions are more likely

to be supposed false than strongly believed propositions [Lichtenstein, Fischhoff,

and Phillips 1982].

Structure of an interpretation: Pr(struct of IGi|SCi,Background)

Pr(struct of IGi|SCi,Background) is the probability of selecting the nodes and arcs

in IGi from the domain BN (which is part of the background knowledge). The

calculation of this probability is described in detail in [Zukerman and George 2005].

In brief, the prior probability of the structure of an interpretation graph is estimated

using the combinatorial notion of selecting the nodes and arcs in the graph from

those in the domain BN. To implement this idea, we specify an interpretation graph

IGi by indicating the number of nodes in it (ni), the number of arcs (ai), and the

actual nodes and arcs in it (Nodesi and Arcsi respectively). Thus, the probability

of the structure of IGi in the context of the domain BN (composed of A arcs and
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N nodes) is defined as follows.

Pr(struct IGi|Background) = Pr(Arcsi,Nodesi, ai, ni|Background)

Applying the chain rule of probability yields

Pr(struct IGi|Background) = Pr(Arcsi|Nodesi, ai, ni,Background) × (3)

Pr(ai|Nodesi, ni,Background) ×

Pr(Nodesi|ni,Background) × Pr(ni|Background)

These probabilities are calculated as follows.

• Pr(ni|Background) is the probability of having ni nodes in an interpretation

graph. We model this probability by means of a truncated Poisson distribu-

tion, Poisson(β), where β is the average number of nodes in an interpretation

(obtained from user trials).

• Pr(Nodesi|ni,Background) is the probability of selecting the particular ni

nodes in Nodesi from the N nodes in the domain BN. The simplest calculation

assumes that all nodes in an interpretation graph have an equal probability

of being selected, i.e., there are
(

N
ni

)

ways to select these nodes. This calcula-

tion generally prefers small models to larger ones.7 In [Zukerman and George

2005], we considered salience — obtained from dialogue history, which is part

of the background knowledge — to moderate the probability of selecting a

node. According to this scheme, recently mentioned nodes are more salient

(and have a higher probability of being selected) than nodes mentioned less

recently.

• Pr(ai|Nodesi, ni,Background) is the probability of having ai arcs in an in-

terpretation graph. The number of arcs in an interpretation is between the

minimum number of arcs needed to connect ni nodes (ni − 1), and the actual

number of arcs in the domain BN that connect the nodes in Nodesi, denoted

vai. We model the probability of ai by means of a uniform distribution be-

tween ni − 1 and vai.

• Pr(Arcsi|Nodesi, ai, ni,Background) is the probability of selecting the partic-

ular ai arcs in Arcsi from the vai arcs in the domain BN that connect the

nodes in IGi. Assuming an equiprobable distribution, there are
(

vai

ai

)

ways to

select these arcs.

Structure of an explanatory extension:

Pr(EEi|struct of IGi,SCi,Background)

Explanatory extensions are added to an interpretation graph to accommodate peo-

ple’s expectations regarding the relationship between the antecedents of an inference

7In the rare cases where the number of propositions in an interpretation exceeds N/2, smaller

models do not yield lower probabilities.

283



Ingrid Zukerman

and its consequent (rather than to connect between the propositions in an argu-

ment). These expectations, which are part of the background knowledge, were

obtained from our user studies. Explanatory extensions have no belief component,

as the nodes in them do not provide additional evidence, and hence do not affect

the beliefs in a BN.

Interpretations with explanatory extensions are more complex, and hence have a

lower probability, than interpretations without such extensions. At the same time,

as shown in the example in Figure 2(d), an explanatory extension that overcomes

an expectation violation regarding the consequent of an inference improves the

acceptance of the interpretation, thereby increasing the probability of the model.

According to our surveys, explanatory extensions that yield BothSides inferences

are preferred to those that yield SameSide inferences. In addition, as for interpreta-

tion graphs, shorter explanatory extensions are preferred to longer ones. Thus, our

estimate of the structural probability of explanatory extensions balances the size

of explanatory extensions (number of propositions) against their type (inference

category), as follows.8

Pr(struct of EEi|struct of IGi, SCi,Background) =
NFi
∏

j=1

Pr(InfCategory(EEij), np(EEij)|struct of IGi, SCi,Background)

where NFi is the number of inferences in IGi, InfCategory(EEij) is the category of

the inference obtained by adding explanatory extension EEij to the jth inference

in IGi, and np(EEij) is the number of propositions in EEij .

Applying the chain rule of probability yields

Pr(struct of EEi|struct of IGi, SCi,Background) = (4)
NFi
∏

j=1

{

Pr(InfCategory(EEij)|np(EEij), struct of IGi, SCi,Background)×

Pr(np(EEij)|struct of IGi, SCi,Background)

}

These probabilities are calculated as follows.

• Pr(InfCategory(EEij)|np(EEij), struct of IGi, SCi,Background) is estimated

using a heuristic function that represents people’s preferences: an explanatory

extension that yields a BothSides inference has a higher probability than an

explanatory extension that yields a SameSide inference.

• As for interpretation graphs, Pr(np(EEij)|struct of IGi, SCi,Background) is

estimated by means of a truncated Poisson distribution, Poisson(µ), where µ

is the average number of nodes in an explanatory extension.

8We do not estimate the probability of including particular nodes in an explanatory exten-

sion, because the nodes in an explanatory extension are completely determined by their inference

category.
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Beliefs in an interpretation:

Pr(beliefs in IGi|struct of IGi,SCi,EEi,Background)

The beliefs in an interpretation IGi are estimated by performing Bayesian propa-

gation from the beliefs in the domain BN and the suppositions. This is an algo-

rithmic process, hence the probability of obtaining the beliefs in IGi is 1. However,

the background knowledge has another aspect, viz users’ expectations regarding

inferred beliefs. In our preliminary trials, users objected to inferences that had

increases in certainty or large changes in belief from their antecedents to their con-

sequent [Zukerman and George 2005].

Thus, interpretations that contain objectionable inferences have a lower prob-

ability than interpretations where the beliefs in the consequents of the inferences

fall within an “acceptable range” of the beliefs in their antecedents. We use the

categories of acceptable inferences obtained from our surveys to estimate the prob-

ability of each inference in an interpretation — these categories define an acceptable

range of beliefs for the consequent of an inference given its antecedents. For ex-

ample, an inference with antecedents A[Probably] & B[Possibly] has the acceptable

belief range {Probably, Possibly, EvenChance} for its consequent. The probability

of an inference whose consequent falls within the acceptable range is higher than

the probability of an inference whose consequent falls outside this range. In addi-

tion, we extrapolate from the results of our surveys, and posit that the probability

of an unacceptable inference decreases as the distance of its consequent from the

acceptable range increases. We use the Zipf distribution to model the probability of

an inference, where the “rank” is the distance between the belief in the consequent

and the acceptable belief range.

As mentioned above, explanatory extensions are generated to satisfy people’s

expectations about the relationship between the beliefs in the antecedents of infer-

ences and the belief in their consequent (i.e., they bring the consequent into the

acceptable range of an inference, or at least closer to this range). Thus, they in-

crease the belief probability of an interpretation at the expense of its structural

probability.

4.2 Data fit between argument and interpretation:

Pr(Argument|IGi,SCi,EEi)

As mentioned above, data fit reflects the probability that a user who intended

a particular interpretation generated the given argument. This probability is a

function of the similarity between the argument and the interpretation: the higher

this similarity, the higher the probability of the argument given the interpretation.

As for prior probabilities, we consider structural similarity and belief similarity.

Pr(Argument|IGi, SCi, EEi) = Pr(struct of Argument, beliefs in Argument |

struct of IGi, beliefs in IGi, SCi, EEi)

We assume that given an interpretation graph, the argument is independent of
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the suppositions and explanatory extensions, which yields

Pr(Argument|IGi, SCi, EEi) = Pr(struct of Argument|struct of IGi) × (5)

Pr(beliefs in Argument|beliefs in IGi)

Structure of the argument given the structure of an interpretation:

Pr(struct of Argument|struct of IGi)

The estimation of the structural similarity between an argument and an interpre-

tation is based on the idea that the nodes and arcs in the argument are selected

from those in the interpretation graph. This idea is similar to that used to calcu-

late the prior probability of the structure of the interpretation graph, where the

nodes and arcs in IGi were selected from those in the domain BN (Section 4.1).

However, in this case there is a complicating factor, since as seen in our examples,

a user may mention implications (arcs) which are absent from the interpretation

graph (our web interface prevents the inclusion of nodes that do not appear in

the domain BN). Hence, the calculation of Pr(struct of Argument|struct of IGi) is

similar to the calculation of Pr(struct of IGi|Background) in Equation 3, but it dis-

tinguishes between arcs in Argument that are selected from IGi and arcs that are

newly inserted.

Beliefs in the argument given the beliefs in an interpretation:

Pr(beliefs in Argument|beliefs in IGi)

The closer the beliefs stated in an argument are to the beliefs in an interpretation,

the higher the probability that the user presented the argument when he or she

intended this interpretation. Thus, suppositions that reduce belief discrepancies

between the beliefs in an argument and those in an interpretation improve data

fit (at the expense of the prior probability of the interpretation, Section 4.1). We

employ the Zipf distribution to estimate the probability that the beliefs in an inter-

pretation were intended in the argument, where the “rank” is the difference between

the corresponding beliefs.

In a final step, we inspect the interpretation graph to determine whether it has

blocked paths. The presence of blocked paths in an interpretation graph suggests

that the lines of reasoning in the interpretation do not match those in the argument.

Thus, if blocked paths are found, the probability of the belief match between the

interpretation graph and the argument is reduced.

5 Evaluation

Our evaluation was designed to determine whether our approach to argument in-

terpretation by a Bayesian intelligence yields interpretations that are acceptable to

users. However, our target users are not those who constructed the argument, but

those who read the argument. Specifically, our evaluation determines whether peo-

ple reading someone else’s argument find bias’s highest-probability interpretations

acceptable (and better than other options).
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We evaluated the components of an interpretation separately in the order in which

they were developed: first interpretation graphs, next supposition configurations,

and finally explanatory extensions. Our evaluations relied on scenarios based on

BNs that were similar to that in Figure 1(b). Our participants were staff and

students in the Faculty of Information Technology at Monash University and people

known to the project team members (the participants exhibited different levels of

computer literacy).

Interpretation graphs. We constructed four evaluation sets, where each set con-

tained an argument (the argument in Figure 1(a), and three short arguments similar

to that in Figure 2(a)) and bias’s preferred interpretations.9 Between 17-25 partic-

ipants read each argument and the interpretations. They were then asked to give

each interpretation a score between 1 (Very UNreasonable) and 5 (Very Reason-

able), and to comment on aspects of the interpretations that they liked or disliked.

People generally found our interpretations acceptable, with average scores between

3.35 and 4. The lower scores were attributed to three main problems: (1) partici-

pants’ disagreement with the systems’ domain-related inferences, (2) discrepancies

between the argument’s beliefs in the consequents of inferences and the system’s

beliefs, and (3) unacceptable inferences. The first problem is discussed in Section 6,

and the other two problems are addressed by supposition configurations and ex-

planatory extensions respectively.

Supposition configurations. We constructed four scenarios, where each scenario

had two versions of an argument: (1) an original version, whose beliefs were obtained

by Bayesian propagation in the domain BN; and (2) a version given by a hypothetical

user, whose conclusion did not match that of the original version (bias had to

make a supposition in order to account for the beliefs in the user’s argument). 34

participants read both arguments, and were then asked whether it was reasonable

to make suppositions about the user’s beliefs in order to make sense of his or her

argument. To answer this question, they could (1) select one of four suppositions

we showed them (which included bias’s top-ranked supposition and other highly

ranked suppositions), (2) include an alternative supposition of their choice (from

bias’s knowledge base or of their own devising), or (3) indicate that no suppositions

were required. bias’s preferred supposition was consistently ranked first or second

by our trial subjects, with its average rank being the lowest (best) among all the

options. In addition, very few respondents felt that no suppositions were warranted.

Explanatory extensions. We constructed two evaluation sets, each consisting

of a short argument and two alternative interpretations — one with explanatory

extensions and one without. These sets were shown to 20 participants. The majority

of the participants preferred the interpretations with explanatory extensions. At

9The arguments were generated by project team members. We also conducted experiments

were people not associated with the project entered arguments, but interface problems affected

the evaluation (Section 6.4).
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the same time, about half of the participants felt that the extended interpretations

were too verbose. This problem may be partially attributed to the presentation

of the nodes as direct renditions of their propositional content, which makes the

interpretations appear repetitive in style. The generation of stylistically diverse text

is the subject of active research in Natural Language Generation, e.g., [Gardent

and Kow 2005].

6 Discussion

This chapter offers a probabilistic approach to argument interpretation by a system

that uses a BN as its knowledge representation and reasoning formalism. An inter-

pretation of a user’s argument is represented as beliefs in the BN (suppositions) and

a Bayesian subnet (interpretation graph and explanatory extensions). Our evalu-

ations show that people found bias’s interpretations generally acceptable, and its

suppositions and explanatory extensions both necessary and reasonable.

Our approach casts the generation of an interpretation as a model selection task,

and employs an (almost) anytime algorithm to generate candidate interpretations.

Our model selection approach balances the probability of the model in light of

background knowledge against its data fit (similarity between the model and the

data). In other words, our formalism balances the cost of adding extra elements

to an interpretation (e.g., suppositions) against the benefits obtained from these

elements. The calculations that implement this idea are based on three main ele-

ments: (1) combinatoric principles for extracting an interpretation graph from the

domain BN, and an argument from an interpretation; (2) known distributions, such

as Poisson for the number of nodes in an interpretation graph or explanatory ex-

tension, and Zipf for modeling discrepancies in belief; and (3) manually-generated

distributions for suppositions and for preferences regarding different types of in-

ferences. The parameterization of these distributions requires specific information.

For instance, the mean of the Poisson distribution, which determines the “penalty”

for having too many nodes in an interpretation or explanatory extension, must be

empirically determined. Similarly, the hand-tailored distributions for supposition

configurations and explanatory extensions require experimental fine-tuning or user

studies to gather these probabilities.

The applicability of our approach is mainly affected by our assumption that the

nodes in the domain BN are binary. Other factors to be considered when applying

our formalism are: the characteristics of the domain, the expressive power of BNs

vis a vis human reasoning, and the ability of users to interact with the system.

6.1 Binary node BNs

The assumption that the nodes in the domain BN are binary simplifies the estima-

tion of the probability of suppositions and explanatory extensions. The relaxation

of this assumption to multi-valued nodes would increase the search space for sup-

positions, and necessitate a generalization of the heuristics used to calculate the
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probability of a supposition (Section 4.1). The incorporation of multi-valued nodes

would also require a generalization of the procedure for generating explanatory ex-

tensions and estimating their probability (Sections 3.1 and 4.1 respectively). This in

turn would necessitate user studies to determine people’s presentation preferences

and expectations about inferences involving multi-valued nodes. For instance, peo-

ple may prefer such inferences to be presented in terms of a particular value of a

node or in terms of an aggregate of several values; and different models of expecta-

tions may be required for nodes with ordinal values (e.g., low, medium and high)

and nodes with scalar values (e.g., colours). Further, as indicated in Section 6.2,

these preferences and expectations are domain dependent.

6.2 Domain of argumentation

We selected a “commonsense” domain both for ease of design and to be able to

conduct trials with non-experts. The nodes and arcs in the domain BN and the

values in the Conditional Probability Tables (CPTs) were devised by the project

team members. A consequence of working in a commonsense domain is that people,

rather than computer systems, are the domain experts. As a result, users may

postulate ideas of which the system is unaware (e.g., Mr Green and Ms Scarlet were

in cahoots), and their inferences may validly differ from those of the system. For

instance, according to bias, Mr Green and Mr Body being enemies implies that Mr

Green very probably has a motive to kill Mr Body — an inference that several users

found objectionable.

To deal with the first of these issues, an argumentation system can (1) restrict

the user to use only the propositions known to the system, (2) ignore the user’s

propositions that are not known to the system, or (3) try to learn the import of

new propositions. Our experience with bias shows that the first solution is frus-

trating for users, as people did not like having to shoehorn their reasoning into the

propositions known to the system. The second solution leads to only a partial under-

standing of the user’s intentions, and hence potentially to a mis-directed discussion.

The third solution, which also applies to the synchronization of inference patterns

between the user and the system, is clearly the most sound. However, incorporating

new propositions into a BN, and modifying inference patterns, have significant im-

plications with respect to the system’s reasoning, and present non-trivial interface

design problems. These observations, together with the fact that at present the

strength of computer systems is their ability to perform expert reasoning, indicate

that a fruitful domain for the incorporation of argumentation capabilities into BNs

is an expert domain, where the system’s knowledge generally exceeds that of users.

Our procedures for generating interpretation graphs and supposition configura-

tions are domain independent. However, the generation of explanatory extensions

is domain dependent. This is because explanatory extensions are generated to ex-

plain surprising outcomes, and what is surprising often depends on the domain.

Further, in some domains what matters is the increase or reduction in probability,
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rather than its absolute value, e.g., an increase from 6% to 10% in the probability

of a patient having cancer may require an explanatory extension, even though both

probabilities belong to the VeryProbablyNot belief category.

6.3 BN reasoning and human reasoning

Our approach assumes that the underlying BN represents only ground predicates,

while human reasoning often involves general statements (quantified predicates).

Getoor et al. [Getoor, Friedman, Koller, and Taskar 2001] and Taskar et al. [Taskar,

Abbeel, and Koller 2002] studied probabilistic relational models, which combine ad-

vantages of relational logic and BNs, and can generalize over a variety of situations.

This is a promising representation for the interpretation of arguments that include

quantified predicates.

Belief propagation in BNs differs from human belief propagation when users em-

ploy different inference patterns from those in the BN, and when users do not engage

in normative probabilistic reasoning. As mentioned above, the synchronization of

inference patterns between the user and the system is a challenging task which falls

under the purview of probabilistic reasoning and human-computer interfaces.

People’s non-normative probabilistic reasoning is partly attributed to reasoning

fallacies [Evans, Barston, and Pollard 1983; Lichtenstein, Fischhoff, and Phillips

1982; Tversky and Kahneman 1982]. In previous research, we augmented a Bayesian

argument generation system with a (rather coarse) model of certain types of human

reasoning fallacies [Korb, McConachy, and Zukerman 1997]. An interesting avenue

for future research consists of developing finer, domain dependent models of human

reasoning fallacies, and incorporating them into our interpretation process.

6.4 Argumentation interface

bias requires users to construct their arguments using only propositions known to

the system, and assumes that the arguments are in premise-to-goal form. As men-

tioned in Section 6.2, users disliked having to shoehorn their ideas into a restricted

set of propositions. An alternative approach, which we considered in [Zukerman,

George, and Wen 2003], allowed users to provide Natural Language statements,

and then mapped these statements to propositions in the system’s knowledge base.

However, such a process runs the risk of producing an erroneous mapping. Hence,

this process should be able to determine when a mapping is questionable, and handle

this situation appropriately.

In addition to a premise-to-goal argumentation strategy, people employ strate-

gies such as reductio-ad-absurdum, inference to best explanation, and reasoning by

cases [Zukerman, McConachy, and Korb 2000]. These strategies must be identified

prior to rendering an argument into an interpretation graph. An interesting ap-

proach for addressing this problem involves using a graphical interface to help users

structure an argument [van Gelder 2005], while allowing them to express proposi-

tions in Natural Language.
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