
Part I: Heuristics

Table of Contents

List of Contributors . ix

Preface . xi

I. Heuristics . 1

1. Heuristic Search for Planning Under Uncertainty

Blai Bonet and Eric A. Hansen . 3

2. Heuristics, Planning, and Cognition

Hector Geffner . 23

3. Mechanical Generation of Admissible Heuristics

Robert Holte, Jonathan Schaeffer, and Ariel Felner . 43

4. Space Complexity of Combinatorial Search

Richard E. Korf . 53

5. Paranoia Versus Overconfidence in Imperfect-Information

Games

Austin Parker, Dana Nau and V.S. Subrahmanian . 63

6. Heuristic Search: Pearl’s Significance From

a Personal Perspective

Ira Pohl . 89

II. Probability . 103

7. Inference in Bayesian Networks: A Historical Perspective

Adnan Darwiche . 105

8. Graphical Models of the Visual Cortex

Thomas Dean . 121

9. On the Power of Belief Propagation: A Constraint

Propagation Perspective

Rina Dechter, Bozhena Bidyuk, Robert Mateescu, and Emma Rollon 143

10. Bayesian Nonparametric Learning: Expressive Priors

for Intelligent Systems

Michael I. Jordan . 167

v

1

Heuristic Search for Planning under

Uncertainty

Blai Bonet and Eric A. Hansen

1 Introduction

The artificial intelligence (AI) subfields of heuristic search and automated planning

are closely related, with planning problems often providing a stimulus for developing

and testing search algorithms. Classical approaches to heuristic search and planning

assume a deterministic model of sequential decision making in which a solution

takes the form of a sequence of actions that transforms a start state into a goal

state. The effectiveness of heuristic search for classical planning is illustrated by

the results of the planning competitions organized by the AI planning community,

where optimal planners based on A*, and satisficing planners based on variations

of best-first search and enforced hill climbing, have performed as well or better

than many other planners in the deterministic track of the competition [Edelkamp,

Hoffmann, and Littman 2004; Gerevini, Bonet, and Givan 2006].

Beginning in the 1990’s, AI researchers became increasingly interested in the

problem of planning under uncertainty and adopted Markov decision theory as a

framework for formulating and solving such problems [Boutilier, Dean, and Hanks

1999]. The traditional dynamic programming approach to solving Markov decision

problems (MDPs) [Bertsekas 1995; Puterman 1994] can be viewed as a form of

“blind” or uninformed search. Accordingly, several AI researchers considered how to

generalize well-known heuristic-search techniques in order to develop more efficient

planning algorithms for MDPs. The advantage of heuristic search over traditional,

blind dynamic programming is that it uses an admissible heuristic and intelligent

search control to focus computation on solving the problem for relevant states, given

a start state and goal states, without considering irrelevant or unreachable parts of

the state space.

In this article, we present an overview of research on heuristic search for prob-

lems of sequential decision making where state transitions are stochastic instead

of deterministic, an important class of planning problems that corresponds to the

most basic kind of Markov decision process, called a fully-observable Markov de-

cision process. For this special case of the problem of planning under uncertainty,

a fairly mature theory of heuristic search has emerged over the past decade and a

half. In reviewing this work, we focus on two key issues: how to generalize classic

heuristic search algorithms in order to solve planning problems with stochastic state

3

Blai Bonet and Eric A. Hansen

transitions, and how to compute admissible heuristics for these search problems.

Judea Pearl’s classic book, Heuristics, provides a comprehensive overview of

heuristic search theory as of its publication date in 1984. One of our goals in

this article is to show that the twin themes of that book, admissible heuristics and

intelligent search control, have been central issues in the subsequent development

of a class of algorithms for problems of planning under uncertainty. In this short

survey, we rely on references to the literature for many of the details of the al-

gorithms we review, including proofs of their properties and experimental results.

Our objective is to provide a high-level overview that identifies the key ideas and

contributions in the field and to show how the new search algorithms for MDPs

relate to the classical search algorithms covered in Pearl’s book.

2 Planning with uncertain state transitions

Many planning problems can be modeled by a set of states, S, that includes an

initial state sinit ∈ S and a set of goal states, G ⊆ S, and a finite set of applicable

actions, A(s) ⊆ A, for each non-goal state s ∈ S\G, where each action incurs

a positive cost c(s, a). In a classical, deterministic planning problem, an action

a ∈ A(s) causes a deterministic transition, where f(s, a) is the next state after

applying action a in state s. The objective of a planner is to find a sequence of

actions, 〈a0, a1, . . . , an〉, that when applied to the initial state results in a trajectory,

〈s0 = sinit, a0, s1, a1, . . . , an, sn+1〉, that ends in a goal state, sn+1 ∈ G, where

ai ∈ A(si) and si+1 = f(si, ai). Such a plan is optimal if its cost,
∑n

i=0 c(si, ai), is

minimum among all possible plans that achieve a goal.

To model the uncertain effects of actions, we consider a generalization of this

model in which the deterministic transition function is replaced by a stochastic

transition function, p(·|s, a), where p(s′|s, a) is the probability of making a transition

to state s′ after taking action a in state s. In general, the cost of an action depends

on the successor state; but usually, it is sufficient to consider the expected cost of

an action, denoted c(s, a).

With this simple change of the transition function, the planning problem is

changed from a deterministic shortest-path problem to a stochastic shortest-path

problem. As defined by Bertsekas and Tsitsiklis [Bertsekas and Tsitsiklis 1991], a

stochastic shortest-path problem can have actions that incur positive or negative

costs. But several subsequent researchers, including Barto et al. [Barto, Bradtke,

and Singh 1995], assume that a stochastic shortest-path problem only has actions

that incur positive costs. The latter assumption is in keeping with the model of

planning problems we sketched above, as well as classical models of heuristic search,

and so we ordinarily assume that the actions of a stochastic shortest-path problem

incur positive costs only. In case where we allow actions to have both positive and

negative costs, we make this clear.

Defined in either way, a stochastic shortest-path problem is a special case of a

fully-observable infinite-horizon Markov decision process (MDP). There are several

4

Heuristic Search for Planning under Uncertainty

MDP models with different optimization criteria, and almost all of the algorithms

and results we review in this article apply to other MDPs. The most widely-used

model in the AI community is the discounted infinite-horizon MDP. In this model,

there are rewards instead of costs, r(s, a) denotes the expected reward for taking

action a in state s, which can be positive or negative, γ ∈ (0, 1) denotes a dis-

count factor, and the objective is to maximize expected total discounted reward

over an infinite horizon. Interestingly, any discounted infinite-horizon MDP can be

reduced to an equivalent stochastic shortest-path problem [Bertsekas 1995; Bonet

and Geffner 2009]. Thus, we do not sacrifice any generality by focusing our attention

on stochastic shortest-path problems.

Adoption of a stochastic transition model has important consequences for the

structure of a plan. A plan no longer takes the simple form of a sequence of actions.

Instead, it is typically represented by a mapping from states to actions, π : S → A,

called a policy in the literature on MDPs. (For the class of problems we consider,

where the horizon is infinite, a planner only needs to consider stationary policies,

which are policies that are not indexed by time.) Note that this representation of

a plan assumes closed-loop plan execution instead of open-loop plan execution. It

also assumes that an agent always knows the current state of the system; this is

what is meant by saying the MDP is fully observable.

A stochastic shortest-path problem is solved by finding a policy that reaches a

goal state with probability one after a finite number of steps, beginning from any

other state. Such a policy is called a proper policy. Given a stochastic transition

model, it is not possible to bound the number of steps of plan execution it takes to

achieve a goal, even for proper policies. Thus, a stochastic shortest-path problem

is an infinite-horizon MDP. In the infinite-horizon framework, the termination of a

plan upon reaching a goal state is modeled by specifying that goal states are zero-

cost absorbing states, which means that for all s ∈ G and a ∈ A, c(s, a) = 0 and

p(s|a, s) = 1. Equivalently, we can assume that no actions are applicable in a goal

state. To reflect the fact that plan execution terminates after a finite, but uncertain

and unbounded, number of steps, this kind of infinite-horizon MDP is also called an

indefinite-horizon MDP. Note that when the state set is finite and the number of

steps of plan execution is unbounded, the same state can be visited more than once

during execution of a policy. Thus, a policy specifies not only conditional behavior,

but cyclic behavior too.

For a process that is controlled by a fixed policy π, stochastic trajectories be-

ginning from state s0, of the form 〈s0, π0(s0), s1, π1(s1), . . .〉, are generated with

probability
∏

∞

i=0 p(si+1|si, π(si)). These probabilities uniquely define a probability

measure Pπ on the set of trajectories from which the costs incurred by π can be

calculated. Indeed, the cost (or value) of π for state s is the expected cost of these

5

Blai Bonet and Eric A. Hansen

trajectories when s0 = s, defined as

Vπ(s) = Eπ

[∞
∑

k=0

c(Xk, π(Xk))

∣

∣

∣

∣

X0 = s

]

,

where the Xk’s are random variables that denote states of the system at different

time points, distributed according to Pπ, and where Eπ is the expectation with

respect to Pπ. The function Vπ is called the state evaluation function, or simply

the value function, for policy π. For a stochastic shortest-path problem, it is well-

defined as long as π is a proper policy, and Vπ(s) equals the expected cost to reach

a goal state from state s when using policy π.

A policy π for a stochastic shortest-path problem is optimal if its value function

satisfies the Bellman optimality equation:

V ∗(s) =

{

0 if s ∈ G,

mina∈A(s)

{

c(s, a) +
∑

s′∈S p(s′|s, a)V ∗(s′)
}

otherwise.
(1)

The unique solution of this functional equation, denoted V ∗, is the optimal value

function; hence, all optimal policies have the same value function. Given the optimal

value function, one can recover an optimal policy by acting greedily with respect to

the value function. A greedy policy with respect to a value function V is defined as

follows:

πV (s) = argmin
a∈A(s)

{

c(s, a) +
∑

s′∈S

p(s′|s, a)V (s′)

}

.

Thus, the problem of finding an optimal policy for an MDP is reduced to the

problem of solving the optimality equation.

There are two basic dynamic programming approaches for solving Equation (1):

value iteration and policy iteration. The value iteration approach is used by all

of the heuristic search algorithms we consider, and so we review it here. Starting

with an initial value function V0, satisfying V0(s) = 0 for s ∈ G, value iteration

computes a sequence of updated value functions by performing, at each iteration,

the following backup for all states s ∈ S:

Vn+1(s) := min
a∈A(s)

{

c(s, a) +
∑

s′∈S

p(s′|s, a)Vn(s′)

}

. (2)

For a stochastic shortest-path problem, the sequence of value functions computed by

value iteration is guaranteed to converge to an optimal value function if the following

conditions are satisfied: (i) a proper policy exists, and (ii) any policy that is not

proper has infinite cost for some state. (Note that if all action costs are positive,

any policy that is not proper has infinite cost for some state.) The algorithm

described by Equation (2) is called synchronous value iteration since all state values

are updated in parallel. A variation of this algorithm, called asynchronous value

iteration, updates only a subset of states at each iteration. As long as every state is

guaranteed to be updated infinitely often over time, convergence is still guaranteed.

6

Heuristic Search for Planning under Uncertainty

The convergence of value iteration is asymptotic. In practice, value iteration is

stopped when the residuals, |Vn+1(s) − Vn(s)|, for all states are sufficiently small.

The Bellman residual, maxs∈S |Vn+1(s) − Vn(s)|, can be used to bound the subop-

timality of a policy or value function for discounted MDPs. For stochastic shortest-

path problems, however, suboptimality bounds are not generally possible, as shown

by Bertsekas and Tsitsiklis [Bertsekas and Tsitsiklis 1991], yet there is always a

sufficiently small (positive) Bellman residual that yields an optimal solution.

3 Heuristic search algorithms

Traditional dynamic programming algorithms for MDPs, such as value iteration

and policy iteration, solve the optimization problem for the entire state space. By

contrast, heuristic search algorithms focus on finding a solution for just the states

that are reachable from the start state by following an optimal policy, and use

an admissible heuristic to “prune” large parts of the remaining state space. For

deterministic shortest-path problems, the effectiveness of heuristic search is well-

understood, especially in the AI community. For example, dynamic programming

algorithms such as Dijkstra’s algorithm and the Bellman-Ford algorithm compute

all single-source shortest paths, solving the problem for every possible starting state,

whereas heuristic search algorithms such as A* and IDA* compute a shortest path

from a particular start state to a goal state, usually considering just a fraction of

the entire state space. This is the method used to optimally solve problems such

as the Rubik’s Cube from arbitrary initial configurations, when the enormous size

of the state space, which is 4.3 × 1019 states for Rubik’s Cube [Korf 1997], renders

exhaustive methods inapplicable.

In the following, we show that the strategy of heuristic search can also be effective

for stochastic shortest-path problems, and, in general, MDPs. The strategy is to

solve the problem only for states that are reachable from the start state by following

an optimal policy. This means that a policy found by heuristic search is a partial

function from the state space to the action space, sometimes called a partial policy.

A policy π is said to be closed with respect to state s if it is defined over all states

that can be reached from s by following policy π, and it is said to be closed with

respect to the initial state (or just closed) if it is closed with respect to sinit. Thus,

the objective of a heuristic search algorithm for MDPs is to find a partial policy

that is closed with respect to the initial state and optimal. The states that are

reachable from the start state by following an optimal policy are sometimes called

the relevant states of the problem. In solving a stochastic shortest-path problem for

a given initial state, it is not necessarily the case that the set of relevant states is

much smaller than the entire state space, nor is it always easy to estimate its size as a

fraction of the state space. But when the set of relevant states is much smaller than

the entire state set, the heuristic search approach can have a substantial advantage,

similar to the advantage heuristic search has over traditional dynamic programming

algorithms in solving deterministic shortest-path problems.

7

Blai Bonet and Eric A. Hansen

Algorithm 1 RTDP with admissible heuristic h.

Let V be the empty hash table whose entries V (s) are initialized to h(s) as needed.

repeat

s := sinit.

while s is not a goal state do

For each action a, set Q(s, a) := c(s, a) +
∑

s′∈S p(s′|s, a)V (s′).

Select a best action a := argmina∈A Q(s, a).

Update value V (s) := Q(s,a).

Sample the next state s′ with probability p(s′|s,a) and set s := s′.

end while

until some termination condition is met.

3.1 Real-Time Dynamic Programming

The first algorithm to apply a heuristic search approach to solving MDPs is called

Real-Time Dynamic Programming (RTDP) [Barto, Bradtke, and Singh 1995]. RTDP

generalizes a heuristic search algorithm developed by Korf [Korf 1990], called Learn-

ing Real-Time A* (LRTA*), by allowing state transitions to be stochastic instead

of deterministic.

Except for the fact that RTDP solves a more general class of problems, it is very

similar to LRTA*. Both algorithms interleave planning with execution of actions

in a real or simulated environment. They perform a series of trials, where each

trial begins with an “agent” at the start state sinit. The agent takes a sequence of

actions where each action is selected greedily based on the current state evaluation

function. The trial ends when the agent reaches a goal state. The algorithms are

called “real-time” because they perform a limited amount of search in the time

interval between each action. At minimum, they perform a backup for the current

state, as defined by Equation (2), which corresponds to a one-step lookahead search;

but more extensive search and backups can be performed if there is enough time.

They are called “learning” algorithms because they cache state values computed

in the course of the search. In an efficient implementation, a hash table is used to

store the updated state values and only values for states visited during a trial are

stored in the hash table. For all other states, state values are given by an admissible

heuristic function h. Algorithm 1 shows pseudocode for a trial of RTDP.

The properties of RTDP generalize the properties of Korf’s LRTA* algorithm,

and can be summarized as follows. First, if all state values are initialized with an

admissible heuristic function h, then updated state values are always admissible.

Second, if there is a proper policy, a trial of RTDP cannot get trapped in a loop and

must terminate in a goal state after a finite number of steps. Finally, for the set of

states that is reachable from the start state by following an optimal policy, which

Barto et al. call the set of relevant states, RTDP converges asymptotically to optimal

state values and an optimal policy. These results depend on the assumptions that

8

Heuristic Search for Planning under Uncertainty

(i) all immediate costs incurred by transitions from non-goal states are positive, and

(ii) the initial state evaluation function is admissible, with all goal states having an

initial value of zero.1

Although we classify RTDP as a heuristic search algorithm, it is also a dynamic

programming algorithm. We consider an algorithm to be a form of dynamic pro-

gramming if it solves a dynamic programming recursion such as Equation (1) and

caches results for subproblems in a table, so that they can be reused without need-

ing to be recomputed. We consider it to be a form of heuristic search if it uses

an admissible heuristic and reachability analysis, beginning from a start state, to

prune parts of the state space. By these definitions, LRTA* and RTDP are both

dynamic programming algorithms and heuristic search algorithms, and so is A*.

We still contrast heuristic search to simple dynamic programming, which solves the

problem for the entire state space. Value iteration and policy iteration are simple

dynamic programming algorithms, as are Dijkstra’s algorithm and Bellman-Ford.

But heuristic search algorithms can often be viewed as a form of enhanced or fo-

cused dynamic programming, and that is how we view the algorithms we consider

in the rest of this survey.2 The relationship between heuristic search and dynamic

programming comes into clearer focus when we consider LAO*, another heuristic

search algorithm for solving MDPs.

3.2 LAO*

Whereas RTDP generalizes LRTA*, an online heuristic search algorithm, the next

algorithm we consider, LAO* [Hansen and Zilberstein 2001], generalizes the classic

AO* search algorithm, which is an offline heuristic search algorithm. The ‘L’ in

LAO* indicates that it can find solutions with loops, unlike AO*. Table 1 shows how

various dynamic programming and heuristic search algorithms are related, based on

the structure of the solutions they find. As we will see, the branching and cyclic

behavior specified by a policy for an indefinite-horizon MDP can be represented

explicitly in the form of a cyclic graph.

Both AO* and LAO* represent the search space of a planning problem as an

AND/OR graph. In an AND/OR graph, an OR node represents the choice of an

action and an AND node represents a set of outcomes. AND/OR graph search was

1Although the convergence proof given by Barto et al. depends on the assumption that all action

costs are positive, Bertsekas and Tsitsiklis [Bertsekas and Tsitsiklis 1996] prove that RTDP also

converges for stochastic shortest-path problems with both positive and negative action costs, given

the additional assumption that all improper policies have infinite cost. If action costs are positive

and negative, however, the assumption that all improper policies have infinite cost is difficult to

verify. In practice, it is often more convenient to assume that all action costs are positive.
2Not every heuristic search algorithm is a dynamic programming algorithm. Tree-search heuris-

tic search algorithms, in particular, do not cache the results of subproblems and thus do not qualify

as dynamic programming algorithms. For example, IDA*, which explores the tree expansion of a

graph, does not cache the results of subproblems and thus does not qualify as a dynamic program-

ming algorithm. On the other hand, IDA* extended with a transposition table caches the results

of subproblems and thus is a dynamic programming algorithm.

9

Blai Bonet and Eric A. Hansen

Solution form

simple path acyclic graph cyclic graph

Dynamic programming Dijkstra’s backwards induction value iteration

Offline heuristic search A* AO* LAO*

Online heuristic search LRTA* RTDP RTDP

Table 1. Classification of dynamic programming and heuristic search algorithms.

originally developed to model problem-reduction search problems, where a problem

is solved by recursively dividing it into subproblems. But it can also be used to

model conditional planning problems where the state transition caused by an action

is stochastic, and each possible successor state must be considered by the planner.

In AND/OR graph search, a solution is a subgraph of an AND/OR graph that

is defined as follows: (i) the root node (corresponding to the start state) belongs

to the solution graph, (ii) for every OR node in the solution graph, exactly one of

its branches (typically, the one with the lowest cost) belongs to the solution graph,

and (iii) for every AND node in the solution graph, all of its branches belong to the

solution graph. A solution graph is complete if every directed path that begins at

the root node ends at a goal node. It is a partial solution graph if any directed path

ends at an open (i.e., unexpanded) node.

The heuristic search algorithm AO* finds an acyclic solution graph by iteratively

expanding nodes on the fringe of the best partial solution graph (beginning from a

partial solution graph that consists only of the root node), until the best solution

graph is complete. At each step, the best partial solution graph (corresponding

to a partial policy) is determined by “greedily” choosing, for each OR node, the

branch (or action) with the best expected value. For conditional planning problems

with stochastic state transitions, AO* solves the dynamic programming recursion

of Equation (1). It does so by repeatedly alternating two steps until convergence.

In the forward or expansion step, it expands one or more nodes on the fringe of

the current best partial solution graph. In the backward or cost-revision step, it

propagates any change in the heuristic state estimates for the states in the fringe

backwards through the graph. The first step is a form of forward reachability

analysis, beginning from the start state. The second step is a form of dynamic

programming, using backwards induction since the graph is assumed to be acyclic.

Thus, AND/OR graph heuristic search is a form of dynamic programming that is

enhanced by forward reachability analysis guided by an admissible heuristic.

The classic AO* algorithm only works for problems with acyclic spaces. But

stochastic planning problems, such as MDPs, often contain cycles in space and their

solutions may include cycles too. To generalize AO* on these models, the key idea

is to use a more general dynamic programming algorithm in the cost-revision step,

such as value iteration. This simple generalization is the key difference between AO*

10

Heuristic Search for Planning under Uncertainty

Algorithm 2 Improved LAO* with admissible heuristic h.

The explicit graph initially consists of the start state sinit.

repeat

Depth-first traversal of states in the current best (partial) solution graph.

for each visited state s in postorder traversal do

If state s is not expanded, expand it by generating each successor state s′

and initializing its value V (s′) to h(s′).

Set V (s) := mina∈A(s) c(s, a) +
∑

s′ p(s′|s, a)V (s′) and mark the best action.

end for

until the best solution graph has no unexpanded tip state and residual < ǫ.

return An ǫ-optimal solution graph.

and LAO*. However, allowing a solution to contain loops substantially increases

the complexity of the cost-revision step. For AO*, the cost-revision step requires

at most one update per node. For LAO*, many updates per node may be required

before convergence to exact values. As a result, a naive implementation of LAO*

that expands a single fringe node at a time and performs value iteration in the

cost-revision step until convergence to exact values can be extremely slow.

However, a couple of simple changes create a much more efficient version of

LAO*. Although Hansen and Zilberstein did not give the modified algorithm a

distinct name, it has been referred to in the literature as Improved LAO*. Recall

that in its expansion step, LAO* does a depth-first traversal of the current best

partial solution graph in order to identify the open nodes on its fringe, and expands

one or more of the open nodes. To improve efficiency, Improved LAO* expands

all open nodes on the fringe of the best current partial solution graph (yet it is

easily modified to expand less or more nodes), and then, during the cost-revision

step, it performs only one backup for each node in the current solution graph.

Conveniently, both the expansion and cost-revision steps can be performed in the

same depth-first traversal of the best partial solution graph, since node expansions

and backups can be performed when backtracking during a depth-first traversal.

Thus, the complexity of a single iteration of the expansion and cost-revision steps

is bounded by the number of nodes in the current best (partial) solution graph.

Algorithm 2 shows the pseudocode.

RTDP and the more efficient version of LAO* have many similarities. Principal

among them, both perform backups only for states that are reachable from the

start state by choosing actions greedily based on the current value function. The

key difference is how they choose the order in which to visit states and perform

backups. RTDP relies on stochastic exploration based on real or simulated trials

(an online strategy), whereas LAO* relies on systematic depth-first traversals (an

offline strategy). In fact, all of the other heuristic search algorithms we review in

the rest of this article rely on one of the other of these two general strategies for

11

Blai Bonet and Eric A. Hansen

traversing the reachable state space and updating the value function.

Experiments show that Improved LAO* finds a good solution as quickly as RTDP

and converges to an optimal solution much faster; faster convergence is due to its

use of systematic search instead of stochastic simulation to explore the state space.

The test for convergence to an optimal solution generalizes the convergence test for

AO*: the best solution graph is optimal if it is complete (i.e., it does not contain

any unexpanded nodes), and if state values have converged to exact values for all

nodes in the best solution graph. If the state values are not exact, it is possible to

bound the suboptimality of the solution by adapting the error bounds developed

for value iteration.

3.3 Bounds and faster convergence

In comparing the performance of Improved LAO* and RTDP, Hansen and Zil-

berstein made a couple of observations that inspired subsequent improvements of

RTDP. One observation was that the convergence test used by LAO* could be

adapted for use by RTDP. As formulated by Barto et al., RTDP is guaranteed to

converge asymptotically but does not have an explicit convergence test or a way of

bounding the suboptimality of a solution. A second observation was that RTDP’s

slow convergence relative to Improved LAO* is due to its reliance on stochastic

exploration of the state space, instead of systematic search, and its rate of conver-

gence could be improved by exploring the state space more systematically. We next

consider several improved methods for testing for convergence and increasing the

rate of convergence.

Labeling solved states. Bonet and Geffner [Bonet and Geffner 2003a; Bonet

and Geffner 2003b] developed a pair of related algorithms, called Labeled RTDP

(LRTDP) and Heuristic Dynamic Programming (HDP), that combine both of these

ideas with a third idea adopted from the original AO* algorithm: the idea of labeling

‘solved’ states. In the classic AO* algorithm, a state s is labeled as ‘solved’ if it is a

goal state or if every state that is reachable from s by taking the best action at each

OR node is labeled ‘solved’. Labeling speeds up the search because it is unnecessary

to expend search effort in parts of the solution that have already converged; AO*

terminates when the start node is labeled ‘solved’.

When a solution graph contains loops, however, labeling states as ‘solved’ cannot

be done in the traditional way. It is not even guaranteed to be useful; if the start

state is reachable from every other state, for example, it is not possible to label any

state as ‘solved’ before the start state itself is labeled as ‘solved’. But in many cases,

a solution graph with loops has a “partly acyclic” structure. Stated precisely, the

solution graph can often be decomposed into strongly-connected components, using

Tarjan’s well-known algorithm. In this case, the states in one strongly-connected

component can be labeled as ‘solved’ before the states in other, predecessor com-

ponents are labeled.

Tarjan’s algorithm decomposes a graph into strongly-connected components in

12

Heuristic Search for Planning under Uncertainty

the course of a depth-first traversal of the graph. Since Improved LAO* expands

and updates the states in the current best solution graph in the course of a depth-

first traversal of the graph, the two algorithms are easily combined. In fact, Bonet

and Geffner [Bonet and Geffner 2003a] present their HDP algorithm as a synthesis

of Tarjan’s algorithm and a depth-first search algorithm, similar to the one used in

Improved LAO*.

The same idea of labeling states as ‘solved’ can also be combined with RTDP.

In Labeled RTDP (LRTDP), trials are very much like RTDP trials except that

they terminate when a solved stated is reached. (Initially only the goal states are

solved.) At the end of a trial, a labeling procedure is invoked for each unsolved

state visited in the trial, in reverse order from the last unsolved state to the start

state. For each state s, the procedure performs a depth-first traversal of the states

that are reachable from s by selecting actions greedily based on the current value

function. If the residuals of these states are less than a threshold ǫ, then all of

them are labeled as ‘solved’. Like AO*, Labeled RTDP terminates when the initial

state is labeled as ‘solved’. The labeling procedure used by LRTDP is similar to the

traversal procedures used in HDP and Improved LAO*. However, the innovation

of LRTDP is that instead of always traversing the solution graph from the start

state, it begins the traversal at each state visited in a trial, in backwards order from

the last unsolved state, which allows the convergence of states near the goal to be

recognized before states near the initial state have converged.

Experiments show that LRTDP converges much faster than RTDP, and some-

what faster than Improved LAO*, in solving benchmark “racetrack” problems. In

general, the amount of improvement is problem-dependent since it depends on the

extent to which the solution graph decomposes into strongly-connected components.

In the racetrack domain, the improvement over Improved LAO* is due to labeling

states as ‘solved’; the more substantial improvement over RTDP is partly due to

labeling, but also due to the more systematic traversal of the state space.

Lower and upper bounds. Both LRTDP and HDP gradually reduce the Bellman

residual until it falls below a threshold ǫ. If the threshold is sufficiently small, the

policy is optimal. But the residual, by itself, does not bound the suboptimality of

the solution. To bound its suboptimality, we need an upper bound on the value

of the starting state in addition to the lower-bound values computed by heuristic

search. Once a closed policy is found, an obvious way to bound its suboptimality

is to evaluate the policy; its value for the start state is an upper bound that can be

compared to the admissible lower-bound value computed by heuristic search. But

this approach does not allow the suboptimality of an incomplete solution (one for

which the start state is not yet labeled ‘solved’) to be bounded.

McMahan et al. [McMahan, Likhachev, and Gordon 2005] and Smith and Sim-

mons [Smith and Simmons 2006] describe two algorithms, called Bounded RTDP

(BRTDP) and Focused RTDP (FRTDP) respectively, that compute upper bounds

in order to bound the suboptimality of a solution, including incomplete solutions,

13

Blai Bonet and Eric A. Hansen

and use the difference between the upper and lower bounds on state values to fo-

cus search effort. The key assumption of both algorithms is that in addition to

an admissible heuristic function that returns lower bounds for any state, there is a

function that returns upper bounds for any state. Every time BRTDP or FRTDP

visit a state, they perform two backups: a standard RTDP backup to compute a

lower-bound value and another backup to compute an upper-bound value. In sim-

ulated trials, action outcomes are determined based on their probability and the

largest difference between the upper and lower bound values of the possible succes-

sor states, which has the effect of biasing state exploration to where it is most likely

to improve the value function.

This approach has a lot of attractive properties. In particular, being able to

bound the suboptimality of an incomplete solution is useful when it is computa-

tionally prohibitive to compute a policy that is closed with respect to the start

state. However, the approach is based on the assumption that an upper-bound

value function is available and easily computed, and this assumption may not be

realistic for many stochastic shortest-path problems. For discounted MDPs, on the

other hand, such bounds are easily computed, as we show in Section 4.3

3.4 Learning Depth-First Search

AND/OR graphs can represent the search space of problem-reduction problems

and MDPs, by appropriately defining the cost of complete solution graphs, and

they can also be used to represent the search space of adversarial game-playing

problems, non-deterministic planning problems, and even deterministic planning

problems. Bonet and Geffner [Bonet and Geffner 2005a; Bonet and Geffner 2006]

describe a Learning Depth-First Search (LDFS) algorithm that provides a unified

framework for solving search problems in these different AI models. LDFS performs

iterated depth-first searches over the current best partial solution graph, enhanced

with backups and labeling of ‘solved’ states. Bonet and Geffner show that LDFS

generalizes well-known algorithms in some cases and points to novel algorithms in

other cases. For deterministic planning problems, for example, they show that LDFS

instantiates to IDA* with transposition tables. For game-search problems, they

show that LDFS corresponds to an Alpha-Beta search algorithm with null windows

called MTD [Plaat, Schaeffer, Pijls, and de Bruin 1996], which is reminiscent of

Pearl’s SCOUT algorithm [Pearl 1983]. For MDPs, LDFS corresponds to a version

of Improved LAO* enhanced with labeling of ‘solved’ states. For max AND/OR

search problems, LDFS instantiates to a novel algorithm that experiments show is

more efficient than existing algorithms [Bonet and Geffner 2005a].

3Before developing FRTDP, Smith and Simmons [Smith and Simmons 2005] developed a very

similar heuristic search algorithm for partially observable Markov decision processes (POMDPs)

that backs up both lower-bound and upper-bound state values in AND/OR graph search. A

similar AND/OR graph-search algorithm for POMDPs was described earlier by Hansen [Hansen

1998]. Since both algorithms solve discounted POMDPs, both upper and lower bounds are easily

available.

14

Heuristic Search for Planning under Uncertainty

3.5 Symbolic heuristic search

The algorithms we have considered so far assume a “flat” state space and enumerate

states, actions, and transitions individually. For very large state spaces, it is often

more convenient to adopt a structured or symbolic representation that exploits reg-

ularities to represent the same information more compactly and manipulate it more

efficiently, in terms of sets of states and sets of transitions. As an example, Hoey et

al. [Hoey, St-Aubin, Hu, and Boutilier 1999] show how to perform symbolic value it-

eration for factored MDPs, which are represented in a propositional language, using

algebraic decision diagrams as a compact data structure. Based on their approach,

Feng and Hansen [Feng and Hansen 2002; Feng, Hansen, and Zilberstein 2003] de-

scribe a symbolic LAO* algorithm and a symbolic version of RTDP for factored

MDPs. Boutilier et al. [Boutilier, Reiter, and Price 2001] show how to perform

symbolic dynamic programming for MDPs represented in a first-order language,

and Karabaev and Skvortsova [Karabaev and Skvortsova 2005] show that symbolic

heuristic search can also be performed over such MDPs.

4 Admissible heuristics

Heuristic search algorithms require admissible heuristics to prune large state spaces

effectively. As advocated by Pearl, an effective and domain-independent strategy

for obtaining admissible heuristics consists in optimally solving a relaxation of the

problem, an MDP in our case. In this section, we review some relaxation-based

heuristics for MDPs. However, we first consider admissible heuristics that are not

based on relaxations. Although such heuristics are not informative, they are useful

when informative heuristics cannot be easily computed.

4.1 Non-informative heuristics

For stochastic shortest-path problems where all actions incur positive costs, a simple

admissible heuristic assigns the value of zero to every state, h(s) = 0,∀s ∈ S,

since zero is a lower bound on the cost of an optimal solution. Note that this

heuristic is equivalent to using a zero-constant admissible heuristic for A* when

solving deterministic shortest-path problems. In problems with uniform costs this

is equivalent to a breadth-first search.

For the more general model of stochastic shortest-path problems that allows

both negative and positive action costs, it is not possible to bound the optimal value

function in such a simple way, and simple, non-informative heuristics are not readily

available. But for discounted infinite-horizon MDPs, the optimal value function is

easily bounded both above and below. Note that for this class of MDPs, we adopt

the reward-maximization framework. Let RU = maxs∈S,a∈A(s) r(s, a) denote the

maximum immediate reward for an MDP and let RL = mins∈S,a∈A(s) r(s, a) denote

the minimum immediate reward. For an MDP with discount factor γ ∈ (0, 1), the

function h(s) = RU/1 − γ is an upper bound on the optimal value function and

provides admissible heuristic estimates, and the function l(s) = RL/1−γ is a lower

15

Blai Bonet and Eric A. Hansen

bound on the optimal value function. The time required to compute these bounds

is linear in the number of states and actions, but the bounds need to be computed

just once as their value does not depend on the state s.

4.2 Relaxation-based heuristics

The relaxations that are used for obtaining admissible heuristics in deterministic

planning can be used for MDPs as well, as we will see. But first, we consider

a relaxation that applies only to search problems with uncertain transitions. It

assumes the agent can control the transition by choosing the best outcome among

the set of possible outcomes of an action.

Recall from Equation (1) that the equation that characterizes the optimal value

function of a stochastic shortest-path problem has the form V ∗(s) = 0 for goal

states s ∈ G, and

V ∗(s) = min
a∈A(s)

{

c(s, a) +
∑

s′∈S

p(s′|s, a)V ∗(s′)

}

,

for non-goal states s ∈ S\G. A lower bound on V ∗ is immediately obtained if the

expectation in the equation is replaced by a minimization over the values of the

successor states, as follows,

Vmin(s) = min
a∈A(s)

{

c(s, a) + min
s′∈S(s,a)

Vmin(s′)

}

,

where S(s, a) = {s′ : p(s′|s, a) > 0} is the subset of successor states of s through the

action a. Interestingly, this equation is the optimality equation for a deterministic

shortest-path problem over the graph Gmin = (V,E) where V = S, and there is

an edge (s, s′) with cost c(s, s′) = min{c(s, a) : p(s′|s, a) > 0, a ∈ A(s)} for s′ ∈

S(s, a). The graph Gmin is a relaxation of the MDP on which the non-deterministic

outcomes of an action are separated along different deterministic actions, in a way

that the agent has the ability to choose the most convenient one. If this relaxation

is solved optimally, the state values Vmin(s) provide an admissible heuristic for the

MDP. This relaxation is called the min-min relaxation of the MDP [Bonet and

Geffner 2005b]; its optimal value at state s is denoted by Vmin(s).

When the number of states is relatively small and can fit in memory, the state

values Vmin(s) can be obtained using Dijkstra’s algorithm in time polynomial in the

number of states and actions. Otherwise, the values can be obtained, as needed,

using a search algorithm such as A* or IDA* on the graph Gmin. Indeed, the state

value Vmin(s) is the cost of a minimum-cost path from s to any goal state. A* and

IDA* require an admissible heuristic function h(s) for searching Gmin; if nothing

better is available, the non-informative heuristic h(s) = 0 can be used.

Given a deterministic relaxation of an MDP, such as this, another approach

to computing admissible heuristics for the original MDP is based on the recogni-

tion that any admissible heuristic for the deterministic relaxation is also admissible

16

Heuristic Search for Planning under Uncertainty

for the original MDP. That is, if an estimate h(s) is a lower bound on the value

Vmin(s), it is also a lower bound on the value V ∗(s) for the MDP. Therefore, we can

use any method for computing admissible heuristics for deterministic shortest-path

problems in order to compute admissible heuristics for the corresponding stochas-

tic shortest-path problems. Since such methods often rely on state abstraction,

the heuristics can be stored in memory even when the state space of the original

problem is much too large to fit in memory.

Instead of applying relaxation methods for deterministic shortest-path problems

to a deterministic relaxation of an MDP, another approach is to apply similar re-

laxation methods directly to the MDP. This strategy was explored by Dearden and

Boutilier [Dearden and Boutilier 1997], who describe an approach to state abstrac-

tion for factored MDPs that can be used to compute admissible heuristics. Their

approach ignores certain state variables of the original MDP in order to create an

exponentially smaller abstract MDP that can be solved more easily. Such a relax-

ation can be useful when it is not desirable to abstract away all stochastic aspects

of a problem.

4.3 Planning languages and heuristics

Most approaches to state abstraction for MDPs, including that of Dearden and

Boutilier, assume the MDP has a factored or otherwise structured representation,

instead of a “flat” representation that explicitly enumerates individual states, ac-

tions, and transitions. To allow scalability, the representation languages used by

most planners are high-level languages based on propositional logic or a fragment

of first-order logic, that permits the description of large problems in a succinct way;

often, a problem with n states and m actions can be described with O(log nm) bits.

As an example, the PPDDL language [Younes and Littman 2004] has been used in

the International Planning Competition to describe MDPs [Bryce and Buffet 2008;

Gerevini, Bonet, and Givan 2006]. PPDDL is an extension of PDDL [McDermott,

Ghallab, Howe, Knoblock, Ram, Veloso, Weld, and Wilkins 1998] that handles

actions with non-deterministic effects and multiple initial situations. Like PDDL,

it is a STRIPS language extended with types, conditional effects, and disjunctive

goals and conditions.

The fifth International Planning Competition used a fragment of PPDDL, con-

sisting of STRIPS extended with negative conditions, conditional effects and simple

probabilistic effects. The fragment disallows the use of existential quantification,

disjunction of conditions, nested conditional effects, and probabilistic effects inside

conditional effects. What remains, nevertheless, is a simple representation language

for probabilistic planning in which a large collection of challenging problems can

be modeled. For our purposes, it is a particularly interesting fragment because

it allows standard admissible heuristics for classical STRIPS planning to be easily

adapted and thus “lifted” for probabilistic planning. In the rest of this section, we

briefly present a STRIPS language extended with conditional effects, some of its

17

Blai Bonet and Eric A. Hansen

variants for probabilistic planning, and how to compute admissible heuristics for it.

A STRIPS planning problem with conditional effects (simply STRIPS) is a tuple

〈F, I, G,O〉 where F is a set of fluent symbols, I ⊆ F is the initial state, G ⊆ F

denotes the set of goal states, and O is a set of operators. A state is a valuation

of fluent symbols that is denoted by the subset of fluents are true in the state.

An operator a ∈ O consists of a precondition Pre ⊆ F , and a collection CE of

conditional effects of the form C → L, where C and L are sets of literals that

denote the condition and effect of the conditional effect.

A simple probabilistic STRIPS problem (simply sp-STRIPS) is a STRIPS prob-

lem in which each operator a has a precondition Pre and a list of probabilistic

outcomes of the form 〈(p1, CE1), . . . , (pn, CEn)〉 where pi > 0,
∑

i pi ≤ 1, and

each CEi is a set of conditional effects. In sp-STRIPS, the state that results after

applying action a on state s is equal to the state that result after applying the con-

ditional effects in CEi on s with probability pi, or the same state s with probability

1 −
∑n

i=1 pi.

In PPDDL, probabilistic effects are expressed using statements of the form

(probabilistic {<rational> <det-effect>}+)

where <rational> is a rational number and <det-effect> is a deterministic, pos-

sibly compound, effect. The intuition is that the deterministic effect occurs with

the given probability and that no effect occurs with the remaining probability. A

specification without probabilistic effects can be converted in polynomial time to

STRIPS. However, when there are probabilistic effects involved, it is necessary to

consider all possible simultaneous executions. For example, an action that simulta-

neously tosses three coins can be specified as follows:

(:action toss-three-coins

:parameters (c1 c2 c3 - coin)

:precondition (and (not (tossed c1)) (not (tossed c2)) (not (tossed c3)))

:effect (and (tossed c1)

(tossed c2)

(tossed c3)

(probabilistic 1/2 (heads c1) 1/2 (tails c1))

(probabilistic 1/2 (heads c2) 1/2 (tails c2))

(probabilistic 1/2 (heads c3) 1/2 (tails c3))))

This action is not an sp-STRIPS action since its outcomes are factored along mul-

tiple probabilistic effects. An equivalent sp-STRIPS action has as precondition the

same precondition but effects of the form 〈(1/8, CE1), (1/8, CE2), . . . , (1/8, CE8)〉

where each CEi stands for a deterministic outcome of the action; e.g., CE1 =

(and (heads c1) (heads c2) (heads c3)).

Under the assumptions that there are no probabilistic effects inside conditional

effects and that there are no nested conditional effects, a probabilistic planning

problem described with PPDDL can be transformed into an equivalent sp-STRIPS

18

Heuristic Search for Planning under Uncertainty

problem by taking the cross products of the probabilistic effects within each ac-

tion; a translation that takes exponential time in the maximum number of prob-

abilistic effects per action. However, once in sp-STRIPS, the problem can be

further relaxed into (deterministic) STRIPS by converting each action of form

〈Pre, 〈(p1, CE1), . . . , (pn, CEn)〉〉 into n deterministic actions of the form 〈Pre, CEi〉.

This relaxation is the min-min relaxation now implemented at the level of the rep-

resentation language, without the need to explicitly generate the state and action

spaces of the MDP.

The min-min relaxation of a PPDDL problem is a deterministic planning problem

whose optimal solution provides an admissible heuristic for the probabilistic plan-

ning problem. Thus, any admissible heuristic for the deterministic problem provides

an admissible heuristic for the probabilistic problem. (This is the approach used in

the mGPT planner for probabilistic planning [Bonet and Geffner 2005b].)

Above relaxation gives an interesting and fruitful connection with the field of (de-

terministic) automated planning in which the computation of domain-independent

and admissible heuristics is an important area of research. Over the last decade, the

field has witnessed important progresses in the development of novel and powerful

heuristics that can be used for probabilistic planning.

5 Conclusions

We have shown that increased interest in the problem of planning under uncertainty

has led to the development of a new class of heuristic search algorithms for these

planning problems. The effectiveness of these algorithms illustrates the wide appli-

cability of the heuristic search approach. This approach is influenced by ideas that

can be traced back to some of the fundamental contributions in the field of heuristic

search laid down by Pearl.

In this brief survey, we only reviewed search algorithms for the special case of

the problem of planning under uncertainty in which state transitions are uncertain.

Many other forms of uncertainty may need to be considered by a planner. For

example, planning problems with imperfect state information are often modeled as

partially observable Markov decision processes for which there are also algorithms

based on heuristic search [Bonet and Geffner 2000; Bonet and Geffner 2009; Hansen

1998; Smith and Simmons 2005]. For some planning problems, there is uncertainty

about the parameters of the model. For other planning problems, there is uncer-

tainty due to the presence of multiple agents. The development of effective heuristic

search algorithms for these more complex planning problems remains an important

and active area of research.

References

Barto, A., S. Bradtke, and S. Singh (1995). Learning to act using real-time dy-

namic programming. Artificial Intelligence 72 (1), 81–138.

19

Blai Bonet and Eric A. Hansen

Bertsekas, D. (1995). Dynamic Programming and Optimal Control, (2 Vols).

Athena Scientific.

Bertsekas, D. and J. Tsitsiklis (1991). Analysis of stochastic shortest path prob-

lems. Mathematics of Operations Research 16 (3), 580–595.

Bertsekas, D. and J. Tsitsiklis (1996). Neuro-Dynamic Programming. Belmont,

Massachusetts: Athena Scientific.

Bonet, B. and H. Geffner (2000). Planning with incomplete information as heuris-

tic search in belief space. In S. Chien, S. Kambhampati, and C. Knoblock

(Eds.), Proc. 6th Int. Conf. on Artificial Intelligence Planning and Schedul-

ing (AIPS-00), Breckenridge, CO, pp. 52–61. AAAI Press.

Bonet, B. and H. Geffner (2003a). Faster heuristic search algorithms for planning

with uncertainty and full feedback. In G. Gottlob and T. Walsh (Eds.), Proc.

18th Int. Joint Conf. on Artificial Intelligence (IJCAI-03), Acapulco, Mexico,

pp. 1233–1238. Morgan Kaufmann.

Bonet, B. and H. Geffner (2003b). Labeled RTDP: Improving the convergence of

real-time dynamic programming. In E. Giunchiglia, N. Muscettola, and D. S.

Nau (Eds.), Proc. 13th Int. Conf. on Automated Planning and Scheduling

(ICAPS-03), Trento, Italy, pp. 12–21. AAAI Press.

Bonet, B. and H. Geffner (2005a). An algorithm better than AO*? In M. M.

Veloso and S. Kambhampati (Eds.), Proc. 20th National Conf. on Artificial

Intelligence (AAAI-05), Pittsburgh, USA, pp. 1343–1348. AAAI Press.

Bonet, B. and H. Geffner (2005b). mGPT: A probabilistic planner based on

heuristic search. Journal of Artificial Intelligence Research 24, 933–944.

Bonet, B. and H. Geffner (2006). Learning depth-first search: A unified approach

to heuristic search in deterministic and non-deterministic settings, and its

application to MDPs. In D. Long, S. F. Smith, D. Borrajo, and L. McCluskey

(Eds.), Proc. 16th Int. Conf. on Automated Planning and Scheduling (ICAPS-

06), Cumbria, UK, pp. 142–151. AAAI Press.

Bonet, B. and H. Geffner (2009). Solving POMDPs: RTDP-Bel vs. point-based

algorithms. In C. Boutilier (Ed.), Proc. 21st Int. Joint Conf. on Artificial

Intelligence (IJCAI-09), Pasadena, California, pp. 1641–1646. AAAI Press.

Boutilier, C., T. Dean, and S. Hanks (1999). Decision-theoretic planning: Struc-

tural assumptions and computational leverage. Journal of Artificial Intelli-

gence Research 11, 1–94.

Boutilier, C., R. Reiter, and B. Price (2001). Symbolic dynamic programming for

first-order MDPs. In B. Nebel (Ed.), Proc. 17th Int. Joint Conf. on Artificial

Intelligence (IJCAI-01), Seattle, WA, pp. 690–697. Morgan Kaufmann.

Bryce, D. and O. Buffet (Eds.) (2008). 6th International Planning Competition:

Uncertainty Part, Sydney, Australia.

20

Heuristic Search for Planning under Uncertainty

Dearden, R. and C. Boutilier (1997). Abstraction and approximate decision-

theoretic planning. Artificial Intelligence 89, 219–283.

Edelkamp, S., J. Hoffmann, and M. Littman (Eds.) (2004). 4th International

Planning Competition, Whistler, Canada.

Feng, Z. and E. Hansen (2002). Symbolic heuristic search for factored Markov

decision processes. In R. Dechter, M. Kearns, and R. S. Sutton (Eds.), Proc.

18th National Conf. on Artificial Intelligence (AAAI-02), Edmonton, Canada,

pp. 455–460. AAAI Press.

Feng, Z., E. Hansen, and S. Zilberstein (2003). Symbolic generalization for on-line

planning. In C. Meek and U. Kjaerulff (Eds.), Proc. 19th Conf. on Uncertainty

in Artificial Intelligence (UAI-03), Acapulco, Mexico, pp. 209–216. Morgan

Kaufmann.

Gerevini, A., B. Bonet, and R. Givan (Eds.) (2006). 5th International Planning

Competition, Cumbria, UK.

Hansen, E. (1998). Solving POMDPs by searching in policy space. In Proc1̇4th

Conf. on Uncertainty in Artificial Intelligence (UAI-98), Madison, WI, pp.

211–219.

Hansen, E. and S. Zilberstein (2001). LAO*: A heuristic search algorithm that

finds solutions with loops. Artificial Intelligence 129 (1–2), 139–157.

Hoey, J., R. St-Aubin, A. Hu, and C. Boutilier (1999). SPUDD: Stochastic plan-

ning using decision diagrams. In Proc. 15th Conf. on Uncertainty in Artificial

Intelligence (UAI-99), Stockholm, Sweden, pp. 279–288. Morgan Kaufmann.

Karabaev, E. and O. Skvortsova (2005). A heuristic search algorithm for solving

first-order MDPs. In F. Bacchus and T. Jaakkola (Eds.), Proc2̇1st Conf. on

Uncertainty in Artificial Intelligence (UAI-05), Edinburgh, Scotland, pp. 292–

299. AUAI Press.

Korf, R. (1990). Real-time heuristic search. Artificial Intelligence 42, 189–211.

Korf, R. (1997). Finding optimal solutions to rubik’s cube using pattern

databases. In B. Kuipers and B. Webber (Eds.), Proc. 14th National Conf. on

Artificial Intelligence (AAAI-97), Providence, RI, pp. 700–705. AAAI Press

/ MIT Press.

McDermott, D., M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. M. Veloso,

D. Weld, and D. Wilkins (1998). PDDL – The Planning Domain Definition

Language. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for

Computational Vision and Control, New Haven, USA.

McMahan, H. B., M. Likhachev, and G. Gordon (2005). Bounded real-time dy-

namic programming: RTDP with monotone upper bounds and performance

guarantees. In L. D. Raedt and S. Wrobel (Eds.), Proc. 22nd Int. Conf. on

Machine Learning (ICML-05), Bonn, Germany, pp. 569–576. ACM.

21

Blai Bonet and Eric A. Hansen

Pearl, J. (1983). Heuristics. Morgan Kaufmann.

Plaat, A., J. Schaeffer, W. Pijls, and A. de Bruin (1996). Best-first fixed-depth

minimax algorithms. Artificial Intelligence 87 (1-2), 255–293.

Puterman, M. (1994). Markov Decision Processes – Discrete Stochastic Dynamic

Programming. John Wiley and Sons, Inc.

Smith, T. and R. Simmons (2005). Point-based POMDP algorithms: Improved

analysis and implementation. In F. Bacchus and T. Jaakkola (Eds.), Proc. 21st

Conf. on Uncertainty in Artificial Intelligence (UAI-05), Edinburgh, Scot-

land, pp. 542–547. AUAI Press.

Smith, T. and R. G. Simmons (2006). Focused real-time dynamic program-

ming for MDPs: Squeezing more out of a heuristic. In Y. Gil and R. J.

Mooney (Eds.), Proc. 21st National Conf. on Artificial Intelligence (AAAI-

06), Boston, USA, pp. 1227–1232. AAAI Press.

Younes, H. and M. Littman (2004). PPDDL1.0: An extension to PDDL for ex-

pressing planning domains with probabilistic effects. http://www.cs.cmu.

edu/~lorens/papers/ppddl.pdf.

22

2

Heuristics, Planning and Cognition

Hector Geffner

1 Introduction

In the book Heuristics, Pearl studies the strategies for the control of problem solving

processes in human beings and machines, pondering how people manage to solve

an extremely broad range of problems with so little effort, and how machines could

do the same [Pearl 1983, pp. vii]. The central concept in the book, as captured

in the title, are the heuristics: the “criteria, methods, or principles for deciding

which among several alternative courses of action promises to be the most effective

in order to achieve some goal” [Pearl 1983, pp. 3]. Pearl places special emphasis on

heuristics that take the form of evaluation functions and which provide quick but

approximate estimates of the distance or cost-to-go from a given state to the goal.

These heuristic evaluation functions provide the search with a sense of direction

with actions resulting in states that are closer to the goal being preferred. An

informative heuristic h(s) in the 15-puzzle, for example, is the well known ’sum of

Manhattan distances’, that adds up the Manhattan distance of each tile, from its

location in the state s to its goal location.

The book Heuristics laid the foundations for the work in automated problem

solving in Artificial Intelligence (AI) and is still a basic reference in the field. On

the other hand, as an account of human problem solving, the book has not been as

influential. A reason for this is that while the book devotes one chapter to discuss

the derivation of heuristics, most of the book is devoted to the formulation and

analysis of heuristic search algorithms. Most of these algorithms, such as A* and

AO*, are complete and optimal, meaning that they will find a solution if there is

one, and that the solution found will have minimal cost (provided that the heuristic

does not overestimate the true costs). Yet, while people excel at solving a wide

variety of problems almost effortlessly, it’s only in puzzle-like problems where they

need to restore to search, and then, they are not particularly good at it and are

even worse when solutions must be optimal.

Thus, the account of problem solving in the book exhibits a gap that has been

characteristic of AI systems, that result in programs that rival the best human

experts in specialized domains but are no match to children in their general problem

solving abilities.

In this article, I aim to present recent work in AI Planning, a form of domain-

independent problem solving, that builds on Pearl’s work and bears on this gap.

23

Hector Geffner

Planners are general problem solvers aimed at solving an infinite collection of prob-

lems automatically. The problems are instances of various classes of models all of

which are intractable in the worst case. In order to solve these problems effectively

thus, a planner must automatically recognize and exploit their structure. This is

the key challenge in planning and, more generally, in domain-independent problem

solving. In planning, this challenge has been addressed by deriving the heuristic eval-

uations functions automatically from the problems, an idea explored by Pearl and

developed more fully in recent planning research. The resulting domain-independent

planners are not as efficient as specialized solvers but are more general, and thus, be-

have in a way that is closer to people. Moreover, the resulting evaluation functions

often enable the solution of problems with almost no search, and appear to play the

role of the ‘intuitions’ and ‘feelings’ that guide human problem solving and have

been difficult to capture explicitly by means of rules. We will see indeed how such

heuristic evaluation functions are defined and computed in a domain-independent

fashion, and why they can be regarded as relevant from a cognitive point of view.

The organization of the article is the following. We consider in order, planning

models, languages, and algorithms (Section 2), the automatic extraction of heuristic

evaluation functions and other developments in planning (Sections 3 and 4), the

cognitive interpretation of these heuristics (Section 5), and then, more generally,

the relation between AI and Cognitive Science (Section 6).

2 Planning

Planning is an area of AI concerned with the selection of actions for achieving goals.

The first AI planner and one of the first AI programs was the General Problem Solver

(GPS) developed by Newell, Shaw, and Simon in the late 50’s [Newell, Shaw, and

Simon 1958; Newell and Simon 1963]. Since then, planning has remained a central

topic in AI while changing in significant ways: on the one hand, it has become more

mathematical, with a variety of planning problems defined and studied; on the other,

it has become more empirical, with planning algorithms evaluated experimentally

and planning competitions held periodically.

Planning can be understood as representing one of the three main approaches for

selecting the action to do next ; a problem that is central in the design of autonomous

systems, called often the control problem in AI.

In the programming-based approach, the programmer solves the control problem

in its head and makes the solution explicit in the program. For example, for a robot

moving in an office environment, the program may say to back up when too close to

a wall, to search for a door if the robot has to move to another room, etc. [Brooks

1987; Mataric 2007].

In the learning-based approach, the control knowledge is not provided explicitly by

a programmer but is learned by trial and error, as in reinforcement learning [Sutton

and Barto 1998], or by generalization from examples, as in supervised learning

[Mitchell 1997].

24

Heuristics, Planning and Cognition

Sensors

Actions

Goals
Planner Controller World

Obs

Actions

Figure 1. Planning is the model-based approach to autonomous behavior: a planner is a

solver that accepts a compact model of the actions, sensors, and goals, and outputs a plan

or controller that determines the action to do next given the observations.

Finally, in the model-based approach, the control knowledge is derived automati-

cally from a model of the actions, sensors, and goals.

Planning is the model-based approach to autonomous behavior. A planner is a

solver that accepts a model of the actions, sensors, and goals, and outputs a plan

or controller that determines the action to do next given the observations gathered

(Fig. 1). Planners come in a wide variety, depending on the type of model that they

target [Ghallab, Nau, and Traverso 2004]. Classical planners address determinis-

tic state models with full information about the initial situation, while conformant

planners address state models with non-deterministic actions and incomplete in-

formation about the initial state. In both cases, the resulting plans are open-loop

controllers that do not take observations into account. On the other hand, contin-

gent and POMDP planners address scenarios with both uncertainty and feedback,

and output genuine closed-loop controllers where the selection of actions depends

on the observations gathered.

In all cases, the models are intractable in the worst case, meaning that brute

force methods do not scale up to problems involving many actions and variables.

Domain-independent approaches aimed at solving these models effectively must thus

automatically recognize and exploit the structure of the individual problems that

are given. Like in other AI models such as Constraint Satisfaction Problems and

Bayesian Networks [Dechter 2003; Pearl 1988], the key to exploiting the structure

of problems in planning models, is inference. The most common form of inference

in planning is the automatic derivation of heuristic evaluation functions to guide

the search. Before considering such domain-independent heuristics, however, we

will make precise some of the models used in planning and the languages used for

representing them.

2.1 Planning Models

Classical planning is concerned with the selection of actions in environments that

are deterministic and whose initial state is fully known. The model underlying

classical planning can thus be described as a state space featuring:

• a finite and discrete set of states S,

• a known initial state s0 ∈ S,

• a set SG ⊆ S of goal states,

25

Hector Geffner

• actions A(s) ⊆ A applicable in each state s ∈ S,

• a deterministic state transition function f(a, s) for a ∈ A(s) and s ∈ S, and

• positive action costs c(a, s) that may depend on the action and the state.

A solution or plan is a sequence of actions a0, . . . , an that generates a state

sequence s0, s1, . . . , sn+1 such that ai is applicable in the state si and results in the

state si+1 = f(ai, si), the last of which is a goal state.

The cost of a plan is the sum of the action costs, and a plan is optimal if it has

minimum cost. The cost of a problem is the cost of its optimal solutions. When

action costs are all 1, a situation that is common in classical planning, plan cost

reduces to plan length, and the optimal plans are simply the shortest ones.

The computation of a classical plan can be cast as a path-finding problem in a

directed graph whose nodes are the states, and whose source and target nodes are

the initial state s0 and the goal states SG. Algorithms for solving such problems

are polynomial in the number of nodes (states), which is exponential in the number

of problem variables (see below). The use of heuristics for guiding the search for

plans in large graphs is aimed at improving such worst case behavior.

The model underlying classical planning does not account for either uncertainty

or sensing and thus gives rise to plans that represent open-loop controllers where

observations play no role. Other planning models in AI take these aspects into

account and give rise to different types of controllers.

Conformant planning is planning in the presence of uncertainty in the initial

situation and action effects. In the resulting model, the initial state s0 is replaced

by a set S0 of possible initial states, and the deterministic transition function f(a, s)

that maps the state s into the unique successor state s′ = f(a, s), is replaced by

a non-deterministic transition function F (a, s) that maps s into a set of possible

successor states s′ ∈ F (a, s). A solution to such model, called a conformant plan,

is an action sequence that achieves the goal with certainty for any possible initial

state and any possible state transition [Goldman and Boddy 1996]. The search for

conformant plans can also be cast as a path-finding problem but over a different,

exponentially larger graph whose nodes represent belief states. In this formulation,

a belief state b stands for the set of states deemed possible, the initial belief state

is b0 = S0, and actions a, whether deterministic or not, map a belief state b into

a unique successor belief state ba, where s′ ∈ ba if there is a state s in b such that

s′ ∈ F (a, s) [Bonet and Geffner 2000].

Planning with sensing, often called contingent planning in AI, refers to planning

in the face of both uncertainty and feedback. The model extends the one for con-

formant planning with a characterization of sensing. A sensor model expresses the

relation between the observations and the true but possibly hidden states, and can

be codified through a set o ∈ O of observation tokens and a function o(s) that maps

states s into observation tokens. An environment is fully observable if different

states give rise to different observations, i.e., o(s) 6= o(s′) if s 6= s′, and partially

26

Heuristics, Planning and Cognition

observable otherwise. While the model for planning with sensing is a slight varia-

tion of the model for conformant planning, the resulting solution or plan forms are

quite different as observations can and must be taken into account in the selection of

actions. Indeed, solution to planning with sensing problems can be expressed equiv-

alently as either trees [Weld, Anderson, and Smith 1998], policies mapping beliefs

into actions [Bonet and Geffner 2000], or finite-state controllers [Bonet, Palacios,

and Geffner 2009]. A finite-state controller is an automata defined by a collection of

tuples of the form 〈q, o, a, q′〉 that prescribe to do action a and move to the controller

state q′ after getting the observation o in the controller state q.

The probabilistic versions of these models are also used in planning. The models

that result when the actions have stochastic effects and the states are fully ob-

servable are the familiar Markov Decision Processes (MDPs) used in Operations

Research and Control Theory [Bertsekas 1995], while the models that result when

action and sensors are stochastic, are the Partial Observable MDPs (POMDPs)

[Kaelbling, Littman, and Cassandra 1998].

2.2 Planning Languages

A domain-independent planner is a general solver over a class of models: classical

planners are solvers over the class of basic state models where actions are determin-

istic and the initial state is fully known, conformant planners are solvers over the

class of models where actions are non-deterministic and the initial state is partially

known, and so on. In all cases, the corresponding state model that characterizes

a given planning problem is not given explicitly but in a compact form, with the

states associated with the values of a given set of variables.

One of the most common languages for representing classical problems is Strips,

a planning language that can be traced back to the early 70’s [Fikes and Nilsson

1971]. A planning problem in Strips is a tuple P = 〈F,O, I, G〉 where

• F stands for the set of relevant variables or fluents,

• O stands for the set of relevant operators or actions,

• I ⊆ F stands for the initial situation, and

• G ⊆ F stands for the goal situation.

In Strips, the actions o ∈ O are represented by three sets of atoms from F called

the Add, Delete, and Precondition lists, denoted as Add(o), Del(o), Pre(o). The

first, describes the atoms that the action o makes true, the second, the atoms that

o makes false, and the third, the atoms that must be true in order for the action

to be applicable. A Strips problem P = 〈F,O, I, G〉 encodes in compact form the

state model S(P) where

• the states s ∈ S are the possible collections of atoms from F ,

• the initial state s0 is I,

27

Hector Geffner

• the goal states s are those for which G ⊆ s,

• the actions a in A(s) are the ones in O with Prec(a) ⊆ s,

• the state transition function is f(a, s) = (s \ Del(a)) ∪ Add(a), and

• the action costs c(a) are equal to 1 by default.

The states in S(P) represent the possible valuations over the boolean variables

in F . Thus, if the set of variables F has cardinality |F | = n, the number of states

in S(P) is 2n. A state s represents the valuation where the variables appearing in

s are taken to be true, while the variables not appearing in s are false.

As an example, a planning domain that involves three locations l1, l2, and l3, and

three tasks t1, t2, and t3, where ti can be performed only at li, can be modeled with

a set F of fluents at(li) and done(ti), and a set O of actions go(li, lj) and do(ti),

i, j = 1, . . . , 3, with precondition, add, and delete lists

Pre(a) = {at(li)} , Add(a) = {at(lj)} , Del(a) = {at(li)}

for a = go(li, lj), and

Pre(a) = {at(li)} , Add(a) = {done(ti)} , Del(a) = {}

for a = do(ti). The problem of doing tasks t1 and t2 starting at location l3 can then

be modeled by the tuple P = 〈F, I, O, G〉 where

I = {at(l3)} and G = {done(t1), done(t2)} .

A solution to P is an applicable action sequence that maps the state s0 = I into a

state where the goals in G are all true. In this case one such plan is the sequence

π = {go(l3, l1), do(t1), go(l1, l2), do(t2)} .

The number of states in the problem is 26 as there are 6 boolean variables. Still,

it can be shown that many of these states are not reachable from the initial state.

Indeed, the atoms at(li) for i = 1, 2, 3 are mutually exclusive and exhaustive, mean-

ing that every state reachable from s0 makes one and only one of these atoms

true. These boolean variables encode indeed the possible values of the multi-valued

variable that represents the agent location.

Strips is a planning language based on variables that are boolean, yet planning

languages featuring primitive multi-valued variables and richer syntactic constructs

are commonly used for describing both classical and non-classical planning models

[McDermott 1998; Younes, Littman, Weissman, and Asmuth 2005].

2.3 Planning Algorithms

We have presented some of the models used in domain-independent planning, and

one of the languages used for describing them in compact form. We focus now on

the algorithms developed for solving them.

28

Heuristics, Planning and Cognition

GPS, the first AI planner introduced by Newell, Shaw, and Simon, used a tech-

nique called means-ends analysis where differences between the current state and

the goal situation were identified and mapped into operators that could decrease

those differences [Newell and Simon 1963]. Since then, the idea of means-ends anal-

ysis has been refined and extended in many ways, seeking planning algorithms that

are sound (only produce plans), complete (produce a plan if one exists), and effec-

tive (scale up to large problems). By the early 90’s, the state-of-the-art method was

UCPOP [Penberthy and Weld 1992], an elegant algorithm based on partial-order

causal link planning [Sacerdoti 1975; Tate 1977; McAllester and Rosenblitt 1991], a

planning method that is sound and complete, but which doesn’t scale up too well.

The situation in planning changed drastically in the middle 90’s with the in-

troduction of Graphplan [Blum and Furst 1995], a planning algorithm based on

the Strips representation but which otherwise had little in common with previous

approaches, and scaled up better. Graphplan works iteratively in two phases. In

the first phase, Graphplan builds a plan graph in polynomial time, made up of a

sequence of layers F0, A0, . . . , Fn−1, An−1, Fn where Fi and Ai denote sets of fluents

and actions respectively. F0 is the set of fluents true in the initial situation and

n is a planning horizon, initially the index of the first layer Fi where all the goals

appear. In this construction, certain pairs of actions and certain pairs of fluents are

marked as mutually exclusive or mutex. The meaning of these layers and mutexes

is roughly the following: if a fluent p is not in layer Fi, then no plan can achieve

p in i steps or less, while if the pair p and q is in Fi but marked as mutex, then

no plan can achieve p and q jointly in i steps or less. Graphplan makes then an

attempt to extract a plan from the graph, a computation that is exponential in the

worst case. If the plan extraction fails, the planning horizon n is increased by 1, the

plan graph is extended one level, and the plan extraction procedure is tried again.

Blum and Furst showed that the planning algorithm is sound, complete, and opti-

mal, meaning that the plan obtained minimizes the number of time steps provided

that certain sets of actions can be done in parallel. More importantly, they showed

experimentally that this planning approach scaled up much better than previous

approaches.

Due to the new ideas and the emphasis on the empirical evaluation of planning

algorithms, Graphplan had a great influence in planning research that has seen two

new approaches in recent years that scale up better than Graphplan using methods

that are not specific to planning.

In the SAT approach to planning [Kautz and Selman 1996], Strips problems are

converted into satisfiability problems expressed as a set of clauses (a formula in

Conjunctive Normal Form) that are fed into state-of-the-art SAT solvers. If for

some horizon n, the clauses are satisfiable, a parallel plan that solves the problem

can be read from the model returned by the solver. If not, like in Graphplan, the

plan horizon is increased by 1 and the process is repeated until a plan is found. The

approach works well when the required horizon is not large and optimal parallel

29

Hector Geffner

plans are sought.

In the heuristic search approach [McDermott 1996; Bonet, Loerincs, and Geffner

1997], the planning problem is solved by heuristic search algorithms with heuristic

evaluation functions extracted automatically from the problem encoding. In forward

or progression-based planning, the state space S(P) for a problem P is searched for

a path connecting the initial state with a goal state. In backward or regression-based

planning, plans are searched backwards from the goal. Heuristic search planners

have been shown to scale up to very large problems when solutions are not required

to be optimal.

The heuristic search approach has actually not only delivered performance but

also an explanation for why Graphplan scaled up better than its predecessors. While

not described in this form, Graphplan is a heuristic search planner using a heuristic

evaluation function encoded implicitly in the planning graph, and a well known ad-

missible search algorithm [Bonet and Geffner 2001]. The difference in performance

between recent and older planning algorithms is thus the result of inference: while

planners searched for plans blindly until Graphplan, they all search with automati-

cally derived heuristics now, or with unit resolution and clause learning when based

on the SAT formulation. Domain-independent solvers whose search is not informed

by inference of some sort, do not scale up, as there are too many alternatives to

choose from, with a few of them leading to the goal.

3 Domain-Independent Planning Heuristics

The main novelty in state-of-the-art planners is the use of automatically derived

heuristics to guide the search for plans. In Heuristics, Pearl showed how heuristics

such as the sum of Manhattan distances for the 15-puzzle, the Euclidian distance

for Road Map finding, and the Minimum Spanning Tree for the Travelling Sale-

man Problem, can all be understood as optimal cost functions of suitable problem

relaxations. Moreover, for the 15-puzzle, Pearl explicitly considered relaxations ob-

tained mechanically from a Strips representation, showing that both the number

of misplaced tiles and the sum of Manhattan distances heuristics are optimal cost

functions of relaxations where some preconditions of the actions for moving tiles are

dropped.

Pearl focused then on the conditions under which a problem relaxation is ‘sim-

ple enough’ so that its optimal cost can be computed in polynomial time. This

research problem attracted his attention at the time, and explains his interest on

the graphical structures underlying various types of problems, including problems of

combinatorial optimization, constraint satisfaction, and probabilistic inference. One

kind of structure that appeared to result in ‘easy’ problems in all these contexts was

trees. Pearl and his students showed indeed that inference on probabilistic Bayesian

Trees and Constraint Satisfaction Trees was polynomial [Pearl 1982; Dechter and

Pearl 1985], even if the general problems are NP-hard (see also [Mackworth and

Freuder 1985]). The notion of graphical structures underlying inference problems

30

Heuristics, Planning and Cognition

and the conditions under which they render inference polynomial have been gener-

alized since then in the notion of treewidth, a parameter that measures how tree-like

is a graph structure [Pearl 1988; Dechter 2003].

Research on the automatic derivation of heuristics in planning builds on Pearl’s

intuition but takes a different path. The relaxation P+ that underlies most current

heuristics in domain-independent planning is obtained from a Strips problem P

by dropping, not the preconditions, but the delete lists. This relaxation is quite

informative but is not ‘easy’; indeed finding an optimal solution to a delete-free

problem P+ is not easier from a complexity point of view than finding an optimal

solution to the original problem P . On the other hand, finding one solution to P+,

not necessarily optimal, can be done easily, in low polynomial time. The result

is that heuristics obtained from P+ are informative but not admissible (they may

overestimate the true cost), and hence, they can be used effectively for finding plans

but not for finding optimal plans.

If P (s) refers to a planning problem that is like P = 〈F, I, O, G〉 but with I = s,

and π(s) is the solution found for the delete-relaxation P+(s), the heuristic h(s)

that estimates the cost of the problem P (s) is defined as

h(s) = Cost(π(s)) =
∑

a∈π(s)

cost(a) .

The plans π(s) for the relaxation P+(s) are called relaxed plans, and there have

been many proposals for defining and computing them. We explain below one such

method that corresponds to running Graphplan on the delete-relaxation P+(s)

[Hoffmann and Nebel 2001]. In delete-free problems, Graphplan runs in polynomial

time and its plan graph construction is simplified as there are no mutex relations

to keep track of.

The layers F0, A0, F1, . . . , Fn−1, An−1, Fn in the plan graph for P+(s) are

computed starting with F0 = s, by placing in Ai, i = 1, . . . , n − 1, all the actions

a in P whose preconditions Pre(a) are in Fi, and placing in Fi+1, the add effects

of those actions along with the fluents in Fi. This construction is terminated when

the goals G are all in Fn, or when Fn = Fn+1. Then if G 6⊆ Fn, h(s) = ∞, as

it can be shown then that the relaxed problem P+(s) and the original problem

P (s) have no solution. Otherwise, a (relaxed) parallel plan π(s) for P+(s) can be

obtained backwards from the layer Fn by collecting the actions that add the goals,

and recursively, the actions that add the preconditions of those actions that are not

true in the state s.

More precisely, for Gn = G and i from n − 1 to 0, Bi is set to a minimal

collection of actions in Ai that add all the atoms in Gi+1 \ Fi, and Gi is set to

Pre(Bi)∪(Gi+1∩Fi) where Pre(Bi) is the collection of fluents that are preconditions

of actions in Bi. It can be shown then that π(s) = B0, . . . , Bn−1 is a parallel plan

for the relaxation P+(s); the plan being parallel because the actions in each set Bi

are assumed to be done in parallel. The heuristic h(s) is then just Cost(π(s)). This

31

Hector Geffner

B C

A

C

A

B A B C
B

A

C

B

C

A

A

B

C

C

A B A

B

C

C

BA

A B CA

B

C

B

C

A

.........

GOAL

h=3

h=3
h=2 h=3

h=1

h=0

h=2 h=2 h=2

h=2

GOALINIT

Figure 2. A simple planning problem involving three blocks with initial and goal situations

I and G as shown. The actions allow to move a clear block on top of another clear block

or to the table. A plan for the problem is a path that connects I with G in the directed

graph partially shown. In this example, the plan can be found greedily by taking in each

state s, starting with s = I, the action that results in a state s′ that is closer to the goal

according to the heuristic. The heuristic values (shown) are derived automatically from

the problem as described in the text.

is indeed the heuristic introduced in the FF planner [Hoffmann and Nebel 2001],

which is suitable when action costs are uniform. For non-uniform action costs, other

heuristics are more convenient [Keyder and Geffner 2008].

4 Meaning of Domain-Independent Heuristics

In order to illustrate the meaning and derivation of domain-independent heuristics,

let us consider the example shown in Fig. 2, where blocks a, b, and c initially

arranged so that a is on b, and b and c are on the table, must be rearranged so

that b is on c, and c is on a. The actions allow to move a clear block (a block with

no block on top) on top of another clear block or to the table. The problem can

be expressed as a Strips problem P = 〈F, I, O, G〉 with a set of atoms F given by

on(x, y), ontable(x), and clear(x), where x and y range over the block labels a, b,

and c. In the heuristic search approach to planning, the solution to P becomes a

path-finding problem in the directed graph associated with the state model S(P),

where the nodes stand for the states in S(P), and the actions a ∈ O are mapped

into edges connecting a state s with a state s′ when a is applicable in s and maps

s into s′.

The Blocks World is simple for people, but until recently, not so simple for

domain-independent planners. Indeed, the size of the graph to search is exponential

in the number of blocks n, with n! possible towers of n blocks, and additional

32

Heuristics, Planning and Cognition

combinations of shorter towers.

Figure 2 shows the search that results from a planner using the heuristic described

above, whose value h(s) for each of the states in the graph is shown. All action

costs are assumed to be 1. With the heuristic shown, the solution to the problem

can be found with no search at all by just selecting in each state s the action that

leads to the state s′ that is closest to the goal (lowest heuristic value). In the initial

state, this action is the one that places block a on the table, in the following state,

the action that places c on a, and so on.

In order to understand the numbers shown in the figure, let us see how the value

h(s) = 3 for the initial state s is derived. The heuristic h(s) is |π(s)| where π(s)

is the plan found for the relaxation P+(s). The relaxed plan π(s) is obtained by

constructing first the layered graph F0, A0, . . . , Fn−1, An−1, Fn, where n > 0 as

none of the goals on(b, c) and on(c, a) are in F0 = s. The actions in A0 are the

actions applicable given the atoms in F0, i.e., the actions a with Pre(a) ⊆ F0. This

set includes the actions of moving c to a, a to c, and a to the table, but does not

include actions that move b as the precondition clear(b) is not part of F0. The set

F1 extends F0 with all the atoms added by the actions in A0, and includes on(c, a),

on(a, c), ontable(a), and clear(b), but not the goal on(b, c). Yet with clear(b) and

clear(c) in F1, the action for moving b to c appears in layer A1, and therefore, the

other goal atom on(b, c) appears in F2. By collecting the actions that first add the

goal atoms on(c, a) and on(b, c), and recursively, the preconditions of those actions

that are not in s, a relaxed plan π(s) with 3 actions is obtained so that h(s) = 3.

There are several choices for the actions in π(s) that result from the way ties in the

plan extraction procedure are broken. One possible relaxed plan involves moving

a to the table and c to a in the first step, and b to c in the second step. Another

involves moving a to c and c to a first, and then b to c.

It is important to notice that fluent layers such as F1 in the plan graph do not

represent any ‘real’ states in the original problem P as they include atoms pairs

like on(a, c) and on(c, a) that cannot be achieved jointly in any state s′ reachable

from the initial state. The layer F1 is instead an abstraction that approximates the

set of all states reachable in one step from the initial state by taking their union.

This approximation implies that finding an atom p in a layer Fn with n > 1 is no

guarantee that there is a real plan for p in P (s) that achieves p in n time steps,

rather than one such parallel plan exists in the relaxation. Similarly, the relaxed

plans π(s) obtained above are quite ‘meaningless’; they move a to the table or to c

at the same time that they move c to a. Yet, these ‘meaningless’ relaxed plans π(s)

yield the heuristic values h(s) that provide the search with a very meaningful and

effective sense of direction.

Let us finally point out that the computation of the domain-independent heuristic

h(s) results in valuable information that goes beyond the numbers h(s). Indeed,

from the computation of the heuristic value h(s), it is possible to determine the

actions applicable in the state s that are most relevant to the goal, and then focus

33

Hector Geffner

on the evaluation of the states that result from those actions only. This type of

action pruning has been shown to be quite effective [Hoffmann and Nebel 2001],

and in slightly different form is part of state-of-the-art planners [Richter, Helmert,

and Westphal 2008].

5 Other Developments in Planning

Domain-independent planning is concerned with non-classical models also where

information about the initial situation is incomplete, actions may have non-de-

terministic effects, and states may be fully or partially observable. A number of

native solvers for such models, that include Markov Decision Processes (MDPs) and

Partially Observable MDPs have been developed, and progress in the area has been

considerable too. Moreover, many of these solvers are also based on heuristic search

methods (see the article by Bonet and Hansen in this volume). I will not review

this literature here but focus instead on two ways in which the results obtained for

classical planning are relevant to such richer settings too.

First, it’s often possible to plan under uncertainty without having to model the

uncertainty explicitly. This is well known by control engineers that normally design

closed-loop controllers for stochastic systems ignoring the ‘noise’. Indeed, the error

in the model is compensated by the feedback loop. In planning, where non-linear

models are considered, the same simplification works too. For instance, in a Blocks

World where the action of moving a block may fail, an effective closed-loop policy

can be obtained by replanning from the current state when things didn’t progress

as predicted by the simplified model. Indeed, the planner that did best in the

first probabilistic planning competition [Younes, Littman, Weissman, and Asmuth

2005], was not an MDP planner, but a classical replanner of this type. Of course,

this approach is not suitable when it may be hard or impossible to recover from

failures, or when the system state is not fully observable. In everyday planning,

however, such cases may be the exception.

Second, it has been recently shown that it’s often possible to efficiently trans-

form problems featuring uncertainty and sensing into classical planning problems

that do not. For example, problems P involving uncertainty in the initial situa-

tion and no sensing, namely conformant planning problems, can be compiled into

classical problems K(P) by adding new actions and fluents that express condition-

als [Palacios and Geffner 2007]. The translation from the conformant problem P

into the classical problem K(P) is sound and complete, and provided that a width

parameter defined over P is bounded, it is polynomial too. The result is that the

conformant plans for P can be read from the plans for K(P) that can be com-

puted using a classical planner. Moreover, this technique has been recently used for

deriving finite-state controllers that solve problems featuring both incomplete in-

formation and sensing [Bonet, Palacios, and Geffner 2009]. A finite-state controller

is an automata that given the current (controller) state and the current observation

selects an action and updates the controller state, and so on, until reaching the

34

Heuristics, Planning and Cognition

goal. Figure 3 shows one such problem (left) and the resulting controller (right).

The problem, motivated by the work on deictic representations in the selection of

actions [Chapman 1989; Ballard, Hayhoe, Pook, and Rao 1997], is about placing a

visual marker on top of a green block in a blocks-world scene where the location of

the green blocks is not known. The visual marker, initially at the lower left corner

of the scene (shown as an eye), can be moved in the four directions, one cell at a

time. The observations are whether the cell beneath the marker is empty (‘C’), a

non-green block (‘B’), or a green block (‘G’), and whether it is on the table (‘T’)

or not (‘-’). The controller shown on the right has been derived by running a clas-

sical planner over a classical problem obtained by an automatic translation from

the original problem that involves both uncertainty and sensing. In the figure, the

controller states qi are shown in circles while the label o/a on an edge connecting

two states q to q′ means to do action a when observing o in q and then switching

to q′. In the classical planning problem obtained from the translation, the actions

are tuples (fq, fo, a, fq′) whose effects are those of the action a but conditional on

the fluents fq and fo representing the controller state q and observation o being

true. In such a case, the fluent fq′ representing the controller state q′ is made true

and fq is made false. The two appealing features of this formulation is that the

resulting classical plans encode very succint closed-loop controllers, and that these

controllers are quite general. Indeed, the controller shown in the figure not only

solves the problem for the configuration of blocks shown, but for any configuration

involving any number of blocks. The controller prescribes to move the ‘eye’ up until

there are no blocks, then to move it down until reaching the table and right, and

to repeat this process until a green block is found (‘G’). Likewise, the ‘eye’ must

move right when there are no blocks in a given spot (both ‘T’ and ‘C’ observed).

See [Bonet, Palacios, and Geffner 2009] for details.

6 Heuristics and Cognition

Heuristic evaluation functions are used also in other settings such as Chess play-

ing programs [Pearl 1983] and reinforcement learning [Sutton and Barto 1998].

The difference between evaluations functions in Chess, reinforcement learning, and

domain-independent planning mimic actually quite closely the relation among the

three approaches to action selection mentioned in the introduction: programming-

based, learning-based, and model-based. Indeed, the evaluation functions are pro-

grammed by hand in Chess, are learned by trial-and-error in reinforcement learning,

and are derived from a (relaxed) model in domain-independent planning.

Heuristic evaluation functions in reinforcement learning, called simply valuation

functions, are computed by stochastic sampling and dynamic programming updates.

This is a model-free method that has been shown to be effective in low-level tasks

that do not involve large state spaces, and which provides an accurate account of

learning in the brain [Schultz, Dayan, and Montague 1997].

Heuristic evaluation functions as used in domain-independent planning are com-

35

Hector Geffner

q0

TB/Up

-B/Up

TC/Right

q1
-C/Down

TB/Right

-B/Down

Figure 3. Left: The visual marker shown as an ‘eye’ must be placed on a green block in

the blocks-world scene shown, where the locations of the green blocks are not known. The

visual marker can be moved in the four directions, one cell at a time. The observations

are whether the cell beneath the marker is empty (‘C’), a non-green block (‘B’), or a green

block (‘G’), and whether the marker is on the table (‘T’) or not (‘-’). Right: The controller

derived for this problem using a classical planner over a suitable automatic transformation.

The controller states qi are shown in circles while the label o/a on an edge connecting q to

q′ means to do a when observing o in q switching then to q′. The controller works not only

for the problem instance shown on the left, but for any instance resulting from changes in

the configuration or in the number of blocks.

puted by model-based methods where suitable relaxations are solved from scratch.

The technique has been shown to work over large problems involving hundred of

actions and fluents. Here I want to argue these methods also have features that

make them interesting from a cognitive point of view as a plausible basis for an ac-

count of ‘feelings’, ‘emotions’, or ‘appraisals’ in high-level human problem solving.

I focus on three of these features.

First, domain-independent heuristics are fast (low-polynomial time) and effective,

as the ‘fast and frugal’ heuristics advocated by Gigerenzer and others [Gigerenzer

and Todd 1999; Gigerenzer 2007], and yet, they are general too: they apply indeed

to all the problems that fit the (classical planning) model and to problems that can

be cast in that form (like the visual-marker problem above).

Second, the derivation of these heuristics sheds light on why appraisals may be

opaque from a cognitive point of view, and thus not conscious. This is because

the heuristic values are obtained from a relaxed model where the meaning of the

symbols is different than the meaning of the symbols in the ‘true’ model. For

example, the action of moving an object from one place to another, deletes the old

place in the true model but not in the delete-relaxation where an object can thus

appear in multiple places at the same time. Thus, if the agent selecting the actions

with the resulting heuristic does not have access to the relaxation, it won’t be able

to explain how the heuristic evaluations are produced nor what they stand for.

The importance of the unconscious in everyday cognition is a topic that has been

receiving increased attention in recent years, with conscious, deliberate reasoning,

appearing to rely heavily on unconscious processing and representing just the tip

of the ‘cognitive iceberg’ [Wilson 2002; Hassin, Uleman, and Bargh 2005; Evans

36

Heuristics, Planning and Cognition

2008]. While this is evident in vision and natural language processing, where it is

clear that one does not have access to how one ‘sees’ or ‘understands’, this is likely

to be true in most cognitive tasks, including apparently simple problems such as

the Blocks World where our ability to find reasons for the actions selected, does

not explain how such actions are selected in the first place. In this sense, the focus

of cognitive psychology on puzzles such as the Tower of Hanoi may be misplaced:

simple problems, such as the Blocks World, are not simple for domain-independent

solvers, and there is no question that people are capable of solving domains that

they have never seen where the combinatorics would defy a naive, blind solver.

Third, the heuristics provide the agent with a sense of direction or ‘gut feelings’

that guide the action selection in the presence of many alternatives, while avoiding

an infinite regress in the decision process. Indeed, emotions long held to interfere

with the decision process and rationality, are now widely perceived as a requisite

in contexts where it is not possible to consider all alternatives. Emotions and gut

feelings are thus perceived as the ‘invisible hand’ that successfully guides us out of

these mental labyrinths [Ketelaar and Todd 2001; Evans 2002].1 The ‘rationality of

the emotions’ have been defended on theoretical grounds by philosophers [De Sousa

1990; Elster 1999], and on empirical grounds by neuroscientists that have studied

the impairments in the decision process that result from lesions in the frontal lobes

[Damasio 1995]. The link between emotions and evaluation functions, point to their

computational role as well.

While emotions are currently thought as providing the appraisals that are nec-

essary for navigating in a complex world, there are actually very few accounts of

how such appraisals may be computed. Reinforcement learning methods provide one

such account that works well in low level tasks without requiring a model. Heuris-

tic planning methods provide another account that works well in high-level tasks

where the model is known. Moreover, as discussed above, heuristic planning meth-

ods do not only provide an account of the appraisals, but also of the actions that are

worth evaluating. These are the actions a in the state s that are deemed relevant

to the goal in the computation of the heuristic h(s); the so-called helpful actions

[Hoffmann and Nebel 2001]. This form of action pruning may account for a key

difference between programs and humans in games such as Chess: while the former

consider all possible moves and responses (up to a certain depth), the latter focus on

the analysis and evaluation of a few moves and countermoves. Domain-independent

heuristics can account in principle for both the focus and the evaluation, the latter

in the value of the heuristic function h(s), the former in its structure.

1Some philosophers and cognitive scientists refer to this combinatorial problem as the ‘frame

problem’ in AI. This terminology, however, is not accurate. The frame problem in AI [McCarthy

and Hayes 1969] refers to the problem that arises in logical accounts of actions and change where

the description of the action effects does not suffice to capture what does not change. E.g., the

number of chairs in the room does not change if the bell rings. The frame problem is the problem

of capturing what does not change from a concise logical description of what changes [Ford and

Pylyshyn 1996].

37

Hector Geffner

7 AI and Cognitive Science: Past and Future

Pearl’s ideas on the mechanical discovery of heuristics has received renewed atten-

tion in the area of domain-independent planning where heuristic evaluation func-

tions, derived automatically from the problem encoding, are used to guide the search

for plans in large spaces. Heuristic search planners are powerful domain-independent

solvers that have been empirically tested over many large domains involving hundred

of actions and variables.

The developments in planning parallel those in other areas of AI and bear on the

relevance of Artificial Intelligence to the understanding of the human mind. AI and

Cognitive Science were twin disciplines until the 80’s, with AI looking to the human

mind for inspiration, and Cognitive Science looking to computation as a language

for modeling. The relationship between AI and Cognitive Science has changed,

however, and the two disciplines do not appear to be that close now. Below, I go

over some of the relevant changes that explain this divorce, and explain why, in spite

to them, AI remains and will likely remain critically relevant for understanding the

human mind, a premise that underlies and motivates the work of Judea Pearl and

others AI scientists.

A lot of work in AI until the 80’s was about writing programs capable of displaying

intelligence over ill-defined problems, either by appealing to introspection or by

interviewing an expert. Many good ideas came out from this work, yet few have

had a lasting scientific value. The methodological problem with the ‘knowledge-

based’ approach in AI was that the resulting programs were not robust and they

always appeared to be missing critical knowledge; either declarative (e.g., that men

don’t get pregnant), procedural (e.g., which rule or action to apply next), or both.

This situation led to an impasse in the 80’s, and to many debates and criticisms,

like that ‘good old fashioned AI’ is ‘rule application’ but human intelligence is not

[Haugeland 1993], that representation is not needed for intelligent behavior and gets

in the way [Brooks 1991], that subsymbolic neural networks and genetic algorithms

are the way to go [Rumelhart and McClelland 1986; Holland 1992], etc.

In part due to the perceived limitations of the knowledge-based approach and

the criticisms, and in part due to its own evolution, mainstream AI has changed

substantially since the 80’s. One of the key methodological changes is that many

researchers have moved from the early paradigm of writing programs for ill-defined

problems to writing solvers for well-defined mathematical models. These models

include Constraint Satisfaction Problems, Strips Planning, Bayesian Networks and

Partially Observable Markov Decision Processes, among others. Solvers are pro-

grams that take a compact description of a particular model instance (a planning

problem, a CSP instance, and so on) and automatically compute its solution. Un-

like the early AI programs, solvers are general as they must deal with any problem

that fits the model (any instance). Moreover, some of these models, like POMDPs,

are extremely expressive. The challenge in this research agenda is mainly com-

38

Heuristics, Planning and Cognition

putational: how to make these domain-independent solvers scale up to large and

interesting problems given that all these models are intractable in the worst case.

Work in these areas has uncovered techniques that accomplish this by automatically

recognizing and exploiting the structure of the problems at hand. In planning, these

techniques have to do with the automatic derivation and use of heuristic evaluation

functions; in SAT and CSPs, with constraint propagation and learning, while in

CSPs and Bayesian Networks, with the use of the underlying graphical structure.

The relevance of the early work in AI to Cognitive Science was based on intuition:

programs provided a way for specifying intuitions precisely and for trying them

out. The more recent work on domain-independent solvers is more technical and

experimental, and is focused not on reproducing intuitions but on scalability. This

may give the impression, confirmed by the current literature, that recent work in

AI is less relevant to Cognitive Science than work in the past. This impression,

however, may prove wrong on at least two grounds. First, intuition is not what

it used to be, and it is now regarded as the tip of an iceberg whose bulk is made

of massive amounts of shallow, fast, but unconscious inference mechanisms that

cannot be rendered explicit in the form of rules [Wilson 2002; Hassin, Uleman, and

Bargh 2005; Gigerenzer 2007]. Second, whatever these mechanisms are, they appear

to work pretty well and to scale up. This is no small feat, given that most methods,

whether intuitive or not, do not. Indeed, if the techniques that really scale up are not

that many, a plausible conjecture at this point, it may well be the case that the twin

goals of accounting reliably for the intuitions and of scaling up have a large overlap.

By focusing then on the study of meaningful models and the computational methods

for dealing with them effectively, AI may prove its relevance to human cognition

in ways that may go well beyond the rules, cognitive architectures, and knowledge

structures of the 80’s. Human Cognition, indeed, still provides the inspiration and

motivation for a lot of research in AI. The use of Bayesian Networks in Development

Psychology for understanding how children acquire and use causal relations [Gopnik,

Glymour, Sobel, Schulz, , Kushnir, and Danks 2004], and the use of Reinforcement

Learning algorithms in Neuroscience for interpreting the activity of dopamine cells

in the brain [Schultz, Dayan, and Montague 1997], are two examples of general AI

techniques that have made it recently into Cognitive Science. As AI focuses on

models and solvers able to scale up, more techniques are likely to follow. One such

candidate is the automatic derivation of heuristic functions as used in planning,

which like the research on Bayesian Networks, owes a lot to the work of Judea

Pearl.

References

Ballard, D., M. Hayhoe, P. Pook, and R. Rao (1997). Deictic codes for the em-

bodiment of cognition. Behavioral and Brain Sciences 20 (4), 723–742.

Bertsekas, D. (1995). Dynamic Programming and Optimal Control, Vols 1 and 2.

39

Hector Geffner

Athena Scientific.

Blum, A. and M. Furst (1995). Fast planning through planning graph analysis.

In Proceedings of IJCAI-95, pp. 1636–1642. Morgan Kaufmann.

Bonet, B. and H. Geffner (2000). Planning with incomplete information as heuris-

tic search in belief space. In Proc. of AIPS-2000, pp. 52–61. AAAI Press.

Bonet, B. and H. Geffner (2001). Planning as heuristic search. Artificial Intelli-

gence 129 (1–2), 5–33.

Bonet, B., G. Loerincs, and H. Geffner (1997). A robust and fast action selection

mechanism for planning. In Proceedings of AAAI-97, pp. 714–719. MIT Press.

Bonet, B., H. Palacios, and H. Geffner (2009). Automatic derivation of memory-

less policies and finite-state controllers using classical planners. In Proc. Int.

Conf. on Automated Planning and Scheduling (ICAPS-09).

Brooks, R. (1987). A robust layered control system for a mobile robot. IEEE J.

of Robotics and Automation 2, 14–27.

Brooks, R. (1991). Intelligence without representation. Artificial Intelli-

gence 47 (1–2), 139–159.

Chapman, D. (1989). Penguins can make cake. AI magazine 10 (4), 45–50.

Damasio, A. (1995). Descartes’ Error: Emotion, Reason, and the Human Brain.

Quill.

De Sousa, R. (1990). The rationality of emotion. MIT Press.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Dechter, R. and J. Pearl (1985). The anatomy of easy problems: a constraint-

satisfaction formulation. In Proc. International Joint Conference on Artificial

Intelligence (IJCAI-85), pp. 1066–1072.

Elster, J. (1999). Alchemies of the Mind: Rationality and the Emotions. Cam-

bridge University Press.

Evans, D. (2002). The search hypothesis of emotion. British J. Phil. Science 53,

497–509.

Evans, J. (2008). Dual-processing accounts of reasoning, judgment, and social

cognition. Annual Review of Pschycology 59, 255–258.

Fikes, R. and N. Nilsson (1971). STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence 1, 27–120.

Ford, K. and Z. Pylyshyn (1996). The robot’s dilemma revisited: the frame prob-

lem in artificial intelligence. Ablex Publishing.

Ghallab, M., D. Nau, and P. Traverso (2004). Automated Planning: theory and

practice. Morgan Kaufmann.

40

Heuristics, Planning and Cognition

Gigerenzer, G. (2007). Gut feelings: The intelligence of the unconscious. Viking

Books.

Gigerenzer, G. and P. Todd (1999). Simple Heuristics that Make Us Smart. Ox-

ford University Press.

Goldman, R. P. and M. S. Boddy (1996). Expressive planning and explicit knowl-

edge. In Proc. AIPS-1996.

Gopnik, A., C. Glymour, D. Sobel, L. Schulz, , T. Kushnir, and D. Danks (2004).

A theory of causal learning in children: Causal maps and Bayes nets. Psycho-

logical Review 111 (1), 3–31.

Hassin, R., J. Uleman, and J. Bargh (2005). The new unconscious. Oxford Uni-

versity Press, USA.

Haugeland, J. (1993). Artificial intelligence: The very idea. MIT press.

Hoffmann, J. and B. Nebel (2001). The FF planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research 14, 253–

302.

Holland, J. (1992). Adaptation in natural and artificial systems. MIT Press.

Kaelbling, L., M. Littman, and T. Cassandra (1998). Planning and acting in

partially observable stochastic domains. Artificial Intelligence 101 (1–2), 99–

134.

Kautz, H. and B. Selman (1996). Pushing the envelope: Planning, propositional

logic, and stochastic search. In Proc. AAAI, pp. 1194–1201.

Ketelaar, T. and P. M. Todd (2001). Framing our thoughts: Evolutionary psy-

chology’s answer to the computational mind’s dilemma. In H. Holcomb (Ed.),

Conceptual Challenges in Evolutionary Psychology. Kluwer.

Keyder, E. and H. Geffner (2008). Heuristics for planning with action costs re-

visited. In Proc. ECAI-08, pp. 588–592.

Mackworth, A. and E. C. Freuder (1985). The complexity of some polynomial

network consistency algorithms for constraint satisfaction problems. Artificial

Intelligence 25 (1), 65–74.

Mataric, M. J. (2007). The Robotics Primer. MIT Press.

McAllester, D. and D. Rosenblitt (1991). Systematic nonlinear planning. In Pro-

ceedings of AAAI-91, Anaheim, CA, pp. 634–639. AAAI Press.

McCarthy, J. and P. Hayes (1969). Some philosophical problems from the stand-

point of artificial intelligence. In Machine Intelligence 4, pp. 463–502. Edin-

burgh University Press.

McDermott, D. (1996). A heuristic estimator for means-ends analysis in planning.

In Proc. Third Int. Conf. on AI Planning Systems (AIPS-96).

41

Hector Geffner

McDermott, D. (1998). PDDL – the planning domain definition language. At

http://ftp.cs.yale.edu/pub/mcdermott.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

Newell, A., J. Shaw, and H. Simon (1958). Elements of a theory of human problem

solving. Psychology Review 23, 342–343.

Newell, A. and H. Simon (1963). GPS: a program that simulates human thought.

In E. Feigenbaum and J. Feldman (Eds.), Computers and Thought, pp. 279–

293. McGraw Hill.

Palacios, H. and H. Geffner (2007). From conformant into classical planning:

Efficient translations that may be complete too. In Proc. 17th Int. Conf. on

Planning and Scheduling (ICAPS-07).

Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierarchical

approach. In Proceedings of the National Conference on Artificial Intelligence

(AAAI-82), pp. 133–136.

Pearl, J. (1983). Heuristics. Addison Wesley.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-

mann.

Penberthy, J. and D. Weld (1992). UCPOP: A sound, complete, partially order

planner for ADL. In Proceedings KR’92.

Richter, S., M. Helmert, and M. Westphal (2008). Landmarks revisited. In Proc.

AAAI, pp. 975–982.

Rumelhart, D. and J. McClelland (Eds.) (1986). Parallel distributed processing:

explorations in the microstructure of cognition. Vol. 1. MIT Press.

Sacerdoti, E. (1975). The nonlinear nature of plans. In Proceedings of IJCAI-75,

Tbilisi, Georgia, pp. 206–214.

Schultz, W., P. Dayan, and P. Montague (1997). A neural substrate of prediction

and reward. Science 275 (5306), 1593–1599.

Sutton, R. and A. Barto (1998). Introduction to Reinforcement Learning. MIT

Press.

Tate, A. (1977). Generating project networks. In Proc. IJCAI, pp. 888–893.

Weld, D., C. Anderson, and D. Smith (1998). Extending Graphplan to handle

uncertainty and sensing actions. In Proc. AAAI-98, pp. 897–904. AAAI Press.

Wilson, T. (2002). Strangers to ourselves. Belknap Press.

Younes, H., M. Littman, D. Weissman, and J. Asmuth (2005). The first proba-

bilistic track of the international planning competition. Journal of Artificial

Intelligence Research 24, 851–887.

42

3

Mechanical Generation of Admissible

Heuristics

Robert Holte, Jonathan Schaeffer, and Ariel Felner

1 Introduction

This chapter takes its title from Section 4.2 of Judea Pearl’s landmark book Heuris-

tics [Pearl 1984], and explores how the vision outlined there has unfolded in the

quarter-century since its appearance. As the book’s title suggests, it is an in-depth

summary of classical artificial intelligence (AI) heuristic search, a subject to which

Pearl and his colleagues contributed substantially in the early 1980s.

The purpose of heuristic search is to find a least-cost path in a state space from

a given start state to a goal state. In principle, such problems can be solved by

classical shortest path algorithms, such as Dijkstra’s algorithm [Dijkstra 1959], but

in practice the state spaces of interest in AI are far too large to be solved in this way.

One of the seminal insights in AI was recognizing that even extremely large search

problems can be solved quickly if the search algorithm is provided with additional

information in the form of a heuristic function h(s) that estimates the distance

from any given state s to the nearest goal state [Doran and Michie 1966; Hart,

Nilsson, and Raphael 1968]. A heuristic function h(s) is said to be admissible if,

for every state s, h(s) is a lower bound on the true cost of reaching the nearest goal

from state s. Admissibility is desirable because it guarantees the optimality of the

solution found by the most widely-used heuristic search algorithms.

Most of the chapters in Heuristics contain mathematically rigorous definitions

and analysis. In contrast, Chapter 4 offers a conceptual account of where heuristic

functions come from, and a vision of how one might create algorithms for automat-

ically generating effective heuristics from a problem description. An early version

of the chapter had been published previously in the widely circulated AI Maga-

zine [Pearl 1983].

Chapter 4’s key idea is that distances in the given state space can be estimated

by computing exact distances in a “simplified” version of the state space. There

are many different ways a state space can be simplified. Pearl focused almost

exclusively on relaxation, which is done by weakening or eliminating one or more of

the conditions that restrict how one is allowed to move from one state to another.

For example, to estimate the driving distance between two cities, one can ignore

the constraint that driving must be done on roads. In this relaxed version of the

problem, the distance between two cities is simply the straight-line distance. It is

43

Robert Holte, Jonathan Schaeffer, and Ariel Felner1 2 34 5 6 78 9 1 0 1 11 2 1 3 1 4 1 5
5 9 7 1 43 1 1 0 1 54 1 1 82 1 3 1 2 6

Figure 1. 15-puzzle

easy to see, in general, that distances in a relaxed space cannot exceed distances

in the given state space, and therefore the heuristic functions defined in this way

are guaranteed to be admissible. An alternate way of looking at this is to view the

elimination of conditions as equivalent to adding new edges to the search graph.

Therefore, optimal solutions to the relaxed graph (with the additional edges) must

be a lower bound on the solution to the original problem.

As a second example of relaxation, consider the 15-puzzle shown in Figure 1,

which consists of a set of tiles numbered 1-15 placed in a 4 × 4 grid, leaving one

square in the grid unoccupied (called the “blank” and shown as a black square). The

only moves that are permitted are to slide a tile that is adjacent to the blank into

the blank position, effectively exchanging the tile with the blank. For example, four

moves are possible in the right-hand side of Figure 1: tile 10 can be moved down, tile

11 can be moved right, tile 8 can be moved left, and tile 12 can be moved up. To solve

the puzzle is to find a sequence of moves that transforms a given scrambled state

(right side of Figure 1) into a goal state (such as the one on the left). One possible

relaxation of the 15-puzzle state space can be defined by removing the restriction

that a tile must be adjacent to the blank to be moveable. In this relaxation any tile

can move from its current position to any adjacent position at any time, regardless

of whether the adjacent position is occupied or not. The number of moves required

to solve this relaxed version (called the Manhattan Distance) is clearly less than or

equal to the number of moves required to solve the 15-puzzle itself. Note that in

this case the relaxed state space has many more states than the original 15-puzzle

(many tiles can now occupy a single location) but it is easier to solve, at least for

humans (tiles move entirely independently of one another).

Pearl observes that in AI a state space is almost always defined implicitly by a set

of operators that describe a successor relation between states. Each operator has

a precondition defining the states to which it can be applied and a postcondition

describing how the operator changes the values of the variables used to describe a

state. This implies that relaxing a state space description by eliminating one or more

preconditions is a simple syntactic operation, and the set of all possible relaxations

of a state space description (by eliminating combinations of preconditions) is well-

defined and, in fact, easy to enumerate. Hence it is entirely feasible for a mechanical

44

Mechanical Generation of Admissible Heuristics

system to generate heuristic functions and, indeed, to search through the space of

heuristic functions defined by eliminating preconditions in all possible ways.

The mechanical search through a space of heuristic functions has as its goal, in

Pearl’s view, a heuristic function with two properties. First, the heuristic function

should return values that are as close to the true distances as possible (Chapter 6

in Heuristics justifies this). Second, the heuristic function must be efficiently com-

putable, otherwise the reduction in search effort that the heuristic function produces

might be outweighed by the increase in computation time caused by the calculation

of the heuristic function. Pearl saw the second requirement as the more difficult to

detect automatically and proposed that mechanically-recognizable forms of decom-

posability of the relaxed state space would be the key to mechanically generating

efficiently-computable heuristic functions. Pearl recognized that the search for a

good heuristic function might itself be quite time-consuming, but argued that this

cost was justified because it could be amortized over an arbitrarily large number

of problem instances that could all be solved much more efficiently using the same

heuristic function.

The preceding paragraphs summarize Pearl’s vision for how effective heuristics

might be generated automatically from a state space description. The remainder

of our chapter contains a brief look at the research efforts directed towards real-

izing Pearl’s vision. We conclude that Pearl correctly anticipated a fundamental

breakthrough in heuristic search in the general terms he set out in Chapter 4 of

Heuristics although not in all of its specifics. Our discussion is informal and the

ideas presented and their references are illustrative, not exhaustive.

2 The Vision Emerges

The idea of using a solution in a simplified state space to guide the search for a

solution in the given state space dates to the early days of AI [Minsky 1963] and was

first implemented and shown to be effective in the abstrips system [Sacerdoti 1974].

However, these early methods did not use the cost of the solution in the simplified

space as a heuristic function; they used the solution itself as a skeleton which was to

be refined into a solution in the given state space by inserting additional operators.

The idea of using distances in a simplified space as heuristic estimates of dis-

tances in the given state space came later. It did not originate with Judea Pearl

(in fact, he credits Stan Rosenschein for drawing the idea to his attention). How-

ever, by devoting a chapter of his otherwise technical book to the speculative idea

that admissible heuristic functions could be created automatically, he became an

important early promoter of it.

The idea was first developed in the Milan Polytechnic Artificial Intelligence

Project in the period 1973-1979. In a series of papers (e.g. [Sangiovanni-Vincentelli

and Somalvico 1973; Guida and Somalvico 1979]) the Milan group developed the

core elements of Pearl’s vision. They proposed defining a heuristic function as

the exact distance in a relaxed state space and proved that such heuristic func-

45

Robert Holte, Jonathan Schaeffer, and Ariel Felner

tions would be both admissible and consistent.1 To make the computation of such

heuristic functions efficient the Milan group envisaged a hierarchy of relaxed spaces,

with search at one level being guided by a heuristic function defined by distances

in the level above. The Milan group also foresaw the possibility of algorithms for

searching through the space of possible simplified state spaces, although the first

detailed articulation of this idea, albeit in a somewhat different context, was by

Richard Korf [1980].

John Gaschnig [1979] picked up on the Milan work. He made the key observation

that if a heuristic function is calculated by searching in a relaxed space, the total

time required to solve the problem using the heuristic function could exceed the

time required to solve the problem directly with breadth-first search (i.e. without

using the heuristic function). This was formally proven shortly afterwards by Marco

Valtorta [1981, 1984]. This observation led to a focus on the efficiency with which

distances in the simplified space could be computed. The favorite approach to doing

this (as exemplified in Heuristics) was to search for simplified spaces that could be

decomposed.

3 The Vision Becomes a Reality

Directly inspired by Pearl’s vision, Jack Mostow and Armand Prieditis set them-

selves the task of automating what had hitherto been paper-and-pencil speculation.

The result was their absolver system [Mostow and Prieditis 1989; Prieditis 1993],

which fully vindicated Pearl’s enthusiasm for the idea of mechanically generating

effective, admissible heuristics.

The input to absolver was a state space description in the standard strips

notation [Fikes and Nilsson 1971]. absolver had a library containing two types

of transformations, each of which would take as input a strips representation of a

state space and produce as output one or more other strips representations. The

first type of transformation were abstracting transformations. Their purpose was to

create a simplification (or “abstraction”) of the given state space. One of these was

drop precondition, exactly as Pearl had proposed. Their other abstracting trans-

formations were a type of simplification that Pearl had not anticipated—they were

homomorphisms, which are many-to-one mappings of states in the given space to

states in the abstract space. Homomorphic state space abstractions for the purpose

of defining heuristic functions were first described by Dennis Kibler in an unpub-

lished report [1982], but their importance was not appreciated until absolver and

the parallel work done by Keki Irani and Suk Yoo [1988].

An example of a homomorphic abstraction of the 15-puzzle is shown in Figure 2.

Here tiles 9-15 and the blank are just as in the original puzzle (Figure 1) but tiles 1-8

have had their numbers erased so that they are not distinguishable from each other.

Hence for any particular placement of tiles 9-15 and the blank, all the different ways

1Heuristic function h(s) is consistent if, for any two states s1 and s2, h(s1) ≤ dist(s1, s2)+h(s2),

where dist(s1, s2) is the distance from s1 to s2.

46

Mechanical Generation of Admissible Heuristics

9 1 0 1 11 2 1 3 1 4 1 5
9 1 41 0 1 51 11 3 1 2

Figure 2. Homomorphic abstraction of the 15-puzzle

of permuting tiles 1-8 among the remaining positions produce 15-puzzle states that

map to the same abstract state, even though they would all be distinct states in the

original state space. For example, the abstract state in the left part of Figure 2 is

the abstraction of the goal state in the original 15-puzzle (left part of Figure 1), but

it is also the abstraction of all the non-goal states in the original puzzle in which

tiles 9-15 and the blank are in their goal positions but some or all of tiles 1-8 are

not. Using this abstraction, the distance from the 15-puzzle state in the right part

of Figure 1 to the 15-puzzle goal state would be estimated by calculating the true

distance, in the abstract space, from the abstract state in the right part of Figure 2

to the state in the left part of Figure 2.

In addition to abstracting transformations, absolver’s library contained “opti-

mizing” transformations, which would create an equivalent description of a given

strips representation in which search could be completed more quickly. This in-

cluded the “factor” transformation that would, if possible, decompose the state

space into independent subproblems, one of the methods Pearl had suggested.

absolver was applied to thirteen state spaces and found effective heuristic func-

tions in six of them. Five of the functions it discovered were novel, including a

simple, effective heuristic for Rubik’s Cube that had been overlooked by experts:

after extensive study, Korf was unable to find a single good heuristic

evaluation function for Rubik’s Cube [Korf 1985]. He concluded that “if

there does exist a heuristic, its form is probably quite complex.”

([Mostow and Prieditis 1989], page 701)

4 Dawn of the Modern Era

Despite absolver’s success, it did not launch the modern era of abstraction-based

heuristic functions. That would not happen until 1994, when Joe Culberson and

Jonathan Schaeffer’s work on pattern databases (PDBs) first appeared [Culberson

and Schaeffer 1994]. They used homomorphic abstractions of the kind illustrated in

Figure 2 and, as explained above, defined the heuristic function, h(s), of state s to be

the actual distance in the abstract space between the abstract state corresponding

to s and the abstract goal. The key idea behind PDBs is to store the heuristic

function as a lookup table so that its calculation during a search is extremely fast.

47

Robert Holte, Jonathan Schaeffer, and Ariel Felner

To do this, it is necessary to precompute all the distances to the goal state in the

abstract space. This is typically done by a backwards breadth-first search starting

at the abstract goal state. Each abstract state reached in this way is associated with

a specific storage location in the PDB, and the state’s distance from the abstract

goal is stored in this location as the value in the PDB.

Precomputing abstract distances to create a lookup-table heuristic function was

actually one of the optimizing transformations in absolver, but Culberson and

Schaeffer had independently come up with the idea. Unlike the absolver work,

they validated it by producing a two orders of magnitude reduction in the search

effort (measured in nodes expanded) needed to solve instances of the 15-puzzle, as

compared to the then state-of-the-art search algorithms using an enhanced Man-

hattan Distance heuristic. To achieve this they used two PDBs totaling almost one

gigabyte of memory, a very large amount in 1994 when the experiments were per-

formed [Culberson and Schaeffer 1994]. The paper’s referees were sharply critical of

the exorbitant memory usage, rejecting the paper three times before it finally was

accepted [Culberson and Schaeffer 1996].

Such impressive results on the 15-puzzle could not go unnoticed. The fundamen-

tal importance of PDBs was established beyond doubt in 1997 when Richard Korf

used PDBs to enable standard heuristic search techniques to find optimal solutions

to instances of Rubik’s Cube for the first time [Korf 1997].

Since then, PDBs have been used to build effective heuristic functions in numer-

ous applications, including various combinatorial puzzles [Felner, Korf, and Hanan

2004; Felner, Korf, Meshulam, and Holte 2007; Korf and Felner 2002], multiple se-

quence alignment [McNaughton, Lu, Schaeffer, and Szafron 2002; Zhou and Hansen

2004], pathfinding [Anderson, Holte, and Schaeffer 2007], model checking [Edelkamp

2007], planning [Edelkamp 2001; Edelkamp 2002; Haslum, Botea, Helmert, Bonet,

and Koenig 2007], and vertex cover [Felner, Korf, and Hanan 2004].

5 Current Status

The use of abstraction to create heuristic functions has profoundly advanced the

fields of planning and heuristic search. But the current state of the art is not

entirely as Pearl envisaged. Although he recognized that there were other types

of state space abstraction, Pearl emphasized relaxation. In this detail, he was

too narrowly focused. Researchers have largely abandoned relaxation in favor of

homomorphic abstractions, of which many types have been developed and shown

useful for defining heuristic functions, such as domain abstraction [Hernádvölgyi

and Holte 2000], h-abstraction [Haslum and Geffner 2000], projection [Edelkamp

2001], constrained abstraction [Haslum, Bonet, and Geffner 2005], and synchronized

products [Helmert, Haslum, and Hoffmann 2007].

Pearl argued for the automatic creation of effective heuristic functions by search-

ing through a space of abstractions. There has been some research in this direc-

tion [Prieditis 1993; Hernádvölgyi 2003; Edelkamp 2007; Haslum, Botea, Helmert,

48

Mechanical Generation of Admissible Heuristics

Bonet, and Koenig 2007; Helmert, Haslum, and Hoffmann 2007], but more is needed.

However, important progress has been made on the subproblem of evaluating the

effectiveness of a heuristic function, with the development of a generic, practi-

cal method for accurately predicting how many nodes IDA* (a standard heuristic

search algorithm) will expand for any given heuristic function [Korf and Reid 1998;

Korf, Reid, and Edelkamp 2001; Zahavi, Felner, Burch, and Holte 2008].

Finally, Pearl anticipated that efficiency in calculating the heuristic function

would be achieved by finding abstract state spaces that were decomposable in some

way. This has not come to pass, although there is now a general theory of when it is

admissible to add the values returned by two or more different abstractions [Yang,

Culberson, Holte, Zahavi, and Felner 2008]. Instead, the efficiency of the heuristic

calculation has been achieved either by precomputing the heuristic function’s values

and storing them in a lookup table, as PDBs do, or by creating a hierarchy of

abstractions and using distances at one level as a heuristic function to guide the

calculation of distances at the level below [Holte, Perez, Zimmer, and MacDonald

1996; Holte, Grajkowski, and Tanner 2005], as anticipated by the Milan group.

6 Conclusion

Judea Pearl has received numerous accolades for his prodigious research and its

impact. Amidst this impressive body of work are his often-overlooked contributions

to the idea of the automatic discovery of heuristic functions. Even though Heuristics

is over 25 years old (ancient by Computing Science standards), Pearl’s ideas still

resonate today.

Acknowledgments: The authors gratefully acknowledge the support they have

received over the years for research in this area from Canada’s Natural Sciences and

Engineering Research Council (NSERC), Alberta’s Informatics Circle of Research

Excellence (iCORE), and the Israeli Science Foundation (ISF).

References

Anderson, K., R. Holte, and J. Schaeffer (2007). Partial pattern databases. In

Symposium on Abstraction, Reformulation and Approximation, pp. 20–34.

Springer-Verlag LNAI #4612.

Culberson, J. and J. Schaeffer (1994). Efficiently searching the 15-puzzle. Tech-

nical Report 94-08, Department of Computing Science, University of Alberta.

Culberson, J. and J. Schaeffer (1996). Searching with pattern databases. In

G. McCalla (Ed.), AI’96: Advances in Artificial Intelligence, pp. 402–416.

Springer-Verlag LNAI #1081.

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Nu-

merische Mathematik 1, 269–271.

Doran, J. and D. Michie (1966). Experiments with the graph traverser program.

In Proceedings of the Royal Society A, Volume 294, pp. 235–259.

49

Robert Holte, Jonathan Schaeffer, and Ariel Felner

Edelkamp, S. (2001). Planning with pattern databases. In European Conference

on Planning, pp. 13–24.

Edelkamp, S. (2002). Symbolic pattern databases in heuristic search planning. In

Artificial Intelligence Planning and Scheduling (AIPS), pp. 274–283.

Edelkamp, S. (2007). Automated creation of pattern database search heuristics. In

Model Checking and Artificial Intelligence, pp. 35–50. Springer-Verlag LNAI

#4428.

Felner, A., R. Korf, and S. Hanan (2004). Additive pattern database heuristics.

Journal of Artificial Intelligence Research (JAIR) 22, 279–318.

Felner, A., R. Korf, R. Meshulam, and R. Holte (2007). Compressed pattern

databases. Journal of Artificial Intelligence Research (JAIR) 30, 213–247.

Fikes, R. and N. Nilsson (1971). STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence 2 (3/4), 189–208.

Gaschnig, J. (1979). A problem similarity approach to devising heuristics: First

results. In International Joint Conference on Artificial Intelligence (IJCAI),

pp. 301–307.

Guida, G. and M. Somalvico (1979). A method for computing heuristics in prob-

lem solving. Information Sciences 19, 251–259.

Hart, P., N. Nilsson, and B. Raphael (1968). A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics SCC-4(2), 100–107.

Haslum, P., B. Bonet, and H. Geffner (2005). New admissible heuristics for

domain-independent planning. In National Conference on Artificial Intelli-

gence (AAAI), pp. 1163–1168.

Haslum, P., A. Botea, M. Helmert, B. Bonet, and S. Koenig (2007). Domain-

independent construction of pattern database heuristics for cost-optimal plan-

ning. In National Conference on Artificial Intelligence (AAAI), pp. 1007–

1012.

Haslum, P. and H. Geffner (2000). Admissible heuristics for optimal planning. In

Artificial Intelligence Planning and Scheduling (AIPS), pp. 140–149.

Helmert, M., P. Haslum, and J. Hoffmann (2007). Flexible abstraction heuristics

for optimal sequential planning. In Automated Planning and Scheduling, pp.

176–183.

Hernádvölgyi, I. (2003). Solving the sequential ordering problem with automati-

cally generated lower bounds. In Operations Research 2003 (Heidelberg, Ger-

many), pp. 355–362.

Hernádvölgyi, I. and R. Holte (2000). Experiments with automatically created

memory-based heuristics. In Symposium on Abstraction, Reformulation and

Approximation, pp. 281–290. Springer-Verlag LNAI #1864.

50

Mechanical Generation of Admissible Heuristics

Holte, R., J. Grajkowski, and B. Tanner (2005). Hierarchical heuristic search

revisited. In Symposium on Abstraction, Reformulation and Approximation,

pp. 121–133. Springer-Verlag LNAI #3607.

Holte, R., M. Perez, R. Zimmer, and A. MacDonald (1996). Hierarchical A*:

Searching abstraction hierarchies efficiently. In National Conference on Arti-

ficial Intelligence (AAAI), pp. 530–535.

Irani, K. and S. Yoo (1988). A methodology for solving problems: Problem mod-

eling and heuristic generation. IEEE Transactions on Pattern Analysis and

Machine Intelligence 10 (5), 676–686.

Kibler, D. (1982). Natural generation of admissible heuristics. Technical Report

TR-188, University of California at Irvine.

Korf, R. (1980). Towards a model of representation changes. Artificial Intelli-

gence 14 (1), 41–78.

Korf, R. (1985). Learning to solve problems by searching for macro-operators.

Marshfield, MA, USA: Pitman Publishing, Inc.

Korf, R. (1997). Finding optimal solutions to Rubik’s Cube using pattern

databases. In National Conference on Artificial Intelligence (AAAI), pp. 700–

705.

Korf, R. and A. Felner (2002). Disjoint pattern database heuristics. Artificial

Intelligence 134 (1-2), 9–22.

Korf, R. and M. Reid (1998). Complexity analysis of admissible heuristic search.

In National Conference on Artificial Intelligence (AAAI), pp. 305–310.

Korf, R., M. Reid, and S. Edelkamp (2001). Time complexity of iterative-

deepening-A*. Artificial Intelligence 129 (1-2), 199–218.

McNaughton, M., P. Lu, J. Schaeffer, and D. Szafron (2002). Memory efficient

A* heuristics for multiple sequence alignment. In National Conference on

Artificial Intelligence (AAAI), pp. 737–743.

Minsky, M. (1963). Steps toward artificial intelligence. In E. Feigenbaum and

J. Feldman (Eds.), Computers and Thought, pp. 406–452. McGraw-Hill.

Mostow, J. and A. Prieditis (1989). Discovering admissible heuristics by abstract-

ing and optimizing: A transformational approach. In International Joint Con-

ference on Artificial Intelligence (IJCAI), pp. 701–707.

Pearl, J. (1983). On the discovery and generation of certain heuristics. AI Mag-

azine 4 (1), 23–33.

Pearl, J. (1984). Heuristics – Intelligent Search Strategies for Computer Problem

Solving. Addison-Wesley.

Prieditis, A. (1993). Machine discovery of effective admissible heuristics. Machine

Learning 12, 117–141.

51

Robert Holte, Jonathan Schaeffer, and Ariel Felner

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces. Artificial

Intelligence 5 (2), 115–135.

Sangiovanni-Vincentelli, A. and M. Somalvico (1973). Theoretical aspects of state

space approach to problem solving. In International Congress on Cybernetics,

Namur, Belgium.

Valtorta, M. (1981). A Result on the Computational Complexity of Heuristic Es-

timates for the A* Algorithm. Ph.D. thesis, Department of Computer Science,

Duke University.

Valtorta, M. (1984). A result on the computational complexity of heuristic esti-

mates for the A* algorithm. Information Sciences 55, 47–59.

Yang, F., J. Culberson, R. Holte, U. Zahavi, and A. Felner (2008). A general

theory of additive state space abstractions. Journal of Artificial Intelligence

Research (JAIR) 32, 631–662.

Zahavi, U., A. Felner, N. Burch, and R. Holte (2008). Predicting the performance

of IDA* with conditional probabilities. In National Conference on Artificial

Intelligence (AAAI), pp. 381–386.

Zhou, R. and E. Hansen (2004). Space-efficient memory-based heuristics. In Na-

tional Conference on Artificial Intelligence (AAAI), pp. 677–682.

52

4

Space Complexity of Combinatorial Search

Richard E. Korf

1 Introduction: The Problem

It is well-known that most complete search algorithms take exponential time to run

on most combinatorial problems. The reason for this is that many combinatorial

problems are NP-hard, and most complete search algorithms guarantee an opti-

mal solution, so unless P=NP, the time complexity of these algorithms must be

exponential in the problem size.

What is not so often appreciated is that the limiting resource of many search

algorithms is not time, but the amount of memory they require. For example, a

simple brute-force breadth-first search (BFS) of an implicit problem space stores

every node it generates in memory. If we assume we can generate ten million nodes

per second, can store a node in four bytes of memory, and have four gigabytes

of memory, we will exhaust our memory in a hundred seconds, or less than two

minutes. If our problem is too large to be solved in this amount of time, the

memory limitation becomes the bottleneck.

This problem has existed since the first computers were built. While memory

capacities have increased by many orders of magnitude over that time, processors

have gotten faster at roughly the same pace, and the problem persists. We describe

here the major approaches to this problem over the past 25 years. While most

of the algorithms discussed have both brute-force and heuristic versions, we focus

primarily on the brute-force algorithms, since they are simpler, and the issues are

largely the same in both cases.

2 Depth-First Search

One solution to this problem in some settings is depth-first search (DFS), which

requires memory that is only linear in the maximum search depth. The reason

is that at any point in time, it saves only the path from the start node to the

current node being expanded, either on an explicit node stack, or on the call stack

of a recursive implementation. As a result, the memory requirement of DFS is

almost never a limitation. For finite tree-structured problem space graphs, where

all solutions are equally desirable, DFS solves the memory problem. For example,

chronological backtracking is a DFS for constraint satisfaction problems, and does

not suffer any memory limitations in practice.

With an infinite search tree, or when we want a shortest solution path, however,

DFS has significant drawbacks. In an infinite search tree, which can result from a

53

Richard E. Korf

depth-first search of a finite graph with multiple paths to the same state, DFS is not

complete, but can traverse a single path until it exhausts memory. For example,

the problem space graphs of the well-known sliding-tile puzzles are finite, but a

depth-first search of these spaces explores a tree-expansion of the graph, which is

infinite. Even with a finite search tree, the first solution found by DFS will not be

a shortest solution in general.

3 Iterative Deepening

3.1 Depth-First Iterative Deepening

One solution to these limitations of DFS is depth-first iterative-deepening (DFID)

[Korf 1985a]. DFID performs a series of depth-first searches, each to a successively

greater depth. DFID simulates BFS, but using memory that is only linear in the

maximum search depth. It is guaranteed to find a solution if one exists, even on an

infinite tree, and the first solution it finds will be a shortest one.

DFID is essentially the same as iterative-deepening searches used in two-player

game programs [Slate and Atkin 1977], but is used to solve a completely different

problem. In a two-player game, iterative deepening is used to determine the search

depth, because moves must be made within a given time period, and it is difficult

to predict how long it will take to search to a given depth. In contrast, DFID is

applied to single-agent problems where a shortest solution is required, in order to

avoid the memory limitation of BFS.

DFID first appeared in a Columbia University technical report [Korf 1984]. It was

independently published in two different papers in IJCAI-85 [Korf 1985b; Stickel

and Tyson 1985], and called “consecutively bounded depth-first search” in the latter.

3.2 Iterative-Deepening-A*

While discussing DFID with Judea Pearl on a trip to UCLA in 1984, he suggested

its extension to heuristic search that became Iterative-Deepening-A* (IDA*) [Korf

1985a]. IDA* overcomes the memory limitation of the A* algorithm [Hart, Nilsson,

and Raphael 1968] for heuristic searches the same way that DFID overcomes the

memory limitation of BFS for brute-force searches. In particular, it uses the A*

cost function of f(n) = g(n)+h(n), where g(n) is the cost of the current path from

the root to node n, and h(n) is a heuristic estimate of the lowest cost of any path

from node n to a goal node. IDA* performs a series of depth-first search iterations,

where each branch of the search is terminated when the cost of the last node on that

branch exceeds a cost threshold for that iteration. The cost threshold of the first

iteration is set to the heuristic estimate of the start state, and the cost threshold of

each successive iteration is set to the minimum cost of all nodes generated but not

expanded on the previous iteration. Like A*, IDA* guarantees an optimal solution

if the heuristic function is admissible, or never overestimates actual cost. IDA*

was the first algorithm to find optimal solutions to the Fifteen Puzzle, the famous

four-by-four sliding-tile puzzle [Korf 1985a]. It was also the first algorithm to find

54

Space Complexity

optimal solutions to Rubik’s Cube [Korf 1997].

I invited Judea to be a co-author on both the IJCAI paper [Korf 1985b], and a

subsequent AI journal paper [Korf 1985a] that described both DFID and IDA*. At

the time, I was a young assistant professor, and he declined the co-authorship with

typical generosity, saying that he didn’t need another paper, and that the paper

would be much more important to me at that stage of my career. In retrospect, I

regret that I didn’t insist on joint authorship.

4 Other Limited-Memory Search Algorithms

A number of researchers noted that linear-space search algorithms such as DFID

and IDA* use very little space in practice, and explored whether better performance

could be achieved by using all the memory available on a machine.

Perhaps the simplest of these algorithms is MREC [Sen and Bagchi 1989]. MREC

is a hybrid of A* and IDA*. It runs A* until memory is almost full, and then runs

successive iterations of IDA* from each node generated but not expanded by A*.

Perhaps the most elegant of these algorithms is MA* [Chakrabarti, Ghose, Acharya,

and de Sarkar 1989]. MA* also runs A* until memory is almost full. Then, in order

to get enough memory to expand the best node, it finds a group of sibling leaf nodes

with the worst cost values, and deletes them, leaving behind only their parent node,

with a stored cost equal to the minimum of its children’s values. The algorithm

alternates between expanding the best nodes, and contracting the worst nodes, until

a solution is chosen for expansion.

Unfortunately, the overhead of this algorithm makes it impractical compared to

IDA*. There have been at least two attempts to make this basic algorithm more

efficient, namely SMA* for simplified MA* [Russell 1992] and ITS for Iterative

Threshold Search [Ghosh, Mahanti, and Nau 1994], but none of these algorithms

significantly outperform IDA*.

5 Recursive Best-First Search

Best-first search is a general class of search algorithms that maintains both a Closed

list of expanded nodes, and an Open list of nodes that have been generated but not

yet expanded. Initially, the Open list contains just the start node, and the Closed

list is empty. Each node n on Open has an associated cost f(n). At each step of

the algorithm, an Open node of lowest cost is chosen for expansion, moved to the

Closed list, and its children are placed on Open along with their associated costs.

The algorithm continues until a goal node is chosen for expansion. Different best-

first search algorithms differ only in their cost functions. For example, if the cost

of a node is simply its depth, then best-first search becomes breadth-first search.

Alternatively, if the cost of a node n is f(n) = g(n) + h(n), then best-first search

becomes the A* algorithm.

A cost function is monotonic if the cost of a child node is always greater than

or equal to the cost of its parent. The cost function g(n) is monotonic if all edges

55

Richard E. Korf

have non-negative cost. The A* cost function f(n) = g(n) + h(n) is monotonic

if the heuristic function h(n) is consistent, meaning that h(n) ≤ k(n, n′) + h(n′),

where n′ is a child of node n, and k(n, n′) is the cost of the edge from n to n′.

Many heuristic functions are both admissible and consistent. If the cost function is

monotonic, then the order in which nodes are first expanded by IDA* is the same

as for a best-first search with the same cost function.

Not all useful cost functions are monotonic, however. For example, Weighted

A* (WA*) is a best-first search with the cost function f(n) = g(n) + w ∗ h(n).

If w is greater than one, then WA* usually finds solutions much faster than A*,

but at a small cost in solution quality. With w greater than one, however, f(n) =

g(n)+w∗h(n) is not monotonic, even with a consistent h(n). With a non-monotonic

cost-function, IDA* does not expand nodes in best-first order. In particular, in parts

of the search tree where the cost of nodes is lower than the cost threshold for the

current iteration, IDA* behaves as a brute-force search, expanding nodes in the

order in which they are generated.

Can any linear-space search algorithm simulate a best-first search with a non-

monotonic cost function? Surprisingly, the answer is yes. Recursive best-first search

[Korf 1993] (RBFS) maintains a path from the start node to the last node generated,

along with the siblings of nodes on that path. Stored with each node is a cost value.

If the node has never been expanded before, its stored cost is its original cost. If it

has been expanded before, its stored cost is the minimum cost of all its descendents

that have been generated but not yet expanded, which are not stored in memory.

The sibling node off the current path of lowest cost is the ancestor of the next leaf

node that would be expanded by a best-first search. By propagating these values

up the tree, and inheriting these values down the tree as a previously explored

path is regenerated, RBFS always finds the next leaf node expanded by a best-

first search. Thus, it simulates a best-first search even with a non-monotonic cost

function. Furthermore, with a monotonic cost function it can outperform IDA* if

there are many different unique cost values in the search tree. For details on RBFS,

see [Korf 1993].

6 Drawback of Linear-Space Search Algorithms

The advantage of linear-space searches, such as DFS, DFID, IDA* and RBFS, is

that they use very little memory, and hence can run for weeks or months on large

problems. They all share a significant liability relative to best-first searches such

as BFS, A* or WA*, however. In particular, on search graphs with multiple paths

to the same node, or cycles in the graph, linear-space algorithms can generate

exponentially more nodes than best-first search.

For example, consider a rectangular grid problem-space graph. From any node

in such a graph, moving North and then East generates the same state as moving

East and then North. These are referred to as duplicate nodes, since they represent

the same state arrived at via two different paths. When a best-first search is run on

56

Space Complexity

such a graph, as each node is generated it is checked to see if the same state already

appears on the Open or Closed lists. If so, only the node reached by a shortest path

is stored, and the duplicate node is eliminated. Thus, by detecting and rejecting

such duplicate nodes, a breadth-first search to a radius of r on a grid graph would

expand O(r2) nodes.

A linear-space algorithm doesn’t store most of the nodes it generates however,

and hence cannot detect most duplicate nodes. In a grid graph, each node has

four neighbors. A linear-space search will not normally regenerate its immediate

parent as one of its children, reducing the number of children to three for all but

the start node. Thus, a depth-first search of a grid graph to a radius r will generate

O(3r) nodes, compared to O(r2) nodes for a best-first search. This is an enormous

overhead on graphs with many paths to the same state, rendering linear-space

algorithms completely impractical in such problem spaces.

7 Frontier Search

Fortunately, there is another technique that can significantly reduce the memory

required by a search algorithm on problem spaces with many duplicate nodes. The

basic idea is to save only the Open list and not the Closed list. This algorithm

schema is called frontier search, since the Open list represents the frontier of nodes

that have been generated but not yet expanded [Korf, Zhang, Thayer, and Hohwald

2005]. When a node is expanded in frontier search, it is simply deleted rather than

being moved to a Closed list.

The advantage of this technique is that the Open list can be much smaller than

the Closed list. In the grid graph, for example, the Closed list grows as O(r2),

whereas the Open list grows only as O(r), where r is the radius of the search.

For ease of explanation, we’ll assume a problem space with reversible operators,

but the method also applies to some directed problem-space graphs as well. There

are two reasons to save the Closed list. One is to detect duplicate nodes, and the

other is to return the solution path. We first consider duplicate detection.

7.1 Detecting Duplicate Nodes

Imagine the search frontier as a continuous boundary of Open nodes containing a

region of Closed nodes. To minimize the memory needed, we need to prevent Closed

nodes from being regenerated. There are two ways that this might happen. One is

by a child node regenerating its parent node. This is prevented in frontier search

by storing with each Open node a used-operator bit for each operator that could

generate that node. This bit is set to one whenever the corresponding operator is

used to generate the Open node. When an Open node is expanded, the inverses of

those operators whose used bits are set to one are not applied, thus preventing a

node from regenerating its parent.

The other way a Closed node could be regenerated is by the frontier looping back

on itself, like a wave breaking through the surface of the water below. If the frontier

57

Richard E. Korf

is unbroken, when this happens the Open node being expanded would first have to

generate another Open node on the frontier of the search before generating a Closed

node on the interior. When this happens, the duplicate Open node is detected, and

the the union of the used operator bits set in each of the two copies is stored with

the single copy retained. In other words, one part of the frontier cannot invade

another part of the interior without passing through another part of the frontier

first, where the intrusion is detected. By storing and managing such used-operator

bits, frontier search detects all duplicate node generations and prevents a node from

being expanded more than once.

An alternative to used-operator bits is to save several levels of the search at a

time [Zhou and Hansen 2003]. In particular, Closed nodes are stored until all their

children are expanded, and then deleted.

7.2 Reconstructing the Solution Path

The other reason to store the Closed list is to reconstruct the solution path at the

end of a search. In a best-first search, this is done by storing with each node a

pointer to its parent node. Once a goal state is reached, these pointers are followed

back from the goal to the initial state, generating the solution path in reverse order.

This can’t be done with frontier search directly, since the Closed list is not saved.

Frontier search can reconstruct the solution path using divide-and-conquer bidi-

rectional frontier search. We search simultaneously both forward from the initial

state and backward from the goal state. When the two search frontiers meet and a

“middle” state on a optimal path has been found, we then use the same algorithm

recursively to search from the initial state to the middle state, and from the middle

node to the goal node.

The solution path can also be constructed using unidirectional search, as long

as one can identify nodes that are approximately half way along an optimal path.

For example, the problem of two-way sequence alignment in computational biology

can be mapped to finding a shortest path in a two-dimensional grid [Needleman

and Wunsch 1970]. In such a path, a state on the midline of the grid will be about

half way along an optimal solution. In such a problem, we search forward from the

initial state to the goal state. For every node on the Open list past the midpoint

of the grid, we store a pointer to its ancestor on the midpoint. Once we reach the

goal state, its ancestor on the midline is approximately in the middle of the optimal

solution path. We then recursively apply the same algorithm to find a path from

the initial state to the middle state, and from the middle state to a goal state.

Tree-structured search spaces and densely connected graphs such as grids rep-

resent two ends of the connectivity spectrum. On a tree, linear-space search algo-

rithms perform very well, since they generate no duplicate nodes. Frontier search

doesn’t save much memory on a tree, however, since the number of leaf nodes

dominates the number of interior nodes. Conversely, on a grid graph, linear-space

search performs very poorly because undetected duplicate nodes dwarf the number

58

Space Complexity

of unique nodes, while frontier search performs very well, reducing the memory

required from quadratic to linear space.

8 Disk-Based Search

Even on problems where frontier search is effective, memory is still the resource

that limits its applicability. An additional approach to this memory limitation is

to use magnetic disk to store nodes rather than semiconductor memory. While

semiconductor memory has gotten much larger and cheaper over time, it still costs

about $30 per gigabyte. In contrast, magnetic disk storage costs about $100 per

terabyte, which is 300 times cheaper. The problem with simply replacing semicon-

ductor memory with magnetic disks, however, is that random access of a byte on

disk can take up to ten milliseconds, which is five orders of magnitude slower than

for memory. Thus, disk access must be sequential for efficiency.

Consider a simple breadth-first search (BFS), which is usually implemented with

a first-in first-out queue. Nodes are read from the head of the queue, expanded,

and their children are written to the tail of the queue. Such a queue can efficiently

be stored on disk, since all accesses are sequential.

In order to detect duplicate nodes efficiently, however, the nodes are also stored

in a hash table. Nodes are looked up in the hash table as they are generated, and

duplicate nodes are discarded. Such a hash table cannot be directly implemented

on magnetic disk, however, due to the long latency of random access.

A solution to this problem is called delayed duplicate detection [Korf 2008] or DDD

for short. The BFS queue is stored on disk, but nodes are not checked for duplicates

as they are generated. Rather, duplicate nodes are appended to the queue, and are

only eliminated periodically, such as at the end of each depth iteration. There are

several ways to eliminate duplicate nodes from a large file stored on disk.

The simplest way is to sort the nodes based on their state representation. This

will bring duplicate nodes to adjacent positions. Then, a simple linear scan of the

file can be used to detect and merge duplicate nodes. The drawback of this approach

is that the sorting takes O(n log n) time, where n is the number of nodes. With a

terabyte of storage, and four bytes per state, n can be as large as 250 billion, and

hence log n as large as 38.

An alternative is to use hash-based DDD. This scheme relies on two orthogonal

hash functions defined on the state representation. In the first phase, the input file

is read, and nodes are output to separate files based on the value of the first hash

function. Thus, any sets of duplicate node will be confined to the same file. In

the second phase, the nodes in each individual file are hashed into memory using

the second hash function, and duplicates are detected and merged in memory. The

advantage of this approach is that the time complexity is only linear in the number

of nodes, rather than O(n log n) time for sorting-based DDD.

The overall DDD algorithm proceeds in alternating phases of node expansion

followed by merging duplicate nodes. Combined with frontier search, DDD has

59

Richard E. Korf

been used to perform complete breadth-first searches of sliding-tile puzzles as large

as the Fifteen Puzzle, with over 1013 nodes [Korf and Schultze 2005]. It has also

been used for large heuristic searches of the four-peg Towers of Hanoi problem with

up to 31 disks, generating over 2.5 × 1013 nodes [Korf and Felner 2007]. These

searches take weeks to run, and time is the limiting resource, not storage capacity.

An alternative to DDD for disk-based search is called structured duplicate de-

tection (SDD) [Zhou and Hansen 2004]. In this approach, the problem space is

partitioned into subsets, so that when expanding nodes in one subset, the children

only belong to a small number of other subsets, referred to as its duplicate detec-

tion scope. The subset of nodes currently being expanded is kept in memory, along

with the subsets in its duplicate detection scope, detecting any duplicates generated

immediately, while storing other subsets on disk. As different subsets of nodes are

expanded, currently resident duplicate detection scopes are swapped out to disk to

make room for the duplicate detection scopes of the new nodes being expanded.

9 Summary and Conclusions

We have presented a number of different algorithms, designed over the past 25 years,

to deal with the space complexity of brute-force and heuristic search. They fall into

two general categories. The linear-space search algorithms, including depth-first

search, depth-first iterative-deepening, iterative-deepening-A*, and recursive best-

first search, use very little memory but cannot detect most duplicate nodes. They

perform very well on trees, but poorly on highly-connected graphs, such as a grid.

The best-first search algorithms, including breadth-first search, A*, weighted A*,

frontier search, and disk-based algorithms, detect all duplicate nodes, and hence

perform well on highly-connected graphs. The best-first algorithms are limited by

the amount of memory available, except for the disk-based techniques, which are

limited by time in practice.

Acknowledgments: This research was supported continuously by the National

Science Foundation, most recently under grant No. IIS-0713178.

References

Chakrabarti, P., S. Ghose, A. Acharya, and S. de Sarkar (1989, December).

Heuristic search in restricted memory. Artificial Intelligence 41 (2), 197–221.

Ghosh, R., A. Mahanti, and D. Nau (1994, August). An efficient limited-memory

heuristic tree search algorithm. In Proceedings of the Twelfth National Con-

ference on Artificial Intelligence (AAAI-94), Seattle, WA, pp. 1353–1358.

Hart, P., N. Nilsson, and B. Raphael (1968, July). A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics SSC-4 (2), 100–107.

Korf, R. (1984). The complexity of brute-force search. technical report, Computer

Science Department, Columbia University, New York, NY.

60

Space Complexity

Korf, R. (1985a). Depth-first iterative-deepening: An optimal admissible tree

search. Artificial Intelligence 27 (1), 97–109.

Korf, R. (1985b, August). Iterative-deepening-a*: An optimal admissible tree

search. In Proceedings of the Ninth International Joint Conference on Artifi-

cial Intelligence (IJCAI-85), Los Angeles, CA, pp. 1034–1036.

Korf, R. (1993, July). Linear-space best-first search. Artificial Intelligence 62 (1),

41–78.

Korf, R. (1997, July). Finding optimal solutions to rubik’s cube using pattern

databases. In Proceedings of the Fourteenth National Conference on Artificial

Intelligence (AAAI-97), Providence, RI, pp. 700–705.

Korf, R. (2008, December). Linear-time disk-based implicit graph search. Journal

of the Association for Computing Machinery 55 (6), 26:1 to 26:40.

Korf, R. and A. Felner (2007, January). Recent progress in heuristic search: A

case study of the four-peg towers of hanoi problem. In Proceedings of the

Twentieth International Joint Conference on Artificial Intelligence (IJCAI-

07), Hyderabad, India, pp. 2334–2329.

Korf, R. and P. Schultze (2005, July). Large-scale, parallel breadth-first search.

In Proceedings of the Twentieth National Conference on Artificial Intelligence

(AAAI-05), Pittsburgh, PA, pp. 1380–1385.

Korf, R., W. Zhang, I. Thayer, and H. Hohwald (2005, September). Frontier

search. Journal of the Association for Computing Machinery 52 (5), 715–748.

Needleman, S. and C. Wunsch (1970). A general method applicable to the search

for similarities in the amino acid sequences of two proteins. Journal of Molec-

ular Biology 48, 443–453.

Russell, S. (1992, August). Efficient memory-bounded search methods. In Pro-

ceedings of the Tenth European Conference on Artificial Intelligence (ECAI-

92), Vienna, Austria.

Sen, A. and A. Bagchi (1989, August). Fast recursive formulations for best-first

search that allow controlled use of memory. In Proceedings of the Eleventh

International Joint Conference on Artificial Intelligence (IJCAI-89), Detroit,

MI, pp. 297–302.

Slate, D. and L. Atkin (1977). Chess 4.5 - the northwestern university chess

program. In P. Frey (Ed.), Chess Skill in Man and Machine, pp. 82–118. New

York, NY: Springer-Verlag.

Stickel, M. and W. Tyson (1985, August). An analysis of consecutively bounded

depth-first search with applications in automated deduction. In Proceedings

of the Ninth International Joint Conference on Artificial Intelligence (IJCAI-

85), Los Angeles, CA, pp. 1073–1075.

61

Richard E. Korf

Zhou, R. and E. Hansen (2003, August). Sparse-memory graph search. In Proceed-

ings of the Eighteenth International Joint Conference on Artificial Intelligence

(IJCAI-03), Acapulco, Mexico, pp. 1259–1266.

Zhou, R. and E. Hansen (2004, July). Structured duplicate detection in external-

memory graph search. In Proceedings of the Nineteenth National Conference

on Artificial Intelligence (AAAI-04), San Jose, CA, pp. 683–688.

62

5

Paranoia versus Overconfidence in

Imperfect-Information Games

Austin Parker, Dana Nau, and V.S. Subrahmanian

Only the paranoid survive.

–Andrew Grove, Intel CEO

Play with supreme confidence, or else you’ll lose.

–Joe Paterno, college football coach

1 Introduction

In minimax game-tree search, the min part of the minimax backup rule derives

from what we will call the paranoid assumption: the assumption that the opponent

will always choose a move that minimizes our payoff and maximizes his/her payoff

(or our estimate of the payoff, if we cut off the search before reaching the end of

the game). A potential criticism of this assumption is that the opponent may not

have the ability to decide accurately what move this is. But in several decades

of experience with game-tree search in chess, checkers, and other zero-sum perfect-

information games, the paranoid assumption has worked so well that such criticisms

are generally ignored.

In game-tree search algorithms for imperfect-information games, the backup rules

are more complicated. Many of them (see Section 6) involve computing a weighted

average over the opponent’s possible moves (or a Monte Carlo sample of them),

where each move’s weight is an estimate of the probability that this is the opponent’s

best possible move. Although such backup rules do not take a min at the opponent’s

move, they still tacitly encode the paranoid assumption, by assuming that the

opponent will choose optimally from the set of moves he/she is actually capable of

making.

Intuitively, one might expect the paranoid assumption to be less reliable in

imperfect-information games than in perfect-information games; for without per-

fect information, it may be more difficult for the opponent to judge which move is

best. The purpose of this paper is to examine whether it is better to err on the side

of paranoia or on the side of overconfidence. Our contributions are as follows:

1. Expected utility. We provide a recursive formula for the expected util-

ity of a move in an imperfect-information game, that explicitly includes the

opponent’s strategy σ. We prove the formula’s correctness.

63

Austin Parker, Dana Nau, and V.S. Subrahmanian

2. Information-set search. We describe a game-tree search algorithm called

information-set search that implements the above formula. We show analyti-

cally that with an accurate opponent model, information-set search produces

optimal results.

3. Approximation algorithm. Information-set search is, of course, intractable

for any game of interest as the decision problem in an imperfect-information

game is complete in double exponential time [Reif 1984]. To address this

intractability problem, we provide a modified version of information-set search

that computes an approximation of a move’s expected utility by combining

Monte Carlo sampling of the belief state with a limited-depth search and a

static evaluation function.

4. Paranoia and overconfidence. We present two special cases of the

expected-utility formula (and hence of the algorithm) that derive from two

different opponent models: the paranoid model, which assumes the opponent

will always make his/her best possible move, and the overconfident model,

which assumes the opponent will make moves at random.

5. Experimental results. We provide experimental evaluations of information-

set search in several different imperfect-information games. These include

imperfect-information versions of P-games [Pearl 1981; Nau 1982a; Pearl

1984], N-games [Nau 1982a], and kalah [Murray 1952]; and an imperfect-

information version of chess called kriegspiel [Li 1994; Li 1995]. Our main

experimental results are:

� Information-set search outperformed HS, the best of our algorithms for

kriegspiel in [Parker, Nau, and Subrahmanian 2005].

� In all of the games, the overconfident opponent model outperformed the

paranoid model. The difference in performance became more marked

when we decreased the amount of information available to each player.

This work was influenced by Judea Pearl’s invention of P-games [Pearl 1981; Pearl

1984], and his suggestion of investigating backup rules other than minimax [Pearl

1984]. We also are grateful for his encouragement of the second author’s early work

on game-tree search (e.g., [Nau 1982a; Nau 1983]).

2 Basics

Our definitions and notation are based on [Osborne and Rubinstein 1994]. We con-

sider games having the following characteristics: two players, finitely many moves

and states, determinism, turn taking, zero-sum utilities, imperfect information ex-

pressed via information sets (explained in Section 2.1), and perfect recall (explained

in Section 2.3). We will let G be any such game, and a1 and a2 be the two players.

64

Paranoia versus Overconfidence in Imperfect-Information Games

Our techniques are generalizable to stochastic multi-player non-zero-sum games,1

but that is left for future work.

At each state s, let a(s) be the player to move at s, with a(s) = ∅ if the game

is over in s. Let M(s) be the set of available moves at s, and m(s) be the state

produced by making move m in state s. A history is a sequence of moves h =

〈m1,m2, . . . ,mj〉. We let s(h) be the state produced by history h, and when clear

from context, will abuse notation and use h to represent s(h) (e.g., m(h) = m(s(h))).

Histories in which the game has ended are called terminal. We let H be the set of

all possible histories for game G.

2.1 Information Sets

Intuitively, an information set is a set of histories that are indistinguishable to a

player ai, in the sense that each history h provides ai with the same sequence of

observations. For example, suppose a1 knows the entire sequence of moves that

have been played so far, except for a2’s last move. If there are two possibilities for

a2’s last move, then a1’s information set includes two histories, one for each of the

two moves.

In formalizing the above notion, we will not bother to give a full formal defini-

tion of an “observation.” The only properties we need for an observation are the

following:2

� We assume that each player ai’s sequence of observations is a function Oi(h)

of the current history h. The rationale is that if a1 and a2 play some game a

second time, and if they both make the same moves that they made the first

time, then they should be able to observe the same things that they observed

the first time.

� We assume that when two histories h, h′ produce the same sequence of observa-

tions, they also produce the same set of available moves, i.e., if Oi(h) = Oi(h
′),

then M(s(h)) = M(s(h′)). The rationale for this is that if the current history

is h, ai’s observations won’t tell ai whether the history is h or h′, so ai may

attempt to make a move m that is applicable in s(h′) but not in s(h). If ai

does so, then m will produce some kind of outcome, even if the outcome is just

an announcement that ai must try a different move. Consequently, we can

easily make m applicable in s(h), by defining a new state m(s(h)) in which

this outcome occurs.

1Nondeterministic initial states, outcomes, and observations can be modeled by introducing an

additional player a0 who makes a nondeterministic move at the start of the game and after each

of the other players’ moves. To avoid affecting the other players’ payoffs, a0’s payoff in terminal

states is always 0.
2Some game-theory textbooks define information sets without even using the notion of an

“observation.” They simply let a player’s information sets be the equivalence classes of a partition

over the set of possible histories.

65

Austin Parker, Dana Nau, and V.S. Subrahmanian

<L,L,L> <L,L,R> <L,R,L> <L,R,R> <R,L,L> <R,L,R> <R,R,L> <R,R,R>

<R,R><R,L>

R
L R

R

P1 info set I={<R,L>,<R,R>}

<R>

P2 info set I={<L>,<R>}

L R

root

P1 info set I={<L,L>,<L,R>}

<L,L> <L,R>

<L>

L

L

Each linked pair of arrows

represents a move that has

two possible outcomes: one

for each state in the infor-

mation set.

Figure 1. A game tree for a two-player imperfect-information game between two

players P1 and P2 who move in alternation. The players may move either left (L)

or right (R), and their moves are hidden from each other (e.g., after P1’s first move,

P2 knows that P1 has moved, but not whether the move was L or R). Each node

is labeled with its associated history (e.g., 〈L〉 and 〈R〉 for the two children of the

root node). The information set of the player to move is indicated by a dotted box

(e.g., after P1’s first move, P2’s information set is {〈L〉, 〈R〉}).

� We assume that terminal histories with distinct utilities always provide dis-

tinct observations, i.e., for terminal histories h, h′ ∈ T , if Ui(h) 6= Ui(h
′) then

Oi(h) 6= Oi(h
′).

We define ai’s information set for h to be the set of all histories that give ai the

same observations that h gives, i.e., [h]i = {h′ ∈ H : Oi(h
′) = Oi(h)}. The set of

all possible information sets for ai is Ii = {[h]i : h ∈ H}. It is easy to show that Ii

is a partition of H.

Figure 1 shows an example game tree illustrating the correspondence between

information sets and histories. In that game, player a1 makes the first move, which

is hidden to player a2. Thus player a2 knows that the history is either 〈L〉 or 〈R〉,

which is denoted by putting a dotted box around the nodes for those histories.

2.2 Strategies

In a perfect-information game, a player ai’s strategy is a function σi(m|s) that

returns the probability p that ai will make move m in state s. For imperfect-

information games, where ai will not always know the exact state he/she is in, σi is

a function of an information set rather than a state; hence σi(m|I) is the probability

that ai will make move m when their information set is I. We let M(I) be the set

of moves available in information set I.

If σi is a mixed strategy, then for every information set I ∈ Ii where it is ai’s

move, there may be more than one move m ∈ M(I) for which σi(m|I) > 0. But

if σi is a pure strategy, then there will be a unique move mI ∈ M(I) such that

66

Paranoia versus Overconfidence in Imperfect-Information Games

σi(m|I) = 0 ∀m 6= mI and σi(mI |I) = 1; and in this case we will use the notation

σi(I) to refer to mI .

If h = 〈m1,m2, . . . ,mn〉 is a history, then its probability P (h) can be calculated

from the players’ strategies. Suppose a1’s and a2’s strategies are σ1 and σ2. In the

special case where a1 has the first move and the players move in strict alternation,

P (h|σ1, σ2) = σ1(m1|h0)σ2(m2|h1) . . . σ1(mj |hj−1), σ2(mj+1|hj), . . . , (1)

where hj = 〈m1, . . . ,mj〉 (h0 = 〈〉). More generally,

P (h|σ1, σ2) =
n−1
∏

j=0

σa(hj)(mj+1|hj). (2)

Given σ1, σ2, and any information set I, the conditional probability of any h ∈ I is

the normalized probability

P (h|I, σ1, σ2) =
P (h|σ1, σ2)

∑

h′∈I P (h′|σ1, σ2)
. (3)

2.3 Perfect Recall

Perfect recall means that every player always remembers all the moves they’ve

made – we can’t have two histories in player ai’s information set which disagree

on what player ai did at some point in the past. One can get a more detailed

explanation of perfect and imperfect recall in perfect information games in [Osborne

and Rubinstein 1994].

In a game of perfect recall, it is easy to show that if I ∈ I1, then all histories in

I have the same sequence of moves for a1, whence the probability of h given I is

conditionally independent of σ1. If h = 〈m1,m2, . . . ,mn〉, then

P (h|I, σ1, σ2) = P (h|I, σ2) =

∏

a(hj)=a2
σ2(mj+1|hj)

∑

h′∈I

∏

a(h′

j
)=a2

σ2(mj+1|h′

j)
. (4)

An analogous result, with the subscripts 1 and 2 interchanged, holds when I ∈ I2.

2.4 Utility and Expected Utility

If a history h takes us to the game’s end, then h is terminal, and we let U(h) be

the utility of h for player a1. Since the game is zero-sum, it follows that a2’s utility

is −U(h).

If a1 and a2 have strategies σ1 and σ2, then the expected utility for ai is

EU(σ1, σ2) =
∑

h∈T

P (h|σ1, σ2)U(h), (5)

where T is the set of all terminal histories, and P (h|σ1, σ2) is as in Eq. (2). Since

the game is zero-sum, it follows that a2’s expected utility is −EU(σ1, σ2).

For the expected utility of an individual history h, there are two cases:

67

Austin Parker, Dana Nau, and V.S. Subrahmanian

Case 1: History h is terminal. Then h’s expected utility is just its actual utility,

i.e.,

EU(h|σ1, σ2) = EU(h) = U(h). (6)

Case 2: History h ends at a state where it is ai’s move. Then h’s expected utility

is a weighted sum of the expected utilities for each of ai’s possible moves,

weighted by the probabilities of ai making those moves:

EU(h|σ1, σ2) =
∑

m∈M(h)

σi(m|h) · EU(h ◦ m|σ1, σ2)

=
∑

m∈M(h)

σi(m|[h]i) · EU(h ◦ m|σ1, σ2), (7)

where ◦ denotes concatenation.

The following lemma shows that the recursive formulation in Eqs. (6–7) matches

the notion of expected utility given in Eq. 5.

LEMMA 1. For any strategies σ1 and σ2, EU(〈〉|σ1, σ2) (the expected utility of

the empty initial history as computed via the recursive Equations 6 and 7) equals

EU(σ1, σ2).

Sketch of proof. This is shown by showing, by induction on the length of h, the

more general statement that

EU(h|σ1, σ2) =
∑

h′∈T,h′=h◦mk,◦···◦,mn

P (h′|σ1, σ2)U(h′)/P (h|σ1, σ2), (8)

where k is one greater than the size of h and n is the size of each h′ as appropriate.

The base case occurs when h is terminal, and the inductive case assumes Eq. 8 holds

for histories of length m + 1 to show algebraically that Eq. 8 holds for histories of

length m. ⊓⊔

The expected utility of an information set I ∈ H is the weighted sum of the

expected utilities of its histories:

EU(I|σ1, σ2) =
∑

h∈I

P (h|I, σ1, σ2)EU(h|σ1, σ2). (9)

COROLLARY 2. For any strategies σ1 and σ2, and player ai, EU([〈〉]i|σ1, σ2) (the

expected utility of the initial information set for player ai) equals EU(σ1, σ2).

3 Finding a Strategy

We now develop the theory for a game-tree search technique that exploits an oppo-

nent model.

68

Paranoia versus Overconfidence in Imperfect-Information Games

3.1 Optimal Strategy

Suppose a1’s and a2’s strategies are σ1 and σ2, and let I be any information set for

a1. Let M∗(I|σ1, σ2) be the set of all moves in M(I) that maximize a1’s expected

utility at I, i.e.,

M∗(I|σ1, σ2) = argmax
m∈M(I)

EU(I ◦ m|σ1, σ2)

=

{

m∗ ∈ M(I)

∣

∣

∣

∣

∣

∀m ∈ M(I),
∑

h∈I P (h|I, σ1, σ2)EU(h ◦ m∗|σ1, σ2)

≥
∑

h∈I P (h|I, σ1, σ2)EU(h ◦ m|σ1, σ2)

}

. (10)

Since we are considering only finite games, every history has finite length. Thus

by starting at the terminal states and going backwards up the game tree, applying

Eqs. (7) and (9) at each move, one can compute a strategy σ∗

1 such that:

σ∗

1(m|I) =

{

1/|M∗(I, σ∗

1 , σ2)|, if m ∈ M∗(I|σ∗

1 , σ2),

0, otherwise.
(11)

THEOREM 3. Let σ2 be a strategy for a2, and σ∗

1 be as in Eq. (11). Then σ∗

1 is

σ2-optimal.

Sketch of proof. Let σ̄1 be any σ2-optimal strategy. The basic idea is to show, by

induction on the lengths of histories in an information set I, that EU(I|σ∗

1 , σ2) ≥

EU(I|σ̄1, σ2).

The induction goes backwards from the end of the game: the base case is where

I contains histories of maximal length, while the inductive case assumes the in-

equality holds when I contains histories of length k + 1, and shows it holds when I

contains histories of length k. The induction suffices to show that EU([〈〉]1|σ
∗

1 , σ2) ≥

EU([〈〉]1|σ̄1, σ2), whence from Lemma 1, EU(σ∗

1 , σ2) ≥ EU(σ̄1, σ2). ⊓⊔

Computing σ∗

1 is more difficult than computing an optimal strategy in a perfect-

information game. Reif [Reif 1984] has shown that the problem of finding a strategy

with a guaranteed win is doubly exponential for imperfect-information games (this

corresponds to finding σ1 such that for all σ2, σ1 wins).

In the minimax game-tree search algorithms used in perfect-information games,

one way of dealing with the problem of intractability is to approximate the utility

value of a state by searching to some limited depth d, using a static evaluation

function E(·) that returns approximations of the expected utilities of the nodes at

that depth, and pretending that the values returned by E are the nodes’ actual

utility values. In imperfect-information games we can compute approximate values

69

Austin Parker, Dana Nau, and V.S. Subrahmanian

for EU in a similar fashion:

EUd(h|σ
∗

1 , σ2) =

E(h), if d = 0,

U(h), if h is terminal,
∑

m∈M(h) σ2(m|[h]2) · EUd−1(h ◦ m|σ∗

1 , σ2), if it’s a2’s move,

EUd−1(h ◦ argmaxm∈M(h)(EUd([h ◦ m]1|σ
∗

1 , σ2))), if it’s a1’s move,

(12)

EUd(I|σ
∗

1 , σ2) =
∑

h∈I

P (h|I, σ∗

1 , σ2) · EUd(h|I, σ∗

1 , σ2). (13)

3.2 Opponent Models

Eqs. (11–12) assume that a1 knows a2’s strategy σ2, an assumption that is quite

unrealistic in practice. A more realistic assumption is that a1 has a model of a2 that

provides an approximation of σ2. For example, in perfect-information games, the

well-known minimax formula corresponds to an opponent model in which the op-

ponent always chooses the move whose utility value is lowest. We now consider two

opponent models for imperfect-information games: the overconfident and paranoid

models.

Overconfidence. The overconfident model assumes a2 is just choosing moves at

random from a uniform distribution; i.e., it assumes a2’s strategy is σ2(m|I) =

1/|M(I)| for every m ∈ M(I), and second, that a1’s strategy is σ2-optimal. If we

let OUd(h) = EUd(h|σ
∗

1 , σ2) and OUd(I) = EUd(I|σ
∗

1 , σ2) be the expected utilities

for histories and information sets under these assumptions, then it follows from

Eqs. (12–13) that:

OUd(h) =

E(h), if d = 0,

U(h), if h is terminal,
∑

m∈M(h)
OUd−1(h◦m)

|M(h)| , if it’s a2’s move,

OUd−1(h ◦ argmaxm∈M(h) OUd([h ◦ m]1)), if it’s a1’s move,

(14)

OUd(I) =
∑

h∈I

(1/|I|) · OUd(h). (15)

If the algorithm searches to a limited depth (Eq. 12 with d < maxh∈H |h|), we

will refer to the resulting strategy as limited-depth overconfident. If the algorithm

searches to the end of the game (i.e., d ≥ maxh∈H |h|), we will refer to the resulting

strategy as full-depth overconfident; and in this case we will usually write OU(h)

rather than OUd(h).

Paranoia. The paranoid model assumes that a2 will always make the worst possi-

ble move for a1, i.e., the move that will produce the minimum expected utility over

all of the histories in a1’s information set. This model replaces the summation in

70

Paranoia versus Overconfidence in Imperfect-Information Games

the third line of Eq. (12) with a minimization:

PUd(h) =

E(I), if d = 0,

U(h), if h is terminal,

PUd−1(h ◦ argminm∈M(h)(minh′∈[h]1 PUd([h ◦ m]))), if it’s a2’s move,

PUd−1(h ◦ argmaxm∈M(h)(minh′∈[h]1 PUd([h ◦ m]))), if it’s a1’s move,

(16)

PUd(I) = min
h∈I

PUd(h). (17)

Like we did for overconfident search, we will use the terms limited-depth and

full-depth to refer to the cases where d < maxh∈H |h| and d ≥ maxh∈H |h|, respec-

tively; and for a full-depth paranoid search, we will usually write PU(h) rather than

PUd(h).

In perfect-information games, PU(h) equals h’s minimax value. But in imperfect-

information games, h’s minimax value is the minimum Eq. (11) over all possible

values of σ2; and consequently PU(h) may be less than h’s minimax value.

3.3 Comparison with the Minimax Theorem

The best known kinds of strategies for zero-sum games are the strategies based

on the famous Minimax Theorem [von Neumann and Morgenstern 1944]. These

minimax strategies tacitly incorporate an opponent model that we will call the

minimax model. The minimax model, overconfident model, and paranoid model

each correspond to differing assumptions about a2’s knowledge and competence, as

we will now discuss.

Let Σ1 and Σ2 be the sets of all possible pure strategies for a1 and a2, respectively.

If a1 and a2 use mixed strategies, then these are probability distributions P1 and P2

over Σ1 and Σ2. During game play, a1 and a2 will randomly choose pure strategies

σ1 and σ2 from P1 and P2. Generally they will do this piecemeal by choosing moves

as the game progresses, but game-theoretically this is equivalent to choosing the

entire strategy all at once.

Paranoia: If a1 uses a paranoid opponent model, this is equivalent to assuming

that a2 knows in advance the pure strategy σ1 that a1 will choose from P1 during

the course of the game, and that a2 can choose the optimal counter-strategy, i.e.,

a strategy Pσ1

2 that minimizes σ1’s expected utility. Thus a1 will want to choose a

σ1 that has the highest possible expected utility given Pσ1

2 . If there is more than

one such σ1, then a1’s strategy can be any one of them or can be an arbitrary

probability distribution over all of them.

Minimax: If a2 uses a minimax opponent model, this is equivalent to assuming

that a2 will know in advance what a1’s mixed strategy P1 is, and that a2 will be

competent enough to choose the optimal counter-strategy, i.e., a mixed strategy PP1

2

that minimizes P1’s expected utility. Thus a1 will want to use a mixed strategy P1

71

Austin Parker, Dana Nau, and V.S. Subrahmanian

that has the highest possible expected utility given PP1

2 .

In perfect-information games, the minimax model is equivalent to the paranoid

model. But in imperfect-information games, the minimax model assumes a2 has

less information than the paranoid model does: the minimax model assumes that a2

knows the probability distribution P1 over a1’s possible strategies, and the paranoid

model assumes that a2 knows which strategy a1 will choose from P1.

Overconfidence: If a1 uses an overconfident opponent model, this equivalent

to assuming that a2 knows nothing about (or is not competent enough to figure

out) how good or bad each move is, whence a2 will use a strategy P=
2 in which all

moves are equally likely. In this case, a1 will want to choose a strategy σ1 that has

the highest expected utility given P=
2 . If there is more than one such σ1, then a1’s

strategy can be any one of them or can be an arbitrary probability distribution over

all of them.

In both perfect- and imperfect-information games, the overconfident model as-

sumes a2 has much less information (and/or competence) than in the minimax and

paranoid models.

3.4 Handling Large Information Sets

Information sets can be quite large. When they are too large for techniques like the

above to run in a reasonable amount of time, there are several options.

Game simplification reduces the size of the information set by creating an

analogous game with smaller information sets. This technique has worked partic-

ularly well in poker [Billings, Burch, Davidson, Holte, Schaeffer, Schauenberg, and

Szafron 2003; Gilpin and Sandholm 2006a; Gilpin and Sandholm 2006b], as it is

possible to create a “simpler” game which preserves win probabilities (within some

ǫ). However, these approaches apply only to variants of poker, and the technique

is not easily generalizable. Given an arbitrary game G other than poker, we know

of no general-purpose way of producing a simpler game whose expected utilities

accurately reflect expected utilities in G.

State aggregation was first used in the game of sprouts [Applegate, Jacobson,

and Sleator 1991], and subsequently has been used in computer programs for games

such as bridge (e.g., [Ginsberg 1999]), in which many of the histories in an infor-

mation set are similar, and hence can be reasoned about as a group rather than

individually. For example, if one of our opponents has an ace of hearts and a low

heart, it usually does not matter which low heart the opponent has: generally all low

hearts will lead to an identical outcome, so we need not consider them separately.

The aggregation reduces the computational complexity by handling whole sets of

game histories in the information set at the same time. However, just as with game

simplification, such aggregation techniques are highly game dependent. Given an

arbitrary game G, we do not know of a general-purpose way to aggregate states of

G in a way that is useful for computing expected utility values in G.

Unlike the previous two techniques, statistical sampling [Corlett and Todd

72

Paranoia versus Overconfidence in Imperfect-Information Games

1985] is general enough to fit any imperfect-information game. It works by se-

lecting a manageable subset of the given, large, information set, and doing our

computations based on that.

Since we are examining game playing across several imperfect-information games

we use the third technique. Let us suppose Γ is an expected utility function such

as OUd or PUd. In statistical sampling we pick I ′ ⊂ I and compute the value of

Γ(I ′) in place of Γ(I). There are two basic algorithms for doing the sampling:

1. Batch: Pick a random set of histories I ′ ⊂ I, and compute Γs(I
′) using the

equations given earlier.

2. Iterative: Until the available time runs out, repeatedly pick a random h ∈ I,

compute Γ({h}) and aggregate that result with all previous picks.

The iterative method is preferable because it is a true anytime algorithm: it con-

tinues to produce increasingly accurate estimates of Γ(I) until no more time is

available. In contrast, the batch method requires guessing how many histories we

will be able to compute in that time, picking a subset I ′ of the appropriate size, and

hoping that the computation finishes before time is up. For more on the relative

advantages of iterative and batch sampling, see [Russell and Wolfe 2005].

Statistical sampling, unlike game simplification and state aggregation, can be

used for arbitrary imperfect-information games rather than just on games that

satisfy special properties. Consequently, it is what we use in our experiments in

Section 5.

4 Analysis

Since paranoid and overconfident play both depend on opponent models that may

be unrealistic, which of them is better in practice? The answer is not completely

obvious. Even in games where each player’s moves are completely hidden from the

other player, it is not hard to create games in which the paranoid strategy outplays

the overconfident strategy and vice-versa. We now give examples of games with

these properties.

Figures 2 and 3, respectively, are examples of situations in which paranoid play

outperforms overconfident play and vice versa. As in Figure 1, the games are shown

in tree form in which each dotted box represents an information set. At each leaf

node, U is the payoff for player 1. Based on these values of U , the table gives,

the probabilities of moving left (L) and right (R) at each information set in the

tree, for both the overconfident and paranoid strategies. At each leaf node, pr1

is the probability of reaching that node when player 1 is overconfident and player

2 is paranoid, and pr2 is the probability of reaching that node when player 2 is

overconfident and player 1 is paranoid.

In Figure 2, the paranoid strategy outperforms the overconfident strategy, be-

cause of the differing choices the strategies will make at the information set I2:

73

Austin Parker, Dana Nau, and V.S. Subrahmanian

DC E F

BA

Initial player 1 info set
I1

L1 R1

I2
player 2 info set

R2

player 1 info set
I4

L3 R3 L4 R4

U = 0U = 0U = +1U = −1U = 0U = 0U = +1U = −1

pr1 = 0 pr1 = 0 pr1 = 0 pr1 = 1/2 pr1 = 0 pr1 = 0 pr1 = 0 pr1 = 1/2

pr2 = 1/4pr2 = 0pr2 = 1/4pr2 = 0pr2 = 1/4pr2 = 0pr2 = 1/4pr2 = 0

player 1 info set
I3

L2

Each linked pair of arrows repre-

sents a move with two outcomes:

one for each state in the infor-

mation set. The overconfident

strategy evaluates such a move

by averaging the utilities of the

outcomes, whereas the paranoid

strategy takes the minimum.

Info set Overconfident strategy Paranoid strategy

I1 P (L1) = 1/2 P (R1) = 1/2 P (L1) = 1/2 P (R1) = 1/2

I2 P (L2) = 1/2 P (R2) = 1/2 P (L2) = 0 P (R2) = 1

I3 P (L3) = 0 P (R3) = 1 P (L3) = 0 P (R3) = 1

I4 P (L4) = 0 P (R4) = 1 P (L4) = 0 P (R4) = 1

Figure 2. An imperfect-information game in which paranoid play beats overcon-

fident play. If an overconfident player plays against a paranoid player and each

player has an equal chance of moving first, the expected utilities are −0.25 for the

overconfident player and 0.25 for the paranoid player.

� Suppose player 1 is overconfident and player 2 is paranoid. Then at infor-

mation set I2, player 2 assumes its opponent will always choose the worst

possible response. Hence when choosing a move at I2, player 2 thinks it will

lose if it chooses L2 and will tie if it chooses R2, so it chooses R2 to avoid the

anticipated loss.

� Suppose player 1 is paranoid and player 2 is overconfident. Then at informa-

tion set I2, player 2 assumes its opponent is equally likely to move left or right.

Hence when choosing a move at I2, player 2 thinks that both moves have the

same expected utility, so it will choose between them at random—which is a

mistake, because its paranoid opponent will win the game by moving right in

both information sets I3 and I4.

Figure 3 shows a game in which the overconfident strategy outperforms the para-

noid strategy. Again, the pertinent information set is I2:

� Suppose overconfident play is player 1 and paranoid play is player 2. Then

74

Paranoia versus Overconfidence in Imperfect-Information Games

DC

A B

E F

I1
Initial player 1 info set

L1 R1

player 2 info set
I2

player 1 info set
I3 I4

player 1 info set

R2L2

U = −1

pr1 = 1/8

pr2 = 1/4 pr2 = 1/4 pr2 = 0 pr2 = 0 pr2 = 1/4 pr2 = 1/4 pr2 = 0 pr2 = 0

pr1 = 1/8pr1 = 1/8pr1 = 1/8pr1 = 1/8pr1 = 1/8pr1 = 1/8pr1 = 1/8

U = +1 U = +1 U = −1 U = −1 U = −1 U = +1 U = +1

R4R3 L4L3

Each linked pair of arrows repre-

sents a move with two outcomes:

one for each state in the infor-

mation set. The overconfident

strategy evaluates such a move

by averaging the utilities of the

outcomes, whereas the paranoid

strategy takes the minimum.

Info set Overconfident strategy Paranoid strategy

I1 P (L1) = 1/2 P (R1) = 1/2 P (L1) = 1/2 P (R1) = 1/2

I2 P (L2) = 1 P (R2) = 0 P (L2) = 1/2 P (R2) = 1/2

I3 P (L3) = 1/2 P (R3) = 1/2 P (L3) = 1/2 P (R3) = 1/2

I4 P (L4) = 1/2 P (R4) = 1/2 P (L4) = 1/2 P (R4) = 1/2

Figure 3. An imperfect-information game where overconfident play beats paranoid

play. If an overconfident player plays against a paranoid player and each player has

an equal chance of moving first, the expected utilities are 0.25 for the overconfident

player and −0.25 for the paranoid player.

paranoid play, assuming the worst, believes both move L2 and R2 are losses.

R2 is a loss because the opponent may have made move R1 resulting in a

forced loss for player 2 at node F, and L2 is a loss because the opponent may

have made move L1 and then may make move R4 resulting in a loss for player

2. Since there is a potential loss in all cases, paranoid play chooses both cases

with equal probability.

� When overconfident play is player 2, it makes move L2 at I2, on the theory

that the opponent was equally likely to make moves L1 and R1 and therefore

giving it a 50% probability of ending up in node E, which is a forced win

for player 2. Against paranoid play as player 1, this is a good move, since

paranoid play actually does make moves L1 and R1 with 50% probability.

These two examples show that neither strategy is guaranteed to be better in all

cases: sometimes paranoid play outperforms overconfident play, and sometimes vice

versa. So to determine their relative worth, deeper analysis is necessary.

75

Austin Parker, Dana Nau, and V.S. Subrahmanian

4.1 Analysis of Overconfidence Performance in Perfect Information

Games

Let s be a state in a perfect-information zero-sum game. We will say that a child

s′ of s is minimax-optimal if µ(s′) ≥ µ(s′′) for every child s′′ of s, where µ(s) is the

minimax value for the player to move at s. A minimax strategy is any strategy that

will always move to a minimax-optimal node. In the game-tree search literature,

minimax strategies have often been called “perfect play” because they produce the

highest possible value against an opponent who is also using a minimax strategy.

In perfect-information zero-sum games, PU(s) = µ(s) at every state s, hence full-

depth paranoid play is a minimax strategy. Surprisingly, if the only outcomes are

wins and losses (or equivalently, utility values of 1 and −1), full-depth overconfident

play is also a minimax strategy. To prove this result, we first need a lemma:

LEMMA 4. Let G be any finite two-player perfect-information game whose out-

comes all have utility 1 or −1. At every state s, if µ(s) = 1 then OC(s) = 1, and

if µ(s) = −1 then OC(s) ∈ [−1, 1).

Sketch of proof. This is proven by induction on the height of the state s under

consideration. The base case occurs for with terminal nodes of height 0 for which

the lemma follows trivially. The inductive case supposes the lemma holds for all

states of height k and shows algebraically for states s of height k +1 in each of four

possible cases: (1) if it is a1’s move and µ(s) = −1 then OC(s) ∈ [−1, 1), (2) if it is

a1’s move and µ(s) = 1 then OC(s) = 1, (3) if it is a2’s move and µ(s) = −1 then

OC(s) ∈ [−1, 1), and (4) if it is a2’s move and µ(s) = 1 then OC(s) = 1. Since

the game allows only wins and losses (so that µ(s) is 1 or −1), these are all the

possibilities. ⊓⊔

THEOREM 5. Let G be any finite two-player perfect-information game whose out-

comes all have utility 1 or −1. At every nonterminal state s, the overconfident

strategy, σO, will move to a state s′ that is minimax-optimal.

Proof. Immediate from the lemma. ⊓⊔

This theorem says that in head-to-head play in perfect-information games al-

lowing only wins or losses, the full-depth overconfident and full-depth paranoid

strategies will be evenly matched. In the experimental section, we will see this to

hold in practice.

4.2 Discussion

Paranoid play. When using paranoid play a1 assumes that a2 has always and will

always make the worst move possible for a1, but a1 does this given only a1’s infor-

mation set. This means that for any given information set, the paranoid player will

find the history in the information set that is least advantageous to itself and make

moves as though that were the game’s actual history even when the game’s actual

76

Paranoia versus Overconfidence in Imperfect-Information Games

history is any other member of the information set. There is a certain intuitively

appealing protectionism occurring here: an opponent that happens to have made

the perfect moves cannot trap the paranoid player. However, it really is not clear

exactly how well a paranoid player will do in an imperfect-information game, for

the following reasons:

� There is no reason to necessarily believe that the opponent has made those

“perfect” moves. In imperfect-information games, the opponent has differ-

ent information than the paranoid player, which may not give the opponent

enough information to make the perfect moves paranoid play expects.

� Against non-perfect players, the paranoid player may lose a lot of potentially

winnable games. The information set could contain thousands of histories in

which a particular move m is a win; if that move is a loss on just one history,

and there is another move m′ which admits no losses (and no wins), then m

will not be chosen.3

� In games such as kriegspiel, in which there are large and diverse information

sets, usually every information set will contain histories that are losses, hence

paranoid play will evaluate all of the information sets as losses. In this case,

all moves will look equally terrible to the paranoid player, and paranoid play

becomes equivalent to random play.4

We should also note the relationship paranoid play has to the “imperfection” of

the information in the game. A game with large amounts of information and small

information sets should see better play from a paranoid player than a game with

large information sets. The reason for this is that as we get more information about

the actual game state, we can be more confident that the move the paranoid player

designates as “worst” is a move the opponent can discover and make in the actual

game. The extreme of this is a perfect information game, where paranoid play has

proven quite effective: it is minimax search. But without some experimentation, it

is not clear to what extent smaller amounts of information degrade paranoid play.

Overconfident play. Overconfident play assumes that a2 will, with equal prob-

ability, make all available moves regardless of what the available information tells

a2 about each move’s expected utility. The effect this has on game play depends

on the extent to which a2’s moves diverge from random play. Unfortunately for

overconfidence, many interesting imperfect-information games implicitly encourage

3This argument assumes that the paranoid player examines the entire information set rather

than a statistical sample as discussed in Section 3.4. If the paranoid player examines a statistical

sample of the information set, there is a good chance that the statistical sample will not contain

the history for which m is a loss. Hence in this case, statistical sampling would actually improve

the paranoid player’s play.
4We have verified this experimentally in several of the games in the following section, but omit

these experiments due to lack of space.

77

Austin Parker, Dana Nau, and V.S. Subrahmanian

non-random play. In these games the overconfident player will not adequately con-

sider the risks of its moves. The overconfident player, acting under the theory that

the opponent is unlikely to make a particular move, will many times not protect

itself from a potential loss.

However, depending on the amount of information in the imperfect-information

game, the above problem may not be as bad as it seems. For example, consider a

situation where a1, playing overconfidently, assumes the opponent is equally likely

to make each of the ten moves available in a1’s current information set. Suppose

that each move is clearly the best move in exactly one tenth of the available histories.

Then, despite the fact that the opponent is playing a deterministic strategy, random

play is a good opponent model given the information set. This sort of situation,

where the model of random play is reasonable despite it being not at all related

to the opponent’s actual mixed strategy, is more likely to occur in games where

there is less information. The larger the information set, the more likely it is that

every move is best in enough histories to make that move as likely to occur as any

other. Thus in games where players have little information, there may be a slight

advantage to overconfidence.

Comparative performance. The above discussion suggests that (1) paranoid

play should do better in games with “large” amounts of information, and (2) over-

confident play might do better in games with “small” amounts of information. But

will overconfident play do better than paranoid play? Suppose we choose a game

with small amounts of information and play a paranoid player against an overconfi-

dent player: what should the outcome be? Overconfident play has the advantage of

probably not diverging as drastically from the theoretically correct expected utility

of a move, while paranoid play has the advantage of actually detecting and avoiding

bad situations – situations to which the overconfident player will not give adequate

weight.

Overall, it is not at all clear from our analysis how well a paranoid player and an

overconfident player will do relative to each other in a real imperfect-information

game. Instead, experimentation is needed.

5 Experiments

In this section we report on our experimental comparisons of overconfident versus

paranoid play in several imperfect-information games.

One of the games we used was kriegspiel, an imperfect-information version of

chess [Li 1994; Li 1995; Ciancarini, DallaLibera, and Maran 1997; Sakuta and Iida

2000; Parker, Nau, and Subrahmanian 2005; Russell and Wolfe 2005]. In kriegspiel,

neither player can observe anything about the other player’s moves, except in cases

where the players directly interact with each other. For example, if a1 captures one

of a2’s pieces, a2 now knows that a1 has a piece where a2’s piece used to be. For

more detail, see Section 5.2.

In addition, we created imperfect-information versions of three perfect-

78

Paranoia versus Overconfidence in Imperfect-Information Games

information games: P-games [Pearl 1984], N-games [Nau 1982a], and a simplified

version of kalah [Murray 1952]. We did this by hiding some fraction 0 ≤ h ≤ 1 of

each player’s moves from the other player. We will call h the hidden factor, because

it is the fraction of information that we hide from each player: when h = 0, each

player can see all of the other player’s moves; when h = 1, neither player can see

any of the other player’s moves; when h = 0.2, each player can see 20% of the other

player’s moves; and so forth.

In each experiment, we played two players head-to-head for some number of

trials, and averaged the results. Each player went first on half of the trials.

5.1 Experiments with Move-Hiding

We did experiments in move-hiding variants of simple perfect information games.

These experiments were run on 3.4 GHz Xeon processors with at least 2 GB of

RAM per core. The programs were written in OCaml. All games were 10-ply long,

and each player searched all the way to the end of the game.

Hidden-move P-game experiments. P-games were invented by Judea Pearl

[Pearl 1981], and have been used in many studies of game-tree search (e.g., [Nau

1982a; Pearl 1984]). They are two-player zero-sum games in which the game tree

has a constant branching factor b, fixed game length d, and fixed probability P0 that

the first player wins at any given leaf node.5 One creates a P-game by randomly

assigning “win” and “loss” values to the bd leaf nodes.

We did a set of experiments with P-games with P0 = 0.38, which is the value of

P0 most likely to produce a nontrivial P-game [Nau 1982b]. We used depth d = 10,

and varied the branching factor b. We varied the hidden factor h from 0 to 1 by

increments of 0.2, so that the number of hidden moves varied from 0 to 10. In

particular, we hid a player’s mth move if ⌊m · h⌋ > ⌊(m− 1) · h⌋. For instance, in a

game where each player makes 5 moves and the hidden factor is 0.6, then the 2nd,

4th, and 5th moves of both players are hidden.

For each combination of parameters, we played 2000 games: 1000 in which one

of the players moved first, and 1000 in which the other player moved first. Thus in

each of our figures, each data point is the average of 2000 runs.

Figure 4(a) shows the results of head-to-head play between the overconfident and

paranoid strategies. These results show that in hidden-move P -games, paranoid

play does indeed perform worse than overconfident play with hidden factors greater

than 0. The results also confirm theorem 5, since overconfident play and paranoid

play did equally well with hidden factor 0. From these experiments, it seems that

paranoid play may not be as effective in imperfect-information games as it is in

perfect information games.

Hidden-move N-game experiments. P-games are known to have a property

called game-tree pathology that does not occur in “natural” games such as chess [Nau

5Hence [Pearl 1984] calls P-games (d, b, P0)-games.

79

Austin Parker, Dana Nau, and V.S. Subrahmanian

(a) Hidden-move P-

games. Each data

point is an average of

at least 72 trials.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1O
v
e
rc

o
n
fi
d
e
n
t
E

V
V

P
 v

s
 P

a
ra

n
o
id

 p
la

y

Hidden Factor

OC vs PAR b/f 2
OC vs PAR b/f 3
OC vs PAR b/f 4

O
C

's
 a

v
e
ra

g
e
 s

c
o
re

(b) Hidden-move N-

games. Each data

point is an average of

at least 39 trials.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1O
v
e
rc

o
n
fi
d
e
n
t
E

V
V

P
 v

s
 P

a
ra

n
o
id

 p
la

y

Hidden Factor

OC vs PAR b/f 2
OC vs PAR b/f 3
OC vs PAR b/f 4

O
C

's
 a

v
e
ra

g
e
 s

c
o
re

(c) Hidden-move kalah.

Each data point is an

average of at least 125

randomly generated

initial states.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1O
v
e
rc

o
n
fi
d
e
n
t
E

V
V

P
 v

s
 P

a
ra

n
o
id

 p
la

y

Hidden Factor

OC vs PAR b/f 2
OC vs PAR b/f 3
OC vs PAR b/f 4

O
C

's
 a

v
e
ra

g
e
 s

c
o
re

Figure 4. Average scores for overconfident (OC) play against paranoid (PAR) play.

1982a], and we wanted to ascertain whether this property might have influenced

our experimental results on hidden-move P-games. N-games are similar to P-games

but do not exhibit game-tree pathology, so we did a similar set of experiments on

hidden-move N-games.

An N-game is specified by a triple (d, b, P0), where d is the game length, b is the

branching factor, and P0 is a probability. An N-game specified by this triple has

a game tree of height d and branching factor b, and each arc in the game tree is

randomly assigned a value of +1 with probability P0, or −1 otherwise. A leaf node

is a win for player 1 (and a loss for player 2) if the sum of the values on the arcs

between the root and the leaf node is greater than zero; otherwise the leaf node is

80

Paranoia versus Overconfidence in Imperfect-Information Games

a loss for player 1 (and a win for player 2).

Figure 4(b) shows our experimental results for hidden-move N-games. Just as

before, overconfident and paranoid play did equally well with hidden factor 0, and

overconfident play outperformed paranoid play with hidden factors greater than 0.

Kalah experiments. Kalah [Murray 1952] is also called mankalah, mancala,

warri, and other names. It is an ancient African game played on a board with

a number of pits that contain seeds, in which the objective is to acquire more seeds

than the opponent, either by moving them to a special pit (called a kalah) or by

capturing them from the opponent’s pits.

In kalah, there are two rows of 6 pits. Flanking the rows of pits on both sides

are the larger kalahs. Players sit on opposite sides of the board with one of the

rows of pits nearer to each player. Each player owns the kalah on their left. The

game starts with 6 stones in each of the pits except the kalahs. The player moves

by picking up all the stones from one of the pits in the near row and placing one

stone in each pit clockwise around the board including their kalah but excluding

the opponent’s kalah. If the last stone is placed in their kalah, the player moves

again. If the last stone is placed in an empty pit, the player moves all stones from

the opposite pit to their kalah. The game ends when the player to move has no

moves because all pits on their side are empty. At that point, all stones in pits on

the other player’s side are placed in the player to move’s kalah and the player with

the most stones wins; ties occur when both plays own the same number of stones.

Because of the computation requirements of playing a full game of kalah, our

experiments were on a simplified version of kalah that we call randomized kalah.

The game differs from kalah in several ways:

� We vary the number of pits on the board. This varies the branching factor.

� To ensure a constant branching factor, we allow players to “move” from a

pit that contains no stones. These are null moves that have no effect on the

board.

� We end the game after 10 ply, to ensure that the algorithms can search the

entire tree.

� We eliminate the move-again rule, to ensure alternating moves by the players.

� We start with a random number of stones in each pit to ensure that at each

branching factor there will be games with non-trivial decisions.

Since randomized kalah is directly motivated by a very old game that people still

play, its game trees are arguably much less “artificial” than those of P-games or

N-games.

The results of playing overconfidence versus paranoia in hidden-move versions of

randomized kalah are shown in Figure 4(c). The results are roughly similar to the

81

Austin Parker, Dana Nau, and V.S. Subrahmanian

P-game and N-game results, in the sense that overconfidence generally outperforms

paranoia; but the results also differ from the P-game and N-game results in several

ways. First, overconfidence generally does better at high hidden factors than at low

ones. Second, paranoia does slightly better than overconfidence at hidden factor 0

(which does not conflict with Theorem 5, since kalah allows ties). Third, paranoia

does better than overconfidence when the branching factor is 2 and the hidden

factor is 0.2 or 0.4. These are the only results we saw where paranoia outperformed

overconfidence.

The fact that with the same branching factor, overconfidence outperforms para-

noia with hidden factor 0.6, supports the hypothesis that as the amount of in-

formation in the game decreases, paranoid play performs worse with respect to

overconfident play. The rest of the results support that hypothesis as well: over-

confidence generally increases in performance against paranoia as the hidden factor

increases.

5.2 Kriegspiel Experiments

For experimental tests in an imperfect-information game people actually play, we

used kriegspiel, an imperfect-information version of chess in which the players can-

not see their opponent’s pieces. Kriegspiel is useful for this study because (i) it is

clearly a game where each player has only a small amount of information about

the current state, and (ii) due to its relationship to chess, it is complicated enough

strategically to allow for all sorts of subtle and interesting play. A further advantage

to kriegspiel is that it is played competitively by humans even today [Li 1994; Li

1995; Ciancarini, DallaLibera, and Maran 1997].

Kriegspiel is a chess variant played with a chess board. When played in per-

son, it requires three chess kits: one for each player and one for the referee. All

boards are set up as in normal chess, but neither player is allowed to see their

opponent’s or the referee’s board. The players then move in alternation as in

standard chess, keeping their moves hidden from the other player. All player’s

moves are also played by the referee on the referee’s board. Since neither player

can see the referee’s board, the referee acts as a mediator, telling the players if

the move they made is legal or illegal, and giving them various other observa-

tions about the move made. We use the ICC’s kriegspiel observations, described at

http://www.chessclub.com/help/Kriegspiel. Observations define the informa-

tion sets. Any two histories that have the same observations at each move and all

the same moves for one of the players are in the same information set.

When played on the internet, the referee’s job can be automated by a computer

program. For instance, on the Internet Chess Club one can play kriegspiel, and

there have been thousands of kriegspiel games played on that server.

We ran our experiments on a cluster of computers runing linux, with between

900 MB and 1.5 GB RAM available to each process. The processors were Xeons,

Athlons, and Pentiums, ranging in clockspeed from 2 GHz to 3.2 GHz. We used

82

Paranoia versus Overconfidence in Imperfect-Information Games

Table 1. Average scores for overconfi-

dent play against paranoid play, in 500

kriegspiel games using the ICC ruleset.

d is the search depth.

Over- Paranoid

confident d = 1 d = 2 d = 3

d = 1 +0.084 +0.186 +0.19

d = 2 +0.140 +0.120 +0.156

d = 3 +0.170 +0.278 +0.154

Table 2. Average scores for overcon-

fident and paranoid play against HS,

with 95% confidence intervals. d is the

search depth.

d Paranoid Overconfident

1 –0.066 ± 0.02 +0.194 ± 0.038

2 +0.032 ± 0.035 +0.122 ± 0.04

3 +0.024 ± 0.038 +0.012 ± 0.042

time controls and always forced players in the same game to ensure the results

were not biased by different hardware. The algorithms were written in C++. The

code used for overconfident and paranoid play is the same, with the exception of

the opponent model. We used a static evaluation function that was developed to

reward conservative kriegspiel play, as our experience suggests such play is generally

better. It uses position, material, protection and threats as features.

The algorithms used for kriegspiel are depth-limited versions of the paranoid and

overconfident players. To handle the immense information-set sizes in kriegspiel,

we used iterative statistical sampling (see Section 3.4). To get a good sample with

time control requires limiting the search depth to at most three ply. Because time

controls remain constant, the lower search depths are able to sample many more

histories than the higher search depths.

Head-to-head overconfident vs. paranoid play. We did experiments compar-

ing overconfident play to paranoid play by playing the two against each other. We

gave the algorithms 30 seconds per move and played each of depths one, two, and

three searches against each other. The results are in Table 1. In these results, we

notice that overconfident play consistently beats paranoid play, regardless of the

depth of either search. This is consistent with our earlier results for hidden-move

games (Section 5.1); and, in addition, it shows overconfident play doing better than

paranoid play in a game that people actually play.

HS versus overconfidence and paranoia. We also compared overconfident

and paranoid play to the hybrid sampling (HS) algorithm from our previous work

[Parker, Nau, and Subrahmanian 2005]. Table 2 presents the results of the exper-

iments, which show overconfidence playing better than paranoia except in depth

three search, where the results are inconclusive. The inconclusive results at depth

three (which are an average over 500 games) may be due to the sample sizes achieved

via iterative sampling. We measured an average of 67 histories in each sample at

depth three, which might be compared to an average of 321 histories in each sample

at depth two and an average of 1683 histories at depth one. Since both algorithms

use iterative sampling, it could be that at depth three, both algorithms examine

83

Austin Parker, Dana Nau, and V.S. Subrahmanian

insufficient samples to do much better than play randomly.

In every case, overconfidence does better than paranoia against HS. Further,

overconfidence outperforms HS in every case (though sometimes without statistical

significance), suggesting that information-set search is an improvement over the

techniques used in HS.

6 Related Work

There are several imperfect-information game-playing algorithms that work by

treating an imperfect-information game as if it were a collection of perfect-

information games [Smith, Nau, and Throop 1998; Ginsberg 1999; Parker, Nau,

and Subrahmanian 2005]. This approach is useful in imperfect-information games

such as bridge, where it is not the players’ moves that are hidden, but instead

some information about the initial state of the game. The basic idea is to choose

at random a collection of states from the current information set, do conventional

minimax searches on those states as if they were the real state, then aggregate the

minimax values returned by those searches to get an approximation of the utility of

the current information set. This approach has some basic theoretical flaws [Frank

and Basin 1998; Frank and Basin 2001], but has worked well in games such as

bridge.

Poker-playing computer programs can be divided into two major classes. The

first are programs which attempt to approximate a Nash equilibrium. The best

examples of these are PsOpti [Billings, Burch, Davidson, Holte, Schaeffer, Schauen-

berg, and Szafron 2003] and GS1 [Gilpin and Sandholm 2006b]. The algorithms

use an intuitive approximation technique to create a simplified version of the poker

game that is small enough to make it feasible to find a Nash equilibrium. The equi-

librium can then be translated back into the original game, to get an approximate

Nash equilibrium for that game. These algorithms have had much success but differ

from the approach in this paper: unlike any attempt to find a Nash equilibrium,

information-set search simply tries to find the optimal strategy against a given op-

ponent model. The second class of poker-playing programs includes Poki [Billings,

Davidson, Schaeffer, and Szafron 2002] which uses expected value approximations

and opponent modeling to estimate the value of a given move and Vexbot [Billings,

Davidson, Schauenberg, Burch, Bowling, Holte, Schaeffer, and Szafron 2004] which

uses search and adaptive opponent modeling.

The above works have focused specifically on creating successful programs for

card games (bridge and poker) in which the opponents’ moves (card plays, bets) are

observable. In these games, the hidden information is which cards went to which

players when the cards were dealt. Consequently, the search techniques are less

general than information-set search, and are not directly applicable to hidden-move

games such as kriegspiel and the other games we have considered in this paper.

84

Paranoia versus Overconfidence in Imperfect-Information Games

7 Conclusion

We have introduced a recursive formulation of the expected value of an information

set in an imperfect information game. We have provided analytical results showing

that this expected utility formulation plays optimally against any opponent if we

have an accurate model of the opponent’s strategy.

Since it is generally not the case that the opponent’s strategy is known, the

question then arises as to what the recursive search should assume about an op-

ponent. We have studied two opponent models, a “paranoid” model that assumes

the opponent will choose the moves that are best for them, hence worst for us; and

an “overconfident” model that assumes the opponent is making moves purely at

random.

We have compared the overconfident and paranoid models in kriegspiel, in an

imperfect-information version of kalah, and in imperfect-information versions of P-

games [Pearl 1984] and N-games [Nau 1982a]. In each of these games, the overcon-

fident strategy consistently outperformed the paranoid strategy. The overconfident

strategy even outperformed the best of the kriegspiel algorithms in [Parker, Nau,

and Subrahmanian 2005].

These results suggest that the usual assumption in perfect-information game tree

search—that the opponent will choose the best move possible—is not as effective in

imperfect-information games.

Acknowledgments: This work was supported in part by AFOSR grant

FA95500610405, NAVAIR contract N6133906C0149, DARPA IPTO grant FA8650-

06-C-7606, and NSF grant IIS0412812. The opinions in this paper are those of the

authors and do not necessarily reflect the opinions of the funders.

References

Applegate, D., G. Jacobson, and D. Sleator (1991). Computer analysis of sprouts.

Technical report, Carnegie Mellon University.

Billings, D., N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg,

and D. Szafron (2003). Approximating game-theoretic optimal strategies for

full-scale poker. In IJCAI, pp. 661–668.

Billings, D., A. Davidson, J. Schaeffer, and D. Szafron (2002). The challenge of

poker. Artif. Intell. 134, 201–240.

Billings, D., A. Davidson, T. Schauenberg, N. Burch, M. Bowling, R. Holte,

J. Schaeffer, and D. Szafron (2004). Game tree search with adaptation in

stochastic imperfect information games. Computers and Games 1, 21–34.

Ciancarini, P., F. DallaLibera, and F. Maran (1997). Decision Making under

Uncertainty: A Rational Approach to Kriegspiel. In J. van den Herik and

J. Uiterwijk (Eds.), Advances in Computer Chess 8, pp. 277–298.

85

Austin Parker, Dana Nau, and V.S. Subrahmanian

Corlett, R. A. and S. J. Todd (1985). A monte-carlo approach to uncertain infer-

ence. In AISB-85, pp. 28–34.

Frank, I. and D. Basin (2001). A theoretical and empirical investigation of search

in imperfect information games. Theoretical Comp. Sci. 252, 217–256.

Frank, I. and D. A. Basin (1998). Search in games with incomplete information:

A case study using bridge card play. Artif. Intell. 100 (1-2), 87–123.

Gilpin, A. and T. Sandholm (2006a). Finding equilibria in large sequential games

of imperfect information. In EC ’06, pp. 160–169.

Gilpin, A. and T. Sandholm (2006b). A texas hold’em poker player based on

automated abstraction and real-time equilibrium computation. In AAMAS

’06, pp. 1453–1454.

Ginsberg, M. L. (1999). GIB: Steps toward an expert-level bridge-playing pro-

gram. In IJCAI-99, pp. 584–589.

Li, D. (1994). Kriegspiel: Chess Under Uncertainty. Premier.

Li, D. (1995). Chess Detective: Kriegspiel Strategies, Endgames and Problems.

Premier.

Murray, H. J. R. (1952). A History of Board Games other than Chess. London,

UK: Oxford at the Clarendon Press.

Nau, D. S. (1982a). An investigation of the causes of pathology in games. Artif.

Intell. 19 (3), 257–278.

Nau, D. S. (1982b). The last player theorem. Artif. Intell. 18 (1), 53–65.

Nau, D. S. (1983). Decision quality as a function of search depth on game trees.

JACM 30 (4), 687–708.

Osborne, M. J. and A. Rubinstein (1994). A Course In Game Theory. MIT Press.

Parker, A., D. Nau, and V. Subrahmanian (2005, August). Game-tree search with

combinatorially large belief states. In IJCAI, pp. 254–259.

Pearl, J. (1981, August). Heuristic search theory: Survey of recent results. In

Proc. Seventh Internat. Joint Conf. Artif. Intel., Vancouver, Canada, pp.

554–562.

Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem

solving. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Reif, J. (1984). The complexity of two-player games of incomplete information.

Jour. Computer and Systems Sciences 29, 274–301.

Russell, S. and J. Wolfe (2005, August). Efficient belief-state and-or search, with

application to kriegspiel. In IJCAI, pp. 278–285.

Sakuta, M. and H. Iida (2000). Solving kriegspiel-like problems: Exploiting a

transposition table. ICCA Journal 23 (4), 218–229.

86

Paranoia versus Overconfidence in Imperfect-Information Games

Smith, S. J. J., D. S. Nau, and T. Throop (1998). Computer bridge: A big win

for AI planning. AI Magazine 19 (2), 93–105.

von Neumann, J. and O. Morgenstern (1944). Theory of Games and Economic

Behavior. Princeton University Press.

87

6

Heuristic Search: Pearl’s Significance from

a Personal Perspective

Ira Pohl

1 Introduction

This paper is about heuristics, and the significance of Judea Pearl’s work to the

field. The impact of Pearl’s monograph was transformative. It heralded a third

wave in the practice and theory of heuristic search. First there were the pioneering

search algorithms without a theoretical basis, such as GPS or GT. Second came the

Nilsson [1980] work that formulated a basic theory of A*. Third, in 1984, was Judea

Pearl adding depth and breadth to this theory and adding a more sophisticated

probabilistic context. Judea Pearl’s book, Heuristics: Intelligent Search Strategies

for Computer Problem Solving, was a tour de force summarizing the work of three

decades.

Heuristic Search is a holy grail of Artificial Intelligence. It attempts to be a

universal methodology to achieve AI, demonstrating early success in an era when

AI was largely experimental. Pre-1970 programs that were notable include the

Doran-Michie Graph Traverser [Doran and Michie 1966], the Art Samuel checker

program [Samuel 1959], and the Newell, Simon, and Shaw General Problem Solver

[Newell and Simon 1972]. These programs showed what could be called intelligence

across a gamut of puzzles, games, and logic problems. Having no theoretical basis

for predicting success, they were tested and compared to human performance.

The lack of theory for heuristic search changed in 1968 with the publication

by Hart, Nilsson, and Raphael [1968] of their A* algorithm and its analysis. A*

was provably optimum under some theoretical assumptions. The outcome of this

work at the SRI robotics group fueled a series of primary results including my own,

and later Pearl’s. Pearl’s book [Pearl 1984] captured and synthesized much of the

A* work, including my work from the late 1960’s [Pohl 1967; Pohl 1969] through

1977 [Pohl 1970a; Pohl 1970b; Pohl 1971; Pohl 1973; Pohl 1977]. It built a solid

theoretical structure for heuristic search, and inspired much of my own and others

subsequent work [Ratner and Pohl 1986; Ratner and Warmuth 1986; Kaindl and

Kaintz 1997; Politowski 1984].

2 Early Experimentation

In the 1960’s there were three premiere AI labs at US universities: CMU, MIT and

Stanford; there was one such lab in England: the Machine Intelligence group at

89

Ira Pohl

Edinburgh; and there was the AI group at SRI. Each had particular strengths and

visions. The CMU group led by Allen Newell and Herb Simon [Newell and Simon

1972] took a cognitive simulation approach. Their primary algorithmic framework

was GPS, the General Problem Solver. This algorithm could be viewed as an ele-

mentary divide and conquer strategy. Guidance was based on detecting differences

between partial solution and goal states. To make progress this algorithm attempted

to apply operators to partial solutions, and reduce the difference with a goal state.

It demonstrated that a heuristic search strategy could be applied to a wide array

of problems that were associated with human intelligence. These included combi-

natorial puzzles such as crypt-arithmetic and towers of Hanoi.

The Graph Traverser [Doran and Michie 1966] reduced AI questions to the task

of heuristic search. It was deployed on the 8 puzzle, a classic combinatorial puzzle

typical of mildly challenging human amusements. “The objective of the 8-Puzzle

is to rearrange a given initial configuration of eight numbered tiles arranged on a

3 x 3 board into a given final configuration called the goal state [Pearl 1984, p.

6].”. Michie and Doran tried to obtain efficient search by discovering useful and

computationally simple heuristics that measured perceived effort toward a solution.

An example was “how many tiles are out of their goal space.” The Graph Traverser

demonstrated that a graph representation was a useful general perspective in prob-

lem solving, and that computationally knowledgeable heuristics could efficiently

guide search.

The MIT AI lab pioneered many projects in both robotics and advanced problem

solving. Marvin Minsky and his collaborators solved relatively difficult mathemat-

ical problems such as word algebra problems and calculus problems [Slagle 1963].

They used context, mathematical models and search to solve these problems. Ul-

timately this work led to programs such as Mathematica. They gave a plausible

argument for what could be described as knowledge + deduction = intelligence.

The Stanford AI lab was led by John McCarthy, who was important in two re-

gards: computational environment and logical representations. McCarthy pioneered

with LISP and time sharing: tools and schemes that would profoundly impact the

entire computational community. He championed predicate logic as a uniform and

complete representation of what was needed to express and reason about the world.

The SRI lab, originally affiliated with Stanford, but later independent, was en-

gaged in robotics. A concern was how an autonomous mobile robot could efficiently

navigate harsh terrain, such as the moon. Here the emphasis was more engineering

and algorithmic. Here the question was how something could be made to work effi-

ciently, not whether it simulated human intelligence or generated a comprehensive

theory of inference.

3 Early Theory

The Graph Traverser was a heuristic path finding algorithm attempting to minimize

search steps to a goal node. This approach was experimental and explored how to

90

Heuristic Search

Figure 1. Tutte’s graph

formulate and test for useful heuristics. The Dijkstra shortest path algorithm [Dijk-

stra 1959] was a combinatorial algorithm. It was an improvement on earlier graph

theoretic and operations research algorithms for the pure shortest path optimization

problem. A* developed in Hart, Nilsson, and Raphael [1968], is the adaptation of

Dijkstra’s shortest path algorithm to incorporate admissible heuristics. It preserved

the need to find an optimal path, while using heuristics that attempted to minimize

search.

In the period 1966-1969, I worked on graph theory algorithms, such as the Di-

jkstra algorithm. The Stanford Computer Science department was dominated by

numerical analysts with a strong algorithmic approach. The AI group was meta-

mathematical and inference oriented. Don Knuth had yet to come to Stanford, so

there was not yet any systematic work or courses offered on combinatorial algo-

rithms. I was asked to evaluate PL1 for use at Stanford and SLAC and decided to

test it out by building a graph algorithm library.

I enjoyed puzzle-like problems and had an idea for improving Warnsdorf’s rule

for finding a Knight’s tour. A Knight’s tour is a Hamiltonian path on the 64 square

chessboard whose edge connectivity is determined by Knight moves. In graph theory

terms the rule was equivalent to going to an unvisited node of minimum out-degree.

Warnsdorf’s rule is an example of a classic greedy heuristic. I modified it to find a

Hamiltonian in the 46 node Tutte’s graph [Pohl 1967; Tutte 1946], as well as showed

that it worked well on Knight’s Tours.

At that time, the elegance of Dijkstra’s work had impressed me, and I sought to

improve his shortest path algorithm by implementing it bidirectionally. An early

attempt by Nicholson [1966] had proved incorrect because of an error in the stopping

criteria. These ideas conspired to lead me to test my methods further as variations

on A* [Pohl 1971].

91

Ira Pohl

The first half of Pearl [1984], Chapter 3 is a sophisticated and succinct summation

of search results through 1978. Three theorems principally due to Hart, Nilsson,

and Raphael [1968] are central to early theory:

• A* is complete even on infinite graphs [Pearl 1984, Theorem 1, p. 77].

• A* is admissible [Pearl 1984, Theorem 2, p. 78].

• If A*2 is more informed than A*1, then A*2 dominates A*1 [Pearl 1984,

Theorem 7, p. 81].

Much of this early work relied on the heuristic being consistent. But as Pearl [1984,

p. 111] notes: ”The property of monotonicity was introduced by Pohl [1977] to

replace that of consistency. Surprisingly, the equivalence of the two have not been

previously noted in the literature.” These theorems and monotonicity provide a first

attempt at a mathematical foundation for heuristic search.

These theorems suggest that A* is robust and that heuristics that are more

informed lead to more efficient searches. What is missing is how to relate the effort

and accuracy in computing the heuristic to its computational benefit.

4 Algorithms, and Numerical Methods, as a model

In AI search is a weak but universal method. To make it efficient we have to

give it powerful guidance mechanisms. A well developed theory of search exists in

numerical analysis for finding the roots of equations. It represented to me a possible

conceptual model for heuristic search.

There are diverse algorithms to solve the root search problem. A sample of meth-

ods could include bisection search, Monte Carlo sampling, and Newton-Raphson.

Bisection search for root finding is robust. Newton-Raphson (NR) for root finding

is efficient. Monte-Carlo root finding is highly robust and very inefficient. How to

decide what to use involves efficiency and error concerns. Often efficient methods

of root finding require a function be well behaved. So NR converges quadratically,

but requires differentiability. Bisection converges linearly but requires continuity.

Monte-Carlo in most circumstances works very slowly, but works on discontinuous

and non-differentiable functions

In numerical methods error analysis is critical to understanding a method’s utility

and its efficiency. Also in algorithmic methods one needs to use adversaries to stress

test robustness and efficiency. These techniques can be applied to heuristic search

algorithms.

Heuristic search theory can be investigated analogously to the theory of root

finding. To subsume the various heuristic algorithms, I formulated the following

generalization of the search function f, as a linear combination of g and h. Further-

more this combination could be weighted dynamically.

The node selection function is : f(x) = (1−w(x))g(x)+w(x)h(x), 0 ≤ w(x) ≤ 1.

92

Heuristic Search

Moore maze/path: w = 0, edge costs are 1

Dijkstra: w = 0, edge costs are 1

Michie-Doran GT: w = 1

HNR A*: w = 0.5, h is admissible

This generalization is also adopted in Pearl [1984], Section 3.2.1. Once you have this

generalization, one can ask questions that are similar to those studied by numerical

analysts. How reliably the heuristic function estimates effort, leads to a notion of

error. This error then effects the convergence rate to a solution. This question

was first taken up by Pohl [1970a] and later by Gaschnig [1979]. Pearl’s results

as summarized in [Pearl 1984, Chapters 6–7], provide a detailed treatment of the

effects of error on search.

5 Variations: Weighted and Bidirectional search

5.1 Weighted dynamic search

The four standard weightings for HPA were all static, for example w = 1/2 for

A*. Dynamic weighting is proposed in [Pohl 1973], where w(x) is dependent on

the character of the state. This was inspired by the observation that accuracy of

heuristics improved as the search neared its goal. An admissible heuristic is an

underestimate. Dynamic weighting can overestimate (see discussion in [Pearl 1984,

Chapter 7]) and be not admissible. This technique remains controversial and is

underutilized and not extensively researched.

5.2 Bidirectional Search

Bidirectional search was originally proposed in optimzation [Nicholson 1966] to im-

prove on unidirectional shortest path algorithms. These implementations presumed

a naive termination condition - namely that when an intersection of two paths oc-

curred the resulting path was optimal. Finding this an error and implementing the

correct terminating condition led me to consider both practically and theoretically

how more efficient bidirectional search was.

Bidirectional search is an attractive approach for several reasons. Searches are

normally combinatorially explosive in their depth. Two searches of half the depth

ideally save exponential time and space. When run on a parallel architecture they

can essentially be done simultaneously. Furthermore, this leads to a natural recur-

sive process of further divide and conquer searches.

The cardinality comparison rule tells us to expand in the sparser hemi-tree and

can be important in improving these searches. There is the following intuitive

justification as to why such a rule makes more progress than simple alternation.

Consider the problem of picking a black ball out of either of two urns. Each urn

contains a single black ball and some white balls. The probability of finding a black

ball is 1/n where n is the number of balls in the urn. In finding a next black ball

93

Ira Pohl

it is best to pick from the urn with fewest balls. Think of the urn as the collection

of open nodes and selection as finding the next node along an optimum path. This

leads to the cardinality comparison rule.

Bidirectional search works well for the standard graph shortest path problem.

Here, bidirectional search, exclusive of memory constraints, dominates unidirec-

tional search when the metric is nodes expanded. But when search is guided by

highly selected heuristics there can be a “wandering in the desert” problem when

the two frontiers do not meet in the middle.

To address this problem, I first proposed a parallel computation of all front-to-

front node values in 1975. Two of my student’s implemented and tested this method

[De Champeaux and Sint 1977]. It had some important theoretical advantages, such

as retaining admissibility, but it used an expensive front-to-front computation that

involved the square of the nodes in the open set. By only looking at nodes expanded

as a measure of efficiency it was misleading as to its true computational effort [Davis

et al. 1984].

6 Judea and Heuristics

In Heuristics [Pearl 1984], Judea Pearl insightfully presents the work on heuris-

tic search from 1950-1984. He contextualized and showed it as a mature theory.

The book is the defining third generation document that immensely broadens and

deepens the mathematical character of the field.

Pearl’s book is very important in emphasizing the need for a sophisticated view

of computational efficiency. It summarized, systematized and extended the theory

of heuristic search. It extensively analyzed A* using both worst-case analysis and

expected case analysis. It looked at the case of using nonadmissible heuristics.

Chapter 4 gives pointers to how heuristics can be discovered that will work on

difficult problems including NP-Complete problems. An example would be the

“out-of-place heuristic” in the sliding blocks puzzles. Here a person would be in one

move allowed to swap an out-of-place tile to its final location. The number of out-

of-place tiles would be a lower bound on a solution length and easy to compute. A

more sophisticated heuristic occurs with respect to the traveling salesman problem

(TSP) where the minimum spanning tree is a relaxed constraint version for visiting

all nodes in a graph and is nlog(n) in its computation.

In Pearl [1984] Chapter 6, we have a summary of results on complexity versus

the precision of the heuristic. Here the work of Pearl and his students Rina Decter

and Nam Huyn is presented. Pearl, Dechter, and Huyn [Dechter and Pearl 1985],

[Huyn et al. 1980] developed the theory of optimality for A* for the expected case

as well as the worst case.

“Theorem 1 [Huyn et al. 1980] For any error distribution, if A*2 is stochastically

more informed than A*1, then A*2 is stochastically more efficient than A*1 [Pearl

1984, p. 177].”

This leads to a result by Pearl [1983] that “the exponential relationship estab-

94

Heuristic Search

lished in this section implies that precision-complexity exchange for A* is fairly

‘inelastic’.”Namely, unless error in the heuristic is better than logarithmic, search

branching rates remain exponential.

In Pearl [1984, Chapter 7], there are results on search without admissibility. He

provides a formal probabilistic framework to analyze questions of non-admissible

heuristics and search efficiency. These results provide one view of dynamic-weighting

search.

The impact of the Pearl monograph was transformative. It heralded a third wave

of sophistication in the theory of heuristic search. First we had inventive pioneering

search algorithms without a theoretical basis, such as GPS or GT. Second we had

the Nilsson [1980] work that formulated a basic theory of A* and my work that

formulated a very rough theory of efficiency. Third, in 1984, we had Pearl adding

depth and breadth to this theory and embedding it in a sophisticated probabilistic

reality.

7 D-nodes, NP, LPA*

7.1 What Pearl inspired

Pearl’s synthesis recharged my batteries and led me with several students and col-

leagues to further examine these problems and algorithms.

NP [Garey and Johnson 1979] complexity is the sine quo non for testing search

on known hard problems. The Hamiltonian problem was already known in 1980

as NP, but not sliding tile puzzles. I conjectured that the generalized sliding tile

problem was NP in private communications to Ratner and Warmuth [1986]. They

in turn produced a remarkable proof that it indeed was NP. This is important in

the sense that it puts what some have called “the drosophila of AI” on firm footing

as a proper exemplar. In effect it furthers the Nilsson, Pohl, Pearl agenda of having

a mathematical foundation for search.

7.2 LPA* search

In work with Ratner [Ratner and Pohl 1986], we proposed Local Path A* (LPA*),

an algorithm that combines an initial efficient approximation algorithm with local

A* improvements. Such an approach retains the computational efficiency of finding

the initial solution by carefully constraining improvements to a small computational

cost.

The idea behind these algorithms is to combine a fast approximation algorithm

with a search method. This idea was first suggested by S. Lin [Lin, 1965], when

he used it to find an effective algorithm for the Traveling-Salesman problem (TSP).

Our goal was to develop a problem independent approximation method and combine

it with search.

An advantage of approximation algorithms is that they execute in polynomial

time, where many other algorithms have no such upper bound. The test domain is

the 15 puzzle and the approximation algorithm is based on macro-problem-solving

95

Ira Pohl

[Korf 1985a]. The empirical results, which come from a test on a standard set of 50

problems [Politowski and Pohl, 1984], show that the algorithms outperform other

then published methods within stated time limits.

In order to bound the effort of local search by a constant, each local search will

have the start and goal nodes reside on the path, with the distance between them

bounded by dmax, a constant independent of n and the nodes. Then we will apply

A * with admissible heuristics to find a shortest path between the two nodes. The

above two conditions generally guarantee that each A * use requires less than some

constant time. More precisely, if the branching degrees of all the nodes in G are

bounded by a constant c which is independent of n then A * will generate at most

c(c − 1)dmax−1 nodes.

Theoretically c(c−1)dmax−1 is a constant, but it can be very large. Nevertheless,

most heuristics prune most of the nodes [Pearl 1984]. The fact that not many nodes

are generated, is supported by experiments.

The results in [Ratner and Pohl 1986] demonstrate the effectiveness of using

LPA * . When applicable, this algorithm achieves a good solution with small

execution time. This method require an approximation algorithm as a starting

point. Typically, when one has a heuristic function, one has adequate knowledge

about the problem to be able to construct an approximation algorithm. Therefore,

this method should be preferred in most cases to earlier heuristic search algorithms.

7.3 D-node Bidirectional search

Bidirectional heuristic search is potentially more efficient than unidirectional heuris-

tic search. A basic difficulty is that the two search trees do not meet in the middle.

This can result in two unidirectional searches and poorer performance. To work

around this George Politowski and I implemented a retargeted bidirectional search.

De Champeaux describes a Bidirectional, Heuristic Front-to-Front Algorithm

(BHFFA) [De Champeaux, Sint 1977] which is intended to remedy the “meet in

the middle” problem. Data is included from a set of sample problems correspond-

ing to those of [Pohl 1971]. The data shows that BHFFA found shorter paths and

expanded fewer nodes than Pohl’s bidirectional algorithm. However, there are sev-

eral problems with the data. One is that most of the problems are too easy to

constitute a representative sample of the 15-puzzle state space, and this may bias

the results. Another is that the overall computational cost of the BHFFA is not

adequately measured, although it is of critical importance in evaluating or selecting

a search algorithm. A third problem concerns admissibility. Although the algo-

rithm as formally presented is admissible, the heuristics, weightings, termination

condition, and pruning involved in the implemented version all violate admissibil-

ity. This makes it difficult to determine whether the results which were obtained

are a product of the algorithm itself or of the particular implementation. It is also

difficult to be sure that the results would hold in the context of admissible search.

The main problem in bidirectional heuristic search is to make the two partial

96

Heuristic Search

paths meet in the middle. The problem with Pohl’s bidirectional algorithm is that

each search tree is ’aimed’ at the root of the opposite tree. What is needed is some

way of aiming at the front of the opposite tree rather than at its root. There are

two advantages to this. First, there is a better chance of meeting the opposite front

if you are aiming at it. Second, for most heuristics the aim is better when the

target is closer. However, aiming at a front rather than a single node is somewhat

troublesome since the heuristic function is only designed to estimate the distance

between two nodes. One way to overcome this difficulty is to choose from each front

a representative node which will be used as a target for nodes in the opposite tree.

We call such nodes d-nodes.

Consider a partially developed search tree. The growth of the tree is guided

by the heuristic function used in the search, and thus the whole tree is inclined,

at least to some degree, towards the goal. This means that one can expect that

on the average those nodes furthest from the root will also be closest to the goal.

These nodes are the best candidates for the target to be aimed at from the opposite

tree. In particular, the very farthest node out from the root should be the one

chosen. D-node selection based on this criterion costs only one comparison per

node generated.

We incorporated this idea into a bidirectional version of HPA in the following

fashion:

1. Let the root node be the initial d-node in each tree.

2. Advance the search n moves in either the forward or backward direction,

aiming at the d-node in the opposite tree. At the same time, keep track of

the furthest node out, i.e. the one with the highest g value.

3. After n moves, if the g value of the furthest node out is greater than the g

value of the last d-node in this tree, then the furthest node out becomes the

new d-node. Each time this occurs, all of the nodes in the opposite front

should be re-aimed at the new d-node.

4. Repeat steps 2 and 3 in the opposite direction.

The above algorithm does not specify a value for n. Sufficient analysis may enable

one to choose a good value based on other search parameters such as branching rate,

quality of heuristic, etc. Otherwise, an empirical choice can be made on the basis

of some sample problems. In our work good results were obtained with values of n

ranging from 25 to 125.

It is instructive to consider what happens when n is too large or too small, because

it provides insight into the behavior of the d-node algorithm. A value of n which

is too large will lead to performance similar to unidirectional search. This is not

surprising since for a sufficiently large n, a path will be found unidirectionally, before

any reversal occurs. A value of n which is too small will lead to poor performance

97

Ira Pohl

in two respects. First, the runtime will be high because the overhead to re-aim the

opposite tree is incurred too often. Second, the path quality will be lower (i.e. the

The evaluation function used by the d-node search algorithm is the same as that

used by HPA, namely f = (1 − w)g + w ∗ h, except that h is now the heuristic

estimate of the distance from a particular node to the d-node of the opposite tree.

This is in contrast to the original bidirectional search algorithm, where h estimates

the distance to the root of the opposite tree, and to unidirectional heuristic search,

where h estimates the distance to the goal. The d-node algorithm’s aim is to perform

well for a variety of heuristics and over a range of w values.

The exponential nature of the problem space makes it highly probable that ran-

domly generated puzzles will be relatively hard, i.e. their shortest solution paths

will be relatively long with respect to the diameter of the state space. The four

functions used to compute h are listed below. These functions were originally de-

veloped by Doran and Michie [Doran, Michie 1966], and they are the same functions

as those used by Pohl and de Champeaux.

1. h = P

2. h = P +20*R

3. h = S

4. h = S +20*R

The three basic terms P, S, and R have the following definitions.

1. where P is the sum for all tile i of Manhattan distance between the position

of tile i in the current state and in the goal.

2. S, a relationship between tile and the blank square defined in [Doran, Michie

1966].

3. R is the number of reversals in the current state with respect to goal. For

example if tile 2 is first and tile 1 is next, this is a reversal.

Finally, the w values which we used were 0.5, 0.75, and 1.0. This covers the entire

’interesting’ range from w = 0.5, which will result in admissible search with a

suitable heuristic, to w = 1.0, which is pure heuristic search.

The detailed results of our test of the d-node algorithm are found in [Politowski

1986]. The most significant result is that the d-node method dominates both pre-

viously published bidirectional techniques, regardless of heuristic or weighting. In

comparison to de Champeaux’s BHFFA, the d-node method is typically 10 to 20

times faster. This is chiefly because the front-to-front calculations required by

BHFFA are computationally expensive, even though the number of nodes expanded

is roughly comparable for both methods. In comparison to Pohl’s bidirectional al-

gorithm, the d-node method typically solves far more problems, and when solving

the same problems it expands approximately half as many nodes.

98

Heuristic Search

8 Next Steps

Improving problem decomposition remains an important underutilized strategy

within heuristic search. Divide and conquer remains a central instrument of intelli-

gent deduction in many formats and arenas. Here the bidirectional search theme and

the LPA* search are instances of naive but effective first steps. Planning is a further

manifestation of divide and conquer. Intuitively planning amounts to a good choice

of lemma’s when attempting to construct a difficult proof. Korf’s [Korf 1985a, Korf

1985b] macro operators can be seen as a first step, or the Pohl-Politowski d-node

selection criteria as a an automated attempt at problem decomposition.

Expanding problem selection to hard domains is vital to demonstrating the rel-

evance of heuristic search. Historically these techniques were developed on puzzle

domains. Here Korf’s [Korf, Zhang 2000] recent work in applying search to genomics

problems is welcome. Computational genomics is an unambiguously complex and

non-trivial domain that almost certainly requires heuristics search.

Finally, what seems under exploited is the use of a theory of error linked to

efficiency. Here my early work and the experimental work of Gaschnig contributed

to the deeper studies of Pearl and Davis [1990]. Questions of worst case analysis

and average case complexity and its relation to complexity theory while followed

up by Pearl, and by Chenoweth and Davis [1992], is only a beginning. A deeper

theory that applies both adversary techniques and metric space analysis is needed.

References

Chenoweth, S., and Davis, H. (1992). New Approaches for Understanding the

Asymptotic Complexity of A* Tree Searching. Annals of Mathematics and AI

5, 133–162.

Davis, H. (1990). Cost-error Relationships in A* Tree Searching. Journal of the

ACM 37 , 195–199.

Davis, H., Pollack, R., and Sudkamp, T. (1984). Toward a Better Understanding

of Bidirectional Search. Proceedings AAAI , pp. 68–72.

De Champeaux, D., and Sint, L. (1977). An improved bi-directional heuristic

search algorithm. Journal of the ACM 24 , 177–191.

Dechter, R., and Pearl, J. (1985). Generalized Best-First Search Strategies and

the Optimality of A*. Journal of the ACM 32 , 505–536.

Dijkstra, E. (1959). A Note on Two Problems in Connection with Graphs Nu-

merische Mathematik 1 , 269–271, 1959.

Doran, J., and Michie, D. (1966). Experiments with the Graph Traverser Pro-

gram. Proc.of the Royal Society of London, 294A, 235–259.

Field, R., Mohyeldin-Said, K., and Pohl, I. (1984). An Investigation of Dynamic

Weighting in Heuristic Search, Proc. 6th ECAI , pp. 277–278.

99

Ira Pohl

Gaschnig, J. (1979). Performance Measurement and Analysis of Certain Search

Algorithms. Ph.D. Dissertation CMU CS 79-124.

Hart, P. E., Nilsson, N., and Raphael, B. (1968). A Formal Basis for the Heuris-

tic Determination of Minimal Cost Paths Search Reconsidered. IEEE Trans.

Systems Science and Cybernetics SSC-4 2, 100–07.

Huyn, N., Dechter, R., and Pearl, J. (1980). Probabilistic analysis of the com-

plexity of A*. Artificial Intelligence:15, 241–254.

Kaindl, H., and Kainz, G. (1997). Bidirectional Heuristic Search Reconsidered.

Journal of Artificial Intelligence Research 7 , 283–317.

Knuth, D. E. (1994). Leaper graphs. Mathematical Gazette 78, 274–297.

Korf, R., E. (1985a). Learning to Solve problems by Searching Macro-Operators.

Pitman.

Korf, R.,E. (1985b). Iterative Deepening A*. Proceedings 9th IJCAI, vol. 2, pp.

1034–1035.

Korf, R.,E., and Zhang, W. (2000). Divide and Conquer Frontier Search Applied

to Optimal Sequence Alignment. AAAI-00, pp. 910–916.

Korf, R. E. (2004). Best-First Frontier Search with Delayed Duplicate Detection.

AAAI-04, pp. 650–657.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell Sys-

tems Tech. J. 44(10), 2245–2269.

Newell, A., and Simon, H. (1972). Human Problem Solving. Prentice Hall.

Nilsson, N. (1980). Principles of Artificial Intelligence. Palo Alto, CA: Tioga.

Pearl, J. (1983). Knowledge versus search: A quantitative analysis using A*.

Artificial Intelligence:20, 1–13.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem

Solving. Reading, Massachusetts: Addison-Wesley.

Pohl, I. (1967). A method for finding Hamilton paths and knight’s tours. CACM

10 , 446–449.

Pohl, I. (1970a). First Results on the Effect of Error in Heuristic Search. In B.

Meltzer and D. Michie (Eds.), Machine Intelligence 5, pp. 219–236. Edinburgh

University Press.

Pohl, I. (1970b). Heuristic Search Viewed as Path Finding in A Graph. Artificial

Intelligence 1, 193–204.

Pohl, I. (1971). Bi-directional search. In B. Meltzer and D. Michie (Eds.), Machine

Intelligence 6, pp. 127–140. Edinburgh University Press.

Pohl, I. (1973). The Avoidance of (Relative) Catastrophe, Heuristic Competence,

Genuine Dynamic Weighting and Computational Issues in Heuristic Problem

Solving. IJCAII 3, pp. 20–23.

100

Heuristic Search

Pohl, I. (1977). Practical and Theoretical Considerations in Heuristic Search Al-

gorithms, In E. Elcock and D. Michie (Eds.), Machine Intelligence 8, pp.

55–72. New York: Wiley.

Ratner, D., and Pohl, I. (1986). Joint and LPA*: Combination of Approximation

and Search. Proceedings AAAI-86, vol. 1, pp. 173–177.

Ratner, D., and Warmuth, M. (1986). Finding a Shortest Solution for the N ×N

Extension of the 15-Puzzle is Intractable. Proceedings AAAI-86, vol. 1, pp.

168–172.

Samuel, A. (1959). Some Studies in Machine Learning Using Checkers. IBM Re-

search Journal of Research and Development 3, 211–229.

Slagle, J. R. (1963). A Heuristic Program that Solves Symbolic Integration Prob-

lems in Freshman Calculus. Journal of the ACM 10, 507–520.

Tutte, W. T. (1946). On Hamiltonian Circuits. J. London Math. Soc. 21, 98–101.

101

	Part1-Sep_embed
	1_embed
	2_embed
	3_embed
	4_embed
	5_embed
	6_embed
	7_embed
	8_embed
	9_embed
	10_embed
	11_embed
	12_embed
	13_embed
	14_embed
	15_embed
	16_embed
	tribute-toc-part1.pdf
	toc
	authors_embed
	preface_embed

