
Heuristics, Probability and Causality

A Tribute to Judea Pearl

edited by

Rina Dechter

Hector Geffner

and

Joseph Y. Halpern

College Publication, 2010

Linked Table of Contents begins on page 2. From there you can easily access all

contributed papers.

1

Table of Contents

List of Contributors . ix

Preface . xi

I. Heuristics . 1

1. Heuristic Search for Planning Under Uncertainty

Blai Bonet and Eric A. Hansen . 3

2. Heuristics, Planning, and Cognition

Hector Geffner . 23

3. Mechanical Generation of Admissible Heuristics

Robert Holte, Jonathan Schaeffer, and Ariel Felner . 43

4. Space Complexity of Combinatorial Search

Richard E. Korf . 53

5. Paranoia Versus Overconfidence in Imperfect-Information

Games

Austin Parker, Dana Nau and V.S. Subrahmanian . 63

6. Heuristic Search: Pearl’s Significance From

a Personal Perspective

Ira Pohl . 89

II. Probability . 103

7. Inference in Bayesian Networks: A Historical Perspective

Adnan Darwiche . 105

8. Graphical Models of the Visual Cortex

Thomas Dean . 121

9. On the Power of Belief Propagation: A Constraint

Propagation Perspective

Rina Dechter, Bozhena Bidyuk, Robert Mateescu, and Emma Rollon 143

10. Bayesian Nonparametric Learning: Expressive Priors

for Intelligent Systems

Michael I. Jordan . 167

v

11. Judea Pearl and Graphical Models for Economics

Michael Kearns . 187

12. Belief Propagation in Loopy Graphs

Daphne Koller . 191

13. Extending Bayesian Networks to the Open-Universe Case

Brian Milch and Stuart Russell . 217

14. A Heuristic Procedure for Finding Hidden Variables

Azaria Paz . 239

15. Probabilistic Programming Languages: Independent

Choices and Deterministic Systems

David Poole . 253

16. Arguing with a Bayesian Intelligence

Ingrid Zukerman . 271

III. Causality .293

17. Instrumental Sets

Carlos Brito . 295

18. Seeing and Doing: The Pearlian Synthesis

Philip Dawid . 309

19. Effect Heterogeneity and Bias in Main-Effects-Only

Regression Models

Felix Elwert and Christopher Winship . 327

20. Causal and Probabilistic Reasoning in P-Log

Michael Gelfond and Nelson Rushton . 337

21. On Computers Diagnosing Computers

Moises Goldszmidt . 359

22. Overthrowing the Tyranny of Null Hypotheses

Hidden in Causal Diagrams

Sander Greenland . 365

23. Actual Causation and the Art of Modeling

Joseph Y. Halpern and Christopher Hitchcock . 383

24. From C-Believed Propositions to Causal Calculator

Vladimir Lifschitz . 407

25. Analysis of the Binary Instrumental Variable Model

Thomas S. Richardson and James M. Robins . 415

vi

26. Pearl Causality and the Value of Control

Ross Shachter and David Heckerman . 445

27. Cause for Celebration, Cause for Concern

Yoav Shoham . 463

28. Automated Search for Causal Relations: Theory and Practice

Peter Spirtes, Clark Glymour, Richard Scheines, and Robert Tillman 467

29. The Structural Model and the Ranking-Theoretic Approach

to Causation: A Comparison

Wolfgang Spohn . 507

30. On Identifying Causal Effects

Jin Tian and Ilya Shpitser . 523

IV. Reminiscences . 545

31. Questions and Answers

Nils J. Nilsson . 547

32. Fond Memories From an Old Student

Edward T. Purcell . 553

33. Reverend Bayes and Inference Engines

David Spiegelhalter . 559

34. An Old-Fashioned Scientist Shaping a New Discipline

Hector Geffner . 563

35. Sticking with the Crowd of Four

Rina Dechter . 565

vii

List of Contributors

Bozhena Bidyuk, Google, USA

Blai Bonet, Departamento de Computación, Universidad Simón Boĺıvar, Venezuela

Carlos Brito, Departamento de Computacao, Universidade Federal do Ceara, Brazil

Adnan Darwiche, Computer Science Department, UCLA, USA

Philip Dawid, Statistical Laboratory, University of Cambridge, UK

Thomas Dean, Google, USA

Rina Dechter, School of Information and Computer Sciences, UC Irvine, USA

Felix Elwert, Department of Sociology, University of Wisconsin-Madison, USA

Ariel Felner, Department of Information Systems Engineering, Ben-Gurion University,

Israel

Hector Geffner, ICREA and Universitat Pompeu Fabra, Spain

Michael Gelfond, Department of Computer Science, Texas Tech University, USA

Clark Glymour, Department of Philosophy, CMU, USA

Moises Goldszmidt, Microsoft Research, Silicon Valley, USA

Sander Greenland, Departments of Epidemiology and Statistics, UCLA, USA

Joseph Y. Halpern, Computer Science Department, Cornell University, USA

Eric A. Hansen, Department of Computer Science and Engineering, Mississippi State Uni-

versity, USA

David Heckerman, Microsoft Research, USA

Christopher Hitchcock, Division of the Humanities and Social Sciences, Caltech, USA

Robert Holte, Department of Computing Science, University of Alberta, Canada

Michael I. Jordan, Departments of EECS & Statistics, UC Berkeley, USA

Michael Kearns, Computer and Information Science Department, University of Pennsylva-

nia, USA

Daphne Koller, Computer Science Department, Stanford University, USA

Richard E. Korf, Computer Science Department, UCLA, USA

Vladimir Lifschitz, Department of Computer Science, The University of Texas at Austin,

USA

Robert Mateescu, Microsoft Research, Cambridge, UK

Brian Milch, Google, USA

Dana Nau, Computer Science Department, University of Maryland USA

Nils J. Nilsson, Computer Science Department, Stanford University, USA

Austin Parker, Computer Science Department, University of Maryland, USA

ix

Azaria Paz, Computer Science Department, Technion – Israel Institute of Technology,

Israel

Ira Pohl , Computer Science Department, UC Santa Cruz, USA

David Poole, Department of Computer Science, University of British Columbia, Canada

Edward T. Purcell, Los Angeles, USA

Thomas S. Richardson, Department of Statistics, University of Washington, USA

James M. Robins, Departments of Epidemiology and Biostatistics, Harvard University,

USA

Emma Rollon, School of Information and Computer Sciences, UC Irvine, USA

Nelson Rushton, Department of Computer Science, Texas Tech University, USA

Stuart Russell, Department of EECS, UC Berkeley, USA

Jonathan Schaeffer, Department of Computing Science, University of Alberta, Canada

Richard Scheines, Department of Philosophy, CMU, USA

Ross Shachter, Department of Management Science and Engineering, Stanford University,

USA

Yoav Shoham, Computer Science Department, Stanford University, USA

Ilya Shpitser, Department of Epidemiology, Harvard University, USA

David Spiegelhalter, Statistics Laboratory, University of Cambridge, UK

Peter Spirtes, Department of Philosophy, CMU, USA

Wolfgang Spohn, Department of Philosophy, University of Konstanz, Germany

V. S. Subrahmanian, Computer Science Department, University of Maryland, USA

Jin Tian, Department of Computer Science, Iowa State University, USA

Robert Tillman, Department of Philosophy and Machine Learning Department, CMU,

USA

Christopher Winship, Department of Sociology, Harvard University, USA

Ingrid Zukerman, Faculty of Information Technology, Monash University, Australia

x

Preface

This book is a collection of articles in honor of Judea Pearl written by close col-

leagues and former students. Its three main parts, heuristics, probabilistic rea-

soning, and causality, correspond to the titles of the three ground-breaking books

authored by Judea, and are followed by a section of short reminiscences.

Judea Pearl was born in Tel Aviv and is a graduate of the Technion - Israel In-

stitute of Technology. He came to the United States for postgraduate work in 1960.

He received his Master’s degree in physics from Rutgers University and his Ph.D.

degree in electrical engineering from the Brooklyn Polytechnic Institute, both in

1965. Until 1969, he held research positions at RCA David Sarnoff Research Labo-

ratories in Princeton, New Jersey and at Electronic Memories, Inc. at Hawthorne,

California. In 1969 Pearl joined the UCLA faculty where he is currently an emeritus

professor of computer science and director of the cognitive systems laboratory.

Judea started his research work in artificial intelligence (AI) in the mid-1970s,

not long after joining UCLA. In the eyes of a hard scientist, AI must have been

a fascinating but slippery scientific discipline then; a lot of AI was done through

introspection and programming, building systems that could display some form of

intelligence.

Since then, AI has changed a great deal. Arguably no one has played a larger

role in that change than Judea. Judea Pearl’s work made probability the prevailing

language of modern AI and, perhaps more significantly, it placed the elaboration

of crisp and meaningful models, and of effective computational mechanisms, at

the center of AI research. This work is conveyed in the more than 300 scientific

papers, and in his three landmark books Heuristics (1984), Probabilistic Reasoning

(1988), and Causality (2000), where he deals with the basic questions concerning the

acquisition, representation, and effective use of heuristic, probabilistic, and causal

knowledge. He tackled these issues not as a philosopher or mathematician, but

as an engineer and a cognitive scientist. His “burning question” was (and still is)

how does the human mind “do it”, and he set out to answer this question with an

unusual combination of intuition, passion, intellectual honesty, and technical skill.

Judea is the recipient of numerous scientific awards. In 1996 he was selected

by the UCLA Academic Senate as the 81st Faculty Research Lecturer to deliver an

annual research lecture which presents the university’s most distinguished scholars

to the public. He received the 1999 IJCAI Research Excellence Award in Artificial

Intelligence for “his fundamental work on heuristic search, reasoning under uncer-

tainty, and causality”, the 2001 London School of Economics Lakatos Award for the

“best book in the philosophy of science”, the 2004 ACM Allen Newell Award for

“seminal contributions that extend to philosophy, psychology, medicine, statistics,

econometrics, epidemiology and social science”, and the 2008 Benjamin Franklin

xi

Medal for “creating the first general algorithms for computing and reasoning with

uncertain evidence”.

Judea has had more than 20 PhD students at UCLA, many of whom have

become successful AI researchers on their own and many have contributed to this

volume. Chronologically, they are: Antonio Leal (1976), Alan Chrolotte (1977),

Ed Purcell (1978), Joseph Saleh (1980), Jin Kim (1983), Gerard Michon (1983),

Rina Dechter (1985), Ingrid Zukerman (1986), Hector Geffner (1989), Dan Geiger

(1990), Moises Goldszmidt (1992), Tom Verma (1990), Itay Meiri (1992), Rachel

Ben-Eliyahu (1993), Sek-Wah Tan (1995), Alexander Balke (1995), Max Chickering

(1996), Jin Tian (2002), Carlos Brito (2004), Blai Bonet (2004), Mark Hopkins

(2005), Chen Avin (2006), and Ilya Shpitser (2008).

On a sadder note, Judea is the father of slain Wall Street Journal reporter Daniel

Pearl and president of the Daniel Pearl Foundation, which he co-founded with his

wife Ruth in April 2002 to continue Daniel’s life-work of dialogue and understanding

and to address the root causes of his tragic death.

This book will be presented to Judea on March 12, 2010 at a special event at

UCLA honoring his life and work, where many of the contributing authors to this

book will speak. Two of the editors of this volume, Rina and Hector, are former

students of Judea, and the third, Joe, is a close colleague and collaborator. The

three of us would like to thank all the authors whose articles are included in this vol-

ume. Special thanks go to Adnan Darwiche and Rich Korf of the UCLA Computer

Science Department, who helped to organize this event, and to Avi Dechter, Randy

Hess, Nir Lipovetzky, Felix Elwert, and Jane Spurr, who helped in the production

of the book.

Judea, on behalf of those present in the book, and the many of your students and

colleagues who are not, we would like to express our most profound gratitude and

admiration to you, as an advisor, a scientist, and a great human being. It has been

a real privilege to know you, to benefit from your (truly enjoyable!) company, to

watch you, and to learn from you. As students, we couldn’t have hoped for a better

role model. As colleagues, we couldn’t have benefited more from your collaboration

and leadership. We know that you don’t like compliments, but you are certainly

the light in our candle!

Thank you Judea!!!

Rina, Hector, and Joe

xii

Part I: Heuristics

1

Heuristic Search for Planning under

Uncertainty

Blai Bonet and Eric A. Hansen

1 Introduction

The artificial intelligence (AI) subfields of heuristic search and automated planning

are closely related, with planning problems often providing a stimulus for developing

and testing search algorithms. Classical approaches to heuristic search and planning

assume a deterministic model of sequential decision making in which a solution

takes the form of a sequence of actions that transforms a start state into a goal

state. The effectiveness of heuristic search for classical planning is illustrated by

the results of the planning competitions organized by the AI planning community,

where optimal planners based on A*, and satisficing planners based on variations

of best-first search and enforced hill climbing, have performed as well or better

than many other planners in the deterministic track of the competition [Edelkamp,

Hoffmann, and Littman 2004; Gerevini, Bonet, and Givan 2006].

Beginning in the 1990’s, AI researchers became increasingly interested in the

problem of planning under uncertainty and adopted Markov decision theory as a

framework for formulating and solving such problems [Boutilier, Dean, and Hanks

1999]. The traditional dynamic programming approach to solving Markov decision

problems (MDPs) [Bertsekas 1995; Puterman 1994] can be viewed as a form of

“blind” or uninformed search. Accordingly, several AI researchers considered how to

generalize well-known heuristic-search techniques in order to develop more efficient

planning algorithms for MDPs. The advantage of heuristic search over traditional,

blind dynamic programming is that it uses an admissible heuristic and intelligent

search control to focus computation on solving the problem for relevant states, given

a start state and goal states, without considering irrelevant or unreachable parts of

the state space.

In this article, we present an overview of research on heuristic search for prob-

lems of sequential decision making where state transitions are stochastic instead

of deterministic, an important class of planning problems that corresponds to the

most basic kind of Markov decision process, called a fully-observable Markov de-

cision process. For this special case of the problem of planning under uncertainty,

a fairly mature theory of heuristic search has emerged over the past decade and a

half. In reviewing this work, we focus on two key issues: how to generalize classic

heuristic search algorithms in order to solve planning problems with stochastic state

3

Kaoru
Text Box
Return to TOC

Blai Bonet and Eric A. Hansen

transitions, and how to compute admissible heuristics for these search problems.

Judea Pearl’s classic book, Heuristics, provides a comprehensive overview of

heuristic search theory as of its publication date in 1984. One of our goals in

this article is to show that the twin themes of that book, admissible heuristics and

intelligent search control, have been central issues in the subsequent development

of a class of algorithms for problems of planning under uncertainty. In this short

survey, we rely on references to the literature for many of the details of the al-

gorithms we review, including proofs of their properties and experimental results.

Our objective is to provide a high-level overview that identifies the key ideas and

contributions in the field and to show how the new search algorithms for MDPs

relate to the classical search algorithms covered in Pearl’s book.

2 Planning with uncertain state transitions

Many planning problems can be modeled by a set of states, S, that includes an

initial state sinit ∈ S and a set of goal states, G ⊆ S, and a finite set of applicable

actions, A(s) ⊆ A, for each non-goal state s ∈ S\G, where each action incurs

a positive cost c(s, a). In a classical, deterministic planning problem, an action

a ∈ A(s) causes a deterministic transition, where f(s, a) is the next state after

applying action a in state s. The objective of a planner is to find a sequence of

actions, 〈a0, a1, . . . , an〉, that when applied to the initial state results in a trajectory,

〈s0 = sinit, a0, s1, a1, . . . , an, sn+1〉, that ends in a goal state, sn+1 ∈ G, where

ai ∈ A(si) and si+1 = f(si, ai). Such a plan is optimal if its cost,
∑n

i=0 c(si, ai), is

minimum among all possible plans that achieve a goal.

To model the uncertain effects of actions, we consider a generalization of this

model in which the deterministic transition function is replaced by a stochastic

transition function, p(·|s, a), where p(s′|s, a) is the probability of making a transition

to state s′ after taking action a in state s. In general, the cost of an action depends

on the successor state; but usually, it is sufficient to consider the expected cost of

an action, denoted c(s, a).

With this simple change of the transition function, the planning problem is

changed from a deterministic shortest-path problem to a stochastic shortest-path

problem. As defined by Bertsekas and Tsitsiklis [Bertsekas and Tsitsiklis 1991], a

stochastic shortest-path problem can have actions that incur positive or negative

costs. But several subsequent researchers, including Barto et al. [Barto, Bradtke,

and Singh 1995], assume that a stochastic shortest-path problem only has actions

that incur positive costs. The latter assumption is in keeping with the model of

planning problems we sketched above, as well as classical models of heuristic search,

and so we ordinarily assume that the actions of a stochastic shortest-path problem

incur positive costs only. In case where we allow actions to have both positive and

negative costs, we make this clear.

Defined in either way, a stochastic shortest-path problem is a special case of a

fully-observable infinite-horizon Markov decision process (MDP). There are several

4

Heuristic Search for Planning under Uncertainty

MDP models with different optimization criteria, and almost all of the algorithms

and results we review in this article apply to other MDPs. The most widely-used

model in the AI community is the discounted infinite-horizon MDP. In this model,

there are rewards instead of costs, r(s, a) denotes the expected reward for taking

action a in state s, which can be positive or negative, γ ∈ (0, 1) denotes a dis-

count factor, and the objective is to maximize expected total discounted reward

over an infinite horizon. Interestingly, any discounted infinite-horizon MDP can be

reduced to an equivalent stochastic shortest-path problem [Bertsekas 1995; Bonet

and Geffner 2009]. Thus, we do not sacrifice any generality by focusing our attention

on stochastic shortest-path problems.

Adoption of a stochastic transition model has important consequences for the

structure of a plan. A plan no longer takes the simple form of a sequence of actions.

Instead, it is typically represented by a mapping from states to actions, π : S → A,

called a policy in the literature on MDPs. (For the class of problems we consider,

where the horizon is infinite, a planner only needs to consider stationary policies,

which are policies that are not indexed by time.) Note that this representation of

a plan assumes closed-loop plan execution instead of open-loop plan execution. It

also assumes that an agent always knows the current state of the system; this is

what is meant by saying the MDP is fully observable.

A stochastic shortest-path problem is solved by finding a policy that reaches a

goal state with probability one after a finite number of steps, beginning from any

other state. Such a policy is called a proper policy. Given a stochastic transition

model, it is not possible to bound the number of steps of plan execution it takes to

achieve a goal, even for proper policies. Thus, a stochastic shortest-path problem

is an infinite-horizon MDP. In the infinite-horizon framework, the termination of a

plan upon reaching a goal state is modeled by specifying that goal states are zero-

cost absorbing states, which means that for all s ∈ G and a ∈ A, c(s, a) = 0 and

p(s|a, s) = 1. Equivalently, we can assume that no actions are applicable in a goal

state. To reflect the fact that plan execution terminates after a finite, but uncertain

and unbounded, number of steps, this kind of infinite-horizon MDP is also called an

indefinite-horizon MDP. Note that when the state set is finite and the number of

steps of plan execution is unbounded, the same state can be visited more than once

during execution of a policy. Thus, a policy specifies not only conditional behavior,

but cyclic behavior too.

For a process that is controlled by a fixed policy π, stochastic trajectories be-

ginning from state s0, of the form 〈s0, π0(s0), s1, π1(s1), . . .〉, are generated with

probability
∏

∞

i=0 p(si+1|si, π(si)). These probabilities uniquely define a probability

measure Pπ on the set of trajectories from which the costs incurred by π can be

calculated. Indeed, the cost (or value) of π for state s is the expected cost of these

5

Blai Bonet and Eric A. Hansen

trajectories when s0 = s, defined as

Vπ(s) = Eπ

[∞
∑

k=0

c(Xk, π(Xk))

∣

∣

∣

∣

X0 = s

]

,

where the Xk’s are random variables that denote states of the system at different

time points, distributed according to Pπ, and where Eπ is the expectation with

respect to Pπ. The function Vπ is called the state evaluation function, or simply

the value function, for policy π. For a stochastic shortest-path problem, it is well-

defined as long as π is a proper policy, and Vπ(s) equals the expected cost to reach

a goal state from state s when using policy π.

A policy π for a stochastic shortest-path problem is optimal if its value function

satisfies the Bellman optimality equation:

V ∗(s) =

{

0 if s ∈ G,

mina∈A(s)

{

c(s, a) +
∑

s′∈S p(s′|s, a)V ∗(s′)
}

otherwise.
(1)

The unique solution of this functional equation, denoted V ∗, is the optimal value

function; hence, all optimal policies have the same value function. Given the optimal

value function, one can recover an optimal policy by acting greedily with respect to

the value function. A greedy policy with respect to a value function V is defined as

follows:

πV (s) = argmin
a∈A(s)

{

c(s, a) +
∑

s′∈S

p(s′|s, a)V (s′)

}

.

Thus, the problem of finding an optimal policy for an MDP is reduced to the

problem of solving the optimality equation.

There are two basic dynamic programming approaches for solving Equation (1):

value iteration and policy iteration. The value iteration approach is used by all

of the heuristic search algorithms we consider, and so we review it here. Starting

with an initial value function V0, satisfying V0(s) = 0 for s ∈ G, value iteration

computes a sequence of updated value functions by performing, at each iteration,

the following backup for all states s ∈ S:

Vn+1(s) := min
a∈A(s)

{

c(s, a) +
∑

s′∈S

p(s′|s, a)Vn(s′)

}

. (2)

For a stochastic shortest-path problem, the sequence of value functions computed by

value iteration is guaranteed to converge to an optimal value function if the following

conditions are satisfied: (i) a proper policy exists, and (ii) any policy that is not

proper has infinite cost for some state. (Note that if all action costs are positive,

any policy that is not proper has infinite cost for some state.) The algorithm

described by Equation (2) is called synchronous value iteration since all state values

are updated in parallel. A variation of this algorithm, called asynchronous value

iteration, updates only a subset of states at each iteration. As long as every state is

guaranteed to be updated infinitely often over time, convergence is still guaranteed.

6

Heuristic Search for Planning under Uncertainty

The convergence of value iteration is asymptotic. In practice, value iteration is

stopped when the residuals, |Vn+1(s) − Vn(s)|, for all states are sufficiently small.

The Bellman residual, maxs∈S |Vn+1(s) − Vn(s)|, can be used to bound the subop-

timality of a policy or value function for discounted MDPs. For stochastic shortest-

path problems, however, suboptimality bounds are not generally possible, as shown

by Bertsekas and Tsitsiklis [Bertsekas and Tsitsiklis 1991], yet there is always a

sufficiently small (positive) Bellman residual that yields an optimal solution.

3 Heuristic search algorithms

Traditional dynamic programming algorithms for MDPs, such as value iteration

and policy iteration, solve the optimization problem for the entire state space. By

contrast, heuristic search algorithms focus on finding a solution for just the states

that are reachable from the start state by following an optimal policy, and use

an admissible heuristic to “prune” large parts of the remaining state space. For

deterministic shortest-path problems, the effectiveness of heuristic search is well-

understood, especially in the AI community. For example, dynamic programming

algorithms such as Dijkstra’s algorithm and the Bellman-Ford algorithm compute

all single-source shortest paths, solving the problem for every possible starting state,

whereas heuristic search algorithms such as A* and IDA* compute a shortest path

from a particular start state to a goal state, usually considering just a fraction of

the entire state space. This is the method used to optimally solve problems such

as the Rubik’s Cube from arbitrary initial configurations, when the enormous size

of the state space, which is 4.3 × 1019 states for Rubik’s Cube [Korf 1997], renders

exhaustive methods inapplicable.

In the following, we show that the strategy of heuristic search can also be effective

for stochastic shortest-path problems, and, in general, MDPs. The strategy is to

solve the problem only for states that are reachable from the start state by following

an optimal policy. This means that a policy found by heuristic search is a partial

function from the state space to the action space, sometimes called a partial policy.

A policy π is said to be closed with respect to state s if it is defined over all states

that can be reached from s by following policy π, and it is said to be closed with

respect to the initial state (or just closed) if it is closed with respect to sinit. Thus,

the objective of a heuristic search algorithm for MDPs is to find a partial policy

that is closed with respect to the initial state and optimal. The states that are

reachable from the start state by following an optimal policy are sometimes called

the relevant states of the problem. In solving a stochastic shortest-path problem for

a given initial state, it is not necessarily the case that the set of relevant states is

much smaller than the entire state space, nor is it always easy to estimate its size as a

fraction of the state space. But when the set of relevant states is much smaller than

the entire state set, the heuristic search approach can have a substantial advantage,

similar to the advantage heuristic search has over traditional dynamic programming

algorithms in solving deterministic shortest-path problems.

7

Blai Bonet and Eric A. Hansen

Algorithm 1 RTDP with admissible heuristic h.

Let V be the empty hash table whose entries V (s) are initialized to h(s) as needed.

repeat

s := sinit.

while s is not a goal state do

For each action a, set Q(s, a) := c(s, a) +
∑

s′∈S p(s′|s, a)V (s′).

Select a best action a := argmina∈A Q(s, a).

Update value V (s) := Q(s,a).

Sample the next state s′ with probability p(s′|s,a) and set s := s′.

end while

until some termination condition is met.

3.1 Real-Time Dynamic Programming

The first algorithm to apply a heuristic search approach to solving MDPs is called

Real-Time Dynamic Programming (RTDP) [Barto, Bradtke, and Singh 1995]. RTDP

generalizes a heuristic search algorithm developed by Korf [Korf 1990], called Learn-

ing Real-Time A* (LRTA*), by allowing state transitions to be stochastic instead

of deterministic.

Except for the fact that RTDP solves a more general class of problems, it is very

similar to LRTA*. Both algorithms interleave planning with execution of actions

in a real or simulated environment. They perform a series of trials, where each

trial begins with an “agent” at the start state sinit. The agent takes a sequence of

actions where each action is selected greedily based on the current state evaluation

function. The trial ends when the agent reaches a goal state. The algorithms are

called “real-time” because they perform a limited amount of search in the time

interval between each action. At minimum, they perform a backup for the current

state, as defined by Equation (2), which corresponds to a one-step lookahead search;

but more extensive search and backups can be performed if there is enough time.

They are called “learning” algorithms because they cache state values computed

in the course of the search. In an efficient implementation, a hash table is used to

store the updated state values and only values for states visited during a trial are

stored in the hash table. For all other states, state values are given by an admissible

heuristic function h. Algorithm 1 shows pseudocode for a trial of RTDP.

The properties of RTDP generalize the properties of Korf’s LRTA* algorithm,

and can be summarized as follows. First, if all state values are initialized with an

admissible heuristic function h, then updated state values are always admissible.

Second, if there is a proper policy, a trial of RTDP cannot get trapped in a loop and

must terminate in a goal state after a finite number of steps. Finally, for the set of

states that is reachable from the start state by following an optimal policy, which

Barto et al. call the set of relevant states, RTDP converges asymptotically to optimal

state values and an optimal policy. These results depend on the assumptions that

8

Heuristic Search for Planning under Uncertainty

(i) all immediate costs incurred by transitions from non-goal states are positive, and

(ii) the initial state evaluation function is admissible, with all goal states having an

initial value of zero.1

Although we classify RTDP as a heuristic search algorithm, it is also a dynamic

programming algorithm. We consider an algorithm to be a form of dynamic pro-

gramming if it solves a dynamic programming recursion such as Equation (1) and

caches results for subproblems in a table, so that they can be reused without need-

ing to be recomputed. We consider it to be a form of heuristic search if it uses

an admissible heuristic and reachability analysis, beginning from a start state, to

prune parts of the state space. By these definitions, LRTA* and RTDP are both

dynamic programming algorithms and heuristic search algorithms, and so is A*.

We still contrast heuristic search to simple dynamic programming, which solves the

problem for the entire state space. Value iteration and policy iteration are simple

dynamic programming algorithms, as are Dijkstra’s algorithm and Bellman-Ford.

But heuristic search algorithms can often be viewed as a form of enhanced or fo-

cused dynamic programming, and that is how we view the algorithms we consider

in the rest of this survey.2 The relationship between heuristic search and dynamic

programming comes into clearer focus when we consider LAO*, another heuristic

search algorithm for solving MDPs.

3.2 LAO*

Whereas RTDP generalizes LRTA*, an online heuristic search algorithm, the next

algorithm we consider, LAO* [Hansen and Zilberstein 2001], generalizes the classic

AO* search algorithm, which is an offline heuristic search algorithm. The ‘L’ in

LAO* indicates that it can find solutions with loops, unlike AO*. Table 1 shows how

various dynamic programming and heuristic search algorithms are related, based on

the structure of the solutions they find. As we will see, the branching and cyclic

behavior specified by a policy for an indefinite-horizon MDP can be represented

explicitly in the form of a cyclic graph.

Both AO* and LAO* represent the search space of a planning problem as an

AND/OR graph. In an AND/OR graph, an OR node represents the choice of an

action and an AND node represents a set of outcomes. AND/OR graph search was

1Although the convergence proof given by Barto et al. depends on the assumption that all action

costs are positive, Bertsekas and Tsitsiklis [Bertsekas and Tsitsiklis 1996] prove that RTDP also

converges for stochastic shortest-path problems with both positive and negative action costs, given

the additional assumption that all improper policies have infinite cost. If action costs are positive

and negative, however, the assumption that all improper policies have infinite cost is difficult to

verify. In practice, it is often more convenient to assume that all action costs are positive.
2Not every heuristic search algorithm is a dynamic programming algorithm. Tree-search heuris-

tic search algorithms, in particular, do not cache the results of subproblems and thus do not qualify

as dynamic programming algorithms. For example, IDA*, which explores the tree expansion of a

graph, does not cache the results of subproblems and thus does not qualify as a dynamic program-

ming algorithm. On the other hand, IDA* extended with a transposition table caches the results

of subproblems and thus is a dynamic programming algorithm.

9

Blai Bonet and Eric A. Hansen

Solution form

simple path acyclic graph cyclic graph

Dynamic programming Dijkstra’s backwards induction value iteration

Offline heuristic search A* AO* LAO*

Online heuristic search LRTA* RTDP RTDP

Table 1. Classification of dynamic programming and heuristic search algorithms.

originally developed to model problem-reduction search problems, where a problem

is solved by recursively dividing it into subproblems. But it can also be used to

model conditional planning problems where the state transition caused by an action

is stochastic, and each possible successor state must be considered by the planner.

In AND/OR graph search, a solution is a subgraph of an AND/OR graph that

is defined as follows: (i) the root node (corresponding to the start state) belongs

to the solution graph, (ii) for every OR node in the solution graph, exactly one of

its branches (typically, the one with the lowest cost) belongs to the solution graph,

and (iii) for every AND node in the solution graph, all of its branches belong to the

solution graph. A solution graph is complete if every directed path that begins at

the root node ends at a goal node. It is a partial solution graph if any directed path

ends at an open (i.e., unexpanded) node.

The heuristic search algorithm AO* finds an acyclic solution graph by iteratively

expanding nodes on the fringe of the best partial solution graph (beginning from a

partial solution graph that consists only of the root node), until the best solution

graph is complete. At each step, the best partial solution graph (corresponding

to a partial policy) is determined by “greedily” choosing, for each OR node, the

branch (or action) with the best expected value. For conditional planning problems

with stochastic state transitions, AO* solves the dynamic programming recursion

of Equation (1). It does so by repeatedly alternating two steps until convergence.

In the forward or expansion step, it expands one or more nodes on the fringe of

the current best partial solution graph. In the backward or cost-revision step, it

propagates any change in the heuristic state estimates for the states in the fringe

backwards through the graph. The first step is a form of forward reachability

analysis, beginning from the start state. The second step is a form of dynamic

programming, using backwards induction since the graph is assumed to be acyclic.

Thus, AND/OR graph heuristic search is a form of dynamic programming that is

enhanced by forward reachability analysis guided by an admissible heuristic.

The classic AO* algorithm only works for problems with acyclic spaces. But

stochastic planning problems, such as MDPs, often contain cycles in space and their

solutions may include cycles too. To generalize AO* on these models, the key idea

is to use a more general dynamic programming algorithm in the cost-revision step,

such as value iteration. This simple generalization is the key difference between AO*

10

Heuristic Search for Planning under Uncertainty

Algorithm 2 Improved LAO* with admissible heuristic h.

The explicit graph initially consists of the start state sinit.

repeat

Depth-first traversal of states in the current best (partial) solution graph.

for each visited state s in postorder traversal do

If state s is not expanded, expand it by generating each successor state s′

and initializing its value V (s′) to h(s′).

Set V (s) := mina∈A(s) c(s, a) +
∑

s′ p(s′|s, a)V (s′) and mark the best action.

end for

until the best solution graph has no unexpanded tip state and residual < ǫ.

return An ǫ-optimal solution graph.

and LAO*. However, allowing a solution to contain loops substantially increases

the complexity of the cost-revision step. For AO*, the cost-revision step requires

at most one update per node. For LAO*, many updates per node may be required

before convergence to exact values. As a result, a naive implementation of LAO*

that expands a single fringe node at a time and performs value iteration in the

cost-revision step until convergence to exact values can be extremely slow.

However, a couple of simple changes create a much more efficient version of

LAO*. Although Hansen and Zilberstein did not give the modified algorithm a

distinct name, it has been referred to in the literature as Improved LAO*. Recall

that in its expansion step, LAO* does a depth-first traversal of the current best

partial solution graph in order to identify the open nodes on its fringe, and expands

one or more of the open nodes. To improve efficiency, Improved LAO* expands

all open nodes on the fringe of the best current partial solution graph (yet it is

easily modified to expand less or more nodes), and then, during the cost-revision

step, it performs only one backup for each node in the current solution graph.

Conveniently, both the expansion and cost-revision steps can be performed in the

same depth-first traversal of the best partial solution graph, since node expansions

and backups can be performed when backtracking during a depth-first traversal.

Thus, the complexity of a single iteration of the expansion and cost-revision steps

is bounded by the number of nodes in the current best (partial) solution graph.

Algorithm 2 shows the pseudocode.

RTDP and the more efficient version of LAO* have many similarities. Principal

among them, both perform backups only for states that are reachable from the

start state by choosing actions greedily based on the current value function. The

key difference is how they choose the order in which to visit states and perform

backups. RTDP relies on stochastic exploration based on real or simulated trials

(an online strategy), whereas LAO* relies on systematic depth-first traversals (an

offline strategy). In fact, all of the other heuristic search algorithms we review in

the rest of this article rely on one of the other of these two general strategies for

11

Blai Bonet and Eric A. Hansen

traversing the reachable state space and updating the value function.

Experiments show that Improved LAO* finds a good solution as quickly as RTDP

and converges to an optimal solution much faster; faster convergence is due to its

use of systematic search instead of stochastic simulation to explore the state space.

The test for convergence to an optimal solution generalizes the convergence test for

AO*: the best solution graph is optimal if it is complete (i.e., it does not contain

any unexpanded nodes), and if state values have converged to exact values for all

nodes in the best solution graph. If the state values are not exact, it is possible to

bound the suboptimality of the solution by adapting the error bounds developed

for value iteration.

3.3 Bounds and faster convergence

In comparing the performance of Improved LAO* and RTDP, Hansen and Zil-

berstein made a couple of observations that inspired subsequent improvements of

RTDP. One observation was that the convergence test used by LAO* could be

adapted for use by RTDP. As formulated by Barto et al., RTDP is guaranteed to

converge asymptotically but does not have an explicit convergence test or a way of

bounding the suboptimality of a solution. A second observation was that RTDP’s

slow convergence relative to Improved LAO* is due to its reliance on stochastic

exploration of the state space, instead of systematic search, and its rate of conver-

gence could be improved by exploring the state space more systematically. We next

consider several improved methods for testing for convergence and increasing the

rate of convergence.

Labeling solved states. Bonet and Geffner [Bonet and Geffner 2003a; Bonet

and Geffner 2003b] developed a pair of related algorithms, called Labeled RTDP

(LRTDP) and Heuristic Dynamic Programming (HDP), that combine both of these

ideas with a third idea adopted from the original AO* algorithm: the idea of labeling

‘solved’ states. In the classic AO* algorithm, a state s is labeled as ‘solved’ if it is a

goal state or if every state that is reachable from s by taking the best action at each

OR node is labeled ‘solved’. Labeling speeds up the search because it is unnecessary

to expend search effort in parts of the solution that have already converged; AO*

terminates when the start node is labeled ‘solved’.

When a solution graph contains loops, however, labeling states as ‘solved’ cannot

be done in the traditional way. It is not even guaranteed to be useful; if the start

state is reachable from every other state, for example, it is not possible to label any

state as ‘solved’ before the start state itself is labeled as ‘solved’. But in many cases,

a solution graph with loops has a “partly acyclic” structure. Stated precisely, the

solution graph can often be decomposed into strongly-connected components, using

Tarjan’s well-known algorithm. In this case, the states in one strongly-connected

component can be labeled as ‘solved’ before the states in other, predecessor com-

ponents are labeled.

Tarjan’s algorithm decomposes a graph into strongly-connected components in

12

Heuristic Search for Planning under Uncertainty

the course of a depth-first traversal of the graph. Since Improved LAO* expands

and updates the states in the current best solution graph in the course of a depth-

first traversal of the graph, the two algorithms are easily combined. In fact, Bonet

and Geffner [Bonet and Geffner 2003a] present their HDP algorithm as a synthesis

of Tarjan’s algorithm and a depth-first search algorithm, similar to the one used in

Improved LAO*.

The same idea of labeling states as ‘solved’ can also be combined with RTDP.

In Labeled RTDP (LRTDP), trials are very much like RTDP trials except that

they terminate when a solved stated is reached. (Initially only the goal states are

solved.) At the end of a trial, a labeling procedure is invoked for each unsolved

state visited in the trial, in reverse order from the last unsolved state to the start

state. For each state s, the procedure performs a depth-first traversal of the states

that are reachable from s by selecting actions greedily based on the current value

function. If the residuals of these states are less than a threshold ǫ, then all of

them are labeled as ‘solved’. Like AO*, Labeled RTDP terminates when the initial

state is labeled as ‘solved’. The labeling procedure used by LRTDP is similar to the

traversal procedures used in HDP and Improved LAO*. However, the innovation

of LRTDP is that instead of always traversing the solution graph from the start

state, it begins the traversal at each state visited in a trial, in backwards order from

the last unsolved state, which allows the convergence of states near the goal to be

recognized before states near the initial state have converged.

Experiments show that LRTDP converges much faster than RTDP, and some-

what faster than Improved LAO*, in solving benchmark “racetrack” problems. In

general, the amount of improvement is problem-dependent since it depends on the

extent to which the solution graph decomposes into strongly-connected components.

In the racetrack domain, the improvement over Improved LAO* is due to labeling

states as ‘solved’; the more substantial improvement over RTDP is partly due to

labeling, but also due to the more systematic traversal of the state space.

Lower and upper bounds. Both LRTDP and HDP gradually reduce the Bellman

residual until it falls below a threshold ǫ. If the threshold is sufficiently small, the

policy is optimal. But the residual, by itself, does not bound the suboptimality of

the solution. To bound its suboptimality, we need an upper bound on the value

of the starting state in addition to the lower-bound values computed by heuristic

search. Once a closed policy is found, an obvious way to bound its suboptimality

is to evaluate the policy; its value for the start state is an upper bound that can be

compared to the admissible lower-bound value computed by heuristic search. But

this approach does not allow the suboptimality of an incomplete solution (one for

which the start state is not yet labeled ‘solved’) to be bounded.

McMahan et al. [McMahan, Likhachev, and Gordon 2005] and Smith and Sim-

mons [Smith and Simmons 2006] describe two algorithms, called Bounded RTDP

(BRTDP) and Focused RTDP (FRTDP) respectively, that compute upper bounds

in order to bound the suboptimality of a solution, including incomplete solutions,

13

Blai Bonet and Eric A. Hansen

and use the difference between the upper and lower bounds on state values to fo-

cus search effort. The key assumption of both algorithms is that in addition to

an admissible heuristic function that returns lower bounds for any state, there is a

function that returns upper bounds for any state. Every time BRTDP or FRTDP

visit a state, they perform two backups: a standard RTDP backup to compute a

lower-bound value and another backup to compute an upper-bound value. In sim-

ulated trials, action outcomes are determined based on their probability and the

largest difference between the upper and lower bound values of the possible succes-

sor states, which has the effect of biasing state exploration to where it is most likely

to improve the value function.

This approach has a lot of attractive properties. In particular, being able to

bound the suboptimality of an incomplete solution is useful when it is computa-

tionally prohibitive to compute a policy that is closed with respect to the start

state. However, the approach is based on the assumption that an upper-bound

value function is available and easily computed, and this assumption may not be

realistic for many stochastic shortest-path problems. For discounted MDPs, on the

other hand, such bounds are easily computed, as we show in Section 4.3

3.4 Learning Depth-First Search

AND/OR graphs can represent the search space of problem-reduction problems

and MDPs, by appropriately defining the cost of complete solution graphs, and

they can also be used to represent the search space of adversarial game-playing

problems, non-deterministic planning problems, and even deterministic planning

problems. Bonet and Geffner [Bonet and Geffner 2005a; Bonet and Geffner 2006]

describe a Learning Depth-First Search (LDFS) algorithm that provides a unified

framework for solving search problems in these different AI models. LDFS performs

iterated depth-first searches over the current best partial solution graph, enhanced

with backups and labeling of ‘solved’ states. Bonet and Geffner show that LDFS

generalizes well-known algorithms in some cases and points to novel algorithms in

other cases. For deterministic planning problems, for example, they show that LDFS

instantiates to IDA* with transposition tables. For game-search problems, they

show that LDFS corresponds to an Alpha-Beta search algorithm with null windows

called MTD [Plaat, Schaeffer, Pijls, and de Bruin 1996], which is reminiscent of

Pearl’s SCOUT algorithm [Pearl 1983]. For MDPs, LDFS corresponds to a version

of Improved LAO* enhanced with labeling of ‘solved’ states. For max AND/OR

search problems, LDFS instantiates to a novel algorithm that experiments show is

more efficient than existing algorithms [Bonet and Geffner 2005a].

3Before developing FRTDP, Smith and Simmons [Smith and Simmons 2005] developed a very

similar heuristic search algorithm for partially observable Markov decision processes (POMDPs)

that backs up both lower-bound and upper-bound state values in AND/OR graph search. A

similar AND/OR graph-search algorithm for POMDPs was described earlier by Hansen [Hansen

1998]. Since both algorithms solve discounted POMDPs, both upper and lower bounds are easily

available.

14

Heuristic Search for Planning under Uncertainty

3.5 Symbolic heuristic search

The algorithms we have considered so far assume a “flat” state space and enumerate

states, actions, and transitions individually. For very large state spaces, it is often

more convenient to adopt a structured or symbolic representation that exploits reg-

ularities to represent the same information more compactly and manipulate it more

efficiently, in terms of sets of states and sets of transitions. As an example, Hoey et

al. [Hoey, St-Aubin, Hu, and Boutilier 1999] show how to perform symbolic value it-

eration for factored MDPs, which are represented in a propositional language, using

algebraic decision diagrams as a compact data structure. Based on their approach,

Feng and Hansen [Feng and Hansen 2002; Feng, Hansen, and Zilberstein 2003] de-

scribe a symbolic LAO* algorithm and a symbolic version of RTDP for factored

MDPs. Boutilier et al. [Boutilier, Reiter, and Price 2001] show how to perform

symbolic dynamic programming for MDPs represented in a first-order language,

and Karabaev and Skvortsova [Karabaev and Skvortsova 2005] show that symbolic

heuristic search can also be performed over such MDPs.

4 Admissible heuristics

Heuristic search algorithms require admissible heuristics to prune large state spaces

effectively. As advocated by Pearl, an effective and domain-independent strategy

for obtaining admissible heuristics consists in optimally solving a relaxation of the

problem, an MDP in our case. In this section, we review some relaxation-based

heuristics for MDPs. However, we first consider admissible heuristics that are not

based on relaxations. Although such heuristics are not informative, they are useful

when informative heuristics cannot be easily computed.

4.1 Non-informative heuristics

For stochastic shortest-path problems where all actions incur positive costs, a simple

admissible heuristic assigns the value of zero to every state, h(s) = 0,∀s ∈ S,

since zero is a lower bound on the cost of an optimal solution. Note that this

heuristic is equivalent to using a zero-constant admissible heuristic for A* when

solving deterministic shortest-path problems. In problems with uniform costs this

is equivalent to a breadth-first search.

For the more general model of stochastic shortest-path problems that allows

both negative and positive action costs, it is not possible to bound the optimal value

function in such a simple way, and simple, non-informative heuristics are not readily

available. But for discounted infinite-horizon MDPs, the optimal value function is

easily bounded both above and below. Note that for this class of MDPs, we adopt

the reward-maximization framework. Let RU = maxs∈S,a∈A(s) r(s, a) denote the

maximum immediate reward for an MDP and let RL = mins∈S,a∈A(s) r(s, a) denote

the minimum immediate reward. For an MDP with discount factor γ ∈ (0, 1), the

function h(s) = RU/1 − γ is an upper bound on the optimal value function and

provides admissible heuristic estimates, and the function l(s) = RL/1−γ is a lower

15

Blai Bonet and Eric A. Hansen

bound on the optimal value function. The time required to compute these bounds

is linear in the number of states and actions, but the bounds need to be computed

just once as their value does not depend on the state s.

4.2 Relaxation-based heuristics

The relaxations that are used for obtaining admissible heuristics in deterministic

planning can be used for MDPs as well, as we will see. But first, we consider

a relaxation that applies only to search problems with uncertain transitions. It

assumes the agent can control the transition by choosing the best outcome among

the set of possible outcomes of an action.

Recall from Equation (1) that the equation that characterizes the optimal value

function of a stochastic shortest-path problem has the form V ∗(s) = 0 for goal

states s ∈ G, and

V ∗(s) = min
a∈A(s)

{

c(s, a) +
∑

s′∈S

p(s′|s, a)V ∗(s′)

}

,

for non-goal states s ∈ S\G. A lower bound on V ∗ is immediately obtained if the

expectation in the equation is replaced by a minimization over the values of the

successor states, as follows,

Vmin(s) = min
a∈A(s)

{

c(s, a) + min
s′∈S(s,a)

Vmin(s′)

}

,

where S(s, a) = {s′ : p(s′|s, a) > 0} is the subset of successor states of s through the

action a. Interestingly, this equation is the optimality equation for a deterministic

shortest-path problem over the graph Gmin = (V,E) where V = S, and there is

an edge (s, s′) with cost c(s, s′) = min{c(s, a) : p(s′|s, a) > 0, a ∈ A(s)} for s′ ∈

S(s, a). The graph Gmin is a relaxation of the MDP on which the non-deterministic

outcomes of an action are separated along different deterministic actions, in a way

that the agent has the ability to choose the most convenient one. If this relaxation

is solved optimally, the state values Vmin(s) provide an admissible heuristic for the

MDP. This relaxation is called the min-min relaxation of the MDP [Bonet and

Geffner 2005b]; its optimal value at state s is denoted by Vmin(s).

When the number of states is relatively small and can fit in memory, the state

values Vmin(s) can be obtained using Dijkstra’s algorithm in time polynomial in the

number of states and actions. Otherwise, the values can be obtained, as needed,

using a search algorithm such as A* or IDA* on the graph Gmin. Indeed, the state

value Vmin(s) is the cost of a minimum-cost path from s to any goal state. A* and

IDA* require an admissible heuristic function h(s) for searching Gmin; if nothing

better is available, the non-informative heuristic h(s) = 0 can be used.

Given a deterministic relaxation of an MDP, such as this, another approach

to computing admissible heuristics for the original MDP is based on the recogni-

tion that any admissible heuristic for the deterministic relaxation is also admissible

16

Heuristic Search for Planning under Uncertainty

for the original MDP. That is, if an estimate h(s) is a lower bound on the value

Vmin(s), it is also a lower bound on the value V ∗(s) for the MDP. Therefore, we can

use any method for computing admissible heuristics for deterministic shortest-path

problems in order to compute admissible heuristics for the corresponding stochas-

tic shortest-path problems. Since such methods often rely on state abstraction,

the heuristics can be stored in memory even when the state space of the original

problem is much too large to fit in memory.

Instead of applying relaxation methods for deterministic shortest-path problems

to a deterministic relaxation of an MDP, another approach is to apply similar re-

laxation methods directly to the MDP. This strategy was explored by Dearden and

Boutilier [Dearden and Boutilier 1997], who describe an approach to state abstrac-

tion for factored MDPs that can be used to compute admissible heuristics. Their

approach ignores certain state variables of the original MDP in order to create an

exponentially smaller abstract MDP that can be solved more easily. Such a relax-

ation can be useful when it is not desirable to abstract away all stochastic aspects

of a problem.

4.3 Planning languages and heuristics

Most approaches to state abstraction for MDPs, including that of Dearden and

Boutilier, assume the MDP has a factored or otherwise structured representation,

instead of a “flat” representation that explicitly enumerates individual states, ac-

tions, and transitions. To allow scalability, the representation languages used by

most planners are high-level languages based on propositional logic or a fragment

of first-order logic, that permits the description of large problems in a succinct way;

often, a problem with n states and m actions can be described with O(log nm) bits.

As an example, the PPDDL language [Younes and Littman 2004] has been used in

the International Planning Competition to describe MDPs [Bryce and Buffet 2008;

Gerevini, Bonet, and Givan 2006]. PPDDL is an extension of PDDL [McDermott,

Ghallab, Howe, Knoblock, Ram, Veloso, Weld, and Wilkins 1998] that handles

actions with non-deterministic effects and multiple initial situations. Like PDDL,

it is a STRIPS language extended with types, conditional effects, and disjunctive

goals and conditions.

The fifth International Planning Competition used a fragment of PPDDL, con-

sisting of STRIPS extended with negative conditions, conditional effects and simple

probabilistic effects. The fragment disallows the use of existential quantification,

disjunction of conditions, nested conditional effects, and probabilistic effects inside

conditional effects. What remains, nevertheless, is a simple representation language

for probabilistic planning in which a large collection of challenging problems can

be modeled. For our purposes, it is a particularly interesting fragment because

it allows standard admissible heuristics for classical STRIPS planning to be easily

adapted and thus “lifted” for probabilistic planning. In the rest of this section, we

briefly present a STRIPS language extended with conditional effects, some of its

17

Blai Bonet and Eric A. Hansen

variants for probabilistic planning, and how to compute admissible heuristics for it.

A STRIPS planning problem with conditional effects (simply STRIPS) is a tuple

〈F, I, G,O〉 where F is a set of fluent symbols, I ⊆ F is the initial state, G ⊆ F

denotes the set of goal states, and O is a set of operators. A state is a valuation

of fluent symbols that is denoted by the subset of fluents are true in the state.

An operator a ∈ O consists of a precondition Pre ⊆ F , and a collection CE of

conditional effects of the form C → L, where C and L are sets of literals that

denote the condition and effect of the conditional effect.

A simple probabilistic STRIPS problem (simply sp-STRIPS) is a STRIPS prob-

lem in which each operator a has a precondition Pre and a list of probabilistic

outcomes of the form 〈(p1, CE1), . . . , (pn, CEn)〉 where pi > 0,
∑

i pi ≤ 1, and

each CEi is a set of conditional effects. In sp-STRIPS, the state that results after

applying action a on state s is equal to the state that result after applying the con-

ditional effects in CEi on s with probability pi, or the same state s with probability

1 −
∑n

i=1 pi.

In PPDDL, probabilistic effects are expressed using statements of the form

(probabilistic {<rational> <det-effect>}+)

where <rational> is a rational number and <det-effect> is a deterministic, pos-

sibly compound, effect. The intuition is that the deterministic effect occurs with

the given probability and that no effect occurs with the remaining probability. A

specification without probabilistic effects can be converted in polynomial time to

STRIPS. However, when there are probabilistic effects involved, it is necessary to

consider all possible simultaneous executions. For example, an action that simulta-

neously tosses three coins can be specified as follows:

(:action toss-three-coins

:parameters (c1 c2 c3 - coin)

:precondition (and (not (tossed c1)) (not (tossed c2)) (not (tossed c3)))

:effect (and (tossed c1)

(tossed c2)

(tossed c3)

(probabilistic 1/2 (heads c1) 1/2 (tails c1))

(probabilistic 1/2 (heads c2) 1/2 (tails c2))

(probabilistic 1/2 (heads c3) 1/2 (tails c3))))

This action is not an sp-STRIPS action since its outcomes are factored along mul-

tiple probabilistic effects. An equivalent sp-STRIPS action has as precondition the

same precondition but effects of the form 〈(1/8, CE1), (1/8, CE2), . . . , (1/8, CE8)〉

where each CEi stands for a deterministic outcome of the action; e.g., CE1 =

(and (heads c1) (heads c2) (heads c3)).

Under the assumptions that there are no probabilistic effects inside conditional

effects and that there are no nested conditional effects, a probabilistic planning

problem described with PPDDL can be transformed into an equivalent sp-STRIPS

18

Heuristic Search for Planning under Uncertainty

problem by taking the cross products of the probabilistic effects within each ac-

tion; a translation that takes exponential time in the maximum number of prob-

abilistic effects per action. However, once in sp-STRIPS, the problem can be

further relaxed into (deterministic) STRIPS by converting each action of form

〈Pre, 〈(p1, CE1), . . . , (pn, CEn)〉〉 into n deterministic actions of the form 〈Pre, CEi〉.

This relaxation is the min-min relaxation now implemented at the level of the rep-

resentation language, without the need to explicitly generate the state and action

spaces of the MDP.

The min-min relaxation of a PPDDL problem is a deterministic planning problem

whose optimal solution provides an admissible heuristic for the probabilistic plan-

ning problem. Thus, any admissible heuristic for the deterministic problem provides

an admissible heuristic for the probabilistic problem. (This is the approach used in

the mGPT planner for probabilistic planning [Bonet and Geffner 2005b].)

Above relaxation gives an interesting and fruitful connection with the field of (de-

terministic) automated planning in which the computation of domain-independent

and admissible heuristics is an important area of research. Over the last decade, the

field has witnessed important progresses in the development of novel and powerful

heuristics that can be used for probabilistic planning.

5 Conclusions

We have shown that increased interest in the problem of planning under uncertainty

has led to the development of a new class of heuristic search algorithms for these

planning problems. The effectiveness of these algorithms illustrates the wide appli-

cability of the heuristic search approach. This approach is influenced by ideas that

can be traced back to some of the fundamental contributions in the field of heuristic

search laid down by Pearl.

In this brief survey, we only reviewed search algorithms for the special case of

the problem of planning under uncertainty in which state transitions are uncertain.

Many other forms of uncertainty may need to be considered by a planner. For

example, planning problems with imperfect state information are often modeled as

partially observable Markov decision processes for which there are also algorithms

based on heuristic search [Bonet and Geffner 2000; Bonet and Geffner 2009; Hansen

1998; Smith and Simmons 2005]. For some planning problems, there is uncertainty

about the parameters of the model. For other planning problems, there is uncer-

tainty due to the presence of multiple agents. The development of effective heuristic

search algorithms for these more complex planning problems remains an important

and active area of research.

References

Barto, A., S. Bradtke, and S. Singh (1995). Learning to act using real-time dy-

namic programming. Artificial Intelligence 72 (1), 81–138.

19

Blai Bonet and Eric A. Hansen

Bertsekas, D. (1995). Dynamic Programming and Optimal Control, (2 Vols).

Athena Scientific.

Bertsekas, D. and J. Tsitsiklis (1991). Analysis of stochastic shortest path prob-

lems. Mathematics of Operations Research 16 (3), 580–595.

Bertsekas, D. and J. Tsitsiklis (1996). Neuro-Dynamic Programming. Belmont,

Massachusetts: Athena Scientific.

Bonet, B. and H. Geffner (2000). Planning with incomplete information as heuris-

tic search in belief space. In S. Chien, S. Kambhampati, and C. Knoblock

(Eds.), Proc. 6th Int. Conf. on Artificial Intelligence Planning and Schedul-

ing (AIPS-00), Breckenridge, CO, pp. 52–61. AAAI Press.

Bonet, B. and H. Geffner (2003a). Faster heuristic search algorithms for planning

with uncertainty and full feedback. In G. Gottlob and T. Walsh (Eds.), Proc.

18th Int. Joint Conf. on Artificial Intelligence (IJCAI-03), Acapulco, Mexico,

pp. 1233–1238. Morgan Kaufmann.

Bonet, B. and H. Geffner (2003b). Labeled RTDP: Improving the convergence of

real-time dynamic programming. In E. Giunchiglia, N. Muscettola, and D. S.

Nau (Eds.), Proc. 13th Int. Conf. on Automated Planning and Scheduling

(ICAPS-03), Trento, Italy, pp. 12–21. AAAI Press.

Bonet, B. and H. Geffner (2005a). An algorithm better than AO*? In M. M.

Veloso and S. Kambhampati (Eds.), Proc. 20th National Conf. on Artificial

Intelligence (AAAI-05), Pittsburgh, USA, pp. 1343–1348. AAAI Press.

Bonet, B. and H. Geffner (2005b). mGPT: A probabilistic planner based on

heuristic search. Journal of Artificial Intelligence Research 24, 933–944.

Bonet, B. and H. Geffner (2006). Learning depth-first search: A unified approach

to heuristic search in deterministic and non-deterministic settings, and its

application to MDPs. In D. Long, S. F. Smith, D. Borrajo, and L. McCluskey

(Eds.), Proc. 16th Int. Conf. on Automated Planning and Scheduling (ICAPS-

06), Cumbria, UK, pp. 142–151. AAAI Press.

Bonet, B. and H. Geffner (2009). Solving POMDPs: RTDP-Bel vs. point-based

algorithms. In C. Boutilier (Ed.), Proc. 21st Int. Joint Conf. on Artificial

Intelligence (IJCAI-09), Pasadena, California, pp. 1641–1646. AAAI Press.

Boutilier, C., T. Dean, and S. Hanks (1999). Decision-theoretic planning: Struc-

tural assumptions and computational leverage. Journal of Artificial Intelli-

gence Research 11, 1–94.

Boutilier, C., R. Reiter, and B. Price (2001). Symbolic dynamic programming for

first-order MDPs. In B. Nebel (Ed.), Proc. 17th Int. Joint Conf. on Artificial

Intelligence (IJCAI-01), Seattle, WA, pp. 690–697. Morgan Kaufmann.

Bryce, D. and O. Buffet (Eds.) (2008). 6th International Planning Competition:

Uncertainty Part, Sydney, Australia.

20

Heuristic Search for Planning under Uncertainty

Dearden, R. and C. Boutilier (1997). Abstraction and approximate decision-

theoretic planning. Artificial Intelligence 89, 219–283.

Edelkamp, S., J. Hoffmann, and M. Littman (Eds.) (2004). 4th International

Planning Competition, Whistler, Canada.

Feng, Z. and E. Hansen (2002). Symbolic heuristic search for factored Markov

decision processes. In R. Dechter, M. Kearns, and R. S. Sutton (Eds.), Proc.

18th National Conf. on Artificial Intelligence (AAAI-02), Edmonton, Canada,

pp. 455–460. AAAI Press.

Feng, Z., E. Hansen, and S. Zilberstein (2003). Symbolic generalization for on-line

planning. In C. Meek and U. Kjaerulff (Eds.), Proc. 19th Conf. on Uncertainty

in Artificial Intelligence (UAI-03), Acapulco, Mexico, pp. 209–216. Morgan

Kaufmann.

Gerevini, A., B. Bonet, and R. Givan (Eds.) (2006). 5th International Planning

Competition, Cumbria, UK.

Hansen, E. (1998). Solving POMDPs by searching in policy space. In Proc1̇4th

Conf. on Uncertainty in Artificial Intelligence (UAI-98), Madison, WI, pp.

211–219.

Hansen, E. and S. Zilberstein (2001). LAO*: A heuristic search algorithm that

finds solutions with loops. Artificial Intelligence 129 (1–2), 139–157.

Hoey, J., R. St-Aubin, A. Hu, and C. Boutilier (1999). SPUDD: Stochastic plan-

ning using decision diagrams. In Proc. 15th Conf. on Uncertainty in Artificial

Intelligence (UAI-99), Stockholm, Sweden, pp. 279–288. Morgan Kaufmann.

Karabaev, E. and O. Skvortsova (2005). A heuristic search algorithm for solving

first-order MDPs. In F. Bacchus and T. Jaakkola (Eds.), Proc2̇1st Conf. on

Uncertainty in Artificial Intelligence (UAI-05), Edinburgh, Scotland, pp. 292–

299. AUAI Press.

Korf, R. (1990). Real-time heuristic search. Artificial Intelligence 42, 189–211.

Korf, R. (1997). Finding optimal solutions to rubik’s cube using pattern

databases. In B. Kuipers and B. Webber (Eds.), Proc. 14th National Conf. on

Artificial Intelligence (AAAI-97), Providence, RI, pp. 700–705. AAAI Press

/ MIT Press.

McDermott, D., M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. M. Veloso,

D. Weld, and D. Wilkins (1998). PDDL – The Planning Domain Definition

Language. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for

Computational Vision and Control, New Haven, USA.

McMahan, H. B., M. Likhachev, and G. Gordon (2005). Bounded real-time dy-

namic programming: RTDP with monotone upper bounds and performance

guarantees. In L. D. Raedt and S. Wrobel (Eds.), Proc. 22nd Int. Conf. on

Machine Learning (ICML-05), Bonn, Germany, pp. 569–576. ACM.

21

Blai Bonet and Eric A. Hansen

Pearl, J. (1983). Heuristics. Morgan Kaufmann.

Plaat, A., J. Schaeffer, W. Pijls, and A. de Bruin (1996). Best-first fixed-depth

minimax algorithms. Artificial Intelligence 87 (1-2), 255–293.

Puterman, M. (1994). Markov Decision Processes – Discrete Stochastic Dynamic

Programming. John Wiley and Sons, Inc.

Smith, T. and R. Simmons (2005). Point-based POMDP algorithms: Improved

analysis and implementation. In F. Bacchus and T. Jaakkola (Eds.), Proc. 21st

Conf. on Uncertainty in Artificial Intelligence (UAI-05), Edinburgh, Scot-

land, pp. 542–547. AUAI Press.

Smith, T. and R. G. Simmons (2006). Focused real-time dynamic program-

ming for MDPs: Squeezing more out of a heuristic. In Y. Gil and R. J.

Mooney (Eds.), Proc. 21st National Conf. on Artificial Intelligence (AAAI-

06), Boston, USA, pp. 1227–1232. AAAI Press.

Younes, H. and M. Littman (2004). PPDDL1.0: An extension to PDDL for ex-

pressing planning domains with probabilistic effects. http://www.cs.cmu.

edu/~lorens/papers/ppddl.pdf.

22

Kaoru
Text Box
Return to TOC

2

Heuristics, Planning and Cognition

Hector Geffner

1 Introduction

In the book Heuristics, Pearl studies the strategies for the control of problem solving

processes in human beings and machines, pondering how people manage to solve

an extremely broad range of problems with so little effort, and how machines could

do the same [Pearl 1983, pp. vii]. The central concept in the book, as captured

in the title, are the heuristics: the “criteria, methods, or principles for deciding

which among several alternative courses of action promises to be the most effective

in order to achieve some goal” [Pearl 1983, pp. 3]. Pearl places special emphasis on

heuristics that take the form of evaluation functions and which provide quick but

approximate estimates of the distance or cost-to-go from a given state to the goal.

These heuristic evaluation functions provide the search with a sense of direction

with actions resulting in states that are closer to the goal being preferred. An

informative heuristic h(s) in the 15-puzzle, for example, is the well known ’sum of

Manhattan distances’, that adds up the Manhattan distance of each tile, from its

location in the state s to its goal location.

The book Heuristics laid the foundations for the work in automated problem

solving in Artificial Intelligence (AI) and is still a basic reference in the field. On

the other hand, as an account of human problem solving, the book has not been as

influential. A reason for this is that while the book devotes one chapter to discuss

the derivation of heuristics, most of the book is devoted to the formulation and

analysis of heuristic search algorithms. Most of these algorithms, such as A* and

AO*, are complete and optimal, meaning that they will find a solution if there is

one, and that the solution found will have minimal cost (provided that the heuristic

does not overestimate the true costs). Yet, while people excel at solving a wide

variety of problems almost effortlessly, it’s only in puzzle-like problems where they

need to restore to search, and then, they are not particularly good at it and are

even worse when solutions must be optimal.

Thus, the account of problem solving in the book exhibits a gap that has been

characteristic of AI systems, that result in programs that rival the best human

experts in specialized domains but are no match to children in their general problem

solving abilities.

In this article, I aim to present recent work in AI Planning, a form of domain-

independent problem solving, that builds on Pearl’s work and bears on this gap.

23

Kaoru
Text Box
Return to TOC

Hector Geffner

Planners are general problem solvers aimed at solving an infinite collection of prob-

lems automatically. The problems are instances of various classes of models all of

which are intractable in the worst case. In order to solve these problems effectively

thus, a planner must automatically recognize and exploit their structure. This is

the key challenge in planning and, more generally, in domain-independent problem

solving. In planning, this challenge has been addressed by deriving the heuristic eval-

uations functions automatically from the problems, an idea explored by Pearl and

developed more fully in recent planning research. The resulting domain-independent

planners are not as efficient as specialized solvers but are more general, and thus, be-

have in a way that is closer to people. Moreover, the resulting evaluation functions

often enable the solution of problems with almost no search, and appear to play the

role of the ‘intuitions’ and ‘feelings’ that guide human problem solving and have

been difficult to capture explicitly by means of rules. We will see indeed how such

heuristic evaluation functions are defined and computed in a domain-independent

fashion, and why they can be regarded as relevant from a cognitive point of view.

The organization of the article is the following. We consider in order, planning

models, languages, and algorithms (Section 2), the automatic extraction of heuristic

evaluation functions and other developments in planning (Sections 3 and 4), the

cognitive interpretation of these heuristics (Section 5), and then, more generally,

the relation between AI and Cognitive Science (Section 6).

2 Planning

Planning is an area of AI concerned with the selection of actions for achieving goals.

The first AI planner and one of the first AI programs was the General Problem Solver

(GPS) developed by Newell, Shaw, and Simon in the late 50’s [Newell, Shaw, and

Simon 1958; Newell and Simon 1963]. Since then, planning has remained a central

topic in AI while changing in significant ways: on the one hand, it has become more

mathematical, with a variety of planning problems defined and studied; on the other,

it has become more empirical, with planning algorithms evaluated experimentally

and planning competitions held periodically.

Planning can be understood as representing one of the three main approaches for

selecting the action to do next ; a problem that is central in the design of autonomous

systems, called often the control problem in AI.

In the programming-based approach, the programmer solves the control problem

in its head and makes the solution explicit in the program. For example, for a robot

moving in an office environment, the program may say to back up when too close to

a wall, to search for a door if the robot has to move to another room, etc. [Brooks

1987; Mataric 2007].

In the learning-based approach, the control knowledge is not provided explicitly by

a programmer but is learned by trial and error, as in reinforcement learning [Sutton

and Barto 1998], or by generalization from examples, as in supervised learning

[Mitchell 1997].

24

Heuristics, Planning and Cognition

Sensors

Actions

Goals
Planner Controller World

Obs

Actions

Figure 1. Planning is the model-based approach to autonomous behavior: a planner is a

solver that accepts a compact model of the actions, sensors, and goals, and outputs a plan

or controller that determines the action to do next given the observations.

Finally, in the model-based approach, the control knowledge is derived automati-

cally from a model of the actions, sensors, and goals.

Planning is the model-based approach to autonomous behavior. A planner is a

solver that accepts a model of the actions, sensors, and goals, and outputs a plan

or controller that determines the action to do next given the observations gathered

(Fig. 1). Planners come in a wide variety, depending on the type of model that they

target [Ghallab, Nau, and Traverso 2004]. Classical planners address determinis-

tic state models with full information about the initial situation, while conformant

planners address state models with non-deterministic actions and incomplete in-

formation about the initial state. In both cases, the resulting plans are open-loop

controllers that do not take observations into account. On the other hand, contin-

gent and POMDP planners address scenarios with both uncertainty and feedback,

and output genuine closed-loop controllers where the selection of actions depends

on the observations gathered.

In all cases, the models are intractable in the worst case, meaning that brute

force methods do not scale up to problems involving many actions and variables.

Domain-independent approaches aimed at solving these models effectively must thus

automatically recognize and exploit the structure of the individual problems that

are given. Like in other AI models such as Constraint Satisfaction Problems and

Bayesian Networks [Dechter 2003; Pearl 1988], the key to exploiting the structure

of problems in planning models, is inference. The most common form of inference

in planning is the automatic derivation of heuristic evaluation functions to guide

the search. Before considering such domain-independent heuristics, however, we

will make precise some of the models used in planning and the languages used for

representing them.

2.1 Planning Models

Classical planning is concerned with the selection of actions in environments that

are deterministic and whose initial state is fully known. The model underlying

classical planning can thus be described as a state space featuring:

• a finite and discrete set of states S,

• a known initial state s0 ∈ S,

• a set SG ⊆ S of goal states,

25

Hector Geffner

• actions A(s) ⊆ A applicable in each state s ∈ S,

• a deterministic state transition function f(a, s) for a ∈ A(s) and s ∈ S, and

• positive action costs c(a, s) that may depend on the action and the state.

A solution or plan is a sequence of actions a0, . . . , an that generates a state

sequence s0, s1, . . . , sn+1 such that ai is applicable in the state si and results in the

state si+1 = f(ai, si), the last of which is a goal state.

The cost of a plan is the sum of the action costs, and a plan is optimal if it has

minimum cost. The cost of a problem is the cost of its optimal solutions. When

action costs are all 1, a situation that is common in classical planning, plan cost

reduces to plan length, and the optimal plans are simply the shortest ones.

The computation of a classical plan can be cast as a path-finding problem in a

directed graph whose nodes are the states, and whose source and target nodes are

the initial state s0 and the goal states SG. Algorithms for solving such problems

are polynomial in the number of nodes (states), which is exponential in the number

of problem variables (see below). The use of heuristics for guiding the search for

plans in large graphs is aimed at improving such worst case behavior.

The model underlying classical planning does not account for either uncertainty

or sensing and thus gives rise to plans that represent open-loop controllers where

observations play no role. Other planning models in AI take these aspects into

account and give rise to different types of controllers.

Conformant planning is planning in the presence of uncertainty in the initial

situation and action effects. In the resulting model, the initial state s0 is replaced

by a set S0 of possible initial states, and the deterministic transition function f(a, s)

that maps the state s into the unique successor state s′ = f(a, s), is replaced by

a non-deterministic transition function F (a, s) that maps s into a set of possible

successor states s′ ∈ F (a, s). A solution to such model, called a conformant plan,

is an action sequence that achieves the goal with certainty for any possible initial

state and any possible state transition [Goldman and Boddy 1996]. The search for

conformant plans can also be cast as a path-finding problem but over a different,

exponentially larger graph whose nodes represent belief states. In this formulation,

a belief state b stands for the set of states deemed possible, the initial belief state

is b0 = S0, and actions a, whether deterministic or not, map a belief state b into

a unique successor belief state ba, where s′ ∈ ba if there is a state s in b such that

s′ ∈ F (a, s) [Bonet and Geffner 2000].

Planning with sensing, often called contingent planning in AI, refers to planning

in the face of both uncertainty and feedback. The model extends the one for con-

formant planning with a characterization of sensing. A sensor model expresses the

relation between the observations and the true but possibly hidden states, and can

be codified through a set o ∈ O of observation tokens and a function o(s) that maps

states s into observation tokens. An environment is fully observable if different

states give rise to different observations, i.e., o(s) 6= o(s′) if s 6= s′, and partially

26

Heuristics, Planning and Cognition

observable otherwise. While the model for planning with sensing is a slight varia-

tion of the model for conformant planning, the resulting solution or plan forms are

quite different as observations can and must be taken into account in the selection of

actions. Indeed, solution to planning with sensing problems can be expressed equiv-

alently as either trees [Weld, Anderson, and Smith 1998], policies mapping beliefs

into actions [Bonet and Geffner 2000], or finite-state controllers [Bonet, Palacios,

and Geffner 2009]. A finite-state controller is an automata defined by a collection of

tuples of the form 〈q, o, a, q′〉 that prescribe to do action a and move to the controller

state q′ after getting the observation o in the controller state q.

The probabilistic versions of these models are also used in planning. The models

that result when the actions have stochastic effects and the states are fully ob-

servable are the familiar Markov Decision Processes (MDPs) used in Operations

Research and Control Theory [Bertsekas 1995], while the models that result when

action and sensors are stochastic, are the Partial Observable MDPs (POMDPs)

[Kaelbling, Littman, and Cassandra 1998].

2.2 Planning Languages

A domain-independent planner is a general solver over a class of models: classical

planners are solvers over the class of basic state models where actions are determin-

istic and the initial state is fully known, conformant planners are solvers over the

class of models where actions are non-deterministic and the initial state is partially

known, and so on. In all cases, the corresponding state model that characterizes

a given planning problem is not given explicitly but in a compact form, with the

states associated with the values of a given set of variables.

One of the most common languages for representing classical problems is Strips,

a planning language that can be traced back to the early 70’s [Fikes and Nilsson

1971]. A planning problem in Strips is a tuple P = 〈F,O, I, G〉 where

• F stands for the set of relevant variables or fluents,

• O stands for the set of relevant operators or actions,

• I ⊆ F stands for the initial situation, and

• G ⊆ F stands for the goal situation.

In Strips, the actions o ∈ O are represented by three sets of atoms from F called

the Add, Delete, and Precondition lists, denoted as Add(o), Del(o), Pre(o). The

first, describes the atoms that the action o makes true, the second, the atoms that

o makes false, and the third, the atoms that must be true in order for the action

to be applicable. A Strips problem P = 〈F,O, I, G〉 encodes in compact form the

state model S(P) where

• the states s ∈ S are the possible collections of atoms from F ,

• the initial state s0 is I,

27

Hector Geffner

• the goal states s are those for which G ⊆ s,

• the actions a in A(s) are the ones in O with Prec(a) ⊆ s,

• the state transition function is f(a, s) = (s \ Del(a)) ∪ Add(a), and

• the action costs c(a) are equal to 1 by default.

The states in S(P) represent the possible valuations over the boolean variables

in F . Thus, if the set of variables F has cardinality |F | = n, the number of states

in S(P) is 2n. A state s represents the valuation where the variables appearing in

s are taken to be true, while the variables not appearing in s are false.

As an example, a planning domain that involves three locations l1, l2, and l3, and

three tasks t1, t2, and t3, where ti can be performed only at li, can be modeled with

a set F of fluents at(li) and done(ti), and a set O of actions go(li, lj) and do(ti),

i, j = 1, . . . , 3, with precondition, add, and delete lists

Pre(a) = {at(li)} , Add(a) = {at(lj)} , Del(a) = {at(li)}

for a = go(li, lj), and

Pre(a) = {at(li)} , Add(a) = {done(ti)} , Del(a) = {}

for a = do(ti). The problem of doing tasks t1 and t2 starting at location l3 can then

be modeled by the tuple P = 〈F, I, O, G〉 where

I = {at(l3)} and G = {done(t1), done(t2)} .

A solution to P is an applicable action sequence that maps the state s0 = I into a

state where the goals in G are all true. In this case one such plan is the sequence

π = {go(l3, l1), do(t1), go(l1, l2), do(t2)} .

The number of states in the problem is 26 as there are 6 boolean variables. Still,

it can be shown that many of these states are not reachable from the initial state.

Indeed, the atoms at(li) for i = 1, 2, 3 are mutually exclusive and exhaustive, mean-

ing that every state reachable from s0 makes one and only one of these atoms

true. These boolean variables encode indeed the possible values of the multi-valued

variable that represents the agent location.

Strips is a planning language based on variables that are boolean, yet planning

languages featuring primitive multi-valued variables and richer syntactic constructs

are commonly used for describing both classical and non-classical planning models

[McDermott 1998; Younes, Littman, Weissman, and Asmuth 2005].

2.3 Planning Algorithms

We have presented some of the models used in domain-independent planning, and

one of the languages used for describing them in compact form. We focus now on

the algorithms developed for solving them.

28

Heuristics, Planning and Cognition

GPS, the first AI planner introduced by Newell, Shaw, and Simon, used a tech-

nique called means-ends analysis where differences between the current state and

the goal situation were identified and mapped into operators that could decrease

those differences [Newell and Simon 1963]. Since then, the idea of means-ends anal-

ysis has been refined and extended in many ways, seeking planning algorithms that

are sound (only produce plans), complete (produce a plan if one exists), and effec-

tive (scale up to large problems). By the early 90’s, the state-of-the-art method was

UCPOP [Penberthy and Weld 1992], an elegant algorithm based on partial-order

causal link planning [Sacerdoti 1975; Tate 1977; McAllester and Rosenblitt 1991], a

planning method that is sound and complete, but which doesn’t scale up too well.

The situation in planning changed drastically in the middle 90’s with the in-

troduction of Graphplan [Blum and Furst 1995], a planning algorithm based on

the Strips representation but which otherwise had little in common with previous

approaches, and scaled up better. Graphplan works iteratively in two phases. In

the first phase, Graphplan builds a plan graph in polynomial time, made up of a

sequence of layers F0, A0, . . . , Fn−1, An−1, Fn where Fi and Ai denote sets of fluents

and actions respectively. F0 is the set of fluents true in the initial situation and

n is a planning horizon, initially the index of the first layer Fi where all the goals

appear. In this construction, certain pairs of actions and certain pairs of fluents are

marked as mutually exclusive or mutex. The meaning of these layers and mutexes

is roughly the following: if a fluent p is not in layer Fi, then no plan can achieve

p in i steps or less, while if the pair p and q is in Fi but marked as mutex, then

no plan can achieve p and q jointly in i steps or less. Graphplan makes then an

attempt to extract a plan from the graph, a computation that is exponential in the

worst case. If the plan extraction fails, the planning horizon n is increased by 1, the

plan graph is extended one level, and the plan extraction procedure is tried again.

Blum and Furst showed that the planning algorithm is sound, complete, and opti-

mal, meaning that the plan obtained minimizes the number of time steps provided

that certain sets of actions can be done in parallel. More importantly, they showed

experimentally that this planning approach scaled up much better than previous

approaches.

Due to the new ideas and the emphasis on the empirical evaluation of planning

algorithms, Graphplan had a great influence in planning research that has seen two

new approaches in recent years that scale up better than Graphplan using methods

that are not specific to planning.

In the SAT approach to planning [Kautz and Selman 1996], Strips problems are

converted into satisfiability problems expressed as a set of clauses (a formula in

Conjunctive Normal Form) that are fed into state-of-the-art SAT solvers. If for

some horizon n, the clauses are satisfiable, a parallel plan that solves the problem

can be read from the model returned by the solver. If not, like in Graphplan, the

plan horizon is increased by 1 and the process is repeated until a plan is found. The

approach works well when the required horizon is not large and optimal parallel

29

Hector Geffner

plans are sought.

In the heuristic search approach [McDermott 1996; Bonet, Loerincs, and Geffner

1997], the planning problem is solved by heuristic search algorithms with heuristic

evaluation functions extracted automatically from the problem encoding. In forward

or progression-based planning, the state space S(P) for a problem P is searched for

a path connecting the initial state with a goal state. In backward or regression-based

planning, plans are searched backwards from the goal. Heuristic search planners

have been shown to scale up to very large problems when solutions are not required

to be optimal.

The heuristic search approach has actually not only delivered performance but

also an explanation for why Graphplan scaled up better than its predecessors. While

not described in this form, Graphplan is a heuristic search planner using a heuristic

evaluation function encoded implicitly in the planning graph, and a well known ad-

missible search algorithm [Bonet and Geffner 2001]. The difference in performance

between recent and older planning algorithms is thus the result of inference: while

planners searched for plans blindly until Graphplan, they all search with automati-

cally derived heuristics now, or with unit resolution and clause learning when based

on the SAT formulation. Domain-independent solvers whose search is not informed

by inference of some sort, do not scale up, as there are too many alternatives to

choose from, with a few of them leading to the goal.

3 Domain-Independent Planning Heuristics

The main novelty in state-of-the-art planners is the use of automatically derived

heuristics to guide the search for plans. In Heuristics, Pearl showed how heuristics

such as the sum of Manhattan distances for the 15-puzzle, the Euclidian distance

for Road Map finding, and the Minimum Spanning Tree for the Travelling Sale-

man Problem, can all be understood as optimal cost functions of suitable problem

relaxations. Moreover, for the 15-puzzle, Pearl explicitly considered relaxations ob-

tained mechanically from a Strips representation, showing that both the number

of misplaced tiles and the sum of Manhattan distances heuristics are optimal cost

functions of relaxations where some preconditions of the actions for moving tiles are

dropped.

Pearl focused then on the conditions under which a problem relaxation is ‘sim-

ple enough’ so that its optimal cost can be computed in polynomial time. This

research problem attracted his attention at the time, and explains his interest on

the graphical structures underlying various types of problems, including problems of

combinatorial optimization, constraint satisfaction, and probabilistic inference. One

kind of structure that appeared to result in ‘easy’ problems in all these contexts was

trees. Pearl and his students showed indeed that inference on probabilistic Bayesian

Trees and Constraint Satisfaction Trees was polynomial [Pearl 1982; Dechter and

Pearl 1985], even if the general problems are NP-hard (see also [Mackworth and

Freuder 1985]). The notion of graphical structures underlying inference problems

30

Heuristics, Planning and Cognition

and the conditions under which they render inference polynomial have been gener-

alized since then in the notion of treewidth, a parameter that measures how tree-like

is a graph structure [Pearl 1988; Dechter 2003].

Research on the automatic derivation of heuristics in planning builds on Pearl’s

intuition but takes a different path. The relaxation P+ that underlies most current

heuristics in domain-independent planning is obtained from a Strips problem P

by dropping, not the preconditions, but the delete lists. This relaxation is quite

informative but is not ‘easy’; indeed finding an optimal solution to a delete-free

problem P+ is not easier from a complexity point of view than finding an optimal

solution to the original problem P . On the other hand, finding one solution to P+,

not necessarily optimal, can be done easily, in low polynomial time. The result

is that heuristics obtained from P+ are informative but not admissible (they may

overestimate the true cost), and hence, they can be used effectively for finding plans

but not for finding optimal plans.

If P (s) refers to a planning problem that is like P = 〈F, I, O, G〉 but with I = s,

and π(s) is the solution found for the delete-relaxation P+(s), the heuristic h(s)

that estimates the cost of the problem P (s) is defined as

h(s) = Cost(π(s)) =
∑

a∈π(s)

cost(a) .

The plans π(s) for the relaxation P+(s) are called relaxed plans, and there have

been many proposals for defining and computing them. We explain below one such

method that corresponds to running Graphplan on the delete-relaxation P+(s)

[Hoffmann and Nebel 2001]. In delete-free problems, Graphplan runs in polynomial

time and its plan graph construction is simplified as there are no mutex relations

to keep track of.

The layers F0, A0, F1, . . . , Fn−1, An−1, Fn in the plan graph for P+(s) are

computed starting with F0 = s, by placing in Ai, i = 1, . . . , n − 1, all the actions

a in P whose preconditions Pre(a) are in Fi, and placing in Fi+1, the add effects

of those actions along with the fluents in Fi. This construction is terminated when

the goals G are all in Fn, or when Fn = Fn+1. Then if G 6⊆ Fn, h(s) = ∞, as

it can be shown then that the relaxed problem P+(s) and the original problem

P (s) have no solution. Otherwise, a (relaxed) parallel plan π(s) for P+(s) can be

obtained backwards from the layer Fn by collecting the actions that add the goals,

and recursively, the actions that add the preconditions of those actions that are not

true in the state s.

More precisely, for Gn = G and i from n − 1 to 0, Bi is set to a minimal

collection of actions in Ai that add all the atoms in Gi+1 \ Fi, and Gi is set to

Pre(Bi)∪(Gi+1∩Fi) where Pre(Bi) is the collection of fluents that are preconditions

of actions in Bi. It can be shown then that π(s) = B0, . . . , Bn−1 is a parallel plan

for the relaxation P+(s); the plan being parallel because the actions in each set Bi

are assumed to be done in parallel. The heuristic h(s) is then just Cost(π(s)). This

31

Hector Geffner

B C

A

C

A

B A B C
B

A

C

B

C

A

A

B

C

C

A B A

B

C

C

BA

A B CA

B

C

B

C

A

.........

GOAL

h=3

h=3
h=2 h=3

h=1

h=0

h=2 h=2 h=2

h=2

GOALINIT

Figure 2. A simple planning problem involving three blocks with initial and goal situations

I and G as shown. The actions allow to move a clear block on top of another clear block

or to the table. A plan for the problem is a path that connects I with G in the directed

graph partially shown. In this example, the plan can be found greedily by taking in each

state s, starting with s = I, the action that results in a state s′ that is closer to the goal

according to the heuristic. The heuristic values (shown) are derived automatically from

the problem as described in the text.

is indeed the heuristic introduced in the FF planner [Hoffmann and Nebel 2001],

which is suitable when action costs are uniform. For non-uniform action costs, other

heuristics are more convenient [Keyder and Geffner 2008].

4 Meaning of Domain-Independent Heuristics

In order to illustrate the meaning and derivation of domain-independent heuristics,

let us consider the example shown in Fig. 2, where blocks a, b, and c initially

arranged so that a is on b, and b and c are on the table, must be rearranged so

that b is on c, and c is on a. The actions allow to move a clear block (a block with

no block on top) on top of another clear block or to the table. The problem can

be expressed as a Strips problem P = 〈F, I, O, G〉 with a set of atoms F given by

on(x, y), ontable(x), and clear(x), where x and y range over the block labels a, b,

and c. In the heuristic search approach to planning, the solution to P becomes a

path-finding problem in the directed graph associated with the state model S(P),

where the nodes stand for the states in S(P), and the actions a ∈ O are mapped

into edges connecting a state s with a state s′ when a is applicable in s and maps

s into s′.

The Blocks World is simple for people, but until recently, not so simple for

domain-independent planners. Indeed, the size of the graph to search is exponential

in the number of blocks n, with n! possible towers of n blocks, and additional

32

Heuristics, Planning and Cognition

combinations of shorter towers.

Figure 2 shows the search that results from a planner using the heuristic described

above, whose value h(s) for each of the states in the graph is shown. All action

costs are assumed to be 1. With the heuristic shown, the solution to the problem

can be found with no search at all by just selecting in each state s the action that

leads to the state s′ that is closest to the goal (lowest heuristic value). In the initial

state, this action is the one that places block a on the table, in the following state,

the action that places c on a, and so on.

In order to understand the numbers shown in the figure, let us see how the value

h(s) = 3 for the initial state s is derived. The heuristic h(s) is |π(s)| where π(s)

is the plan found for the relaxation P+(s). The relaxed plan π(s) is obtained by

constructing first the layered graph F0, A0, . . . , Fn−1, An−1, Fn, where n > 0 as

none of the goals on(b, c) and on(c, a) are in F0 = s. The actions in A0 are the

actions applicable given the atoms in F0, i.e., the actions a with Pre(a) ⊆ F0. This

set includes the actions of moving c to a, a to c, and a to the table, but does not

include actions that move b as the precondition clear(b) is not part of F0. The set

F1 extends F0 with all the atoms added by the actions in A0, and includes on(c, a),

on(a, c), ontable(a), and clear(b), but not the goal on(b, c). Yet with clear(b) and

clear(c) in F1, the action for moving b to c appears in layer A1, and therefore, the

other goal atom on(b, c) appears in F2. By collecting the actions that first add the

goal atoms on(c, a) and on(b, c), and recursively, the preconditions of those actions

that are not in s, a relaxed plan π(s) with 3 actions is obtained so that h(s) = 3.

There are several choices for the actions in π(s) that result from the way ties in the

plan extraction procedure are broken. One possible relaxed plan involves moving

a to the table and c to a in the first step, and b to c in the second step. Another

involves moving a to c and c to a first, and then b to c.

It is important to notice that fluent layers such as F1 in the plan graph do not

represent any ‘real’ states in the original problem P as they include atoms pairs

like on(a, c) and on(c, a) that cannot be achieved jointly in any state s′ reachable

from the initial state. The layer F1 is instead an abstraction that approximates the

set of all states reachable in one step from the initial state by taking their union.

This approximation implies that finding an atom p in a layer Fn with n > 1 is no

guarantee that there is a real plan for p in P (s) that achieves p in n time steps,

rather than one such parallel plan exists in the relaxation. Similarly, the relaxed

plans π(s) obtained above are quite ‘meaningless’; they move a to the table or to c

at the same time that they move c to a. Yet, these ‘meaningless’ relaxed plans π(s)

yield the heuristic values h(s) that provide the search with a very meaningful and

effective sense of direction.

Let us finally point out that the computation of the domain-independent heuristic

h(s) results in valuable information that goes beyond the numbers h(s). Indeed,

from the computation of the heuristic value h(s), it is possible to determine the

actions applicable in the state s that are most relevant to the goal, and then focus

33

Hector Geffner

on the evaluation of the states that result from those actions only. This type of

action pruning has been shown to be quite effective [Hoffmann and Nebel 2001],

and in slightly different form is part of state-of-the-art planners [Richter, Helmert,

and Westphal 2008].

5 Other Developments in Planning

Domain-independent planning is concerned with non-classical models also where

information about the initial situation is incomplete, actions may have non-de-

terministic effects, and states may be fully or partially observable. A number of

native solvers for such models, that include Markov Decision Processes (MDPs) and

Partially Observable MDPs have been developed, and progress in the area has been

considerable too. Moreover, many of these solvers are also based on heuristic search

methods (see the article by Bonet and Hansen in this volume). I will not review

this literature here but focus instead on two ways in which the results obtained for

classical planning are relevant to such richer settings too.

First, it’s often possible to plan under uncertainty without having to model the

uncertainty explicitly. This is well known by control engineers that normally design

closed-loop controllers for stochastic systems ignoring the ‘noise’. Indeed, the error

in the model is compensated by the feedback loop. In planning, where non-linear

models are considered, the same simplification works too. For instance, in a Blocks

World where the action of moving a block may fail, an effective closed-loop policy

can be obtained by replanning from the current state when things didn’t progress

as predicted by the simplified model. Indeed, the planner that did best in the

first probabilistic planning competition [Younes, Littman, Weissman, and Asmuth

2005], was not an MDP planner, but a classical replanner of this type. Of course,

this approach is not suitable when it may be hard or impossible to recover from

failures, or when the system state is not fully observable. In everyday planning,

however, such cases may be the exception.

Second, it has been recently shown that it’s often possible to efficiently trans-

form problems featuring uncertainty and sensing into classical planning problems

that do not. For example, problems P involving uncertainty in the initial situa-

tion and no sensing, namely conformant planning problems, can be compiled into

classical problems K(P) by adding new actions and fluents that express condition-

als [Palacios and Geffner 2007]. The translation from the conformant problem P

into the classical problem K(P) is sound and complete, and provided that a width

parameter defined over P is bounded, it is polynomial too. The result is that the

conformant plans for P can be read from the plans for K(P) that can be com-

puted using a classical planner. Moreover, this technique has been recently used for

deriving finite-state controllers that solve problems featuring both incomplete in-

formation and sensing [Bonet, Palacios, and Geffner 2009]. A finite-state controller

is an automata that given the current (controller) state and the current observation

selects an action and updates the controller state, and so on, until reaching the

34

Heuristics, Planning and Cognition

goal. Figure 3 shows one such problem (left) and the resulting controller (right).

The problem, motivated by the work on deictic representations in the selection of

actions [Chapman 1989; Ballard, Hayhoe, Pook, and Rao 1997], is about placing a

visual marker on top of a green block in a blocks-world scene where the location of

the green blocks is not known. The visual marker, initially at the lower left corner

of the scene (shown as an eye), can be moved in the four directions, one cell at a

time. The observations are whether the cell beneath the marker is empty (‘C’), a

non-green block (‘B’), or a green block (‘G’), and whether it is on the table (‘T’)

or not (‘-’). The controller shown on the right has been derived by running a clas-

sical planner over a classical problem obtained by an automatic translation from

the original problem that involves both uncertainty and sensing. In the figure, the

controller states qi are shown in circles while the label o/a on an edge connecting

two states q to q′ means to do action a when observing o in q and then switching

to q′. In the classical planning problem obtained from the translation, the actions

are tuples (fq, fo, a, fq′) whose effects are those of the action a but conditional on

the fluents fq and fo representing the controller state q and observation o being

true. In such a case, the fluent fq′ representing the controller state q′ is made true

and fq is made false. The two appealing features of this formulation is that the

resulting classical plans encode very succint closed-loop controllers, and that these

controllers are quite general. Indeed, the controller shown in the figure not only

solves the problem for the configuration of blocks shown, but for any configuration

involving any number of blocks. The controller prescribes to move the ‘eye’ up until

there are no blocks, then to move it down until reaching the table and right, and

to repeat this process until a green block is found (‘G’). Likewise, the ‘eye’ must

move right when there are no blocks in a given spot (both ‘T’ and ‘C’ observed).

See [Bonet, Palacios, and Geffner 2009] for details.

6 Heuristics and Cognition

Heuristic evaluation functions are used also in other settings such as Chess play-

ing programs [Pearl 1983] and reinforcement learning [Sutton and Barto 1998].

The difference between evaluations functions in Chess, reinforcement learning, and

domain-independent planning mimic actually quite closely the relation among the

three approaches to action selection mentioned in the introduction: programming-

based, learning-based, and model-based. Indeed, the evaluation functions are pro-

grammed by hand in Chess, are learned by trial-and-error in reinforcement learning,

and are derived from a (relaxed) model in domain-independent planning.

Heuristic evaluation functions in reinforcement learning, called simply valuation

functions, are computed by stochastic sampling and dynamic programming updates.

This is a model-free method that has been shown to be effective in low-level tasks

that do not involve large state spaces, and which provides an accurate account of

learning in the brain [Schultz, Dayan, and Montague 1997].

Heuristic evaluation functions as used in domain-independent planning are com-

35

Hector Geffner

q0

TB/Up

-B/Up

TC/Right

q1
-C/Down

TB/Right

-B/Down

Figure 3. Left: The visual marker shown as an ‘eye’ must be placed on a green block in

the blocks-world scene shown, where the locations of the green blocks are not known. The

visual marker can be moved in the four directions, one cell at a time. The observations

are whether the cell beneath the marker is empty (‘C’), a non-green block (‘B’), or a green

block (‘G’), and whether the marker is on the table (‘T’) or not (‘-’). Right: The controller

derived for this problem using a classical planner over a suitable automatic transformation.

The controller states qi are shown in circles while the label o/a on an edge connecting q to

q′ means to do a when observing o in q switching then to q′. The controller works not only

for the problem instance shown on the left, but for any instance resulting from changes in

the configuration or in the number of blocks.

puted by model-based methods where suitable relaxations are solved from scratch.

The technique has been shown to work over large problems involving hundred of

actions and fluents. Here I want to argue these methods also have features that

make them interesting from a cognitive point of view as a plausible basis for an ac-

count of ‘feelings’, ‘emotions’, or ‘appraisals’ in high-level human problem solving.

I focus on three of these features.

First, domain-independent heuristics are fast (low-polynomial time) and effective,

as the ‘fast and frugal’ heuristics advocated by Gigerenzer and others [Gigerenzer

and Todd 1999; Gigerenzer 2007], and yet, they are general too: they apply indeed

to all the problems that fit the (classical planning) model and to problems that can

be cast in that form (like the visual-marker problem above).

Second, the derivation of these heuristics sheds light on why appraisals may be

opaque from a cognitive point of view, and thus not conscious. This is because

the heuristic values are obtained from a relaxed model where the meaning of the

symbols is different than the meaning of the symbols in the ‘true’ model. For

example, the action of moving an object from one place to another, deletes the old

place in the true model but not in the delete-relaxation where an object can thus

appear in multiple places at the same time. Thus, if the agent selecting the actions

with the resulting heuristic does not have access to the relaxation, it won’t be able

to explain how the heuristic evaluations are produced nor what they stand for.

The importance of the unconscious in everyday cognition is a topic that has been

receiving increased attention in recent years, with conscious, deliberate reasoning,

appearing to rely heavily on unconscious processing and representing just the tip

of the ‘cognitive iceberg’ [Wilson 2002; Hassin, Uleman, and Bargh 2005; Evans

36

Heuristics, Planning and Cognition

2008]. While this is evident in vision and natural language processing, where it is

clear that one does not have access to how one ‘sees’ or ‘understands’, this is likely

to be true in most cognitive tasks, including apparently simple problems such as

the Blocks World where our ability to find reasons for the actions selected, does

not explain how such actions are selected in the first place. In this sense, the focus

of cognitive psychology on puzzles such as the Tower of Hanoi may be misplaced:

simple problems, such as the Blocks World, are not simple for domain-independent

solvers, and there is no question that people are capable of solving domains that

they have never seen where the combinatorics would defy a naive, blind solver.

Third, the heuristics provide the agent with a sense of direction or ‘gut feelings’

that guide the action selection in the presence of many alternatives, while avoiding

an infinite regress in the decision process. Indeed, emotions long held to interfere

with the decision process and rationality, are now widely perceived as a requisite

in contexts where it is not possible to consider all alternatives. Emotions and gut

feelings are thus perceived as the ‘invisible hand’ that successfully guides us out of

these mental labyrinths [Ketelaar and Todd 2001; Evans 2002].1 The ‘rationality of

the emotions’ have been defended on theoretical grounds by philosophers [De Sousa

1990; Elster 1999], and on empirical grounds by neuroscientists that have studied

the impairments in the decision process that result from lesions in the frontal lobes

[Damasio 1995]. The link between emotions and evaluation functions, point to their

computational role as well.

While emotions are currently thought as providing the appraisals that are nec-

essary for navigating in a complex world, there are actually very few accounts of

how such appraisals may be computed. Reinforcement learning methods provide one

such account that works well in low level tasks without requiring a model. Heuris-

tic planning methods provide another account that works well in high-level tasks

where the model is known. Moreover, as discussed above, heuristic planning meth-

ods do not only provide an account of the appraisals, but also of the actions that are

worth evaluating. These are the actions a in the state s that are deemed relevant

to the goal in the computation of the heuristic h(s); the so-called helpful actions

[Hoffmann and Nebel 2001]. This form of action pruning may account for a key

difference between programs and humans in games such as Chess: while the former

consider all possible moves and responses (up to a certain depth), the latter focus on

the analysis and evaluation of a few moves and countermoves. Domain-independent

heuristics can account in principle for both the focus and the evaluation, the latter

in the value of the heuristic function h(s), the former in its structure.

1Some philosophers and cognitive scientists refer to this combinatorial problem as the ‘frame

problem’ in AI. This terminology, however, is not accurate. The frame problem in AI [McCarthy

and Hayes 1969] refers to the problem that arises in logical accounts of actions and change where

the description of the action effects does not suffice to capture what does not change. E.g., the

number of chairs in the room does not change if the bell rings. The frame problem is the problem

of capturing what does not change from a concise logical description of what changes [Ford and

Pylyshyn 1996].

37

Hector Geffner

7 AI and Cognitive Science: Past and Future

Pearl’s ideas on the mechanical discovery of heuristics has received renewed atten-

tion in the area of domain-independent planning where heuristic evaluation func-

tions, derived automatically from the problem encoding, are used to guide the search

for plans in large spaces. Heuristic search planners are powerful domain-independent

solvers that have been empirically tested over many large domains involving hundred

of actions and variables.

The developments in planning parallel those in other areas of AI and bear on the

relevance of Artificial Intelligence to the understanding of the human mind. AI and

Cognitive Science were twin disciplines until the 80’s, with AI looking to the human

mind for inspiration, and Cognitive Science looking to computation as a language

for modeling. The relationship between AI and Cognitive Science has changed,

however, and the two disciplines do not appear to be that close now. Below, I go

over some of the relevant changes that explain this divorce, and explain why, in spite

to them, AI remains and will likely remain critically relevant for understanding the

human mind, a premise that underlies and motivates the work of Judea Pearl and

others AI scientists.

A lot of work in AI until the 80’s was about writing programs capable of displaying

intelligence over ill-defined problems, either by appealing to introspection or by

interviewing an expert. Many good ideas came out from this work, yet few have

had a lasting scientific value. The methodological problem with the ‘knowledge-

based’ approach in AI was that the resulting programs were not robust and they

always appeared to be missing critical knowledge; either declarative (e.g., that men

don’t get pregnant), procedural (e.g., which rule or action to apply next), or both.

This situation led to an impasse in the 80’s, and to many debates and criticisms,

like that ‘good old fashioned AI’ is ‘rule application’ but human intelligence is not

[Haugeland 1993], that representation is not needed for intelligent behavior and gets

in the way [Brooks 1991], that subsymbolic neural networks and genetic algorithms

are the way to go [Rumelhart and McClelland 1986; Holland 1992], etc.

In part due to the perceived limitations of the knowledge-based approach and

the criticisms, and in part due to its own evolution, mainstream AI has changed

substantially since the 80’s. One of the key methodological changes is that many

researchers have moved from the early paradigm of writing programs for ill-defined

problems to writing solvers for well-defined mathematical models. These models

include Constraint Satisfaction Problems, Strips Planning, Bayesian Networks and

Partially Observable Markov Decision Processes, among others. Solvers are pro-

grams that take a compact description of a particular model instance (a planning

problem, a CSP instance, and so on) and automatically compute its solution. Un-

like the early AI programs, solvers are general as they must deal with any problem

that fits the model (any instance). Moreover, some of these models, like POMDPs,

are extremely expressive. The challenge in this research agenda is mainly com-

38

Heuristics, Planning and Cognition

putational: how to make these domain-independent solvers scale up to large and

interesting problems given that all these models are intractable in the worst case.

Work in these areas has uncovered techniques that accomplish this by automatically

recognizing and exploiting the structure of the problems at hand. In planning, these

techniques have to do with the automatic derivation and use of heuristic evaluation

functions; in SAT and CSPs, with constraint propagation and learning, while in

CSPs and Bayesian Networks, with the use of the underlying graphical structure.

The relevance of the early work in AI to Cognitive Science was based on intuition:

programs provided a way for specifying intuitions precisely and for trying them

out. The more recent work on domain-independent solvers is more technical and

experimental, and is focused not on reproducing intuitions but on scalability. This

may give the impression, confirmed by the current literature, that recent work in

AI is less relevant to Cognitive Science than work in the past. This impression,

however, may prove wrong on at least two grounds. First, intuition is not what

it used to be, and it is now regarded as the tip of an iceberg whose bulk is made

of massive amounts of shallow, fast, but unconscious inference mechanisms that

cannot be rendered explicit in the form of rules [Wilson 2002; Hassin, Uleman, and

Bargh 2005; Gigerenzer 2007]. Second, whatever these mechanisms are, they appear

to work pretty well and to scale up. This is no small feat, given that most methods,

whether intuitive or not, do not. Indeed, if the techniques that really scale up are not

that many, a plausible conjecture at this point, it may well be the case that the twin

goals of accounting reliably for the intuitions and of scaling up have a large overlap.

By focusing then on the study of meaningful models and the computational methods

for dealing with them effectively, AI may prove its relevance to human cognition

in ways that may go well beyond the rules, cognitive architectures, and knowledge

structures of the 80’s. Human Cognition, indeed, still provides the inspiration and

motivation for a lot of research in AI. The use of Bayesian Networks in Development

Psychology for understanding how children acquire and use causal relations [Gopnik,

Glymour, Sobel, Schulz, , Kushnir, and Danks 2004], and the use of Reinforcement

Learning algorithms in Neuroscience for interpreting the activity of dopamine cells

in the brain [Schultz, Dayan, and Montague 1997], are two examples of general AI

techniques that have made it recently into Cognitive Science. As AI focuses on

models and solvers able to scale up, more techniques are likely to follow. One such

candidate is the automatic derivation of heuristic functions as used in planning,

which like the research on Bayesian Networks, owes a lot to the work of Judea

Pearl.

References

Ballard, D., M. Hayhoe, P. Pook, and R. Rao (1997). Deictic codes for the em-

bodiment of cognition. Behavioral and Brain Sciences 20 (4), 723–742.

Bertsekas, D. (1995). Dynamic Programming and Optimal Control, Vols 1 and 2.

39

Hector Geffner

Athena Scientific.

Blum, A. and M. Furst (1995). Fast planning through planning graph analysis.

In Proceedings of IJCAI-95, pp. 1636–1642. Morgan Kaufmann.

Bonet, B. and H. Geffner (2000). Planning with incomplete information as heuris-

tic search in belief space. In Proc. of AIPS-2000, pp. 52–61. AAAI Press.

Bonet, B. and H. Geffner (2001). Planning as heuristic search. Artificial Intelli-

gence 129 (1–2), 5–33.

Bonet, B., G. Loerincs, and H. Geffner (1997). A robust and fast action selection

mechanism for planning. In Proceedings of AAAI-97, pp. 714–719. MIT Press.

Bonet, B., H. Palacios, and H. Geffner (2009). Automatic derivation of memory-

less policies and finite-state controllers using classical planners. In Proc. Int.

Conf. on Automated Planning and Scheduling (ICAPS-09).

Brooks, R. (1987). A robust layered control system for a mobile robot. IEEE J.

of Robotics and Automation 2, 14–27.

Brooks, R. (1991). Intelligence without representation. Artificial Intelli-

gence 47 (1–2), 139–159.

Chapman, D. (1989). Penguins can make cake. AI magazine 10 (4), 45–50.

Damasio, A. (1995). Descartes’ Error: Emotion, Reason, and the Human Brain.

Quill.

De Sousa, R. (1990). The rationality of emotion. MIT Press.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Dechter, R. and J. Pearl (1985). The anatomy of easy problems: a constraint-

satisfaction formulation. In Proc. International Joint Conference on Artificial

Intelligence (IJCAI-85), pp. 1066–1072.

Elster, J. (1999). Alchemies of the Mind: Rationality and the Emotions. Cam-

bridge University Press.

Evans, D. (2002). The search hypothesis of emotion. British J. Phil. Science 53,

497–509.

Evans, J. (2008). Dual-processing accounts of reasoning, judgment, and social

cognition. Annual Review of Pschycology 59, 255–258.

Fikes, R. and N. Nilsson (1971). STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence 1, 27–120.

Ford, K. and Z. Pylyshyn (1996). The robot’s dilemma revisited: the frame prob-

lem in artificial intelligence. Ablex Publishing.

Ghallab, M., D. Nau, and P. Traverso (2004). Automated Planning: theory and

practice. Morgan Kaufmann.

40

Heuristics, Planning and Cognition

Gigerenzer, G. (2007). Gut feelings: The intelligence of the unconscious. Viking

Books.

Gigerenzer, G. and P. Todd (1999). Simple Heuristics that Make Us Smart. Ox-

ford University Press.

Goldman, R. P. and M. S. Boddy (1996). Expressive planning and explicit knowl-

edge. In Proc. AIPS-1996.

Gopnik, A., C. Glymour, D. Sobel, L. Schulz, , T. Kushnir, and D. Danks (2004).

A theory of causal learning in children: Causal maps and Bayes nets. Psycho-

logical Review 111 (1), 3–31.

Hassin, R., J. Uleman, and J. Bargh (2005). The new unconscious. Oxford Uni-

versity Press, USA.

Haugeland, J. (1993). Artificial intelligence: The very idea. MIT press.

Hoffmann, J. and B. Nebel (2001). The FF planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research 14, 253–

302.

Holland, J. (1992). Adaptation in natural and artificial systems. MIT Press.

Kaelbling, L., M. Littman, and T. Cassandra (1998). Planning and acting in

partially observable stochastic domains. Artificial Intelligence 101 (1–2), 99–

134.

Kautz, H. and B. Selman (1996). Pushing the envelope: Planning, propositional

logic, and stochastic search. In Proc. AAAI, pp. 1194–1201.

Ketelaar, T. and P. M. Todd (2001). Framing our thoughts: Evolutionary psy-

chology’s answer to the computational mind’s dilemma. In H. Holcomb (Ed.),

Conceptual Challenges in Evolutionary Psychology. Kluwer.

Keyder, E. and H. Geffner (2008). Heuristics for planning with action costs re-

visited. In Proc. ECAI-08, pp. 588–592.

Mackworth, A. and E. C. Freuder (1985). The complexity of some polynomial

network consistency algorithms for constraint satisfaction problems. Artificial

Intelligence 25 (1), 65–74.

Mataric, M. J. (2007). The Robotics Primer. MIT Press.

McAllester, D. and D. Rosenblitt (1991). Systematic nonlinear planning. In Pro-

ceedings of AAAI-91, Anaheim, CA, pp. 634–639. AAAI Press.

McCarthy, J. and P. Hayes (1969). Some philosophical problems from the stand-

point of artificial intelligence. In Machine Intelligence 4, pp. 463–502. Edin-

burgh University Press.

McDermott, D. (1996). A heuristic estimator for means-ends analysis in planning.

In Proc. Third Int. Conf. on AI Planning Systems (AIPS-96).

41

Hector Geffner

McDermott, D. (1998). PDDL – the planning domain definition language. At

http://ftp.cs.yale.edu/pub/mcdermott.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

Newell, A., J. Shaw, and H. Simon (1958). Elements of a theory of human problem

solving. Psychology Review 23, 342–343.

Newell, A. and H. Simon (1963). GPS: a program that simulates human thought.

In E. Feigenbaum and J. Feldman (Eds.), Computers and Thought, pp. 279–

293. McGraw Hill.

Palacios, H. and H. Geffner (2007). From conformant into classical planning:

Efficient translations that may be complete too. In Proc. 17th Int. Conf. on

Planning and Scheduling (ICAPS-07).

Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierarchical

approach. In Proceedings of the National Conference on Artificial Intelligence

(AAAI-82), pp. 133–136.

Pearl, J. (1983). Heuristics. Addison Wesley.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-

mann.

Penberthy, J. and D. Weld (1992). UCPOP: A sound, complete, partially order

planner for ADL. In Proceedings KR’92.

Richter, S., M. Helmert, and M. Westphal (2008). Landmarks revisited. In Proc.

AAAI, pp. 975–982.

Rumelhart, D. and J. McClelland (Eds.) (1986). Parallel distributed processing:

explorations in the microstructure of cognition. Vol. 1. MIT Press.

Sacerdoti, E. (1975). The nonlinear nature of plans. In Proceedings of IJCAI-75,

Tbilisi, Georgia, pp. 206–214.

Schultz, W., P. Dayan, and P. Montague (1997). A neural substrate of prediction

and reward. Science 275 (5306), 1593–1599.

Sutton, R. and A. Barto (1998). Introduction to Reinforcement Learning. MIT

Press.

Tate, A. (1977). Generating project networks. In Proc. IJCAI, pp. 888–893.

Weld, D., C. Anderson, and D. Smith (1998). Extending Graphplan to handle

uncertainty and sensing actions. In Proc. AAAI-98, pp. 897–904. AAAI Press.

Wilson, T. (2002). Strangers to ourselves. Belknap Press.

Younes, H., M. Littman, D. Weissman, and J. Asmuth (2005). The first proba-

bilistic track of the international planning competition. Journal of Artificial

Intelligence Research 24, 851–887.

42

3

Mechanical Generation of Admissible

Heuristics

Robert Holte, Jonathan Schaeffer, and Ariel Felner

1 Introduction

This chapter takes its title from Section 4.2 of Judea Pearl’s landmark book Heuris-

tics [Pearl 1984], and explores how the vision outlined there has unfolded in the

quarter-century since its appearance. As the book’s title suggests, it is an in-depth

summary of classical artificial intelligence (AI) heuristic search, a subject to which

Pearl and his colleagues contributed substantially in the early 1980s.

The purpose of heuristic search is to find a least-cost path in a state space from

a given start state to a goal state. In principle, such problems can be solved by

classical shortest path algorithms, such as Dijkstra’s algorithm [Dijkstra 1959], but

in practice the state spaces of interest in AI are far too large to be solved in this way.

One of the seminal insights in AI was recognizing that even extremely large search

problems can be solved quickly if the search algorithm is provided with additional

information in the form of a heuristic function h(s) that estimates the distance

from any given state s to the nearest goal state [Doran and Michie 1966; Hart,

Nilsson, and Raphael 1968]. A heuristic function h(s) is said to be admissible if,

for every state s, h(s) is a lower bound on the true cost of reaching the nearest goal

from state s. Admissibility is desirable because it guarantees the optimality of the

solution found by the most widely-used heuristic search algorithms.

Most of the chapters in Heuristics contain mathematically rigorous definitions

and analysis. In contrast, Chapter 4 offers a conceptual account of where heuristic

functions come from, and a vision of how one might create algorithms for automat-

ically generating effective heuristics from a problem description. An early version

of the chapter had been published previously in the widely circulated AI Maga-

zine [Pearl 1983].

Chapter 4’s key idea is that distances in the given state space can be estimated

by computing exact distances in a “simplified” version of the state space. There

are many different ways a state space can be simplified. Pearl focused almost

exclusively on relaxation, which is done by weakening or eliminating one or more of

the conditions that restrict how one is allowed to move from one state to another.

For example, to estimate the driving distance between two cities, one can ignore

the constraint that driving must be done on roads. In this relaxed version of the

problem, the distance between two cities is simply the straight-line distance. It is

43

Kaoru
Text Box
Return to TOC

Robert Holte, Jonathan Schaeffer, and Ariel Felner1 2 34 5 6 78 9 1 0 1 11 2 1 3 1 4 1 5
5 9 7 1 43 1 1 0 1 54 1 1 82 1 3 1 2 6

Figure 1. 15-puzzle

easy to see, in general, that distances in a relaxed space cannot exceed distances

in the given state space, and therefore the heuristic functions defined in this way

are guaranteed to be admissible. An alternate way of looking at this is to view the

elimination of conditions as equivalent to adding new edges to the search graph.

Therefore, optimal solutions to the relaxed graph (with the additional edges) must

be a lower bound on the solution to the original problem.

As a second example of relaxation, consider the 15-puzzle shown in Figure 1,

which consists of a set of tiles numbered 1-15 placed in a 4 × 4 grid, leaving one

square in the grid unoccupied (called the “blank” and shown as a black square). The

only moves that are permitted are to slide a tile that is adjacent to the blank into

the blank position, effectively exchanging the tile with the blank. For example, four

moves are possible in the right-hand side of Figure 1: tile 10 can be moved down, tile

11 can be moved right, tile 8 can be moved left, and tile 12 can be moved up. To solve

the puzzle is to find a sequence of moves that transforms a given scrambled state

(right side of Figure 1) into a goal state (such as the one on the left). One possible

relaxation of the 15-puzzle state space can be defined by removing the restriction

that a tile must be adjacent to the blank to be moveable. In this relaxation any tile

can move from its current position to any adjacent position at any time, regardless

of whether the adjacent position is occupied or not. The number of moves required

to solve this relaxed version (called the Manhattan Distance) is clearly less than or

equal to the number of moves required to solve the 15-puzzle itself. Note that in

this case the relaxed state space has many more states than the original 15-puzzle

(many tiles can now occupy a single location) but it is easier to solve, at least for

humans (tiles move entirely independently of one another).

Pearl observes that in AI a state space is almost always defined implicitly by a set

of operators that describe a successor relation between states. Each operator has

a precondition defining the states to which it can be applied and a postcondition

describing how the operator changes the values of the variables used to describe a

state. This implies that relaxing a state space description by eliminating one or more

preconditions is a simple syntactic operation, and the set of all possible relaxations

of a state space description (by eliminating combinations of preconditions) is well-

defined and, in fact, easy to enumerate. Hence it is entirely feasible for a mechanical

44

Mechanical Generation of Admissible Heuristics

system to generate heuristic functions and, indeed, to search through the space of

heuristic functions defined by eliminating preconditions in all possible ways.

The mechanical search through a space of heuristic functions has as its goal, in

Pearl’s view, a heuristic function with two properties. First, the heuristic function

should return values that are as close to the true distances as possible (Chapter 6

in Heuristics justifies this). Second, the heuristic function must be efficiently com-

putable, otherwise the reduction in search effort that the heuristic function produces

might be outweighed by the increase in computation time caused by the calculation

of the heuristic function. Pearl saw the second requirement as the more difficult to

detect automatically and proposed that mechanically-recognizable forms of decom-

posability of the relaxed state space would be the key to mechanically generating

efficiently-computable heuristic functions. Pearl recognized that the search for a

good heuristic function might itself be quite time-consuming, but argued that this

cost was justified because it could be amortized over an arbitrarily large number

of problem instances that could all be solved much more efficiently using the same

heuristic function.

The preceding paragraphs summarize Pearl’s vision for how effective heuristics

might be generated automatically from a state space description. The remainder

of our chapter contains a brief look at the research efforts directed towards real-

izing Pearl’s vision. We conclude that Pearl correctly anticipated a fundamental

breakthrough in heuristic search in the general terms he set out in Chapter 4 of

Heuristics although not in all of its specifics. Our discussion is informal and the

ideas presented and their references are illustrative, not exhaustive.

2 The Vision Emerges

The idea of using a solution in a simplified state space to guide the search for a

solution in the given state space dates to the early days of AI [Minsky 1963] and was

first implemented and shown to be effective in the abstrips system [Sacerdoti 1974].

However, these early methods did not use the cost of the solution in the simplified

space as a heuristic function; they used the solution itself as a skeleton which was to

be refined into a solution in the given state space by inserting additional operators.

The idea of using distances in a simplified space as heuristic estimates of dis-

tances in the given state space came later. It did not originate with Judea Pearl

(in fact, he credits Stan Rosenschein for drawing the idea to his attention). How-

ever, by devoting a chapter of his otherwise technical book to the speculative idea

that admissible heuristic functions could be created automatically, he became an

important early promoter of it.

The idea was first developed in the Milan Polytechnic Artificial Intelligence

Project in the period 1973-1979. In a series of papers (e.g. [Sangiovanni-Vincentelli

and Somalvico 1973; Guida and Somalvico 1979]) the Milan group developed the

core elements of Pearl’s vision. They proposed defining a heuristic function as

the exact distance in a relaxed state space and proved that such heuristic func-

45

Robert Holte, Jonathan Schaeffer, and Ariel Felner

tions would be both admissible and consistent.1 To make the computation of such

heuristic functions efficient the Milan group envisaged a hierarchy of relaxed spaces,

with search at one level being guided by a heuristic function defined by distances

in the level above. The Milan group also foresaw the possibility of algorithms for

searching through the space of possible simplified state spaces, although the first

detailed articulation of this idea, albeit in a somewhat different context, was by

Richard Korf [1980].

John Gaschnig [1979] picked up on the Milan work. He made the key observation

that if a heuristic function is calculated by searching in a relaxed space, the total

time required to solve the problem using the heuristic function could exceed the

time required to solve the problem directly with breadth-first search (i.e. without

using the heuristic function). This was formally proven shortly afterwards by Marco

Valtorta [1981, 1984]. This observation led to a focus on the efficiency with which

distances in the simplified space could be computed. The favorite approach to doing

this (as exemplified in Heuristics) was to search for simplified spaces that could be

decomposed.

3 The Vision Becomes a Reality

Directly inspired by Pearl’s vision, Jack Mostow and Armand Prieditis set them-

selves the task of automating what had hitherto been paper-and-pencil speculation.

The result was their absolver system [Mostow and Prieditis 1989; Prieditis 1993],

which fully vindicated Pearl’s enthusiasm for the idea of mechanically generating

effective, admissible heuristics.

The input to absolver was a state space description in the standard strips

notation [Fikes and Nilsson 1971]. absolver had a library containing two types

of transformations, each of which would take as input a strips representation of a

state space and produce as output one or more other strips representations. The

first type of transformation were abstracting transformations. Their purpose was to

create a simplification (or “abstraction”) of the given state space. One of these was

drop precondition, exactly as Pearl had proposed. Their other abstracting trans-

formations were a type of simplification that Pearl had not anticipated—they were

homomorphisms, which are many-to-one mappings of states in the given space to

states in the abstract space. Homomorphic state space abstractions for the purpose

of defining heuristic functions were first described by Dennis Kibler in an unpub-

lished report [1982], but their importance was not appreciated until absolver and

the parallel work done by Keki Irani and Suk Yoo [1988].

An example of a homomorphic abstraction of the 15-puzzle is shown in Figure 2.

Here tiles 9-15 and the blank are just as in the original puzzle (Figure 1) but tiles 1-8

have had their numbers erased so that they are not distinguishable from each other.

Hence for any particular placement of tiles 9-15 and the blank, all the different ways

1Heuristic function h(s) is consistent if, for any two states s1 and s2, h(s1) ≤ dist(s1, s2)+h(s2),

where dist(s1, s2) is the distance from s1 to s2.

46

Mechanical Generation of Admissible Heuristics

9 1 0 1 11 2 1 3 1 4 1 5
9 1 41 0 1 51 11 3 1 2

Figure 2. Homomorphic abstraction of the 15-puzzle

of permuting tiles 1-8 among the remaining positions produce 15-puzzle states that

map to the same abstract state, even though they would all be distinct states in the

original state space. For example, the abstract state in the left part of Figure 2 is

the abstraction of the goal state in the original 15-puzzle (left part of Figure 1), but

it is also the abstraction of all the non-goal states in the original puzzle in which

tiles 9-15 and the blank are in their goal positions but some or all of tiles 1-8 are

not. Using this abstraction, the distance from the 15-puzzle state in the right part

of Figure 1 to the 15-puzzle goal state would be estimated by calculating the true

distance, in the abstract space, from the abstract state in the right part of Figure 2

to the state in the left part of Figure 2.

In addition to abstracting transformations, absolver’s library contained “opti-

mizing” transformations, which would create an equivalent description of a given

strips representation in which search could be completed more quickly. This in-

cluded the “factor” transformation that would, if possible, decompose the state

space into independent subproblems, one of the methods Pearl had suggested.

absolver was applied to thirteen state spaces and found effective heuristic func-

tions in six of them. Five of the functions it discovered were novel, including a

simple, effective heuristic for Rubik’s Cube that had been overlooked by experts:

after extensive study, Korf was unable to find a single good heuristic

evaluation function for Rubik’s Cube [Korf 1985]. He concluded that “if

there does exist a heuristic, its form is probably quite complex.”

([Mostow and Prieditis 1989], page 701)

4 Dawn of the Modern Era

Despite absolver’s success, it did not launch the modern era of abstraction-based

heuristic functions. That would not happen until 1994, when Joe Culberson and

Jonathan Schaeffer’s work on pattern databases (PDBs) first appeared [Culberson

and Schaeffer 1994]. They used homomorphic abstractions of the kind illustrated in

Figure 2 and, as explained above, defined the heuristic function, h(s), of state s to be

the actual distance in the abstract space between the abstract state corresponding

to s and the abstract goal. The key idea behind PDBs is to store the heuristic

function as a lookup table so that its calculation during a search is extremely fast.

47

Robert Holte, Jonathan Schaeffer, and Ariel Felner

To do this, it is necessary to precompute all the distances to the goal state in the

abstract space. This is typically done by a backwards breadth-first search starting

at the abstract goal state. Each abstract state reached in this way is associated with

a specific storage location in the PDB, and the state’s distance from the abstract

goal is stored in this location as the value in the PDB.

Precomputing abstract distances to create a lookup-table heuristic function was

actually one of the optimizing transformations in absolver, but Culberson and

Schaeffer had independently come up with the idea. Unlike the absolver work,

they validated it by producing a two orders of magnitude reduction in the search

effort (measured in nodes expanded) needed to solve instances of the 15-puzzle, as

compared to the then state-of-the-art search algorithms using an enhanced Man-

hattan Distance heuristic. To achieve this they used two PDBs totaling almost one

gigabyte of memory, a very large amount in 1994 when the experiments were per-

formed [Culberson and Schaeffer 1994]. The paper’s referees were sharply critical of

the exorbitant memory usage, rejecting the paper three times before it finally was

accepted [Culberson and Schaeffer 1996].

Such impressive results on the 15-puzzle could not go unnoticed. The fundamen-

tal importance of PDBs was established beyond doubt in 1997 when Richard Korf

used PDBs to enable standard heuristic search techniques to find optimal solutions

to instances of Rubik’s Cube for the first time [Korf 1997].

Since then, PDBs have been used to build effective heuristic functions in numer-

ous applications, including various combinatorial puzzles [Felner, Korf, and Hanan

2004; Felner, Korf, Meshulam, and Holte 2007; Korf and Felner 2002], multiple se-

quence alignment [McNaughton, Lu, Schaeffer, and Szafron 2002; Zhou and Hansen

2004], pathfinding [Anderson, Holte, and Schaeffer 2007], model checking [Edelkamp

2007], planning [Edelkamp 2001; Edelkamp 2002; Haslum, Botea, Helmert, Bonet,

and Koenig 2007], and vertex cover [Felner, Korf, and Hanan 2004].

5 Current Status

The use of abstraction to create heuristic functions has profoundly advanced the

fields of planning and heuristic search. But the current state of the art is not

entirely as Pearl envisaged. Although he recognized that there were other types

of state space abstraction, Pearl emphasized relaxation. In this detail, he was

too narrowly focused. Researchers have largely abandoned relaxation in favor of

homomorphic abstractions, of which many types have been developed and shown

useful for defining heuristic functions, such as domain abstraction [Hernádvölgyi

and Holte 2000], h-abstraction [Haslum and Geffner 2000], projection [Edelkamp

2001], constrained abstraction [Haslum, Bonet, and Geffner 2005], and synchronized

products [Helmert, Haslum, and Hoffmann 2007].

Pearl argued for the automatic creation of effective heuristic functions by search-

ing through a space of abstractions. There has been some research in this direc-

tion [Prieditis 1993; Hernádvölgyi 2003; Edelkamp 2007; Haslum, Botea, Helmert,

48

Mechanical Generation of Admissible Heuristics

Bonet, and Koenig 2007; Helmert, Haslum, and Hoffmann 2007], but more is needed.

However, important progress has been made on the subproblem of evaluating the

effectiveness of a heuristic function, with the development of a generic, practi-

cal method for accurately predicting how many nodes IDA* (a standard heuristic

search algorithm) will expand for any given heuristic function [Korf and Reid 1998;

Korf, Reid, and Edelkamp 2001; Zahavi, Felner, Burch, and Holte 2008].

Finally, Pearl anticipated that efficiency in calculating the heuristic function

would be achieved by finding abstract state spaces that were decomposable in some

way. This has not come to pass, although there is now a general theory of when it is

admissible to add the values returned by two or more different abstractions [Yang,

Culberson, Holte, Zahavi, and Felner 2008]. Instead, the efficiency of the heuristic

calculation has been achieved either by precomputing the heuristic function’s values

and storing them in a lookup table, as PDBs do, or by creating a hierarchy of

abstractions and using distances at one level as a heuristic function to guide the

calculation of distances at the level below [Holte, Perez, Zimmer, and MacDonald

1996; Holte, Grajkowski, and Tanner 2005], as anticipated by the Milan group.

6 Conclusion

Judea Pearl has received numerous accolades for his prodigious research and its

impact. Amidst this impressive body of work are his often-overlooked contributions

to the idea of the automatic discovery of heuristic functions. Even though Heuristics

is over 25 years old (ancient by Computing Science standards), Pearl’s ideas still

resonate today.

Acknowledgments: The authors gratefully acknowledge the support they have

received over the years for research in this area from Canada’s Natural Sciences and

Engineering Research Council (NSERC), Alberta’s Informatics Circle of Research

Excellence (iCORE), and the Israeli Science Foundation (ISF).

References

Anderson, K., R. Holte, and J. Schaeffer (2007). Partial pattern databases. In

Symposium on Abstraction, Reformulation and Approximation, pp. 20–34.

Springer-Verlag LNAI #4612.

Culberson, J. and J. Schaeffer (1994). Efficiently searching the 15-puzzle. Tech-

nical Report 94-08, Department of Computing Science, University of Alberta.

Culberson, J. and J. Schaeffer (1996). Searching with pattern databases. In

G. McCalla (Ed.), AI’96: Advances in Artificial Intelligence, pp. 402–416.

Springer-Verlag LNAI #1081.

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Nu-

merische Mathematik 1, 269–271.

Doran, J. and D. Michie (1966). Experiments with the graph traverser program.

In Proceedings of the Royal Society A, Volume 294, pp. 235–259.

49

Robert Holte, Jonathan Schaeffer, and Ariel Felner

Edelkamp, S. (2001). Planning with pattern databases. In European Conference

on Planning, pp. 13–24.

Edelkamp, S. (2002). Symbolic pattern databases in heuristic search planning. In

Artificial Intelligence Planning and Scheduling (AIPS), pp. 274–283.

Edelkamp, S. (2007). Automated creation of pattern database search heuristics. In

Model Checking and Artificial Intelligence, pp. 35–50. Springer-Verlag LNAI

#4428.

Felner, A., R. Korf, and S. Hanan (2004). Additive pattern database heuristics.

Journal of Artificial Intelligence Research (JAIR) 22, 279–318.

Felner, A., R. Korf, R. Meshulam, and R. Holte (2007). Compressed pattern

databases. Journal of Artificial Intelligence Research (JAIR) 30, 213–247.

Fikes, R. and N. Nilsson (1971). STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence 2 (3/4), 189–208.

Gaschnig, J. (1979). A problem similarity approach to devising heuristics: First

results. In International Joint Conference on Artificial Intelligence (IJCAI),

pp. 301–307.

Guida, G. and M. Somalvico (1979). A method for computing heuristics in prob-

lem solving. Information Sciences 19, 251–259.

Hart, P., N. Nilsson, and B. Raphael (1968). A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics SCC-4(2), 100–107.

Haslum, P., B. Bonet, and H. Geffner (2005). New admissible heuristics for

domain-independent planning. In National Conference on Artificial Intelli-

gence (AAAI), pp. 1163–1168.

Haslum, P., A. Botea, M. Helmert, B. Bonet, and S. Koenig (2007). Domain-

independent construction of pattern database heuristics for cost-optimal plan-

ning. In National Conference on Artificial Intelligence (AAAI), pp. 1007–

1012.

Haslum, P. and H. Geffner (2000). Admissible heuristics for optimal planning. In

Artificial Intelligence Planning and Scheduling (AIPS), pp. 140–149.

Helmert, M., P. Haslum, and J. Hoffmann (2007). Flexible abstraction heuristics

for optimal sequential planning. In Automated Planning and Scheduling, pp.

176–183.

Hernádvölgyi, I. (2003). Solving the sequential ordering problem with automati-

cally generated lower bounds. In Operations Research 2003 (Heidelberg, Ger-

many), pp. 355–362.

Hernádvölgyi, I. and R. Holte (2000). Experiments with automatically created

memory-based heuristics. In Symposium on Abstraction, Reformulation and

Approximation, pp. 281–290. Springer-Verlag LNAI #1864.

50

Mechanical Generation of Admissible Heuristics

Holte, R., J. Grajkowski, and B. Tanner (2005). Hierarchical heuristic search

revisited. In Symposium on Abstraction, Reformulation and Approximation,

pp. 121–133. Springer-Verlag LNAI #3607.

Holte, R., M. Perez, R. Zimmer, and A. MacDonald (1996). Hierarchical A*:

Searching abstraction hierarchies efficiently. In National Conference on Arti-

ficial Intelligence (AAAI), pp. 530–535.

Irani, K. and S. Yoo (1988). A methodology for solving problems: Problem mod-

eling and heuristic generation. IEEE Transactions on Pattern Analysis and

Machine Intelligence 10 (5), 676–686.

Kibler, D. (1982). Natural generation of admissible heuristics. Technical Report

TR-188, University of California at Irvine.

Korf, R. (1980). Towards a model of representation changes. Artificial Intelli-

gence 14 (1), 41–78.

Korf, R. (1985). Learning to solve problems by searching for macro-operators.

Marshfield, MA, USA: Pitman Publishing, Inc.

Korf, R. (1997). Finding optimal solutions to Rubik’s Cube using pattern

databases. In National Conference on Artificial Intelligence (AAAI), pp. 700–

705.

Korf, R. and A. Felner (2002). Disjoint pattern database heuristics. Artificial

Intelligence 134 (1-2), 9–22.

Korf, R. and M. Reid (1998). Complexity analysis of admissible heuristic search.

In National Conference on Artificial Intelligence (AAAI), pp. 305–310.

Korf, R., M. Reid, and S. Edelkamp (2001). Time complexity of iterative-

deepening-A*. Artificial Intelligence 129 (1-2), 199–218.

McNaughton, M., P. Lu, J. Schaeffer, and D. Szafron (2002). Memory efficient

A* heuristics for multiple sequence alignment. In National Conference on

Artificial Intelligence (AAAI), pp. 737–743.

Minsky, M. (1963). Steps toward artificial intelligence. In E. Feigenbaum and

J. Feldman (Eds.), Computers and Thought, pp. 406–452. McGraw-Hill.

Mostow, J. and A. Prieditis (1989). Discovering admissible heuristics by abstract-

ing and optimizing: A transformational approach. In International Joint Con-

ference on Artificial Intelligence (IJCAI), pp. 701–707.

Pearl, J. (1983). On the discovery and generation of certain heuristics. AI Mag-

azine 4 (1), 23–33.

Pearl, J. (1984). Heuristics – Intelligent Search Strategies for Computer Problem

Solving. Addison-Wesley.

Prieditis, A. (1993). Machine discovery of effective admissible heuristics. Machine

Learning 12, 117–141.

51

Robert Holte, Jonathan Schaeffer, and Ariel Felner

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces. Artificial

Intelligence 5 (2), 115–135.

Sangiovanni-Vincentelli, A. and M. Somalvico (1973). Theoretical aspects of state

space approach to problem solving. In International Congress on Cybernetics,

Namur, Belgium.

Valtorta, M. (1981). A Result on the Computational Complexity of Heuristic Es-

timates for the A* Algorithm. Ph.D. thesis, Department of Computer Science,

Duke University.

Valtorta, M. (1984). A result on the computational complexity of heuristic esti-

mates for the A* algorithm. Information Sciences 55, 47–59.

Yang, F., J. Culberson, R. Holte, U. Zahavi, and A. Felner (2008). A general

theory of additive state space abstractions. Journal of Artificial Intelligence

Research (JAIR) 32, 631–662.

Zahavi, U., A. Felner, N. Burch, and R. Holte (2008). Predicting the performance

of IDA* with conditional probabilities. In National Conference on Artificial

Intelligence (AAAI), pp. 381–386.

Zhou, R. and E. Hansen (2004). Space-efficient memory-based heuristics. In Na-

tional Conference on Artificial Intelligence (AAAI), pp. 677–682.

52

4

Space Complexity of Combinatorial Search

Richard E. Korf

1 Introduction: The Problem

It is well-known that most complete search algorithms take exponential time to run

on most combinatorial problems. The reason for this is that many combinatorial

problems are NP-hard, and most complete search algorithms guarantee an opti-

mal solution, so unless P=NP, the time complexity of these algorithms must be

exponential in the problem size.

What is not so often appreciated is that the limiting resource of many search

algorithms is not time, but the amount of memory they require. For example, a

simple brute-force breadth-first search (BFS) of an implicit problem space stores

every node it generates in memory. If we assume we can generate ten million nodes

per second, can store a node in four bytes of memory, and have four gigabytes

of memory, we will exhaust our memory in a hundred seconds, or less than two

minutes. If our problem is too large to be solved in this amount of time, the

memory limitation becomes the bottleneck.

This problem has existed since the first computers were built. While memory

capacities have increased by many orders of magnitude over that time, processors

have gotten faster at roughly the same pace, and the problem persists. We describe

here the major approaches to this problem over the past 25 years. While most

of the algorithms discussed have both brute-force and heuristic versions, we focus

primarily on the brute-force algorithms, since they are simpler, and the issues are

largely the same in both cases.

2 Depth-First Search

One solution to this problem in some settings is depth-first search (DFS), which

requires memory that is only linear in the maximum search depth. The reason

is that at any point in time, it saves only the path from the start node to the

current node being expanded, either on an explicit node stack, or on the call stack

of a recursive implementation. As a result, the memory requirement of DFS is

almost never a limitation. For finite tree-structured problem space graphs, where

all solutions are equally desirable, DFS solves the memory problem. For example,

chronological backtracking is a DFS for constraint satisfaction problems, and does

not suffer any memory limitations in practice.

With an infinite search tree, or when we want a shortest solution path, however,

DFS has significant drawbacks. In an infinite search tree, which can result from a

53

Kaoru
Text Box
Return to TOC

Richard E. Korf

depth-first search of a finite graph with multiple paths to the same state, DFS is not

complete, but can traverse a single path until it exhausts memory. For example,

the problem space graphs of the well-known sliding-tile puzzles are finite, but a

depth-first search of these spaces explores a tree-expansion of the graph, which is

infinite. Even with a finite search tree, the first solution found by DFS will not be

a shortest solution in general.

3 Iterative Deepening

3.1 Depth-First Iterative Deepening

One solution to these limitations of DFS is depth-first iterative-deepening (DFID)

[Korf 1985a]. DFID performs a series of depth-first searches, each to a successively

greater depth. DFID simulates BFS, but using memory that is only linear in the

maximum search depth. It is guaranteed to find a solution if one exists, even on an

infinite tree, and the first solution it finds will be a shortest one.

DFID is essentially the same as iterative-deepening searches used in two-player

game programs [Slate and Atkin 1977], but is used to solve a completely different

problem. In a two-player game, iterative deepening is used to determine the search

depth, because moves must be made within a given time period, and it is difficult

to predict how long it will take to search to a given depth. In contrast, DFID is

applied to single-agent problems where a shortest solution is required, in order to

avoid the memory limitation of BFS.

DFID first appeared in a Columbia University technical report [Korf 1984]. It was

independently published in two different papers in IJCAI-85 [Korf 1985b; Stickel

and Tyson 1985], and called “consecutively bounded depth-first search” in the latter.

3.2 Iterative-Deepening-A*

While discussing DFID with Judea Pearl on a trip to UCLA in 1984, he suggested

its extension to heuristic search that became Iterative-Deepening-A* (IDA*) [Korf

1985a]. IDA* overcomes the memory limitation of the A* algorithm [Hart, Nilsson,

and Raphael 1968] for heuristic searches the same way that DFID overcomes the

memory limitation of BFS for brute-force searches. In particular, it uses the A*

cost function of f(n) = g(n)+h(n), where g(n) is the cost of the current path from

the root to node n, and h(n) is a heuristic estimate of the lowest cost of any path

from node n to a goal node. IDA* performs a series of depth-first search iterations,

where each branch of the search is terminated when the cost of the last node on that

branch exceeds a cost threshold for that iteration. The cost threshold of the first

iteration is set to the heuristic estimate of the start state, and the cost threshold of

each successive iteration is set to the minimum cost of all nodes generated but not

expanded on the previous iteration. Like A*, IDA* guarantees an optimal solution

if the heuristic function is admissible, or never overestimates actual cost. IDA*

was the first algorithm to find optimal solutions to the Fifteen Puzzle, the famous

four-by-four sliding-tile puzzle [Korf 1985a]. It was also the first algorithm to find

54

Space Complexity

optimal solutions to Rubik’s Cube [Korf 1997].

I invited Judea to be a co-author on both the IJCAI paper [Korf 1985b], and a

subsequent AI journal paper [Korf 1985a] that described both DFID and IDA*. At

the time, I was a young assistant professor, and he declined the co-authorship with

typical generosity, saying that he didn’t need another paper, and that the paper

would be much more important to me at that stage of my career. In retrospect, I

regret that I didn’t insist on joint authorship.

4 Other Limited-Memory Search Algorithms

A number of researchers noted that linear-space search algorithms such as DFID

and IDA* use very little space in practice, and explored whether better performance

could be achieved by using all the memory available on a machine.

Perhaps the simplest of these algorithms is MREC [Sen and Bagchi 1989]. MREC

is a hybrid of A* and IDA*. It runs A* until memory is almost full, and then runs

successive iterations of IDA* from each node generated but not expanded by A*.

Perhaps the most elegant of these algorithms is MA* [Chakrabarti, Ghose, Acharya,

and de Sarkar 1989]. MA* also runs A* until memory is almost full. Then, in order

to get enough memory to expand the best node, it finds a group of sibling leaf nodes

with the worst cost values, and deletes them, leaving behind only their parent node,

with a stored cost equal to the minimum of its children’s values. The algorithm

alternates between expanding the best nodes, and contracting the worst nodes, until

a solution is chosen for expansion.

Unfortunately, the overhead of this algorithm makes it impractical compared to

IDA*. There have been at least two attempts to make this basic algorithm more

efficient, namely SMA* for simplified MA* [Russell 1992] and ITS for Iterative

Threshold Search [Ghosh, Mahanti, and Nau 1994], but none of these algorithms

significantly outperform IDA*.

5 Recursive Best-First Search

Best-first search is a general class of search algorithms that maintains both a Closed

list of expanded nodes, and an Open list of nodes that have been generated but not

yet expanded. Initially, the Open list contains just the start node, and the Closed

list is empty. Each node n on Open has an associated cost f(n). At each step of

the algorithm, an Open node of lowest cost is chosen for expansion, moved to the

Closed list, and its children are placed on Open along with their associated costs.

The algorithm continues until a goal node is chosen for expansion. Different best-

first search algorithms differ only in their cost functions. For example, if the cost

of a node is simply its depth, then best-first search becomes breadth-first search.

Alternatively, if the cost of a node n is f(n) = g(n) + h(n), then best-first search

becomes the A* algorithm.

A cost function is monotonic if the cost of a child node is always greater than

or equal to the cost of its parent. The cost function g(n) is monotonic if all edges

55

Richard E. Korf

have non-negative cost. The A* cost function f(n) = g(n) + h(n) is monotonic

if the heuristic function h(n) is consistent, meaning that h(n) ≤ k(n, n′) + h(n′),

where n′ is a child of node n, and k(n, n′) is the cost of the edge from n to n′.

Many heuristic functions are both admissible and consistent. If the cost function is

monotonic, then the order in which nodes are first expanded by IDA* is the same

as for a best-first search with the same cost function.

Not all useful cost functions are monotonic, however. For example, Weighted

A* (WA*) is a best-first search with the cost function f(n) = g(n) + w ∗ h(n).

If w is greater than one, then WA* usually finds solutions much faster than A*,

but at a small cost in solution quality. With w greater than one, however, f(n) =

g(n)+w∗h(n) is not monotonic, even with a consistent h(n). With a non-monotonic

cost-function, IDA* does not expand nodes in best-first order. In particular, in parts

of the search tree where the cost of nodes is lower than the cost threshold for the

current iteration, IDA* behaves as a brute-force search, expanding nodes in the

order in which they are generated.

Can any linear-space search algorithm simulate a best-first search with a non-

monotonic cost function? Surprisingly, the answer is yes. Recursive best-first search

[Korf 1993] (RBFS) maintains a path from the start node to the last node generated,

along with the siblings of nodes on that path. Stored with each node is a cost value.

If the node has never been expanded before, its stored cost is its original cost. If it

has been expanded before, its stored cost is the minimum cost of all its descendents

that have been generated but not yet expanded, which are not stored in memory.

The sibling node off the current path of lowest cost is the ancestor of the next leaf

node that would be expanded by a best-first search. By propagating these values

up the tree, and inheriting these values down the tree as a previously explored

path is regenerated, RBFS always finds the next leaf node expanded by a best-

first search. Thus, it simulates a best-first search even with a non-monotonic cost

function. Furthermore, with a monotonic cost function it can outperform IDA* if

there are many different unique cost values in the search tree. For details on RBFS,

see [Korf 1993].

6 Drawback of Linear-Space Search Algorithms

The advantage of linear-space searches, such as DFS, DFID, IDA* and RBFS, is

that they use very little memory, and hence can run for weeks or months on large

problems. They all share a significant liability relative to best-first searches such

as BFS, A* or WA*, however. In particular, on search graphs with multiple paths

to the same node, or cycles in the graph, linear-space algorithms can generate

exponentially more nodes than best-first search.

For example, consider a rectangular grid problem-space graph. From any node

in such a graph, moving North and then East generates the same state as moving

East and then North. These are referred to as duplicate nodes, since they represent

the same state arrived at via two different paths. When a best-first search is run on

56

Space Complexity

such a graph, as each node is generated it is checked to see if the same state already

appears on the Open or Closed lists. If so, only the node reached by a shortest path

is stored, and the duplicate node is eliminated. Thus, by detecting and rejecting

such duplicate nodes, a breadth-first search to a radius of r on a grid graph would

expand O(r2) nodes.

A linear-space algorithm doesn’t store most of the nodes it generates however,

and hence cannot detect most duplicate nodes. In a grid graph, each node has

four neighbors. A linear-space search will not normally regenerate its immediate

parent as one of its children, reducing the number of children to three for all but

the start node. Thus, a depth-first search of a grid graph to a radius r will generate

O(3r) nodes, compared to O(r2) nodes for a best-first search. This is an enormous

overhead on graphs with many paths to the same state, rendering linear-space

algorithms completely impractical in such problem spaces.

7 Frontier Search

Fortunately, there is another technique that can significantly reduce the memory

required by a search algorithm on problem spaces with many duplicate nodes. The

basic idea is to save only the Open list and not the Closed list. This algorithm

schema is called frontier search, since the Open list represents the frontier of nodes

that have been generated but not yet expanded [Korf, Zhang, Thayer, and Hohwald

2005]. When a node is expanded in frontier search, it is simply deleted rather than

being moved to a Closed list.

The advantage of this technique is that the Open list can be much smaller than

the Closed list. In the grid graph, for example, the Closed list grows as O(r2),

whereas the Open list grows only as O(r), where r is the radius of the search.

For ease of explanation, we’ll assume a problem space with reversible operators,

but the method also applies to some directed problem-space graphs as well. There

are two reasons to save the Closed list. One is to detect duplicate nodes, and the

other is to return the solution path. We first consider duplicate detection.

7.1 Detecting Duplicate Nodes

Imagine the search frontier as a continuous boundary of Open nodes containing a

region of Closed nodes. To minimize the memory needed, we need to prevent Closed

nodes from being regenerated. There are two ways that this might happen. One is

by a child node regenerating its parent node. This is prevented in frontier search

by storing with each Open node a used-operator bit for each operator that could

generate that node. This bit is set to one whenever the corresponding operator is

used to generate the Open node. When an Open node is expanded, the inverses of

those operators whose used bits are set to one are not applied, thus preventing a

node from regenerating its parent.

The other way a Closed node could be regenerated is by the frontier looping back

on itself, like a wave breaking through the surface of the water below. If the frontier

57

Richard E. Korf

is unbroken, when this happens the Open node being expanded would first have to

generate another Open node on the frontier of the search before generating a Closed

node on the interior. When this happens, the duplicate Open node is detected, and

the the union of the used operator bits set in each of the two copies is stored with

the single copy retained. In other words, one part of the frontier cannot invade

another part of the interior without passing through another part of the frontier

first, where the intrusion is detected. By storing and managing such used-operator

bits, frontier search detects all duplicate node generations and prevents a node from

being expanded more than once.

An alternative to used-operator bits is to save several levels of the search at a

time [Zhou and Hansen 2003]. In particular, Closed nodes are stored until all their

children are expanded, and then deleted.

7.2 Reconstructing the Solution Path

The other reason to store the Closed list is to reconstruct the solution path at the

end of a search. In a best-first search, this is done by storing with each node a

pointer to its parent node. Once a goal state is reached, these pointers are followed

back from the goal to the initial state, generating the solution path in reverse order.

This can’t be done with frontier search directly, since the Closed list is not saved.

Frontier search can reconstruct the solution path using divide-and-conquer bidi-

rectional frontier search. We search simultaneously both forward from the initial

state and backward from the goal state. When the two search frontiers meet and a

“middle” state on a optimal path has been found, we then use the same algorithm

recursively to search from the initial state to the middle state, and from the middle

node to the goal node.

The solution path can also be constructed using unidirectional search, as long

as one can identify nodes that are approximately half way along an optimal path.

For example, the problem of two-way sequence alignment in computational biology

can be mapped to finding a shortest path in a two-dimensional grid [Needleman

and Wunsch 1970]. In such a path, a state on the midline of the grid will be about

half way along an optimal solution. In such a problem, we search forward from the

initial state to the goal state. For every node on the Open list past the midpoint

of the grid, we store a pointer to its ancestor on the midpoint. Once we reach the

goal state, its ancestor on the midline is approximately in the middle of the optimal

solution path. We then recursively apply the same algorithm to find a path from

the initial state to the middle state, and from the middle state to a goal state.

Tree-structured search spaces and densely connected graphs such as grids rep-

resent two ends of the connectivity spectrum. On a tree, linear-space search algo-

rithms perform very well, since they generate no duplicate nodes. Frontier search

doesn’t save much memory on a tree, however, since the number of leaf nodes

dominates the number of interior nodes. Conversely, on a grid graph, linear-space

search performs very poorly because undetected duplicate nodes dwarf the number

58

Space Complexity

of unique nodes, while frontier search performs very well, reducing the memory

required from quadratic to linear space.

8 Disk-Based Search

Even on problems where frontier search is effective, memory is still the resource

that limits its applicability. An additional approach to this memory limitation is

to use magnetic disk to store nodes rather than semiconductor memory. While

semiconductor memory has gotten much larger and cheaper over time, it still costs

about $30 per gigabyte. In contrast, magnetic disk storage costs about $100 per

terabyte, which is 300 times cheaper. The problem with simply replacing semicon-

ductor memory with magnetic disks, however, is that random access of a byte on

disk can take up to ten milliseconds, which is five orders of magnitude slower than

for memory. Thus, disk access must be sequential for efficiency.

Consider a simple breadth-first search (BFS), which is usually implemented with

a first-in first-out queue. Nodes are read from the head of the queue, expanded,

and their children are written to the tail of the queue. Such a queue can efficiently

be stored on disk, since all accesses are sequential.

In order to detect duplicate nodes efficiently, however, the nodes are also stored

in a hash table. Nodes are looked up in the hash table as they are generated, and

duplicate nodes are discarded. Such a hash table cannot be directly implemented

on magnetic disk, however, due to the long latency of random access.

A solution to this problem is called delayed duplicate detection [Korf 2008] or DDD

for short. The BFS queue is stored on disk, but nodes are not checked for duplicates

as they are generated. Rather, duplicate nodes are appended to the queue, and are

only eliminated periodically, such as at the end of each depth iteration. There are

several ways to eliminate duplicate nodes from a large file stored on disk.

The simplest way is to sort the nodes based on their state representation. This

will bring duplicate nodes to adjacent positions. Then, a simple linear scan of the

file can be used to detect and merge duplicate nodes. The drawback of this approach

is that the sorting takes O(n log n) time, where n is the number of nodes. With a

terabyte of storage, and four bytes per state, n can be as large as 250 billion, and

hence log n as large as 38.

An alternative is to use hash-based DDD. This scheme relies on two orthogonal

hash functions defined on the state representation. In the first phase, the input file

is read, and nodes are output to separate files based on the value of the first hash

function. Thus, any sets of duplicate node will be confined to the same file. In

the second phase, the nodes in each individual file are hashed into memory using

the second hash function, and duplicates are detected and merged in memory. The

advantage of this approach is that the time complexity is only linear in the number

of nodes, rather than O(n log n) time for sorting-based DDD.

The overall DDD algorithm proceeds in alternating phases of node expansion

followed by merging duplicate nodes. Combined with frontier search, DDD has

59

Richard E. Korf

been used to perform complete breadth-first searches of sliding-tile puzzles as large

as the Fifteen Puzzle, with over 1013 nodes [Korf and Schultze 2005]. It has also

been used for large heuristic searches of the four-peg Towers of Hanoi problem with

up to 31 disks, generating over 2.5 × 1013 nodes [Korf and Felner 2007]. These

searches take weeks to run, and time is the limiting resource, not storage capacity.

An alternative to DDD for disk-based search is called structured duplicate de-

tection (SDD) [Zhou and Hansen 2004]. In this approach, the problem space is

partitioned into subsets, so that when expanding nodes in one subset, the children

only belong to a small number of other subsets, referred to as its duplicate detec-

tion scope. The subset of nodes currently being expanded is kept in memory, along

with the subsets in its duplicate detection scope, detecting any duplicates generated

immediately, while storing other subsets on disk. As different subsets of nodes are

expanded, currently resident duplicate detection scopes are swapped out to disk to

make room for the duplicate detection scopes of the new nodes being expanded.

9 Summary and Conclusions

We have presented a number of different algorithms, designed over the past 25 years,

to deal with the space complexity of brute-force and heuristic search. They fall into

two general categories. The linear-space search algorithms, including depth-first

search, depth-first iterative-deepening, iterative-deepening-A*, and recursive best-

first search, use very little memory but cannot detect most duplicate nodes. They

perform very well on trees, but poorly on highly-connected graphs, such as a grid.

The best-first search algorithms, including breadth-first search, A*, weighted A*,

frontier search, and disk-based algorithms, detect all duplicate nodes, and hence

perform well on highly-connected graphs. The best-first algorithms are limited by

the amount of memory available, except for the disk-based techniques, which are

limited by time in practice.

Acknowledgments: This research was supported continuously by the National

Science Foundation, most recently under grant No. IIS-0713178.

References

Chakrabarti, P., S. Ghose, A. Acharya, and S. de Sarkar (1989, December).

Heuristic search in restricted memory. Artificial Intelligence 41 (2), 197–221.

Ghosh, R., A. Mahanti, and D. Nau (1994, August). An efficient limited-memory

heuristic tree search algorithm. In Proceedings of the Twelfth National Con-

ference on Artificial Intelligence (AAAI-94), Seattle, WA, pp. 1353–1358.

Hart, P., N. Nilsson, and B. Raphael (1968, July). A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics SSC-4 (2), 100–107.

Korf, R. (1984). The complexity of brute-force search. technical report, Computer

Science Department, Columbia University, New York, NY.

60

Space Complexity

Korf, R. (1985a). Depth-first iterative-deepening: An optimal admissible tree

search. Artificial Intelligence 27 (1), 97–109.

Korf, R. (1985b, August). Iterative-deepening-a*: An optimal admissible tree

search. In Proceedings of the Ninth International Joint Conference on Artifi-

cial Intelligence (IJCAI-85), Los Angeles, CA, pp. 1034–1036.

Korf, R. (1993, July). Linear-space best-first search. Artificial Intelligence 62 (1),

41–78.

Korf, R. (1997, July). Finding optimal solutions to rubik’s cube using pattern

databases. In Proceedings of the Fourteenth National Conference on Artificial

Intelligence (AAAI-97), Providence, RI, pp. 700–705.

Korf, R. (2008, December). Linear-time disk-based implicit graph search. Journal

of the Association for Computing Machinery 55 (6), 26:1 to 26:40.

Korf, R. and A. Felner (2007, January). Recent progress in heuristic search: A

case study of the four-peg towers of hanoi problem. In Proceedings of the

Twentieth International Joint Conference on Artificial Intelligence (IJCAI-

07), Hyderabad, India, pp. 2334–2329.

Korf, R. and P. Schultze (2005, July). Large-scale, parallel breadth-first search.

In Proceedings of the Twentieth National Conference on Artificial Intelligence

(AAAI-05), Pittsburgh, PA, pp. 1380–1385.

Korf, R., W. Zhang, I. Thayer, and H. Hohwald (2005, September). Frontier

search. Journal of the Association for Computing Machinery 52 (5), 715–748.

Needleman, S. and C. Wunsch (1970). A general method applicable to the search

for similarities in the amino acid sequences of two proteins. Journal of Molec-

ular Biology 48, 443–453.

Russell, S. (1992, August). Efficient memory-bounded search methods. In Pro-

ceedings of the Tenth European Conference on Artificial Intelligence (ECAI-

92), Vienna, Austria.

Sen, A. and A. Bagchi (1989, August). Fast recursive formulations for best-first

search that allow controlled use of memory. In Proceedings of the Eleventh

International Joint Conference on Artificial Intelligence (IJCAI-89), Detroit,

MI, pp. 297–302.

Slate, D. and L. Atkin (1977). Chess 4.5 - the northwestern university chess

program. In P. Frey (Ed.), Chess Skill in Man and Machine, pp. 82–118. New

York, NY: Springer-Verlag.

Stickel, M. and W. Tyson (1985, August). An analysis of consecutively bounded

depth-first search with applications in automated deduction. In Proceedings

of the Ninth International Joint Conference on Artificial Intelligence (IJCAI-

85), Los Angeles, CA, pp. 1073–1075.

61

Richard E. Korf

Zhou, R. and E. Hansen (2003, August). Sparse-memory graph search. In Proceed-

ings of the Eighteenth International Joint Conference on Artificial Intelligence

(IJCAI-03), Acapulco, Mexico, pp. 1259–1266.

Zhou, R. and E. Hansen (2004, July). Structured duplicate detection in external-

memory graph search. In Proceedings of the Nineteenth National Conference

on Artificial Intelligence (AAAI-04), San Jose, CA, pp. 683–688.

62

5

Paranoia versus Overconfidence in

Imperfect-Information Games

Austin Parker, Dana Nau, and V.S. Subrahmanian

Only the paranoid survive.

–Andrew Grove, Intel CEO

Play with supreme confidence, or else you’ll lose.

–Joe Paterno, college football coach

1 Introduction

In minimax game-tree search, the min part of the minimax backup rule derives

from what we will call the paranoid assumption: the assumption that the opponent

will always choose a move that minimizes our payoff and maximizes his/her payoff

(or our estimate of the payoff, if we cut off the search before reaching the end of

the game). A potential criticism of this assumption is that the opponent may not

have the ability to decide accurately what move this is. But in several decades

of experience with game-tree search in chess, checkers, and other zero-sum perfect-

information games, the paranoid assumption has worked so well that such criticisms

are generally ignored.

In game-tree search algorithms for imperfect-information games, the backup rules

are more complicated. Many of them (see Section 6) involve computing a weighted

average over the opponent’s possible moves (or a Monte Carlo sample of them),

where each move’s weight is an estimate of the probability that this is the opponent’s

best possible move. Although such backup rules do not take a min at the opponent’s

move, they still tacitly encode the paranoid assumption, by assuming that the

opponent will choose optimally from the set of moves he/she is actually capable of

making.

Intuitively, one might expect the paranoid assumption to be less reliable in

imperfect-information games than in perfect-information games; for without per-

fect information, it may be more difficult for the opponent to judge which move is

best. The purpose of this paper is to examine whether it is better to err on the side

of paranoia or on the side of overconfidence. Our contributions are as follows:

1. Expected utility. We provide a recursive formula for the expected util-

ity of a move in an imperfect-information game, that explicitly includes the

opponent’s strategy σ. We prove the formula’s correctness.

63

Kaoru
Text Box
Return to TOC

Austin Parker, Dana Nau, and V.S. Subrahmanian

2. Information-set search. We describe a game-tree search algorithm called

information-set search that implements the above formula. We show analyti-

cally that with an accurate opponent model, information-set search produces

optimal results.

3. Approximation algorithm. Information-set search is, of course, intractable

for any game of interest as the decision problem in an imperfect-information

game is complete in double exponential time [Reif 1984]. To address this

intractability problem, we provide a modified version of information-set search

that computes an approximation of a move’s expected utility by combining

Monte Carlo sampling of the belief state with a limited-depth search and a

static evaluation function.

4. Paranoia and overconfidence. We present two special cases of the

expected-utility formula (and hence of the algorithm) that derive from two

different opponent models: the paranoid model, which assumes the opponent

will always make his/her best possible move, and the overconfident model,

which assumes the opponent will make moves at random.

5. Experimental results. We provide experimental evaluations of information-

set search in several different imperfect-information games. These include

imperfect-information versions of P-games [Pearl 1981; Nau 1982a; Pearl

1984], N-games [Nau 1982a], and kalah [Murray 1952]; and an imperfect-

information version of chess called kriegspiel [Li 1994; Li 1995]. Our main

experimental results are:

� Information-set search outperformed HS, the best of our algorithms for

kriegspiel in [Parker, Nau, and Subrahmanian 2005].

� In all of the games, the overconfident opponent model outperformed the

paranoid model. The difference in performance became more marked

when we decreased the amount of information available to each player.

This work was influenced by Judea Pearl’s invention of P-games [Pearl 1981; Pearl

1984], and his suggestion of investigating backup rules other than minimax [Pearl

1984]. We also are grateful for his encouragement of the second author’s early work

on game-tree search (e.g., [Nau 1982a; Nau 1983]).

2 Basics

Our definitions and notation are based on [Osborne and Rubinstein 1994]. We con-

sider games having the following characteristics: two players, finitely many moves

and states, determinism, turn taking, zero-sum utilities, imperfect information ex-

pressed via information sets (explained in Section 2.1), and perfect recall (explained

in Section 2.3). We will let G be any such game, and a1 and a2 be the two players.

64

Paranoia versus Overconfidence in Imperfect-Information Games

Our techniques are generalizable to stochastic multi-player non-zero-sum games,1

but that is left for future work.

At each state s, let a(s) be the player to move at s, with a(s) = ∅ if the game

is over in s. Let M(s) be the set of available moves at s, and m(s) be the state

produced by making move m in state s. A history is a sequence of moves h =

〈m1,m2, . . . ,mj〉. We let s(h) be the state produced by history h, and when clear

from context, will abuse notation and use h to represent s(h) (e.g., m(h) = m(s(h))).

Histories in which the game has ended are called terminal. We let H be the set of

all possible histories for game G.

2.1 Information Sets

Intuitively, an information set is a set of histories that are indistinguishable to a

player ai, in the sense that each history h provides ai with the same sequence of

observations. For example, suppose a1 knows the entire sequence of moves that

have been played so far, except for a2’s last move. If there are two possibilities for

a2’s last move, then a1’s information set includes two histories, one for each of the

two moves.

In formalizing the above notion, we will not bother to give a full formal defini-

tion of an “observation.” The only properties we need for an observation are the

following:2

� We assume that each player ai’s sequence of observations is a function Oi(h)

of the current history h. The rationale is that if a1 and a2 play some game a

second time, and if they both make the same moves that they made the first

time, then they should be able to observe the same things that they observed

the first time.

� We assume that when two histories h, h′ produce the same sequence of observa-

tions, they also produce the same set of available moves, i.e., if Oi(h) = Oi(h
′),

then M(s(h)) = M(s(h′)). The rationale for this is that if the current history

is h, ai’s observations won’t tell ai whether the history is h or h′, so ai may

attempt to make a move m that is applicable in s(h′) but not in s(h). If ai

does so, then m will produce some kind of outcome, even if the outcome is just

an announcement that ai must try a different move. Consequently, we can

easily make m applicable in s(h), by defining a new state m(s(h)) in which

this outcome occurs.

1Nondeterministic initial states, outcomes, and observations can be modeled by introducing an

additional player a0 who makes a nondeterministic move at the start of the game and after each

of the other players’ moves. To avoid affecting the other players’ payoffs, a0’s payoff in terminal

states is always 0.
2Some game-theory textbooks define information sets without even using the notion of an

“observation.” They simply let a player’s information sets be the equivalence classes of a partition

over the set of possible histories.

65

Austin Parker, Dana Nau, and V.S. Subrahmanian

<L,L,L> <L,L,R> <L,R,L> <L,R,R> <R,L,L> <R,L,R> <R,R,L> <R,R,R>

<R,R><R,L>

R
L R

R

P1 info set I={<R,L>,<R,R>}

<R>

P2 info set I={<L>,<R>}

L R

root

P1 info set I={<L,L>,<L,R>}

<L,L> <L,R>

<L>

L

L

Each linked pair of arrows

represents a move that has

two possible outcomes: one

for each state in the infor-

mation set.

Figure 1. A game tree for a two-player imperfect-information game between two

players P1 and P2 who move in alternation. The players may move either left (L)

or right (R), and their moves are hidden from each other (e.g., after P1’s first move,

P2 knows that P1 has moved, but not whether the move was L or R). Each node

is labeled with its associated history (e.g., 〈L〉 and 〈R〉 for the two children of the

root node). The information set of the player to move is indicated by a dotted box

(e.g., after P1’s first move, P2’s information set is {〈L〉, 〈R〉}).

� We assume that terminal histories with distinct utilities always provide dis-

tinct observations, i.e., for terminal histories h, h′ ∈ T , if Ui(h) 6= Ui(h
′) then

Oi(h) 6= Oi(h
′).

We define ai’s information set for h to be the set of all histories that give ai the

same observations that h gives, i.e., [h]i = {h′ ∈ H : Oi(h
′) = Oi(h)}. The set of

all possible information sets for ai is Ii = {[h]i : h ∈ H}. It is easy to show that Ii

is a partition of H.

Figure 1 shows an example game tree illustrating the correspondence between

information sets and histories. In that game, player a1 makes the first move, which

is hidden to player a2. Thus player a2 knows that the history is either 〈L〉 or 〈R〉,

which is denoted by putting a dotted box around the nodes for those histories.

2.2 Strategies

In a perfect-information game, a player ai’s strategy is a function σi(m|s) that

returns the probability p that ai will make move m in state s. For imperfect-

information games, where ai will not always know the exact state he/she is in, σi is

a function of an information set rather than a state; hence σi(m|I) is the probability

that ai will make move m when their information set is I. We let M(I) be the set

of moves available in information set I.

If σi is a mixed strategy, then for every information set I ∈ Ii where it is ai’s

move, there may be more than one move m ∈ M(I) for which σi(m|I) > 0. But

if σi is a pure strategy, then there will be a unique move mI ∈ M(I) such that

66

Paranoia versus Overconfidence in Imperfect-Information Games

σi(m|I) = 0 ∀m 6= mI and σi(mI |I) = 1; and in this case we will use the notation

σi(I) to refer to mI .

If h = 〈m1,m2, . . . ,mn〉 is a history, then its probability P (h) can be calculated

from the players’ strategies. Suppose a1’s and a2’s strategies are σ1 and σ2. In the

special case where a1 has the first move and the players move in strict alternation,

P (h|σ1, σ2) = σ1(m1|h0)σ2(m2|h1) . . . σ1(mj |hj−1), σ2(mj+1|hj), . . . , (1)

where hj = 〈m1, . . . ,mj〉 (h0 = 〈〉). More generally,

P (h|σ1, σ2) =
n−1
∏

j=0

σa(hj)(mj+1|hj). (2)

Given σ1, σ2, and any information set I, the conditional probability of any h ∈ I is

the normalized probability

P (h|I, σ1, σ2) =
P (h|σ1, σ2)

∑

h′∈I P (h′|σ1, σ2)
. (3)

2.3 Perfect Recall

Perfect recall means that every player always remembers all the moves they’ve

made – we can’t have two histories in player ai’s information set which disagree

on what player ai did at some point in the past. One can get a more detailed

explanation of perfect and imperfect recall in perfect information games in [Osborne

and Rubinstein 1994].

In a game of perfect recall, it is easy to show that if I ∈ I1, then all histories in

I have the same sequence of moves for a1, whence the probability of h given I is

conditionally independent of σ1. If h = 〈m1,m2, . . . ,mn〉, then

P (h|I, σ1, σ2) = P (h|I, σ2) =

∏

a(hj)=a2
σ2(mj+1|hj)

∑

h′∈I

∏

a(h′

j
)=a2

σ2(mj+1|h′

j)
. (4)

An analogous result, with the subscripts 1 and 2 interchanged, holds when I ∈ I2.

2.4 Utility and Expected Utility

If a history h takes us to the game’s end, then h is terminal, and we let U(h) be

the utility of h for player a1. Since the game is zero-sum, it follows that a2’s utility

is −U(h).

If a1 and a2 have strategies σ1 and σ2, then the expected utility for ai is

EU(σ1, σ2) =
∑

h∈T

P (h|σ1, σ2)U(h), (5)

where T is the set of all terminal histories, and P (h|σ1, σ2) is as in Eq. (2). Since

the game is zero-sum, it follows that a2’s expected utility is −EU(σ1, σ2).

For the expected utility of an individual history h, there are two cases:

67

Austin Parker, Dana Nau, and V.S. Subrahmanian

Case 1: History h is terminal. Then h’s expected utility is just its actual utility,

i.e.,

EU(h|σ1, σ2) = EU(h) = U(h). (6)

Case 2: History h ends at a state where it is ai’s move. Then h’s expected utility

is a weighted sum of the expected utilities for each of ai’s possible moves,

weighted by the probabilities of ai making those moves:

EU(h|σ1, σ2) =
∑

m∈M(h)

σi(m|h) · EU(h ◦ m|σ1, σ2)

=
∑

m∈M(h)

σi(m|[h]i) · EU(h ◦ m|σ1, σ2), (7)

where ◦ denotes concatenation.

The following lemma shows that the recursive formulation in Eqs. (6–7) matches

the notion of expected utility given in Eq. 5.

LEMMA 1. For any strategies σ1 and σ2, EU(〈〉|σ1, σ2) (the expected utility of

the empty initial history as computed via the recursive Equations 6 and 7) equals

EU(σ1, σ2).

Sketch of proof. This is shown by showing, by induction on the length of h, the

more general statement that

EU(h|σ1, σ2) =
∑

h′∈T,h′=h◦mk,◦···◦,mn

P (h′|σ1, σ2)U(h′)/P (h|σ1, σ2), (8)

where k is one greater than the size of h and n is the size of each h′ as appropriate.

The base case occurs when h is terminal, and the inductive case assumes Eq. 8 holds

for histories of length m + 1 to show algebraically that Eq. 8 holds for histories of

length m. ⊓⊔

The expected utility of an information set I ∈ H is the weighted sum of the

expected utilities of its histories:

EU(I|σ1, σ2) =
∑

h∈I

P (h|I, σ1, σ2)EU(h|σ1, σ2). (9)

COROLLARY 2. For any strategies σ1 and σ2, and player ai, EU([〈〉]i|σ1, σ2) (the

expected utility of the initial information set for player ai) equals EU(σ1, σ2).

3 Finding a Strategy

We now develop the theory for a game-tree search technique that exploits an oppo-

nent model.

68

Paranoia versus Overconfidence in Imperfect-Information Games

3.1 Optimal Strategy

Suppose a1’s and a2’s strategies are σ1 and σ2, and let I be any information set for

a1. Let M∗(I|σ1, σ2) be the set of all moves in M(I) that maximize a1’s expected

utility at I, i.e.,

M∗(I|σ1, σ2) = argmax
m∈M(I)

EU(I ◦ m|σ1, σ2)

=

{

m∗ ∈ M(I)

∣

∣

∣

∣

∣

∀m ∈ M(I),
∑

h∈I P (h|I, σ1, σ2)EU(h ◦ m∗|σ1, σ2)

≥
∑

h∈I P (h|I, σ1, σ2)EU(h ◦ m|σ1, σ2)

}

. (10)

Since we are considering only finite games, every history has finite length. Thus

by starting at the terminal states and going backwards up the game tree, applying

Eqs. (7) and (9) at each move, one can compute a strategy σ∗

1 such that:

σ∗

1(m|I) =

{

1/|M∗(I, σ∗

1 , σ2)|, if m ∈ M∗(I|σ∗

1 , σ2),

0, otherwise.
(11)

THEOREM 3. Let σ2 be a strategy for a2, and σ∗

1 be as in Eq. (11). Then σ∗

1 is

σ2-optimal.

Sketch of proof. Let σ̄1 be any σ2-optimal strategy. The basic idea is to show, by

induction on the lengths of histories in an information set I, that EU(I|σ∗

1 , σ2) ≥

EU(I|σ̄1, σ2).

The induction goes backwards from the end of the game: the base case is where

I contains histories of maximal length, while the inductive case assumes the in-

equality holds when I contains histories of length k + 1, and shows it holds when I

contains histories of length k. The induction suffices to show that EU([〈〉]1|σ
∗

1 , σ2) ≥

EU([〈〉]1|σ̄1, σ2), whence from Lemma 1, EU(σ∗

1 , σ2) ≥ EU(σ̄1, σ2). ⊓⊔

Computing σ∗

1 is more difficult than computing an optimal strategy in a perfect-

information game. Reif [Reif 1984] has shown that the problem of finding a strategy

with a guaranteed win is doubly exponential for imperfect-information games (this

corresponds to finding σ1 such that for all σ2, σ1 wins).

In the minimax game-tree search algorithms used in perfect-information games,

one way of dealing with the problem of intractability is to approximate the utility

value of a state by searching to some limited depth d, using a static evaluation

function E(·) that returns approximations of the expected utilities of the nodes at

that depth, and pretending that the values returned by E are the nodes’ actual

utility values. In imperfect-information games we can compute approximate values

69

Austin Parker, Dana Nau, and V.S. Subrahmanian

for EU in a similar fashion:

EUd(h|σ
∗

1 , σ2) =

E(h), if d = 0,

U(h), if h is terminal,
∑

m∈M(h) σ2(m|[h]2) · EUd−1(h ◦ m|σ∗

1 , σ2), if it’s a2’s move,

EUd−1(h ◦ argmaxm∈M(h)(EUd([h ◦ m]1|σ
∗

1 , σ2))), if it’s a1’s move,

(12)

EUd(I|σ
∗

1 , σ2) =
∑

h∈I

P (h|I, σ∗

1 , σ2) · EUd(h|I, σ∗

1 , σ2). (13)

3.2 Opponent Models

Eqs. (11–12) assume that a1 knows a2’s strategy σ2, an assumption that is quite

unrealistic in practice. A more realistic assumption is that a1 has a model of a2 that

provides an approximation of σ2. For example, in perfect-information games, the

well-known minimax formula corresponds to an opponent model in which the op-

ponent always chooses the move whose utility value is lowest. We now consider two

opponent models for imperfect-information games: the overconfident and paranoid

models.

Overconfidence. The overconfident model assumes a2 is just choosing moves at

random from a uniform distribution; i.e., it assumes a2’s strategy is σ2(m|I) =

1/|M(I)| for every m ∈ M(I), and second, that a1’s strategy is σ2-optimal. If we

let OUd(h) = EUd(h|σ
∗

1 , σ2) and OUd(I) = EUd(I|σ
∗

1 , σ2) be the expected utilities

for histories and information sets under these assumptions, then it follows from

Eqs. (12–13) that:

OUd(h) =

E(h), if d = 0,

U(h), if h is terminal,
∑

m∈M(h)
OUd−1(h◦m)

|M(h)| , if it’s a2’s move,

OUd−1(h ◦ argmaxm∈M(h) OUd([h ◦ m]1)), if it’s a1’s move,

(14)

OUd(I) =
∑

h∈I

(1/|I|) · OUd(h). (15)

If the algorithm searches to a limited depth (Eq. 12 with d < maxh∈H |h|), we

will refer to the resulting strategy as limited-depth overconfident. If the algorithm

searches to the end of the game (i.e., d ≥ maxh∈H |h|), we will refer to the resulting

strategy as full-depth overconfident; and in this case we will usually write OU(h)

rather than OUd(h).

Paranoia. The paranoid model assumes that a2 will always make the worst possi-

ble move for a1, i.e., the move that will produce the minimum expected utility over

all of the histories in a1’s information set. This model replaces the summation in

70

Paranoia versus Overconfidence in Imperfect-Information Games

the third line of Eq. (12) with a minimization:

PUd(h) =

E(I), if d = 0,

U(h), if h is terminal,

PUd−1(h ◦ argminm∈M(h)(minh′∈[h]1 PUd([h ◦ m]))), if it’s a2’s move,

PUd−1(h ◦ argmaxm∈M(h)(minh′∈[h]1 PUd([h ◦ m]))), if it’s a1’s move,

(16)

PUd(I) = min
h∈I

PUd(h). (17)

Like we did for overconfident search, we will use the terms limited-depth and

full-depth to refer to the cases where d < maxh∈H |h| and d ≥ maxh∈H |h|, respec-

tively; and for a full-depth paranoid search, we will usually write PU(h) rather than

PUd(h).

In perfect-information games, PU(h) equals h’s minimax value. But in imperfect-

information games, h’s minimax value is the minimum Eq. (11) over all possible

values of σ2; and consequently PU(h) may be less than h’s minimax value.

3.3 Comparison with the Minimax Theorem

The best known kinds of strategies for zero-sum games are the strategies based

on the famous Minimax Theorem [von Neumann and Morgenstern 1944]. These

minimax strategies tacitly incorporate an opponent model that we will call the

minimax model. The minimax model, overconfident model, and paranoid model

each correspond to differing assumptions about a2’s knowledge and competence, as

we will now discuss.

Let Σ1 and Σ2 be the sets of all possible pure strategies for a1 and a2, respectively.

If a1 and a2 use mixed strategies, then these are probability distributions P1 and P2

over Σ1 and Σ2. During game play, a1 and a2 will randomly choose pure strategies

σ1 and σ2 from P1 and P2. Generally they will do this piecemeal by choosing moves

as the game progresses, but game-theoretically this is equivalent to choosing the

entire strategy all at once.

Paranoia: If a1 uses a paranoid opponent model, this is equivalent to assuming

that a2 knows in advance the pure strategy σ1 that a1 will choose from P1 during

the course of the game, and that a2 can choose the optimal counter-strategy, i.e.,

a strategy Pσ1

2 that minimizes σ1’s expected utility. Thus a1 will want to choose a

σ1 that has the highest possible expected utility given Pσ1

2 . If there is more than

one such σ1, then a1’s strategy can be any one of them or can be an arbitrary

probability distribution over all of them.

Minimax: If a2 uses a minimax opponent model, this is equivalent to assuming

that a2 will know in advance what a1’s mixed strategy P1 is, and that a2 will be

competent enough to choose the optimal counter-strategy, i.e., a mixed strategy PP1

2

that minimizes P1’s expected utility. Thus a1 will want to use a mixed strategy P1

71

Austin Parker, Dana Nau, and V.S. Subrahmanian

that has the highest possible expected utility given PP1

2 .

In perfect-information games, the minimax model is equivalent to the paranoid

model. But in imperfect-information games, the minimax model assumes a2 has

less information than the paranoid model does: the minimax model assumes that a2

knows the probability distribution P1 over a1’s possible strategies, and the paranoid

model assumes that a2 knows which strategy a1 will choose from P1.

Overconfidence: If a1 uses an overconfident opponent model, this equivalent

to assuming that a2 knows nothing about (or is not competent enough to figure

out) how good or bad each move is, whence a2 will use a strategy P=
2 in which all

moves are equally likely. In this case, a1 will want to choose a strategy σ1 that has

the highest expected utility given P=
2 . If there is more than one such σ1, then a1’s

strategy can be any one of them or can be an arbitrary probability distribution over

all of them.

In both perfect- and imperfect-information games, the overconfident model as-

sumes a2 has much less information (and/or competence) than in the minimax and

paranoid models.

3.4 Handling Large Information Sets

Information sets can be quite large. When they are too large for techniques like the

above to run in a reasonable amount of time, there are several options.

Game simplification reduces the size of the information set by creating an

analogous game with smaller information sets. This technique has worked partic-

ularly well in poker [Billings, Burch, Davidson, Holte, Schaeffer, Schauenberg, and

Szafron 2003; Gilpin and Sandholm 2006a; Gilpin and Sandholm 2006b], as it is

possible to create a “simpler” game which preserves win probabilities (within some

ǫ). However, these approaches apply only to variants of poker, and the technique

is not easily generalizable. Given an arbitrary game G other than poker, we know

of no general-purpose way of producing a simpler game whose expected utilities

accurately reflect expected utilities in G.

State aggregation was first used in the game of sprouts [Applegate, Jacobson,

and Sleator 1991], and subsequently has been used in computer programs for games

such as bridge (e.g., [Ginsberg 1999]), in which many of the histories in an infor-

mation set are similar, and hence can be reasoned about as a group rather than

individually. For example, if one of our opponents has an ace of hearts and a low

heart, it usually does not matter which low heart the opponent has: generally all low

hearts will lead to an identical outcome, so we need not consider them separately.

The aggregation reduces the computational complexity by handling whole sets of

game histories in the information set at the same time. However, just as with game

simplification, such aggregation techniques are highly game dependent. Given an

arbitrary game G, we do not know of a general-purpose way to aggregate states of

G in a way that is useful for computing expected utility values in G.

Unlike the previous two techniques, statistical sampling [Corlett and Todd

72

Paranoia versus Overconfidence in Imperfect-Information Games

1985] is general enough to fit any imperfect-information game. It works by se-

lecting a manageable subset of the given, large, information set, and doing our

computations based on that.

Since we are examining game playing across several imperfect-information games

we use the third technique. Let us suppose Γ is an expected utility function such

as OUd or PUd. In statistical sampling we pick I ′ ⊂ I and compute the value of

Γ(I ′) in place of Γ(I). There are two basic algorithms for doing the sampling:

1. Batch: Pick a random set of histories I ′ ⊂ I, and compute Γs(I
′) using the

equations given earlier.

2. Iterative: Until the available time runs out, repeatedly pick a random h ∈ I,

compute Γ({h}) and aggregate that result with all previous picks.

The iterative method is preferable because it is a true anytime algorithm: it con-

tinues to produce increasingly accurate estimates of Γ(I) until no more time is

available. In contrast, the batch method requires guessing how many histories we

will be able to compute in that time, picking a subset I ′ of the appropriate size, and

hoping that the computation finishes before time is up. For more on the relative

advantages of iterative and batch sampling, see [Russell and Wolfe 2005].

Statistical sampling, unlike game simplification and state aggregation, can be

used for arbitrary imperfect-information games rather than just on games that

satisfy special properties. Consequently, it is what we use in our experiments in

Section 5.

4 Analysis

Since paranoid and overconfident play both depend on opponent models that may

be unrealistic, which of them is better in practice? The answer is not completely

obvious. Even in games where each player’s moves are completely hidden from the

other player, it is not hard to create games in which the paranoid strategy outplays

the overconfident strategy and vice-versa. We now give examples of games with

these properties.

Figures 2 and 3, respectively, are examples of situations in which paranoid play

outperforms overconfident play and vice versa. As in Figure 1, the games are shown

in tree form in which each dotted box represents an information set. At each leaf

node, U is the payoff for player 1. Based on these values of U , the table gives,

the probabilities of moving left (L) and right (R) at each information set in the

tree, for both the overconfident and paranoid strategies. At each leaf node, pr1

is the probability of reaching that node when player 1 is overconfident and player

2 is paranoid, and pr2 is the probability of reaching that node when player 2 is

overconfident and player 1 is paranoid.

In Figure 2, the paranoid strategy outperforms the overconfident strategy, be-

cause of the differing choices the strategies will make at the information set I2:

73

Austin Parker, Dana Nau, and V.S. Subrahmanian

DC E F

BA

Initial player 1 info set
I1

L1 R1

I2
player 2 info set

R2

player 1 info set
I4

L3 R3 L4 R4

U = 0U = 0U = +1U = −1U = 0U = 0U = +1U = −1

pr1 = 0 pr1 = 0 pr1 = 0 pr1 = 1/2 pr1 = 0 pr1 = 0 pr1 = 0 pr1 = 1/2

pr2 = 1/4pr2 = 0pr2 = 1/4pr2 = 0pr2 = 1/4pr2 = 0pr2 = 1/4pr2 = 0

player 1 info set
I3

L2

Each linked pair of arrows repre-

sents a move with two outcomes:

one for each state in the infor-

mation set. The overconfident

strategy evaluates such a move

by averaging the utilities of the

outcomes, whereas the paranoid

strategy takes the minimum.

Info set Overconfident strategy Paranoid strategy

I1 P (L1) = 1/2 P (R1) = 1/2 P (L1) = 1/2 P (R1) = 1/2

I2 P (L2) = 1/2 P (R2) = 1/2 P (L2) = 0 P (R2) = 1

I3 P (L3) = 0 P (R3) = 1 P (L3) = 0 P (R3) = 1

I4 P (L4) = 0 P (R4) = 1 P (L4) = 0 P (R4) = 1

Figure 2. An imperfect-information game in which paranoid play beats overcon-

fident play. If an overconfident player plays against a paranoid player and each

player has an equal chance of moving first, the expected utilities are −0.25 for the

overconfident player and 0.25 for the paranoid player.

� Suppose player 1 is overconfident and player 2 is paranoid. Then at infor-

mation set I2, player 2 assumes its opponent will always choose the worst

possible response. Hence when choosing a move at I2, player 2 thinks it will

lose if it chooses L2 and will tie if it chooses R2, so it chooses R2 to avoid the

anticipated loss.

� Suppose player 1 is paranoid and player 2 is overconfident. Then at informa-

tion set I2, player 2 assumes its opponent is equally likely to move left or right.

Hence when choosing a move at I2, player 2 thinks that both moves have the

same expected utility, so it will choose between them at random—which is a

mistake, because its paranoid opponent will win the game by moving right in

both information sets I3 and I4.

Figure 3 shows a game in which the overconfident strategy outperforms the para-

noid strategy. Again, the pertinent information set is I2:

� Suppose overconfident play is player 1 and paranoid play is player 2. Then

74

Paranoia versus Overconfidence in Imperfect-Information Games

DC

A B

E F

I1
Initial player 1 info set

L1 R1

player 2 info set
I2

player 1 info set
I3 I4

player 1 info set

R2L2

U = −1

pr1 = 1/8

pr2 = 1/4 pr2 = 1/4 pr2 = 0 pr2 = 0 pr2 = 1/4 pr2 = 1/4 pr2 = 0 pr2 = 0

pr1 = 1/8pr1 = 1/8pr1 = 1/8pr1 = 1/8pr1 = 1/8pr1 = 1/8pr1 = 1/8

U = +1 U = +1 U = −1 U = −1 U = −1 U = +1 U = +1

R4R3 L4L3

Each linked pair of arrows repre-

sents a move with two outcomes:

one for each state in the infor-

mation set. The overconfident

strategy evaluates such a move

by averaging the utilities of the

outcomes, whereas the paranoid

strategy takes the minimum.

Info set Overconfident strategy Paranoid strategy

I1 P (L1) = 1/2 P (R1) = 1/2 P (L1) = 1/2 P (R1) = 1/2

I2 P (L2) = 1 P (R2) = 0 P (L2) = 1/2 P (R2) = 1/2

I3 P (L3) = 1/2 P (R3) = 1/2 P (L3) = 1/2 P (R3) = 1/2

I4 P (L4) = 1/2 P (R4) = 1/2 P (L4) = 1/2 P (R4) = 1/2

Figure 3. An imperfect-information game where overconfident play beats paranoid

play. If an overconfident player plays against a paranoid player and each player has

an equal chance of moving first, the expected utilities are 0.25 for the overconfident

player and −0.25 for the paranoid player.

paranoid play, assuming the worst, believes both move L2 and R2 are losses.

R2 is a loss because the opponent may have made move R1 resulting in a

forced loss for player 2 at node F, and L2 is a loss because the opponent may

have made move L1 and then may make move R4 resulting in a loss for player

2. Since there is a potential loss in all cases, paranoid play chooses both cases

with equal probability.

� When overconfident play is player 2, it makes move L2 at I2, on the theory

that the opponent was equally likely to make moves L1 and R1 and therefore

giving it a 50% probability of ending up in node E, which is a forced win

for player 2. Against paranoid play as player 1, this is a good move, since

paranoid play actually does make moves L1 and R1 with 50% probability.

These two examples show that neither strategy is guaranteed to be better in all

cases: sometimes paranoid play outperforms overconfident play, and sometimes vice

versa. So to determine their relative worth, deeper analysis is necessary.

75

Austin Parker, Dana Nau, and V.S. Subrahmanian

4.1 Analysis of Overconfidence Performance in Perfect Information

Games

Let s be a state in a perfect-information zero-sum game. We will say that a child

s′ of s is minimax-optimal if µ(s′) ≥ µ(s′′) for every child s′′ of s, where µ(s) is the

minimax value for the player to move at s. A minimax strategy is any strategy that

will always move to a minimax-optimal node. In the game-tree search literature,

minimax strategies have often been called “perfect play” because they produce the

highest possible value against an opponent who is also using a minimax strategy.

In perfect-information zero-sum games, PU(s) = µ(s) at every state s, hence full-

depth paranoid play is a minimax strategy. Surprisingly, if the only outcomes are

wins and losses (or equivalently, utility values of 1 and −1), full-depth overconfident

play is also a minimax strategy. To prove this result, we first need a lemma:

LEMMA 4. Let G be any finite two-player perfect-information game whose out-

comes all have utility 1 or −1. At every state s, if µ(s) = 1 then OC(s) = 1, and

if µ(s) = −1 then OC(s) ∈ [−1, 1).

Sketch of proof. This is proven by induction on the height of the state s under

consideration. The base case occurs for with terminal nodes of height 0 for which

the lemma follows trivially. The inductive case supposes the lemma holds for all

states of height k and shows algebraically for states s of height k +1 in each of four

possible cases: (1) if it is a1’s move and µ(s) = −1 then OC(s) ∈ [−1, 1), (2) if it is

a1’s move and µ(s) = 1 then OC(s) = 1, (3) if it is a2’s move and µ(s) = −1 then

OC(s) ∈ [−1, 1), and (4) if it is a2’s move and µ(s) = 1 then OC(s) = 1. Since

the game allows only wins and losses (so that µ(s) is 1 or −1), these are all the

possibilities. ⊓⊔

THEOREM 5. Let G be any finite two-player perfect-information game whose out-

comes all have utility 1 or −1. At every nonterminal state s, the overconfident

strategy, σO, will move to a state s′ that is minimax-optimal.

Proof. Immediate from the lemma. ⊓⊔

This theorem says that in head-to-head play in perfect-information games al-

lowing only wins or losses, the full-depth overconfident and full-depth paranoid

strategies will be evenly matched. In the experimental section, we will see this to

hold in practice.

4.2 Discussion

Paranoid play. When using paranoid play a1 assumes that a2 has always and will

always make the worst move possible for a1, but a1 does this given only a1’s infor-

mation set. This means that for any given information set, the paranoid player will

find the history in the information set that is least advantageous to itself and make

moves as though that were the game’s actual history even when the game’s actual

76

Paranoia versus Overconfidence in Imperfect-Information Games

history is any other member of the information set. There is a certain intuitively

appealing protectionism occurring here: an opponent that happens to have made

the perfect moves cannot trap the paranoid player. However, it really is not clear

exactly how well a paranoid player will do in an imperfect-information game, for

the following reasons:

� There is no reason to necessarily believe that the opponent has made those

“perfect” moves. In imperfect-information games, the opponent has differ-

ent information than the paranoid player, which may not give the opponent

enough information to make the perfect moves paranoid play expects.

� Against non-perfect players, the paranoid player may lose a lot of potentially

winnable games. The information set could contain thousands of histories in

which a particular move m is a win; if that move is a loss on just one history,

and there is another move m′ which admits no losses (and no wins), then m

will not be chosen.3

� In games such as kriegspiel, in which there are large and diverse information

sets, usually every information set will contain histories that are losses, hence

paranoid play will evaluate all of the information sets as losses. In this case,

all moves will look equally terrible to the paranoid player, and paranoid play

becomes equivalent to random play.4

We should also note the relationship paranoid play has to the “imperfection” of

the information in the game. A game with large amounts of information and small

information sets should see better play from a paranoid player than a game with

large information sets. The reason for this is that as we get more information about

the actual game state, we can be more confident that the move the paranoid player

designates as “worst” is a move the opponent can discover and make in the actual

game. The extreme of this is a perfect information game, where paranoid play has

proven quite effective: it is minimax search. But without some experimentation, it

is not clear to what extent smaller amounts of information degrade paranoid play.

Overconfident play. Overconfident play assumes that a2 will, with equal prob-

ability, make all available moves regardless of what the available information tells

a2 about each move’s expected utility. The effect this has on game play depends

on the extent to which a2’s moves diverge from random play. Unfortunately for

overconfidence, many interesting imperfect-information games implicitly encourage

3This argument assumes that the paranoid player examines the entire information set rather

than a statistical sample as discussed in Section 3.4. If the paranoid player examines a statistical

sample of the information set, there is a good chance that the statistical sample will not contain

the history for which m is a loss. Hence in this case, statistical sampling would actually improve

the paranoid player’s play.
4We have verified this experimentally in several of the games in the following section, but omit

these experiments due to lack of space.

77

Austin Parker, Dana Nau, and V.S. Subrahmanian

non-random play. In these games the overconfident player will not adequately con-

sider the risks of its moves. The overconfident player, acting under the theory that

the opponent is unlikely to make a particular move, will many times not protect

itself from a potential loss.

However, depending on the amount of information in the imperfect-information

game, the above problem may not be as bad as it seems. For example, consider a

situation where a1, playing overconfidently, assumes the opponent is equally likely

to make each of the ten moves available in a1’s current information set. Suppose

that each move is clearly the best move in exactly one tenth of the available histories.

Then, despite the fact that the opponent is playing a deterministic strategy, random

play is a good opponent model given the information set. This sort of situation,

where the model of random play is reasonable despite it being not at all related

to the opponent’s actual mixed strategy, is more likely to occur in games where

there is less information. The larger the information set, the more likely it is that

every move is best in enough histories to make that move as likely to occur as any

other. Thus in games where players have little information, there may be a slight

advantage to overconfidence.

Comparative performance. The above discussion suggests that (1) paranoid

play should do better in games with “large” amounts of information, and (2) over-

confident play might do better in games with “small” amounts of information. But

will overconfident play do better than paranoid play? Suppose we choose a game

with small amounts of information and play a paranoid player against an overconfi-

dent player: what should the outcome be? Overconfident play has the advantage of

probably not diverging as drastically from the theoretically correct expected utility

of a move, while paranoid play has the advantage of actually detecting and avoiding

bad situations – situations to which the overconfident player will not give adequate

weight.

Overall, it is not at all clear from our analysis how well a paranoid player and an

overconfident player will do relative to each other in a real imperfect-information

game. Instead, experimentation is needed.

5 Experiments

In this section we report on our experimental comparisons of overconfident versus

paranoid play in several imperfect-information games.

One of the games we used was kriegspiel, an imperfect-information version of

chess [Li 1994; Li 1995; Ciancarini, DallaLibera, and Maran 1997; Sakuta and Iida

2000; Parker, Nau, and Subrahmanian 2005; Russell and Wolfe 2005]. In kriegspiel,

neither player can observe anything about the other player’s moves, except in cases

where the players directly interact with each other. For example, if a1 captures one

of a2’s pieces, a2 now knows that a1 has a piece where a2’s piece used to be. For

more detail, see Section 5.2.

In addition, we created imperfect-information versions of three perfect-

78

Paranoia versus Overconfidence in Imperfect-Information Games

information games: P-games [Pearl 1984], N-games [Nau 1982a], and a simplified

version of kalah [Murray 1952]. We did this by hiding some fraction 0 ≤ h ≤ 1 of

each player’s moves from the other player. We will call h the hidden factor, because

it is the fraction of information that we hide from each player: when h = 0, each

player can see all of the other player’s moves; when h = 1, neither player can see

any of the other player’s moves; when h = 0.2, each player can see 20% of the other

player’s moves; and so forth.

In each experiment, we played two players head-to-head for some number of

trials, and averaged the results. Each player went first on half of the trials.

5.1 Experiments with Move-Hiding

We did experiments in move-hiding variants of simple perfect information games.

These experiments were run on 3.4 GHz Xeon processors with at least 2 GB of

RAM per core. The programs were written in OCaml. All games were 10-ply long,

and each player searched all the way to the end of the game.

Hidden-move P-game experiments. P-games were invented by Judea Pearl

[Pearl 1981], and have been used in many studies of game-tree search (e.g., [Nau

1982a; Pearl 1984]). They are two-player zero-sum games in which the game tree

has a constant branching factor b, fixed game length d, and fixed probability P0 that

the first player wins at any given leaf node.5 One creates a P-game by randomly

assigning “win” and “loss” values to the bd leaf nodes.

We did a set of experiments with P-games with P0 = 0.38, which is the value of

P0 most likely to produce a nontrivial P-game [Nau 1982b]. We used depth d = 10,

and varied the branching factor b. We varied the hidden factor h from 0 to 1 by

increments of 0.2, so that the number of hidden moves varied from 0 to 10. In

particular, we hid a player’s mth move if ⌊m · h⌋ > ⌊(m− 1) · h⌋. For instance, in a

game where each player makes 5 moves and the hidden factor is 0.6, then the 2nd,

4th, and 5th moves of both players are hidden.

For each combination of parameters, we played 2000 games: 1000 in which one

of the players moved first, and 1000 in which the other player moved first. Thus in

each of our figures, each data point is the average of 2000 runs.

Figure 4(a) shows the results of head-to-head play between the overconfident and

paranoid strategies. These results show that in hidden-move P -games, paranoid

play does indeed perform worse than overconfident play with hidden factors greater

than 0. The results also confirm theorem 5, since overconfident play and paranoid

play did equally well with hidden factor 0. From these experiments, it seems that

paranoid play may not be as effective in imperfect-information games as it is in

perfect information games.

Hidden-move N-game experiments. P-games are known to have a property

called game-tree pathology that does not occur in “natural” games such as chess [Nau

5Hence [Pearl 1984] calls P-games (d, b, P0)-games.

79

Austin Parker, Dana Nau, and V.S. Subrahmanian

(a) Hidden-move P-

games. Each data

point is an average of

at least 72 trials.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1O
v
e
rc

o
n
fi
d
e
n
t
E

V
V

P
 v

s
 P

a
ra

n
o
id

 p
la

y

Hidden Factor

OC vs PAR b/f 2
OC vs PAR b/f 3
OC vs PAR b/f 4

O
C

's
 a

v
e
ra

g
e
 s

c
o
re

(b) Hidden-move N-

games. Each data

point is an average of

at least 39 trials.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1O
v
e
rc

o
n
fi
d
e
n
t
E

V
V

P
 v

s
 P

a
ra

n
o
id

 p
la

y

Hidden Factor

OC vs PAR b/f 2
OC vs PAR b/f 3
OC vs PAR b/f 4

O
C

's
 a

v
e
ra

g
e
 s

c
o
re

(c) Hidden-move kalah.

Each data point is an

average of at least 125

randomly generated

initial states.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1O
v
e
rc

o
n
fi
d
e
n
t
E

V
V

P
 v

s
 P

a
ra

n
o
id

 p
la

y

Hidden Factor

OC vs PAR b/f 2
OC vs PAR b/f 3
OC vs PAR b/f 4

O
C

's
 a

v
e
ra

g
e
 s

c
o
re

Figure 4. Average scores for overconfident (OC) play against paranoid (PAR) play.

1982a], and we wanted to ascertain whether this property might have influenced

our experimental results on hidden-move P-games. N-games are similar to P-games

but do not exhibit game-tree pathology, so we did a similar set of experiments on

hidden-move N-games.

An N-game is specified by a triple (d, b, P0), where d is the game length, b is the

branching factor, and P0 is a probability. An N-game specified by this triple has

a game tree of height d and branching factor b, and each arc in the game tree is

randomly assigned a value of +1 with probability P0, or −1 otherwise. A leaf node

is a win for player 1 (and a loss for player 2) if the sum of the values on the arcs

between the root and the leaf node is greater than zero; otherwise the leaf node is

80

Paranoia versus Overconfidence in Imperfect-Information Games

a loss for player 1 (and a win for player 2).

Figure 4(b) shows our experimental results for hidden-move N-games. Just as

before, overconfident and paranoid play did equally well with hidden factor 0, and

overconfident play outperformed paranoid play with hidden factors greater than 0.

Kalah experiments. Kalah [Murray 1952] is also called mankalah, mancala,

warri, and other names. It is an ancient African game played on a board with

a number of pits that contain seeds, in which the objective is to acquire more seeds

than the opponent, either by moving them to a special pit (called a kalah) or by

capturing them from the opponent’s pits.

In kalah, there are two rows of 6 pits. Flanking the rows of pits on both sides

are the larger kalahs. Players sit on opposite sides of the board with one of the

rows of pits nearer to each player. Each player owns the kalah on their left. The

game starts with 6 stones in each of the pits except the kalahs. The player moves

by picking up all the stones from one of the pits in the near row and placing one

stone in each pit clockwise around the board including their kalah but excluding

the opponent’s kalah. If the last stone is placed in their kalah, the player moves

again. If the last stone is placed in an empty pit, the player moves all stones from

the opposite pit to their kalah. The game ends when the player to move has no

moves because all pits on their side are empty. At that point, all stones in pits on

the other player’s side are placed in the player to move’s kalah and the player with

the most stones wins; ties occur when both plays own the same number of stones.

Because of the computation requirements of playing a full game of kalah, our

experiments were on a simplified version of kalah that we call randomized kalah.

The game differs from kalah in several ways:

� We vary the number of pits on the board. This varies the branching factor.

� To ensure a constant branching factor, we allow players to “move” from a

pit that contains no stones. These are null moves that have no effect on the

board.

� We end the game after 10 ply, to ensure that the algorithms can search the

entire tree.

� We eliminate the move-again rule, to ensure alternating moves by the players.

� We start with a random number of stones in each pit to ensure that at each

branching factor there will be games with non-trivial decisions.

Since randomized kalah is directly motivated by a very old game that people still

play, its game trees are arguably much less “artificial” than those of P-games or

N-games.

The results of playing overconfidence versus paranoia in hidden-move versions of

randomized kalah are shown in Figure 4(c). The results are roughly similar to the

81

Austin Parker, Dana Nau, and V.S. Subrahmanian

P-game and N-game results, in the sense that overconfidence generally outperforms

paranoia; but the results also differ from the P-game and N-game results in several

ways. First, overconfidence generally does better at high hidden factors than at low

ones. Second, paranoia does slightly better than overconfidence at hidden factor 0

(which does not conflict with Theorem 5, since kalah allows ties). Third, paranoia

does better than overconfidence when the branching factor is 2 and the hidden

factor is 0.2 or 0.4. These are the only results we saw where paranoia outperformed

overconfidence.

The fact that with the same branching factor, overconfidence outperforms para-

noia with hidden factor 0.6, supports the hypothesis that as the amount of in-

formation in the game decreases, paranoid play performs worse with respect to

overconfident play. The rest of the results support that hypothesis as well: over-

confidence generally increases in performance against paranoia as the hidden factor

increases.

5.2 Kriegspiel Experiments

For experimental tests in an imperfect-information game people actually play, we

used kriegspiel, an imperfect-information version of chess in which the players can-

not see their opponent’s pieces. Kriegspiel is useful for this study because (i) it is

clearly a game where each player has only a small amount of information about

the current state, and (ii) due to its relationship to chess, it is complicated enough

strategically to allow for all sorts of subtle and interesting play. A further advantage

to kriegspiel is that it is played competitively by humans even today [Li 1994; Li

1995; Ciancarini, DallaLibera, and Maran 1997].

Kriegspiel is a chess variant played with a chess board. When played in per-

son, it requires three chess kits: one for each player and one for the referee. All

boards are set up as in normal chess, but neither player is allowed to see their

opponent’s or the referee’s board. The players then move in alternation as in

standard chess, keeping their moves hidden from the other player. All player’s

moves are also played by the referee on the referee’s board. Since neither player

can see the referee’s board, the referee acts as a mediator, telling the players if

the move they made is legal or illegal, and giving them various other observa-

tions about the move made. We use the ICC’s kriegspiel observations, described at

http://www.chessclub.com/help/Kriegspiel. Observations define the informa-

tion sets. Any two histories that have the same observations at each move and all

the same moves for one of the players are in the same information set.

When played on the internet, the referee’s job can be automated by a computer

program. For instance, on the Internet Chess Club one can play kriegspiel, and

there have been thousands of kriegspiel games played on that server.

We ran our experiments on a cluster of computers runing linux, with between

900 MB and 1.5 GB RAM available to each process. The processors were Xeons,

Athlons, and Pentiums, ranging in clockspeed from 2 GHz to 3.2 GHz. We used

82

Paranoia versus Overconfidence in Imperfect-Information Games

Table 1. Average scores for overconfi-

dent play against paranoid play, in 500

kriegspiel games using the ICC ruleset.

d is the search depth.

Over- Paranoid

confident d = 1 d = 2 d = 3

d = 1 +0.084 +0.186 +0.19

d = 2 +0.140 +0.120 +0.156

d = 3 +0.170 +0.278 +0.154

Table 2. Average scores for overcon-

fident and paranoid play against HS,

with 95% confidence intervals. d is the

search depth.

d Paranoid Overconfident

1 –0.066 ± 0.02 +0.194 ± 0.038

2 +0.032 ± 0.035 +0.122 ± 0.04

3 +0.024 ± 0.038 +0.012 ± 0.042

time controls and always forced players in the same game to ensure the results

were not biased by different hardware. The algorithms were written in C++. The

code used for overconfident and paranoid play is the same, with the exception of

the opponent model. We used a static evaluation function that was developed to

reward conservative kriegspiel play, as our experience suggests such play is generally

better. It uses position, material, protection and threats as features.

The algorithms used for kriegspiel are depth-limited versions of the paranoid and

overconfident players. To handle the immense information-set sizes in kriegspiel,

we used iterative statistical sampling (see Section 3.4). To get a good sample with

time control requires limiting the search depth to at most three ply. Because time

controls remain constant, the lower search depths are able to sample many more

histories than the higher search depths.

Head-to-head overconfident vs. paranoid play. We did experiments compar-

ing overconfident play to paranoid play by playing the two against each other. We

gave the algorithms 30 seconds per move and played each of depths one, two, and

three searches against each other. The results are in Table 1. In these results, we

notice that overconfident play consistently beats paranoid play, regardless of the

depth of either search. This is consistent with our earlier results for hidden-move

games (Section 5.1); and, in addition, it shows overconfident play doing better than

paranoid play in a game that people actually play.

HS versus overconfidence and paranoia. We also compared overconfident

and paranoid play to the hybrid sampling (HS) algorithm from our previous work

[Parker, Nau, and Subrahmanian 2005]. Table 2 presents the results of the exper-

iments, which show overconfidence playing better than paranoia except in depth

three search, where the results are inconclusive. The inconclusive results at depth

three (which are an average over 500 games) may be due to the sample sizes achieved

via iterative sampling. We measured an average of 67 histories in each sample at

depth three, which might be compared to an average of 321 histories in each sample

at depth two and an average of 1683 histories at depth one. Since both algorithms

use iterative sampling, it could be that at depth three, both algorithms examine

83

Austin Parker, Dana Nau, and V.S. Subrahmanian

insufficient samples to do much better than play randomly.

In every case, overconfidence does better than paranoia against HS. Further,

overconfidence outperforms HS in every case (though sometimes without statistical

significance), suggesting that information-set search is an improvement over the

techniques used in HS.

6 Related Work

There are several imperfect-information game-playing algorithms that work by

treating an imperfect-information game as if it were a collection of perfect-

information games [Smith, Nau, and Throop 1998; Ginsberg 1999; Parker, Nau,

and Subrahmanian 2005]. This approach is useful in imperfect-information games

such as bridge, where it is not the players’ moves that are hidden, but instead

some information about the initial state of the game. The basic idea is to choose

at random a collection of states from the current information set, do conventional

minimax searches on those states as if they were the real state, then aggregate the

minimax values returned by those searches to get an approximation of the utility of

the current information set. This approach has some basic theoretical flaws [Frank

and Basin 1998; Frank and Basin 2001], but has worked well in games such as

bridge.

Poker-playing computer programs can be divided into two major classes. The

first are programs which attempt to approximate a Nash equilibrium. The best

examples of these are PsOpti [Billings, Burch, Davidson, Holte, Schaeffer, Schauen-

berg, and Szafron 2003] and GS1 [Gilpin and Sandholm 2006b]. The algorithms

use an intuitive approximation technique to create a simplified version of the poker

game that is small enough to make it feasible to find a Nash equilibrium. The equi-

librium can then be translated back into the original game, to get an approximate

Nash equilibrium for that game. These algorithms have had much success but differ

from the approach in this paper: unlike any attempt to find a Nash equilibrium,

information-set search simply tries to find the optimal strategy against a given op-

ponent model. The second class of poker-playing programs includes Poki [Billings,

Davidson, Schaeffer, and Szafron 2002] which uses expected value approximations

and opponent modeling to estimate the value of a given move and Vexbot [Billings,

Davidson, Schauenberg, Burch, Bowling, Holte, Schaeffer, and Szafron 2004] which

uses search and adaptive opponent modeling.

The above works have focused specifically on creating successful programs for

card games (bridge and poker) in which the opponents’ moves (card plays, bets) are

observable. In these games, the hidden information is which cards went to which

players when the cards were dealt. Consequently, the search techniques are less

general than information-set search, and are not directly applicable to hidden-move

games such as kriegspiel and the other games we have considered in this paper.

84

Paranoia versus Overconfidence in Imperfect-Information Games

7 Conclusion

We have introduced a recursive formulation of the expected value of an information

set in an imperfect information game. We have provided analytical results showing

that this expected utility formulation plays optimally against any opponent if we

have an accurate model of the opponent’s strategy.

Since it is generally not the case that the opponent’s strategy is known, the

question then arises as to what the recursive search should assume about an op-

ponent. We have studied two opponent models, a “paranoid” model that assumes

the opponent will choose the moves that are best for them, hence worst for us; and

an “overconfident” model that assumes the opponent is making moves purely at

random.

We have compared the overconfident and paranoid models in kriegspiel, in an

imperfect-information version of kalah, and in imperfect-information versions of P-

games [Pearl 1984] and N-games [Nau 1982a]. In each of these games, the overcon-

fident strategy consistently outperformed the paranoid strategy. The overconfident

strategy even outperformed the best of the kriegspiel algorithms in [Parker, Nau,

and Subrahmanian 2005].

These results suggest that the usual assumption in perfect-information game tree

search—that the opponent will choose the best move possible—is not as effective in

imperfect-information games.

Acknowledgments: This work was supported in part by AFOSR grant

FA95500610405, NAVAIR contract N6133906C0149, DARPA IPTO grant FA8650-

06-C-7606, and NSF grant IIS0412812. The opinions in this paper are those of the

authors and do not necessarily reflect the opinions of the funders.

References

Applegate, D., G. Jacobson, and D. Sleator (1991). Computer analysis of sprouts.

Technical report, Carnegie Mellon University.

Billings, D., N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg,

and D. Szafron (2003). Approximating game-theoretic optimal strategies for

full-scale poker. In IJCAI, pp. 661–668.

Billings, D., A. Davidson, J. Schaeffer, and D. Szafron (2002). The challenge of

poker. Artif. Intell. 134, 201–240.

Billings, D., A. Davidson, T. Schauenberg, N. Burch, M. Bowling, R. Holte,

J. Schaeffer, and D. Szafron (2004). Game tree search with adaptation in

stochastic imperfect information games. Computers and Games 1, 21–34.

Ciancarini, P., F. DallaLibera, and F. Maran (1997). Decision Making under

Uncertainty: A Rational Approach to Kriegspiel. In J. van den Herik and

J. Uiterwijk (Eds.), Advances in Computer Chess 8, pp. 277–298.

85

Austin Parker, Dana Nau, and V.S. Subrahmanian

Corlett, R. A. and S. J. Todd (1985). A monte-carlo approach to uncertain infer-

ence. In AISB-85, pp. 28–34.

Frank, I. and D. Basin (2001). A theoretical and empirical investigation of search

in imperfect information games. Theoretical Comp. Sci. 252, 217–256.

Frank, I. and D. A. Basin (1998). Search in games with incomplete information:

A case study using bridge card play. Artif. Intell. 100 (1-2), 87–123.

Gilpin, A. and T. Sandholm (2006a). Finding equilibria in large sequential games

of imperfect information. In EC ’06, pp. 160–169.

Gilpin, A. and T. Sandholm (2006b). A texas hold’em poker player based on

automated abstraction and real-time equilibrium computation. In AAMAS

’06, pp. 1453–1454.

Ginsberg, M. L. (1999). GIB: Steps toward an expert-level bridge-playing pro-

gram. In IJCAI-99, pp. 584–589.

Li, D. (1994). Kriegspiel: Chess Under Uncertainty. Premier.

Li, D. (1995). Chess Detective: Kriegspiel Strategies, Endgames and Problems.

Premier.

Murray, H. J. R. (1952). A History of Board Games other than Chess. London,

UK: Oxford at the Clarendon Press.

Nau, D. S. (1982a). An investigation of the causes of pathology in games. Artif.

Intell. 19 (3), 257–278.

Nau, D. S. (1982b). The last player theorem. Artif. Intell. 18 (1), 53–65.

Nau, D. S. (1983). Decision quality as a function of search depth on game trees.

JACM 30 (4), 687–708.

Osborne, M. J. and A. Rubinstein (1994). A Course In Game Theory. MIT Press.

Parker, A., D. Nau, and V. Subrahmanian (2005, August). Game-tree search with

combinatorially large belief states. In IJCAI, pp. 254–259.

Pearl, J. (1981, August). Heuristic search theory: Survey of recent results. In

Proc. Seventh Internat. Joint Conf. Artif. Intel., Vancouver, Canada, pp.

554–562.

Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem

solving. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Reif, J. (1984). The complexity of two-player games of incomplete information.

Jour. Computer and Systems Sciences 29, 274–301.

Russell, S. and J. Wolfe (2005, August). Efficient belief-state and-or search, with

application to kriegspiel. In IJCAI, pp. 278–285.

Sakuta, M. and H. Iida (2000). Solving kriegspiel-like problems: Exploiting a

transposition table. ICCA Journal 23 (4), 218–229.

86

Paranoia versus Overconfidence in Imperfect-Information Games

Smith, S. J. J., D. S. Nau, and T. Throop (1998). Computer bridge: A big win

for AI planning. AI Magazine 19 (2), 93–105.

von Neumann, J. and O. Morgenstern (1944). Theory of Games and Economic

Behavior. Princeton University Press.

87

6

Heuristic Search: Pearl’s Significance from

a Personal Perspective

Ira Pohl

1 Introduction

This paper is about heuristics, and the significance of Judea Pearl’s work to the

field. The impact of Pearl’s monograph was transformative. It heralded a third

wave in the practice and theory of heuristic search. First there were the pioneering

search algorithms without a theoretical basis, such as GPS or GT. Second came the

Nilsson [1980] work that formulated a basic theory of A*. Third, in 1984, was Judea

Pearl adding depth and breadth to this theory and adding a more sophisticated

probabilistic context. Judea Pearl’s book, Heuristics: Intelligent Search Strategies

for Computer Problem Solving, was a tour de force summarizing the work of three

decades.

Heuristic Search is a holy grail of Artificial Intelligence. It attempts to be a

universal methodology to achieve AI, demonstrating early success in an era when

AI was largely experimental. Pre-1970 programs that were notable include the

Doran-Michie Graph Traverser [Doran and Michie 1966], the Art Samuel checker

program [Samuel 1959], and the Newell, Simon, and Shaw General Problem Solver

[Newell and Simon 1972]. These programs showed what could be called intelligence

across a gamut of puzzles, games, and logic problems. Having no theoretical basis

for predicting success, they were tested and compared to human performance.

The lack of theory for heuristic search changed in 1968 with the publication

by Hart, Nilsson, and Raphael [1968] of their A* algorithm and its analysis. A*

was provably optimum under some theoretical assumptions. The outcome of this

work at the SRI robotics group fueled a series of primary results including my own,

and later Pearl’s. Pearl’s book [Pearl 1984] captured and synthesized much of the

A* work, including my work from the late 1960’s [Pohl 1967; Pohl 1969] through

1977 [Pohl 1970a; Pohl 1970b; Pohl 1971; Pohl 1973; Pohl 1977]. It built a solid

theoretical structure for heuristic search, and inspired much of my own and others

subsequent work [Ratner and Pohl 1986; Ratner and Warmuth 1986; Kaindl and

Kaintz 1997; Politowski 1984].

2 Early Experimentation

In the 1960’s there were three premiere AI labs at US universities: CMU, MIT and

Stanford; there was one such lab in England: the Machine Intelligence group at

89

Kaoru
Text Box
Return to TOC

Ira Pohl

Edinburgh; and there was the AI group at SRI. Each had particular strengths and

visions. The CMU group led by Allen Newell and Herb Simon [Newell and Simon

1972] took a cognitive simulation approach. Their primary algorithmic framework

was GPS, the General Problem Solver. This algorithm could be viewed as an ele-

mentary divide and conquer strategy. Guidance was based on detecting differences

between partial solution and goal states. To make progress this algorithm attempted

to apply operators to partial solutions, and reduce the difference with a goal state.

It demonstrated that a heuristic search strategy could be applied to a wide array

of problems that were associated with human intelligence. These included combi-

natorial puzzles such as crypt-arithmetic and towers of Hanoi.

The Graph Traverser [Doran and Michie 1966] reduced AI questions to the task

of heuristic search. It was deployed on the 8 puzzle, a classic combinatorial puzzle

typical of mildly challenging human amusements. “The objective of the 8-Puzzle

is to rearrange a given initial configuration of eight numbered tiles arranged on a

3 x 3 board into a given final configuration called the goal state [Pearl 1984, p.

6].”. Michie and Doran tried to obtain efficient search by discovering useful and

computationally simple heuristics that measured perceived effort toward a solution.

An example was “how many tiles are out of their goal space.” The Graph Traverser

demonstrated that a graph representation was a useful general perspective in prob-

lem solving, and that computationally knowledgeable heuristics could efficiently

guide search.

The MIT AI lab pioneered many projects in both robotics and advanced problem

solving. Marvin Minsky and his collaborators solved relatively difficult mathemat-

ical problems such as word algebra problems and calculus problems [Slagle 1963].

They used context, mathematical models and search to solve these problems. Ul-

timately this work led to programs such as Mathematica. They gave a plausible

argument for what could be described as knowledge + deduction = intelligence.

The Stanford AI lab was led by John McCarthy, who was important in two re-

gards: computational environment and logical representations. McCarthy pioneered

with LISP and time sharing: tools and schemes that would profoundly impact the

entire computational community. He championed predicate logic as a uniform and

complete representation of what was needed to express and reason about the world.

The SRI lab, originally affiliated with Stanford, but later independent, was en-

gaged in robotics. A concern was how an autonomous mobile robot could efficiently

navigate harsh terrain, such as the moon. Here the emphasis was more engineering

and algorithmic. Here the question was how something could be made to work effi-

ciently, not whether it simulated human intelligence or generated a comprehensive

theory of inference.

3 Early Theory

The Graph Traverser was a heuristic path finding algorithm attempting to minimize

search steps to a goal node. This approach was experimental and explored how to

90

Heuristic Search

Figure 1. Tutte’s graph

formulate and test for useful heuristics. The Dijkstra shortest path algorithm [Dijk-

stra 1959] was a combinatorial algorithm. It was an improvement on earlier graph

theoretic and operations research algorithms for the pure shortest path optimization

problem. A* developed in Hart, Nilsson, and Raphael [1968], is the adaptation of

Dijkstra’s shortest path algorithm to incorporate admissible heuristics. It preserved

the need to find an optimal path, while using heuristics that attempted to minimize

search.

In the period 1966-1969, I worked on graph theory algorithms, such as the Di-

jkstra algorithm. The Stanford Computer Science department was dominated by

numerical analysts with a strong algorithmic approach. The AI group was meta-

mathematical and inference oriented. Don Knuth had yet to come to Stanford, so

there was not yet any systematic work or courses offered on combinatorial algo-

rithms. I was asked to evaluate PL1 for use at Stanford and SLAC and decided to

test it out by building a graph algorithm library.

I enjoyed puzzle-like problems and had an idea for improving Warnsdorf’s rule

for finding a Knight’s tour. A Knight’s tour is a Hamiltonian path on the 64 square

chessboard whose edge connectivity is determined by Knight moves. In graph theory

terms the rule was equivalent to going to an unvisited node of minimum out-degree.

Warnsdorf’s rule is an example of a classic greedy heuristic. I modified it to find a

Hamiltonian in the 46 node Tutte’s graph [Pohl 1967; Tutte 1946], as well as showed

that it worked well on Knight’s Tours.

At that time, the elegance of Dijkstra’s work had impressed me, and I sought to

improve his shortest path algorithm by implementing it bidirectionally. An early

attempt by Nicholson [1966] had proved incorrect because of an error in the stopping

criteria. These ideas conspired to lead me to test my methods further as variations

on A* [Pohl 1971].

91

Ira Pohl

The first half of Pearl [1984], Chapter 3 is a sophisticated and succinct summation

of search results through 1978. Three theorems principally due to Hart, Nilsson,

and Raphael [1968] are central to early theory:

• A* is complete even on infinite graphs [Pearl 1984, Theorem 1, p. 77].

• A* is admissible [Pearl 1984, Theorem 2, p. 78].

• If A*2 is more informed than A*1, then A*2 dominates A*1 [Pearl 1984,

Theorem 7, p. 81].

Much of this early work relied on the heuristic being consistent. But as Pearl [1984,

p. 111] notes: ”The property of monotonicity was introduced by Pohl [1977] to

replace that of consistency. Surprisingly, the equivalence of the two have not been

previously noted in the literature.” These theorems and monotonicity provide a first

attempt at a mathematical foundation for heuristic search.

These theorems suggest that A* is robust and that heuristics that are more

informed lead to more efficient searches. What is missing is how to relate the effort

and accuracy in computing the heuristic to its computational benefit.

4 Algorithms, and Numerical Methods, as a model

In AI search is a weak but universal method. To make it efficient we have to

give it powerful guidance mechanisms. A well developed theory of search exists in

numerical analysis for finding the roots of equations. It represented to me a possible

conceptual model for heuristic search.

There are diverse algorithms to solve the root search problem. A sample of meth-

ods could include bisection search, Monte Carlo sampling, and Newton-Raphson.

Bisection search for root finding is robust. Newton-Raphson (NR) for root finding

is efficient. Monte-Carlo root finding is highly robust and very inefficient. How to

decide what to use involves efficiency and error concerns. Often efficient methods

of root finding require a function be well behaved. So NR converges quadratically,

but requires differentiability. Bisection converges linearly but requires continuity.

Monte-Carlo in most circumstances works very slowly, but works on discontinuous

and non-differentiable functions

In numerical methods error analysis is critical to understanding a method’s utility

and its efficiency. Also in algorithmic methods one needs to use adversaries to stress

test robustness and efficiency. These techniques can be applied to heuristic search

algorithms.

Heuristic search theory can be investigated analogously to the theory of root

finding. To subsume the various heuristic algorithms, I formulated the following

generalization of the search function f, as a linear combination of g and h. Further-

more this combination could be weighted dynamically.

The node selection function is : f(x) = (1−w(x))g(x)+w(x)h(x), 0 ≤ w(x) ≤ 1.

92

Heuristic Search

Moore maze/path: w = 0, edge costs are 1

Dijkstra: w = 0, edge costs are 1

Michie-Doran GT: w = 1

HNR A*: w = 0.5, h is admissible

This generalization is also adopted in Pearl [1984], Section 3.2.1. Once you have this

generalization, one can ask questions that are similar to those studied by numerical

analysts. How reliably the heuristic function estimates effort, leads to a notion of

error. This error then effects the convergence rate to a solution. This question

was first taken up by Pohl [1970a] and later by Gaschnig [1979]. Pearl’s results

as summarized in [Pearl 1984, Chapters 6–7], provide a detailed treatment of the

effects of error on search.

5 Variations: Weighted and Bidirectional search

5.1 Weighted dynamic search

The four standard weightings for HPA were all static, for example w = 1/2 for

A*. Dynamic weighting is proposed in [Pohl 1973], where w(x) is dependent on

the character of the state. This was inspired by the observation that accuracy of

heuristics improved as the search neared its goal. An admissible heuristic is an

underestimate. Dynamic weighting can overestimate (see discussion in [Pearl 1984,

Chapter 7]) and be not admissible. This technique remains controversial and is

underutilized and not extensively researched.

5.2 Bidirectional Search

Bidirectional search was originally proposed in optimzation [Nicholson 1966] to im-

prove on unidirectional shortest path algorithms. These implementations presumed

a naive termination condition - namely that when an intersection of two paths oc-

curred the resulting path was optimal. Finding this an error and implementing the

correct terminating condition led me to consider both practically and theoretically

how more efficient bidirectional search was.

Bidirectional search is an attractive approach for several reasons. Searches are

normally combinatorially explosive in their depth. Two searches of half the depth

ideally save exponential time and space. When run on a parallel architecture they

can essentially be done simultaneously. Furthermore, this leads to a natural recur-

sive process of further divide and conquer searches.

The cardinality comparison rule tells us to expand in the sparser hemi-tree and

can be important in improving these searches. There is the following intuitive

justification as to why such a rule makes more progress than simple alternation.

Consider the problem of picking a black ball out of either of two urns. Each urn

contains a single black ball and some white balls. The probability of finding a black

ball is 1/n where n is the number of balls in the urn. In finding a next black ball

93

Ira Pohl

it is best to pick from the urn with fewest balls. Think of the urn as the collection

of open nodes and selection as finding the next node along an optimum path. This

leads to the cardinality comparison rule.

Bidirectional search works well for the standard graph shortest path problem.

Here, bidirectional search, exclusive of memory constraints, dominates unidirec-

tional search when the metric is nodes expanded. But when search is guided by

highly selected heuristics there can be a “wandering in the desert” problem when

the two frontiers do not meet in the middle.

To address this problem, I first proposed a parallel computation of all front-to-

front node values in 1975. Two of my student’s implemented and tested this method

[De Champeaux and Sint 1977]. It had some important theoretical advantages, such

as retaining admissibility, but it used an expensive front-to-front computation that

involved the square of the nodes in the open set. By only looking at nodes expanded

as a measure of efficiency it was misleading as to its true computational effort [Davis

et al. 1984].

6 Judea and Heuristics

In Heuristics [Pearl 1984], Judea Pearl insightfully presents the work on heuris-

tic search from 1950-1984. He contextualized and showed it as a mature theory.

The book is the defining third generation document that immensely broadens and

deepens the mathematical character of the field.

Pearl’s book is very important in emphasizing the need for a sophisticated view

of computational efficiency. It summarized, systematized and extended the theory

of heuristic search. It extensively analyzed A* using both worst-case analysis and

expected case analysis. It looked at the case of using nonadmissible heuristics.

Chapter 4 gives pointers to how heuristics can be discovered that will work on

difficult problems including NP-Complete problems. An example would be the

“out-of-place heuristic” in the sliding blocks puzzles. Here a person would be in one

move allowed to swap an out-of-place tile to its final location. The number of out-

of-place tiles would be a lower bound on a solution length and easy to compute. A

more sophisticated heuristic occurs with respect to the traveling salesman problem

(TSP) where the minimum spanning tree is a relaxed constraint version for visiting

all nodes in a graph and is nlog(n) in its computation.

In Pearl [1984] Chapter 6, we have a summary of results on complexity versus

the precision of the heuristic. Here the work of Pearl and his students Rina Decter

and Nam Huyn is presented. Pearl, Dechter, and Huyn [Dechter and Pearl 1985],

[Huyn et al. 1980] developed the theory of optimality for A* for the expected case

as well as the worst case.

“Theorem 1 [Huyn et al. 1980] For any error distribution, if A*2 is stochastically

more informed than A*1, then A*2 is stochastically more efficient than A*1 [Pearl

1984, p. 177].”

This leads to a result by Pearl [1983] that “the exponential relationship estab-

94

Heuristic Search

lished in this section implies that precision-complexity exchange for A* is fairly

‘inelastic’.”Namely, unless error in the heuristic is better than logarithmic, search

branching rates remain exponential.

In Pearl [1984, Chapter 7], there are results on search without admissibility. He

provides a formal probabilistic framework to analyze questions of non-admissible

heuristics and search efficiency. These results provide one view of dynamic-weighting

search.

The impact of the Pearl monograph was transformative. It heralded a third wave

of sophistication in the theory of heuristic search. First we had inventive pioneering

search algorithms without a theoretical basis, such as GPS or GT. Second we had

the Nilsson [1980] work that formulated a basic theory of A* and my work that

formulated a very rough theory of efficiency. Third, in 1984, we had Pearl adding

depth and breadth to this theory and embedding it in a sophisticated probabilistic

reality.

7 D-nodes, NP, LPA*

7.1 What Pearl inspired

Pearl’s synthesis recharged my batteries and led me with several students and col-

leagues to further examine these problems and algorithms.

NP [Garey and Johnson 1979] complexity is the sine quo non for testing search

on known hard problems. The Hamiltonian problem was already known in 1980

as NP, but not sliding tile puzzles. I conjectured that the generalized sliding tile

problem was NP in private communications to Ratner and Warmuth [1986]. They

in turn produced a remarkable proof that it indeed was NP. This is important in

the sense that it puts what some have called “the drosophila of AI” on firm footing

as a proper exemplar. In effect it furthers the Nilsson, Pohl, Pearl agenda of having

a mathematical foundation for search.

7.2 LPA* search

In work with Ratner [Ratner and Pohl 1986], we proposed Local Path A* (LPA*),

an algorithm that combines an initial efficient approximation algorithm with local

A* improvements. Such an approach retains the computational efficiency of finding

the initial solution by carefully constraining improvements to a small computational

cost.

The idea behind these algorithms is to combine a fast approximation algorithm

with a search method. This idea was first suggested by S. Lin [Lin, 1965], when

he used it to find an effective algorithm for the Traveling-Salesman problem (TSP).

Our goal was to develop a problem independent approximation method and combine

it with search.

An advantage of approximation algorithms is that they execute in polynomial

time, where many other algorithms have no such upper bound. The test domain is

the 15 puzzle and the approximation algorithm is based on macro-problem-solving

95

Ira Pohl

[Korf 1985a]. The empirical results, which come from a test on a standard set of 50

problems [Politowski and Pohl, 1984], show that the algorithms outperform other

then published methods within stated time limits.

In order to bound the effort of local search by a constant, each local search will

have the start and goal nodes reside on the path, with the distance between them

bounded by dmax, a constant independent of n and the nodes. Then we will apply

A * with admissible heuristics to find a shortest path between the two nodes. The

above two conditions generally guarantee that each A * use requires less than some

constant time. More precisely, if the branching degrees of all the nodes in G are

bounded by a constant c which is independent of n then A * will generate at most

c(c − 1)dmax−1 nodes.

Theoretically c(c−1)dmax−1 is a constant, but it can be very large. Nevertheless,

most heuristics prune most of the nodes [Pearl 1984]. The fact that not many nodes

are generated, is supported by experiments.

The results in [Ratner and Pohl 1986] demonstrate the effectiveness of using

LPA * . When applicable, this algorithm achieves a good solution with small

execution time. This method require an approximation algorithm as a starting

point. Typically, when one has a heuristic function, one has adequate knowledge

about the problem to be able to construct an approximation algorithm. Therefore,

this method should be preferred in most cases to earlier heuristic search algorithms.

7.3 D-node Bidirectional search

Bidirectional heuristic search is potentially more efficient than unidirectional heuris-

tic search. A basic difficulty is that the two search trees do not meet in the middle.

This can result in two unidirectional searches and poorer performance. To work

around this George Politowski and I implemented a retargeted bidirectional search.

De Champeaux describes a Bidirectional, Heuristic Front-to-Front Algorithm

(BHFFA) [De Champeaux, Sint 1977] which is intended to remedy the “meet in

the middle” problem. Data is included from a set of sample problems correspond-

ing to those of [Pohl 1971]. The data shows that BHFFA found shorter paths and

expanded fewer nodes than Pohl’s bidirectional algorithm. However, there are sev-

eral problems with the data. One is that most of the problems are too easy to

constitute a representative sample of the 15-puzzle state space, and this may bias

the results. Another is that the overall computational cost of the BHFFA is not

adequately measured, although it is of critical importance in evaluating or selecting

a search algorithm. A third problem concerns admissibility. Although the algo-

rithm as formally presented is admissible, the heuristics, weightings, termination

condition, and pruning involved in the implemented version all violate admissibil-

ity. This makes it difficult to determine whether the results which were obtained

are a product of the algorithm itself or of the particular implementation. It is also

difficult to be sure that the results would hold in the context of admissible search.

The main problem in bidirectional heuristic search is to make the two partial

96

Heuristic Search

paths meet in the middle. The problem with Pohl’s bidirectional algorithm is that

each search tree is ’aimed’ at the root of the opposite tree. What is needed is some

way of aiming at the front of the opposite tree rather than at its root. There are

two advantages to this. First, there is a better chance of meeting the opposite front

if you are aiming at it. Second, for most heuristics the aim is better when the

target is closer. However, aiming at a front rather than a single node is somewhat

troublesome since the heuristic function is only designed to estimate the distance

between two nodes. One way to overcome this difficulty is to choose from each front

a representative node which will be used as a target for nodes in the opposite tree.

We call such nodes d-nodes.

Consider a partially developed search tree. The growth of the tree is guided

by the heuristic function used in the search, and thus the whole tree is inclined,

at least to some degree, towards the goal. This means that one can expect that

on the average those nodes furthest from the root will also be closest to the goal.

These nodes are the best candidates for the target to be aimed at from the opposite

tree. In particular, the very farthest node out from the root should be the one

chosen. D-node selection based on this criterion costs only one comparison per

node generated.

We incorporated this idea into a bidirectional version of HPA in the following

fashion:

1. Let the root node be the initial d-node in each tree.

2. Advance the search n moves in either the forward or backward direction,

aiming at the d-node in the opposite tree. At the same time, keep track of

the furthest node out, i.e. the one with the highest g value.

3. After n moves, if the g value of the furthest node out is greater than the g

value of the last d-node in this tree, then the furthest node out becomes the

new d-node. Each time this occurs, all of the nodes in the opposite front

should be re-aimed at the new d-node.

4. Repeat steps 2 and 3 in the opposite direction.

The above algorithm does not specify a value for n. Sufficient analysis may enable

one to choose a good value based on other search parameters such as branching rate,

quality of heuristic, etc. Otherwise, an empirical choice can be made on the basis

of some sample problems. In our work good results were obtained with values of n

ranging from 25 to 125.

It is instructive to consider what happens when n is too large or too small, because

it provides insight into the behavior of the d-node algorithm. A value of n which

is too large will lead to performance similar to unidirectional search. This is not

surprising since for a sufficiently large n, a path will be found unidirectionally, before

any reversal occurs. A value of n which is too small will lead to poor performance

97

Ira Pohl

in two respects. First, the runtime will be high because the overhead to re-aim the

opposite tree is incurred too often. Second, the path quality will be lower (i.e. the

The evaluation function used by the d-node search algorithm is the same as that

used by HPA, namely f = (1 − w)g + w ∗ h, except that h is now the heuristic

estimate of the distance from a particular node to the d-node of the opposite tree.

This is in contrast to the original bidirectional search algorithm, where h estimates

the distance to the root of the opposite tree, and to unidirectional heuristic search,

where h estimates the distance to the goal. The d-node algorithm’s aim is to perform

well for a variety of heuristics and over a range of w values.

The exponential nature of the problem space makes it highly probable that ran-

domly generated puzzles will be relatively hard, i.e. their shortest solution paths

will be relatively long with respect to the diameter of the state space. The four

functions used to compute h are listed below. These functions were originally de-

veloped by Doran and Michie [Doran, Michie 1966], and they are the same functions

as those used by Pohl and de Champeaux.

1. h = P

2. h = P +20*R

3. h = S

4. h = S +20*R

The three basic terms P, S, and R have the following definitions.

1. where P is the sum for all tile i of Manhattan distance between the position

of tile i in the current state and in the goal.

2. S, a relationship between tile and the blank square defined in [Doran, Michie

1966].

3. R is the number of reversals in the current state with respect to goal. For

example if tile 2 is first and tile 1 is next, this is a reversal.

Finally, the w values which we used were 0.5, 0.75, and 1.0. This covers the entire

’interesting’ range from w = 0.5, which will result in admissible search with a

suitable heuristic, to w = 1.0, which is pure heuristic search.

The detailed results of our test of the d-node algorithm are found in [Politowski

1986]. The most significant result is that the d-node method dominates both pre-

viously published bidirectional techniques, regardless of heuristic or weighting. In

comparison to de Champeaux’s BHFFA, the d-node method is typically 10 to 20

times faster. This is chiefly because the front-to-front calculations required by

BHFFA are computationally expensive, even though the number of nodes expanded

is roughly comparable for both methods. In comparison to Pohl’s bidirectional al-

gorithm, the d-node method typically solves far more problems, and when solving

the same problems it expands approximately half as many nodes.

98

Heuristic Search

8 Next Steps

Improving problem decomposition remains an important underutilized strategy

within heuristic search. Divide and conquer remains a central instrument of intelli-

gent deduction in many formats and arenas. Here the bidirectional search theme and

the LPA* search are instances of naive but effective first steps. Planning is a further

manifestation of divide and conquer. Intuitively planning amounts to a good choice

of lemma’s when attempting to construct a difficult proof. Korf’s [Korf 1985a, Korf

1985b] macro operators can be seen as a first step, or the Pohl-Politowski d-node

selection criteria as a an automated attempt at problem decomposition.

Expanding problem selection to hard domains is vital to demonstrating the rel-

evance of heuristic search. Historically these techniques were developed on puzzle

domains. Here Korf’s [Korf, Zhang 2000] recent work in applying search to genomics

problems is welcome. Computational genomics is an unambiguously complex and

non-trivial domain that almost certainly requires heuristics search.

Finally, what seems under exploited is the use of a theory of error linked to

efficiency. Here my early work and the experimental work of Gaschnig contributed

to the deeper studies of Pearl and Davis [1990]. Questions of worst case analysis

and average case complexity and its relation to complexity theory while followed

up by Pearl, and by Chenoweth and Davis [1992], is only a beginning. A deeper

theory that applies both adversary techniques and metric space analysis is needed.

References

Chenoweth, S., and Davis, H. (1992). New Approaches for Understanding the

Asymptotic Complexity of A* Tree Searching. Annals of Mathematics and AI

5, 133–162.

Davis, H. (1990). Cost-error Relationships in A* Tree Searching. Journal of the

ACM 37 , 195–199.

Davis, H., Pollack, R., and Sudkamp, T. (1984). Toward a Better Understanding

of Bidirectional Search. Proceedings AAAI , pp. 68–72.

De Champeaux, D., and Sint, L. (1977). An improved bi-directional heuristic

search algorithm. Journal of the ACM 24 , 177–191.

Dechter, R., and Pearl, J. (1985). Generalized Best-First Search Strategies and

the Optimality of A*. Journal of the ACM 32 , 505–536.

Dijkstra, E. (1959). A Note on Two Problems in Connection with Graphs Nu-

merische Mathematik 1 , 269–271, 1959.

Doran, J., and Michie, D. (1966). Experiments with the Graph Traverser Pro-

gram. Proc.of the Royal Society of London, 294A, 235–259.

Field, R., Mohyeldin-Said, K., and Pohl, I. (1984). An Investigation of Dynamic

Weighting in Heuristic Search, Proc. 6th ECAI , pp. 277–278.

99

Ira Pohl

Gaschnig, J. (1979). Performance Measurement and Analysis of Certain Search

Algorithms. Ph.D. Dissertation CMU CS 79-124.

Hart, P. E., Nilsson, N., and Raphael, B. (1968). A Formal Basis for the Heuris-

tic Determination of Minimal Cost Paths Search Reconsidered. IEEE Trans.

Systems Science and Cybernetics SSC-4 2, 100–07.

Huyn, N., Dechter, R., and Pearl, J. (1980). Probabilistic analysis of the com-

plexity of A*. Artificial Intelligence:15, 241–254.

Kaindl, H., and Kainz, G. (1997). Bidirectional Heuristic Search Reconsidered.

Journal of Artificial Intelligence Research 7 , 283–317.

Knuth, D. E. (1994). Leaper graphs. Mathematical Gazette 78, 274–297.

Korf, R., E. (1985a). Learning to Solve problems by Searching Macro-Operators.

Pitman.

Korf, R.,E. (1985b). Iterative Deepening A*. Proceedings 9th IJCAI, vol. 2, pp.

1034–1035.

Korf, R.,E., and Zhang, W. (2000). Divide and Conquer Frontier Search Applied

to Optimal Sequence Alignment. AAAI-00, pp. 910–916.

Korf, R. E. (2004). Best-First Frontier Search with Delayed Duplicate Detection.

AAAI-04, pp. 650–657.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell Sys-

tems Tech. J. 44(10), 2245–2269.

Newell, A., and Simon, H. (1972). Human Problem Solving. Prentice Hall.

Nilsson, N. (1980). Principles of Artificial Intelligence. Palo Alto, CA: Tioga.

Pearl, J. (1983). Knowledge versus search: A quantitative analysis using A*.

Artificial Intelligence:20, 1–13.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem

Solving. Reading, Massachusetts: Addison-Wesley.

Pohl, I. (1967). A method for finding Hamilton paths and knight’s tours. CACM

10 , 446–449.

Pohl, I. (1970a). First Results on the Effect of Error in Heuristic Search. In B.

Meltzer and D. Michie (Eds.), Machine Intelligence 5, pp. 219–236. Edinburgh

University Press.

Pohl, I. (1970b). Heuristic Search Viewed as Path Finding in A Graph. Artificial

Intelligence 1, 193–204.

Pohl, I. (1971). Bi-directional search. In B. Meltzer and D. Michie (Eds.), Machine

Intelligence 6, pp. 127–140. Edinburgh University Press.

Pohl, I. (1973). The Avoidance of (Relative) Catastrophe, Heuristic Competence,

Genuine Dynamic Weighting and Computational Issues in Heuristic Problem

Solving. IJCAII 3, pp. 20–23.

100

Heuristic Search

Pohl, I. (1977). Practical and Theoretical Considerations in Heuristic Search Al-

gorithms, In E. Elcock and D. Michie (Eds.), Machine Intelligence 8, pp.

55–72. New York: Wiley.

Ratner, D., and Pohl, I. (1986). Joint and LPA*: Combination of Approximation

and Search. Proceedings AAAI-86, vol. 1, pp. 173–177.

Ratner, D., and Warmuth, M. (1986). Finding a Shortest Solution for the N ×N

Extension of the 15-Puzzle is Intractable. Proceedings AAAI-86, vol. 1, pp.

168–172.

Samuel, A. (1959). Some Studies in Machine Learning Using Checkers. IBM Re-

search Journal of Research and Development 3, 211–229.

Slagle, J. R. (1963). A Heuristic Program that Solves Symbolic Integration Prob-

lems in Freshman Calculus. Journal of the ACM 10, 507–520.

Tutte, W. T. (1946). On Hamiltonian Circuits. J. London Math. Soc. 21, 98–101.

101

Part II: Probability

7

Inference in Bayesian Networks:

A Historical Perspective

Adnan Darwiche

1 Introduction

Judea Pearl introduced Bayesian networks as a representational device in the early

1980s, allowing one to systematically and locally assemble probabilistic beliefs into

a coherent whole. While some of these beliefs could be read off directly from the

Bayesian network, many were implied by this representation and required compu-

tational work to be made explicit. Computing and explicating such beliefs has

been the subject of much research and became known as the problem of inference

in Bayesian networks. This problem is critical to the practical utility of Bayesian

networks as the computed beliefs form the basis of decision making, which typically

dictates the need for Bayesian networks in the first place.

Over the last few decades, the interest in inference algorithms for Bayesian net-

works remained great and has witnessed a number of shifts in emphasis with regards

to the adopted computational paradigms and the type of queries addressed. My

goal in this paper is to provide a historical perspective on this line of work and the

associated shifts, where we shall see the key role that Judea Pearl has played in

initiating and inspiring many of the technical developments that have formed and

continue to form the basis of work in this area.

2 Starting with trees

It all began with trees — and polytrees! These are network structures that permit

only one undirected path between any two nodes in the network; see Figure 1. If each

node has at most one parent, we have a tree. Otherwise, we have a polytree. Pearl’s

first inference algorithm — and the very first algorithm for Bayesian networks —

was restricted to trees [Pearl 1982] and was immediately followed by a generalization

that became known as the polytree algorithm [Kim and Pearl 1983; Pearl 1986b].

The goal here was to compute a probability distribution for each node in the network

given some evidence, a task which is known as computing node marginals.

The polytree algorithm was based on a message-passing computational paradigm,

where nodes in the network send messages to a neighboring node after they have

received messages from all other neighbors. Each message can be viewed as sum-

marizing results from one part of the network and passing them on to the rest of

the network. Messages that communicated information from parents to their chil-

105

Kaoru
Text Box
Return to TOC

Adnan Darwiche

Figure 1. From left to right: a tree, a polytree, and a multiply–connected network.

dren were said to quantify the causal support from parents to these children. On

the other hand, messages that communicated information from children to their

parents were said to quantify the diagnostic support from children to parents. The

notions of causal and diagnostic supports were rooted in the causal interpretation

of Bayesian network structures that Pearl insisted on, where parents are viewed as

direct causes of their children. According to this interpretation, the distribution

associated with a node in the Bayesian network is called the belief in that node,

and is a function of the causal support it receives from its direct causes, the diag-

nostic support it receives from its direct effects, and the local information available

about that node. This is why the algorithm is also known as the belief propagation

algorithm, a name which is more common today.

The polytree algorithm has had considerable impact and is of major historical

significance for a number of reasons. First, it was the very first exact inference

algorithm for this class of Bayesian networks. Second, its time and space complexity

were quite modest being linear in the size of the network. Third, the algorithm

formed the basis for a number of other algorithms, both exact and approximate,

that will be discussed later. In addition, the algorithm provided a first example of

reading off independence information from a network structure, and then using it

to decompose a complex computation into smaller and independent computations.

It formally showed the importance of independence, as portrayed by a network

structure, in driving computation and in reducing the complexity of inference.

One should also note that, according to Pearl, this algorithm was motivated by

the work of [Rumelhart 1976] on reading comprehension, which provided compelling

evidence that text comprehension must be a distributed process that combines both

top-down and bottom-up inferences. This dual mode of inference, so characteristic

of Bayesian analysis, did not match the capabilities of the ruling paradigms for

uncertainty management in the 1970s. This led Pearl to develop the polytree algo-

106

Inference in Bayesian Networks: A Historical Perspective

Figure 2. Networks and corresponding loop-cutsets (bold circles).

rithm [Pearl 1986b], which, as mentioned earlier, appeared first in [Pearl 1982] with

a restriction to trees, and then in [Kim and Pearl 1983] for polytrees.

3 On to more general structures

Soon after the polytree algorithm was introduced, the search began for algorithms

that can handle arbitrary network structures. Since polytrees were also referred to as

singly–connected networks, arbitrary network structures were said to be multiply–

connected; see Figure 1. One of the central ideas for handling these networks is

based on the technique of conditioning. That is, one can set variable X to some

value x and then solve the problem under that particular condition X = x. If this is

repeated for all values of X, then one can recover the answer to the original problem

by assembling the results obtained from the individual cases. The main value of

this technique is that by conditioning variables on some values, one can simplify the

problem. In Bayesian networks, one can effectively delete edges that are outgoing

from a node once the value of that node is known, therefore, creating a simplified

structure that can be as informative as the original structure in terms of answering

queries.

Pearl used this observation to propose the algorithm of loop-cutset condition-

ing [Pearl 1986a; Pearl 1988], which worked by conditioning on enough network

variables to render the network structure singly–connected. The set of variables that

needed to be conditioned on is called a loop–cutset; see Figure 2. The loop–cutset

conditioning algorithm amounted then to a number of invocations to the polytree

algorithm, where this number is exponential in the size of the cutset — one invoca-

tion for each instantiation of the variables constituting the cutset. A key attraction

of this algorithm is its modest space requirements, as it did not need much space

beyond that used by the polytree algorithm. The problem with the algorithm, how-

ever, was in its time requirements when the size of the loop-cutset was large enough.

The algorithm proved impractical in such a case and the search continued for al-

107

Adnan Darwiche

A

B C

D E

F

G H

ABD

ACEDFG

ADF AEF

EFH

Figure 3. A Bayesian network structure and its corresponding jointree (tree of

clusters).

ternative conditioning algorithms that could handle multiply–connected structures

more efficiently.

The very first algorithm that found widespread use on multiply–connected net-

works was the jointree algorithm, also known as the tree clustering algorithm [Lau-

ritzen and Spiegelhalter 1988]. This algorithm proved quite effective and remains

practically influential until today — for example, it is the algorithm of choice in

commercial implementations of Bayesian network inference. One way of under-

standing this algorithm is as a version of the polytree algorithm, invoked on a tree

clustering of the multiply–connected network. For an example, consider Figure 3

which depicts a DAG and its corresponding tree of clusters — this is technically

known as a jointree or a tree decomposition [Robertson and Seymour 1986]. One

thing to notice here is that each cluster is a set of variables in the original network.

The jointree algorithm works by passing messages across the tree of clusters, just

as in the polytree algorithm. However, the size of these messages and the amount

of work it takes to propagate them is now tied to the size of clusters.

The jointree is not an arbitrary tree of clusters as it must satisfy some conditions

to legitimize the message passing algorithm. In particular, every node and its

parents in the Bayesian network must belong to some tree cluster. Moreover, if a

variable appears in two clusters, it must also appear in every cluster on the path

connecting them. Ensuring these conditions may lead to clusters that are large.

There is a graph–theoretic notion, known as treewidth, which puts a lower bound

on the size of largest cluster [Robertson and Seymour 1986]. In particular, if the

treewidth of the DAG is w, then any jointree of the DAG must have a cluster whose

size is at least w + 1.1 In some sense, the treewidth can be viewed as a measure of

1In graph theory, treewidth is typically defined for undirected graphs. The treewidth of a

DAG as used here corresponds to the treewidth of its moralized graph: one which is obtained by

108

Inference in Bayesian Networks: A Historical Perspective

A B C D E

A B C D E

C D E

B

C

Figure 4. Decomposing a Bayesian network by conditioning on variable B and then

on variable C.

how similar a DAG structure is to a tree structure as it puts a lower bound on the

width of any tree clustering (jointree) of the DAG.

The connection between the complexity of inference algorithms and treewidth

is actually the central complexity result that we have today for exact inference

[Dechter 1996]. In particular, given a jointree whose width is w, node marginals

can be computed in time and space that is exponential only in w. Note that a

network treewidth of w guarantees the existence of such a jointree, but finding

it is generally known to be hard. Hence, much work on this topic concerns the

construction of jointrees with minimal width using both heuristics and complete

search methods (see [Darwiche 2009] for a survey).

4 More computational paradigms

Since a typical implementation of the jointree algorithm will indeed use as much

time and space as is suggested by the complexity analysis, we will not be able to

rely on the jointree algorithm in the case where we do not find a jointree whose

width is small enough. To overcome this treewidth barrier, research on inference

algorithms continued in a number of directions.

With regards to work on conditioning algorithms, the main breakthrough in this

regard was based on observing that one can employ conditioning in other and more

effective ways than loop–cutset conditioning. For example, one can condition on

enough variables to split the network into disconnected sub–networks, which can

then be solved independently. These sub–networks need not be polytrees, as each

one of them can be solved recursively using the same method, until sub–networks

reduce to a single node each; see Figure 4. With appropriate caching schemes

to avoid solving the same sub–network multiple times, this method of recursive

conditioning can be applied with the same complexity as the jointree algorithm. In

connecting every pair of nodes that share a child in the DAG and then dropping the directionality

of all edges.

109

Adnan Darwiche

particular, one can guarantee that the space and time requirements of the algorithm

are at most exponential in the treewidth of underlying network structure. This

result assumes that one has access to a decomposition structure, known as a dtree,

which is used to control the decomposition process at each level of the recursive

process [Darwiche 2001]. Similar to a jointree, finding an optimal dtree (i.e., one

that realizes the treewidth guarantee on complexity) is hard. Yet, one can easily

construct such a dtree given an optimal jointree, and vice versa [Darwiche 2009].

Even though recursive conditioning and the jointree algorithm are equivalent from

this complexity viewpoint, recursive conditioning provided some new contributions

to inference. On the theoretical side, it showed that conditioning as an inference

paradigm can indeed reach the same complexity as the jointree algorithm — a

question that was open for some time. Second, the algorithm provided a flexible

paradigm for time-space tradeoffs: by simply controlling the degree of caching,

the space requirements of the algorithm can be made to range from being only

linear in the network size to being exponential in the network treewidth (given an

appropriate dtree). Moreover, the algorithm provided a convenient framework for

exploiting local structure as we shall discuss later.

On another front, and in the continued search of an alternative for the jointree

algorithm, a sequence of efforts culminated into what is known today as the variable

elimination algorithm [Zhang and Poole 1994; Dechter 1996]. According to this al-

gorithm, one maintains the probability distribution of the Bayesian network as a set

of factors (initially the set of CPTs) and then successively eliminates variables from

this set one variable at a time.2 The elimination of a variable can be implemented

by simply combining all factors that mention that variable and then removing the

variable from the combined factor. After eliminating a variable, the resulting fac-

tors represent a distribution over all remaining (un-eliminated) variables. Hence,

by repeating this elimination process, one can obtain the marginal distribution over

any subset of variables, including, for example, marginals over single variables.

The main attraction of this computational paradigm is its simplicity — at least as

compared to the initial formulations of the jointree algorithm. Variable elimination,

however, turned out to be no more efficient than the jointree algorithm in the worst

case. In particular, the ideal time and space complexities of the algorithm also

depend on the treewidth — in particular, they are exponential in treewidth when

computing the marginal over a single variable. To achieve this complexity, however,

one needs to use an optimal order for eliminating variables [Bertele and Brioschi

1972]. Again, constructing an optimal elimination order that realizes the treewidth

complexity is hard in general. Yet, one can easily construct such an optimal order

from an optimal jointree or dtree, and vice versa.

Even though variable elimination proved to have the same treewidth complexity

2A factor is a function that maps the instantiations of some set of variables into numbers; see

Figure 5. In this sense, each probability distribution is a factor and so is the marginal of such a

distribution on any set of variables.

110

Inference in Bayesian Networks: A Historical Perspective

X Y Z f(.)

F F F 0.9

F F T 0.1

F T F 0.9

F T T 0.1

T F F 0.1

T F T 0.9

T T F 0.5

T T T 0.5

X

Z

.1 .9

Y

.5

Z

Figure 5. A factor over binary variables X, Y, Z with a tabular representation (left)

and an ADD representation (right).

as the jointree algorithm, it better explained the semantics of the jointree algorithm,

which can now be understood as a sophisticated form of variable elimination. In

particular, one can interpret the jointree algorithm as a refinement on variable elim-

ination in which: (1) multiple variables can be eliminated simultaneously instead

of one variable at a time; (2) a tree structure is used to control the elimination

process and to save the results of intermediate elimination steps. In particular,

each message passed by the jointree algorithm can be interpreted as the result of

an elimination process, which is saved for re-use when computing marginals over

different sets of variables [Darwiche 2009]. As a result of this refinement, the join-

tree algorithm is able to perform successive invocations of the variable elimination

algorithm, for computing multiple marginals, while incurring the cost of only one

invocation, due mainly to the re-use of results across multiple invocations.

Given our current understanding of the variable elimination and jointree algo-

rithms, one now speaks of only two main computational paradigms for exact prob-

abilistic inference: conditioning algorithms (including loop-cutset conditioning and

recursive conditioning) and elimination algorithms (including variable elimination

and the jointree algorithm).

5 Beating the treewidth barrier with local structure

Assuming that we ignore the probabilities that quantify a Bayesian network, the

treewidth guarantee is the best we have today on the complexity of exact inference.

Moreover, the treewidth determines the best-case performance we can expect from

the standard algorithms based on conditioning and elimination.

It has long been believed though that exploiting the local structure of a Bayesian

111

Adnan Darwiche

network can speed up inference to the point of beating the treewidth barrier, where

local structure refers to the specific properties attained by the probabilities quan-

tifying the network. One of the main intuitions here is that local structure can

imply independence that is not visible at the structural level and this independence

may be utilized computationally [Boutilier et al. 1996]. Another insight is that

determinism in the form of 0/1 probabilities can also be computationally useful as

it allows one to prune possibilities from consideration [Jensen and Andersen 1990].

There are many realizations of these principles today. For elimination algorithms

— which rely heavily on factors and their operations — local structure permits one

to have more compact representations of these factors than representations based

on tables [Zhang and Poole 1996], leading to a more efficient implementation of the

elimination process. One example of this would be the use of Algebraic Decision

Diagrams [R.I. Bahar et al. 1993] and associated operations to represent and ma-

nipulate factors; see Figure 5. For conditioning algorithms, local structure reduces

the number of cases one needs to consider during inference and the number of sub-

computations one needs to cache. As an example of the first, suppose that we have

an and-gate whose output and one of its inputs belong to a loop cutset. When

conditioning the output on 1, both inputs must be 1 as well. Hence, there is no

need to consider multiple values for the input in this case during the conditioning

process [Allen and Darwiche 2003]. This would no longer be true, however, if we

had an or-gate. Moreover, the difference between the two cases is only visible if we

exploit the local structure of corresponding Bayesian networks.

Another effective technique for exploiting local structure, which proved to be a

turning point in speeding up inference, is based on encoding Bayesian networks using

logical constraints and then applying logical inference techniques to the resulting

knowledge base [Darwiche 2002]. One can indeed efficiently encode the network

structure and some of its local structure, including determinism, using knowledge

bases in conjunctive normal form (CNF). One can then either compile the CNF

to produce a circuit representation of the Bayesian network (see below), or apply

model counting techniques and use the results to recover answers to probabilistic

queries [Sang, Beame, and Kautz 2005].

Realizations of the above techniques became practically viable long after the ini-

tial observations about local structure, but have allowed one to reason efficiently

with some networks whose treewidth can be quite large (e.g., [Chavira, Darwiche,

and Jaeger 2006]). Although there is some understanding of the kind of networks

that tend to lend themselves to these techniques, we still do not have strong theoret-

ical results that characterize these classes of networks and the savings that one may

expect from exploiting their local structure. Moreover, not enough work exists on

complexity measures that are sensitive to both network structure and parameters

(the treewidth is only sensitive to structure).

One step in this direction has been the use of arithmetic circuits to compactly

represent the probability distributions of Bayesian networks [Darwiche 2003]. This

112

Inference in Bayesian Networks: A Historical Perspective

A

B C

A Pr(A)

true .5

false .5

A B Pr(B|A)

true true 1

true false 0

false true 0

false false 1

A C Pr(C|A)

true true .8

true false .2

false true .2

false false .8

+

* *

+ +

*** *

.2 .8

*

.5

a
!

a
!

b
!

c
! c

!

b
!

Figure 6. A Bayesian network and a corresponding arithmetic circuit.

representation is sensitive to both network topology and local structure, therefore,

allowing for compact circuit representations in some cases where the treewidth of

the network can be quite large; see Figure 6. Given a circuit representation, in-

ference can be performed quite efficiently through simple circuit evaluation and

differentiation techniques. Hence, the size of a circuit representation can be viewed

as an indicator of the complexity of inference with respect to the given network.

Again, however, we do not have enough theoretical results to broadly predict the

size of these circuit representations or bound the complexity of constructing them.3

6 More queries for Bayesian networks

Pearl introduced another computational problem for Bayesian networks, known as

the MPE for Most Probable Explanations. The goal here is to find the most likely

instantiation of the network variables, given that some of these variables are fixed

3Note, however, that an arithmetic circuit can always be constructed in time which is expo-

nential only in the treewidth, given a jointree of corresponding width.

113

Adnan Darwiche

to some given value. Pearl actually proposed the first algorithm for this purpose,

which was a variation on the polytree algorithm [Pearl 1987a].

A more general problem is MAP which stands for Maximum a Posteriori hypoth-

esis. This problem searches for an instantiation of a subset of the network variables

that is most probable. Interestingly, MAP and MPE are complete for two different

complexity classes, which are also distinct from the class to which node marginals

is complete for. In particular, given the standard assumptions of complexity the-

ory, MPE is the easiest and MAP is the most difficult, with node marginals in the

middle.4

The standard techniques based on variable elimination and conditioning can solve

MPE and MAP as well [Dechter 1999]. MPE can be solved with the standard

treewidth guarantee. MAP, however, has a worse complexity in terms of what

is known as constrained treewidth, which depends on both the network topology

and MAP variables (that is, variables for which we are trying to find a most likely

instantiation of) [Park and Darwiche 2004]. The constrained treewidth can be much

larger than treewidth, depending on the set of MAP variables.

MPE and MAP problems have search components which lend themselves to

branch-and-bound techniques [Kask and Dechter 2001]. Over the years, many so-

phisticated MPE and MAP bounds have been introduced, allowing branch-and-

bound solvers to prune the search space more effectively. Consequently, this allows

one to solve some MPE and MAP problems efficiently, even when the network

treewidth or constrained treewidth are relatively high. In fact, only relatively re-

cently did practical MAP algorithms surface, due to some innovative bounds that

were employed in branch-and-bound algorithms [Park and Darwiche 2003].

MPE algorithms have traditionally received more attention than MAP algo-

rithms. Recently, techniques based on LP relaxations, in addition to reductions

to the MAXSAT problem, have been employed successfully for solving MPE. LP

relaxations are based on the observation that MPE has a straightforward formu-

lation in terms of integer programming, which is known to be hard [Wainwright,

Jaakkola, and Willsky 2005; Yanover, Meltzer, and Weiss 2006]. By relaxing the

integral constraints, the problem becomes a linear program, which is tractable but

provides only a bound for MPE. Work in this area has been focused on techniques

that compensate partially for the lost integral constraints using larger linear pro-

grams, and on developing refined algorithms for handling the resulting “specialized”

linear programs.5 The MAXSAT problem has also been receiving a lot of attention

in the logic community [Bonet, Levy, and Manyà 2007; Larrosa, Heras, and de Givry

2008], which developed effective techniques for this purpose. In fact, reductions of

certain MPE problems (those with excessive logical constraints) to MAXSAT seem

4The decision problems for MPE, node marginals, and MAP are NP–complete, PP–complete,

and NP PP –complete, respectively.
5In the community working on LP relaxations and related methods, “MAP” is used to mean

“MPE” as we have discussed it in this article.

114

Inference in Bayesian Networks: A Historical Perspective

B

A

D

C

E

1 2

3 4

56

7

8

9

10

Figure 7. A Bayesian network annotated with an ordering of LBP messages (leading

to a sequential message passing schedule).

to be the state of the art for some problems in this category.

7 Approximations may be good enough

In addition to work on exact inference algorithms for Bayesian networks, much work

has also been dedicated to approximate inference algorithms which are generally

more efficient but settle for less than accurate answers. Interestingly enough, the two

major paradigms for approximate inference as practiced today were also initiated

by Judea Pearl.

In particular, immediately after proposing the polytree algorithm, Pearl also pro-

posed the use of Gibbs sampling as a method for approximate inference in Bayesian

networks [Pearl 1987b]. This paper started a tradition in applying MCMC tech-

niques for solving Bayesian networks and is considered as the founding paper in this

direction. Further stochastic simulation methods were also proposed after realizing

that sampling from Bayesian networks can be done easily by simply traversing the

network structure [Henrion 1988].

In his seminal book on Bayesian networks [Pearl 1988], Pearl also proposed apply-

ing the belief propagation (polytree) algorithm to networks that have an arbitrary

structure (in Exercise 4.7). This proposal required some initialization of network

messages and entailed that a node may have to keep sending messages to each of

its neighbors until convergence is reached (i.e., the messages are no longer chang-

ing); see Figure 7. Interestingly enough, such an algorithm, which is now known as

loopy belief propagation (LBP), tends to converge, yielding good approximations to

a variety of problems. In fact, this particular algorithm was found to correspond

to a state–of–the–art algorithm used in the channel coding community and today

is widely viewed as a key method of choice for approximate inference [Frey and

MacKay 1997].

This connection and the viability of LBP as an approximation algorithm came

115

Adnan Darwiche

to light around the mid 1990s, almost a decade after Pearl first suggested the al-

gorithm. Work on LBP and related methods has been dominating the field of

approximate inference for more than a decade now. One of the central questions

was: if LBP converges, what is it converging to? This question was answered in a

number of ways [Minka 2001; Wainwright, Jaakkola, and Willsky 2003; Choi and

Darwiche 2006], but the first characterization was put forth in [Yedidia, Freeman,

and Weiss 2000]. According to this characterization, one can understand LBP as

approximating the distribution of a Bayesian network by a distribution that has

a polytree structure [Yedidia, Freeman, and Weiss 2003]. The iterations of the

algorithm can then be interpreted as searching for the node marginals of that ap-

proximate distribution, while minimizing the KL–divergence between the original

and approximate distributions.

LBP has actually two built-in components. The first corresponds to a particular

approximation that it seeks, which is formally characterized as discussed before. The

second component is a particular method for seeking the approximation, through

a process of message passing. One can try to seek the same approximation using

other optimization methods, which has also been the subject of much research. Even

the message passing scheme leaves a lot of room for variation, which is captured

formally using the notion of a message passing schedule — for example, messages

can be passed sequentially, in parallel, or combinations therefore. One therefore

talks about the “convergence” properties of such algorithms, where the goal is to

seek methods that have better convergence properties.

LBP turns out to be an example of a more general class of approximation algo-

rithms that poses the approximate inference problem as a constrained optimization

problem. These methods, which are sometimes known as variational algorithms,

assume a tractable class of distributions, and seeks to find an instance in this

class that best fits the original distribution [Jordan et al. 1999; Jaakkola 2001].

For example, we may want to assume an approximating Bayesian network that is

fully-disconnected, and that the distribution it induces should have as small a KL–

divergence as possible, when compared to the distribution being approximated. The

goal of the constrained optimization problem is then to find the CPT parameters of

the approximate network that minimizes the KL–divergence between it and the orig-

inal network (subject to the appropriate normalization constraints). Work in this

area typically varies across two dimensions: proposing forms for the approximating

distribution, and devising methods for solving the corresponding optimization prob-

lem. Moreover, by varying these two dimensions, we are given access to a spectrum

of approximations, where we are able to trade the quality of an approximation with

the complexity of computing it.

8 Closing Remarks

During the first decade or two after Pearl’s introduction of Bayesian networks, infer-

ence research was very focused on exact algorithms. The efforts on these algorithms

116

Inference in Bayesian Networks: A Historical Perspective

slowed down towards the mid to late 1990s, to pick up again early in the century.

The slowdown was mostly due to the treewidth barrier, at a time where large enough

networks were being constructed to make standard algorithms impractical at that

time. The main developments leading to the revival of exact inference algorithms

has been the extended reach of conditioning methods, the deeper understanding of

elimination methods, and the more effective exploitation of local structure. Even

though these developments have increased the reach of exact algorithms consid-

erably, we still do not understand the extent to which this reach can be pushed

further. In particular, the main hope appears to be in further utilization of local

structure to speed up inference, but we clearly need better theories for providing

guarantees on such speedups and a better characterization of the networks that lend

themselves to such techniques.

On the approximate inference side, stochastic simulation methods witnessed a

surge after the initial work on this subject, with continued interest throughout, yet

not to the level enjoyed recently by methods based on belief propagation and related

methods. This class of algorithms remains dominant, with many questions begging

for answers. On the theoretical side, we do not seem to know enough on when

approximations tend to give good answers, especially that this seems to be tied

not only to the given network but also to the posed query. On the practical side,

we have yet to translate some of the theoretical results on generalizations of belief

propagation — which provides a spectrum that tradeoffs approximation quality

with computational resources — into tools that are used routinely by practitioners.

There has been a lot of progress on inference in Bayesian networks since Pearl

first made this computational problem relevant. There is clearly a lot more to be

done as we seem to always exceed the ability of existing algorithms by building

more complex networks. In my opinion, however, what is greatly missed since

Pearl’s initial work on this subject is his insistence on semantics, where he spared no

effort in establishing connections to cognition, and in grounding the most intricate

mathematical manipulations in human intuition. The derivation of the polytree

algorithm stands as a great example of this research methodology, as it provided

high level and cognitive interpretations of almost all intermediate computations

performed by the algorithm. It is no wonder then that the polytree algorithm not

only started the area of inference in Bayesian networks a few decades ago, but it

also remains a basis for some of the latest developments and inspirations in this

area of research.

Acknowledgments: I wish to thank Arthur Choi for many valuable discussions

while writing this article.

References

Allen, D. and A. Darwiche (2003). New advances in inference by recursive con-

ditioning. In Proceedings of the Conference on Uncertainty in Artificial Intel-

ligence, pp. 2–10.

117

Adnan Darwiche

Bertele, U. and F. Brioschi (1972). Nonserial Dynamic Programming. Academic

Press.

Bonet, M. L., J. Levy, and F. Manyà (2007). Resolution for max-sat. Artif. In-

tell. 171 (8-9), 606–618.

Boutilier, C., N. Friedman, M. Goldszmidt, and D. Koller (1996). Context-specific

independence in Bayesian networks. In Uncertainty in Artificial Intelligence:

Proceedings of the Twelfth Conference (UAI-96), San Francisco, pp. 115–123.

Morgan Kaufmann Publishers.

Chavira, M., A. Darwiche, and M. Jaeger (May 2006). Compiling relational

Bayesian networks for exact inference. International Journal of Approximate

Reasoning 42 (1–2), 4–20.

Choi, A. and A. Darwiche (2006). An edge deletion semantics for belief propaga-

tion and its practical impact on approximation quality. In Proceedings of the

21st National Conference on Artificial Intelligence (AAAI), pp. 1107–1114.

Darwiche, A. (2001). Recursive conditioning. Artificial Intelligence 126 (1-2), 5–

41.

Darwiche, A. (2002). A logical approach to factoring belief networks. In Proceed-

ings of KR, pp. 409–420.

Darwiche, A. (2003). A differential approach to inference in Bayesian networks.

Journal of the ACM 50 (3), 280–305.

Darwiche, A. (2009). Modeling and Reasoning with Bayesian Networks. Cam-

bridge University Press.

Dechter, R. (1996). Bucket elimination: A unifying framework for probabilistic

inference. In Proceedings of the 12th Conference on Uncertainty in Artificial

Intelligence (UAI), pp. 211–219.

Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning.

Artificial Intelligence 113, 41–85.

Frey, B. J. and D. J. C. MacKay (1997). A revolution: Belief propagation in

graphs with cycles. In NIPS, pp. 479–485.

Henrion, M. (1988). Propagating uncertainty in Bayesian networks by probalistic

logic sampling. In Uncertainty in Artificial Intelligence 2, New York, N.Y.,

pp. 149–163. Elsevier Science Publishing Company, Inc.

Jaakkola, T. (2001). Tutorial on variational approximation methods. In D. Saad

and M. Opper (Eds.), Advanced Mean Field Methods, Chapter 10, pp. 129–

160. MIT Press.

Jensen, F. and S. K. Andersen (1990, July). Approximations in Bayesian belief

universes for knowledge based systems. In Proceedings of the Sixth Conference

on Uncertainty in Artificial Intelligence (UAI), Cambridge, MA, pp. 162–169.

118

Inference in Bayesian Networks: A Historical Perspective

Jordan, M. I., Z. Ghahramani, T. Jaakkola, and L. K. Saul (1999). An introduc-

tion to variational methods for graphical models. Machine Learning 37 (2),

183–233.

Kask, K. and R. Dechter (2001). A general scheme for automatic generation of

search heuristics from specification dependencies. Artificial Intelligence 129,

91–131.

Kim, J. and J. Pearl (1983). A computational model for combined causal and di-

agnostic reasoning in inference systems. In Proceedings IJCAI-83, Karlsruhe,

Germany, pp. 190–193.

Larrosa, J., F. Heras, and S. de Givry (2008). A logical approach to efficient

max-sat solving. Artif. Intell. 172 (2-3), 204–233.

Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local computations with probabil-

ities on graphical structures and their application to expert systems. Journal

of Royal Statistics Society, Series B 50 (2), 157–224.

Minka, T. P. (2001). A family of algorithms for approximate Bayesian inference.

Ph.D. thesis, MIT.

Park, J. and A. Darwiche (2004). Complexity results and approximation strate-

gies for MAP explanations. Journal of Artificial Intelligence Research 21,

101–133.

Park, J. D. and A. Darwiche (2003). Solving MAP exactly using systematic

search. In Proceedings of the 19th Conference on Uncertainty in Artificial In-

telligence (UAI–03), Morgan Kaufmann Publishers San Francisco, California,

pp. 459–468.

Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierarchi-

cal approach. In Proceedings American Association of Artificial Intelligence

National Conference on AI, Pittsburgh, PA, pp. 133–136.

Pearl, J. (1986a). A constraint-propagation approach to probabilistic reasoning.

In L. Kanal and J. Lemmer (Eds.), Uncertainty in Artificial Intelligence, pp.

357–369. Amsterdam, North Holland.

Pearl, J. (1986b). Fusion, propagation, and structuring in belief networks. Arti-

ficial Intelligence 29, 241–288.

Pearl, J. (1987a). Distributed revision of composite beliefs. Artificial Intelli-

gence 33 (2), 173–215.

Pearl, J. (1987b). Evidential reasoning using stochastic simulation of causal mod-

els. Artificial Intelligence 32, 245–257.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann Publishers, Inc., San Mateo, California.

119

Adnan Darwiche

R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and

F. Somenzi (1993). Algebraic Decision Diagrams and Their Applications. In

IEEE /ACM International Conference on CAD, Santa Clara, California, pp.

188–191. IEEE Computer Society Press.

Robertson, N. and P. D. Seymour (1986). Graph minors. II. Algorithmic aspects

of tree-width. J. Algorithms 7, 309–322.

Rumelhart, D. (1976). Toward an interactive model of reading. Technical Report

CHIP-56, University of California, La Jolla, La Jolla, CA.

Sang, T., P. Beame, and H. Kautz (2005). Solving Bayesian networks by weighted

model counting. In Proceedings of the Twentieth National Conference on Ar-

tificial Intelligence (AAAI-05), Volume 1, pp. 475–482. AAAI Press.

Wainwright, M. J., T. Jaakkola, and A. S. Willsky (2003). Tree-based reparam-

eterization framework for analysis of sum-product and related algorithms.

IEEE Transactions on Information Theory 49 (5), 1120–1146.

Wainwright, M. J., T. Jaakkola, and A. S. Willsky (2005). Map estimation via

agreement on trees: message-passing and linear programming. IEEE Trans-

actions on Information Theory 51 (11), 3697–3717.

Yanover, C., T. Meltzer, and Y. Weiss (2006). Linear programming relaxations

and belief propagation — an empirical study. Journal of Machine Learning

Research 7, 1887–1907.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2000). Generalized belief propaga-

tion. In NIPS, pp. 689–695.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2003). Understanding belief propa-

gation and its generalizations. In G. Lakemeyer and B. Nebel (Eds.), Exploring

Artificial Intelligence in the New Millennium, Chapter 8, pp. 239–269. Morgan

Kaufmann.

Zhang, N. L. and D. Poole (1994). A simple approach to Bayesian network com-

putations. In Proceedings of the Tenth Conference on Uncertainty in Artificial

Intelligence (UAI), pp. 171–178.

Zhang, N. L. and D. Poole (1996). Exploiting causal independence in Bayesian

network inference. Journal of Artificial Intelligence Research 5, 301–328.

120

8

Graphical Models of the Visual Cortex

Thomas Dean

1 Pivotal Encounters with Judea

Post graduate school, three chance encounters reshaped my academic career, and all

three involved Judea Pearl directly or otherwise. The first encounter was meeting

Judea on a visit to the UCLA campus at a time when I was developing what I called

temporal Bayesian networks and would later be called dynamic belief networks (an

unfortunate choice of names for reasons I’ll get to shortly). Judea was writing his

book Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence [1988] and his enthusiasm for the subject matter was positively infectious. I

determined from that meeting that I was clueless about all things probabilistic and

proceeded to read each of Judea’s latest papers on Bayesian networks multiple times,

gaining an initial understanding of joint and marginal probabilities, conditional in-

dependence, etc. In those days, a thorough grounding in probability and statistics

was rarely encouraged for graduate students working in artificial intelligence.

The second encounter was with Michael Jordan at a conference where he asked

me a question that I was at a loss to answer and made it clear to me that I didn’t

really understand Bayesian probability theory at all, despite what I’d picked up

from Judea’s papers. My reaction to that encounter was to read Judea’s book cover

to cover and discover the work of I.J. Good. Despite being a math major and

having met I.J. Good at Virginia Tech where I was an undergraduate and Good

was a professor of statistics, I never took a course in probability or statistics. My

embarrassment at being flummoxed by Mike’s question forced me to initiate a crash

course in probability theory based on the textbooks of Morris DeGroot [1970, 1986].

I didn’t recognize it at the time, but Judea, Mike and like-minded researchers in

central areas of artificial intelligence were in the vanguard of those changing the

landscape of our discipline.

The third encounter was with David Mumford when our paths crossed in the

midst of a tenure hearing at Brown University and David told me of his work on

models of the visual cortex. I read David’s paper with Tai Sing Lee [2003] as well

as David’s earlier related work [1991, 1992] and näıvely set out to implement their

ideas as a probabilistic graphical model [Dean 2005]. Indeed, I wanted to extend

their work since it did not address the representation of time passing, and I was

interested in building a model that dealt with how a robot might make sense of its

observations as it explores its environment.

121

Kaoru
Text Box
Return to TOC

Thomas Dean

Moreover, the theory makes no mention of how a robot might learn such a model,

and, from years of working with robots, I was convinced that building a model by

hand would turn out to be a lot of work and very likely prove to be unsuccessful.

Here it was Judea’s graphical-models perspective that, initially, made it easy for me

to think about David’s work, and, later, extend it. I also came to appreciate the

relevance of Judea’s work on causality and, in particular, the role of intervention

in thinking about how biological systems engage the world to resolve perceptual

ambiguity.

This chapter concerns how probabilistic graphical models might be used to model

the visual cortex, and how the challenges faced in developing such models suggest

areas where current theory falls short and might be extended. A graphical model is a

useful formalism for compactly describing a joint probability distribution character-

ized by very large number of random variables. We are taking what is known about

the anatomy and physiology of the primate visual cortex and attempting to apply

that knowledge to construct probabilistic graphical models that we can ultimately

use to simulate some functions of primate vision. It may be that the resulting prob-

abilistic model also captures some important characteristics of individual neurons

or their ensembles. For practical purposes, this need not be the case, though clearly

we believe there are potential advantages to incorporating some lessons from biol-

ogy into our models. Graphical models also suggest, but do not dictate, how one

might use such a model along with various algorithms and computing hardware to

perform inference and thereby carry out practical simulations. It is this latter use

of graphical models that we refer to when we talk about implementing a model of

the visual cortex.

2 Primate Visual Cortex

Visual information processing starts in the retina and is routed via the optic tract

to the lateral geniculate nuclei (LGN) and then on to the striate cortex also known

as visual area one (V1) located in the occipital lobe at the rear of the cortex. There

are two primary visual pathways in the primate cortex: The ventral pathway leads

from the occipital lobe into the temporal lobe where association areas in the in-

ferotemporal cortex combine visual information with information originating from

the auditory cortex. The dorsal pathway leads from the occipital to the parietal

lobe which, among other functions, facilitates navigation and manipulation by in-

tegrating visual, tactile and proprioceptive signals to provide our spatial sense and

perception of shape.

It is only in the earliest portion of these pathways that we have any reasonably

accurate understanding of how visual information is processed, and even in the very

earliest areas, the striate cortex, our understanding is spotty and subject to debate.

It seems that cells in V1 are mapped to cells in the retina so as to preserve spatial

relationships, and are tuned to respond to stimuli that appear roughly like oriented

bars. Hubel and Wiesel’s research on macaque monkeys provides evidence for and

122

123

124

Graphical Models of the Visual Cortex

one retinal and three cortical regions as

P (xO, xV1, xV2, xV4, xIT) = P (xO, xV1)P (xV1, xV2)P (xV2, xV4)P (xV4, xIT)P (xIT)

where xO represents the retinal or observation layer. Moreover, we know that,

although the edges all point in the same direction, information flows both ways in

the hierarchy via Bayes rule (see Figure 2).

Despite the apparent simplicity when we collapse each layer of variables into a

single, joint variable, exact inference in such a model is intractable. One might

imagine, however, using a variant of the forward-backward algorithm to approxi-

mate the joint distribution over all variables. Such an algorithm might work one

layer at a time, by isolating each layer in turn, performing an approximation on

the isolated Markov network using Gibbs sampling or mean-field approximation,

propagating the result either forward or backward and repeating until convergence.

Simon Osindero and Geoff Hinton [2008] experimented with just such a model and

demonstrated that it works reasonably well at capturing the statistics of patches of

natural images.

One major problem with such a graphical model as a model of the visual cortex

is that the Markov property of the collapsed-layer simplification fails to capture the

inter-layer dependencies implied by the connections observed in the visual cortex.

In the cortex as in the rest of the brain, connections correspond to the dendritic

branches of one neuron connected at a synaptic cleft to the axonal trunk of a second

neuron. We are reasonably comfortable modeling such a cellular edge as an edge

in a probabilistic graphical model because for every cellular edge running forward

along the visual pathways starting from V1 there is likely at least one and probably

quite a few cellular edges leading backward along the visual pathways. Not only

do these backward-pointing cellular edges far outnumber the forward-pointing ones,

they also pay no heed to the Markov property, typically spanning several layers of

our erstwhile simple hierarchy. Jin and Geman [2006] address this very problem in

their hierarchical, compositional model, but at a considerable computational price.

Advances in the development of adaptive Monte Carlo Markov chain (MCMC)

algorithms may make inference in such graphical models more practical, but, for

the time being, inference on graphical models of a size comparable to the number

of neurons in the visual cortex remains out of reach.

4 Temporal Relationships

Each neuron in the visual cortex indirectly receives input from some, typically con-

tiguous, region of retinal ganglion cells. This region is called the neuron’s receptive

field . By introducing lags and thereby retaining traces of earlier stimuli, a neuron

can be said to have a receptive field that spans both space and time — it has a

spatiotemporal receptive field. A large fraction of the cells in visual cortex and V1

in particular have spatiotemporal receptive fields. Humans, like most animals, are

very attentive to motion and routinely exploit motion to resolve visual ambiguity,

125

126

Graphical Models of the Visual Cortex

visual experience that biology has evolved to exploit to its advantage. However, in

this chapter, I want to explore a different facet of how we make sense of and, in some

cases, take advantage of spatial and temporal structure to survive and thrive, and

how these aspects of our environment offer new challenges for applying graphical

models.

5 Dynamic Graphical Models

Whether called temporal Bayesian networks [Dean and Wellman 1991] or dynamic

Bayesian networks [Russell and Norvig 2003], these graphical models are designed

to model properties of our environment that change over time and the events that

precipitate those changes. The networks themselves are not dynamic: the numbers

of nodes and edges, and the distributions that quantify the dependencies among the

random variables that correspond to the nodes are fixed. At first blush, graphical

models may seem a poor choice to model the neural substrate of the visual cortex

which is anything but static. However, while the graph that comprises a graphical

model is fixed, a graphical model can be used to represent processes that are highly

dynamic, and contingent on the assignments to observed variables in the model.

In the remainder of this section, we describe characteristics of the visual system

that challenge our efforts to model the underlying processes required to simulate

primate vision well enough to perform such tasks such as object recognition and

robot navigation.

The retina and the muscles that control the shape of the lens and the position

of the eyes relative to one another and the head comprise a complex system for

acquiring and processing visual information. A mosaic of photoreceptors activate

several layers of cells, the final layer of which consists of retinal ganglion cells whose

axons comprise the optic nerve. This multi-layer extension of the brain performs a

range of complex computations ranging from light-dark adaptation to local contrast

normalization [Brady and Field 2000]. The information transmitted along the optic

tract is already the product of significant computational processing.

Visual information is retinotopically mapped from the retinal surface to area

V1 so as to preserve the spatial relationships among patches on the retina that

comprise the receptive fields of V1 cells. These retinotopic mappings are primarily

sorted out in utero, but the organization of the visual cortex continues to evolve

significantly throughout development — this is particularly apparent when children

are learning to read [Dehaene 2009]. Retinotopic maps in areas beyond V1 are more

complicated and appear to serve purposes that relate to visual tasks, e.g., the map

in V2 anatomically divides the tissue responsible for processing the upper and lower

parts of the visual fields. These retinotopic maps, particularly those in area V1,

have led some computer-vision researchers to imagine that early visual processing

proceeds via transformations on regular grid-like structures with cells analogous to

pixels.

The fact is that our eyes, head, and the objects that we perceive are constantly

127

128

129

Thomas Dean

segments as part of inference is that this model is potentially more elegant, and

even biologically plausible, in that the recursive process might be represented as a

single hierarchical graphical model allowing inference over the entire graph, rather

than over sequences of ever more refined graphs.

The above discussion of segmentation is but one example in which nodes in a

graphical model might serve as generic variables that are bound as required by

circumstances. But perhaps this view is short sighted; why not just assume that

there are enough nodes that every possible (visual) concept corresponds to a unique

combination of existing nodes. In this view, visual interpretation is just mapping

visual stimuli to the closest visual “memory”. Given the combinatorics, the only way

this could be accomplished is to use a hierarchy of features whose base layer consists

of small image fragments at many different spatial scales, and all subsequent layers

consist of compositions of features at layers lower in the hierarchy [Bienenstock and

Geman 1995; Ullman and Soloviev 1999; Ullman, Vidal-Naquet, and Sali 2002].

This view accords well with the idea that most visual stimuli are not determined

to be novel and, hence, we construct our reality from bits and pieces of existing

memories [Hoffman 1998]. Our visual memories are so extensive that we can almost

always create a plausible interpretation by recycling old memories. It may be that

in some aspects of cognition we have to employ generic neural structures to perform

the analog of binding variables, but for much of visual intelligence this may not be

necessary given a large enough memory of reusable fragments. Which raises the

question of how we might implement a graphical model that has anywhere near the

capacity of the visual cortex.

6 Distributed Processing at Cortex Scale

The cortex consists of a layered sheet with a more-or-less uniform cellular structure.

Neuroanatomists have identified what are called columns corresponding to groups of

local cells running perpendicular to the cortical surface. Vernon Mountcastle [2003]

writes “The basic unit of cortical operation is the minicolumn [...] [containing] on

the order of 80–100 neurons [...] The minicolumn measures of the order of 40-50µ

in transverse diameter, separated from adjacent minicolumns by vertical cell-sparse

zones which vary in size in different cortical areas.” These minicolumns are then

grouped into cortical columns which “are formed by the binding together of many

minicolumns by common input and short-range horizontal connections.”

If we take the cortical column — not the minicolumn — as our basic compu-

tational module as in [Anderson and Sutton 1997], then the gross structure of the

neocortex consists of a dense mat of inter-columnar connections in the outer-most

layer of the cortex and another web of connections at the base of the columns. The

inter-columnar connectivity is relatively sparse (something on the order of 1015 con-

nections spanning approximately 1011 neurons) and there is evidence [Sporns and

Zwi 2004] to suggest that the induced inter-columnar connection graph exhibits the

properties of a small-world graph [Newman, Watts, and Strogatz 2002]. In partic-

130

Graphical Models of the Visual Cortex

ular, evidence suggests the inter-columnar connection graph has low diameter (the

length of the longest shortest path separating a pair of vertices in the graph) thereby

enabling relatively low-latency communication between any two cortical columns.

It is estimated that there are about a quarter of a billion neurons in the primary

visual cortex — think V1 through V4 — counting both hemispheres, but probably

only around a million or so cortical columns. If we could roughly model each cortical

column with a handful of random variables, then it is at least conceivable that we

could implement a graphical model of early vision.

To actually implement a graphical model of visual cortex using current technol-

ogy, the computations would have to be distributed over many machines. Training

such a model might not take as long as raising a child, but it could take many

days — if not years — using the current computer technology, and, once trained,

we presumably would like to apply the learned model for much longer. Given such

extended intervals of training and application, since the mean-time-til-failure for

the commodity-hardware-plus-software that comprise most distributed processing

clusters is relatively short, we would have to allow for some means of periodically

saving local state in the form of the parameters quantifying the model.

The data centers that power the search engines of Google, Yahoo! and Microsoft

are the best bet that we currently have for such massive and long-lived computa-

tions. Software developed to run applications on such large server farms already

have tools that could opportunistically allocate resources to modify the structure of

graphical model in an analog of neurogenesis. These systems are also resistant to

both software and equipment failures and capable of reallocating resources in the

aftermath of catastrophic failure to mimic neural plasticity in the face of cell death.

In their current configuration, industrial data centers may not be well suited to

the full range of human visual processing. Portions of the network that handle very

early visual processing will undoubtedly require shorter latencies than is typical in

such server farms, even among machines on the same rack connected with high-

speed Ethernet. Riesenhuber and Poggio [1999] use the term immediate recognition

to refer to object recognition and scene categorization that occur in the first 100-

200ms or so from the onset of the stimuli. In that short span of time — less

than the time it takes for a typical saccade, we do an incredibly accurate job of

recognizing objects and inferring the gist of a scene. The timing suggests that only

a few steps of neural processing are involved in this form of recognition, assuming

10–20ms per synaptic transmission, though given the small diameter of the inter-

columnar connection graph, many millions of neurons are likely involved in the

processing. It would seem that at least the earliest stages of visual processing will

have to be carried out in architectures capable of performing an enormous number

of computations involving a large amount of state — corresponding to existing

pattern memory — with very low latencies among the processing units. Hybrid

architectures that combine conventional processors with co-processors that provide

fast matrix-matrix and matrix-vector operations will likely be necessary to handle

131

Thomas Dean

even a single video stream in real-time.

Geoff Hinton [2005, 2006] has suggested that a single learning rule and a rela-

tively simple layer-by-layer method of training suffices for learning invariant features

in text, images, sound and even video. Yoshua Bengio, Yann LeCun and others

have also had success with such models [LeCun and Bengio 1995; Bengio, Lamblin,

Popovici, and Larochelle 2007; Ranzato, Boureau, and LeCun 2007]. Hyvärinen et

al [2003], Bruno Olshausen and Charles Cadieu [2007, 2008], Dean et al [2009] and

others have developed hierarchical generative models to learn sparse codes resem-

bling the responses of neurons in the medial temporal cortex of the dorsal pathway.

In each case, the relevant computations can be most easily characterized in terms

of linear algebra and implemented using fast vector-matrix operations best carried

out on a single machine with lots of memory and many cores (graphics processors

are particularly well suited to this sort of computation).

A more vexing problem concerns how we might efficiently implement any of the

current models of Hebbian learning in an architecture that spans tens of thousands

of machines and incurs latencies measured in terms of milliseconds. Using super

computers at the national labs, Eugene Izhikevich and Gerald Edelman [2008] have

performed spike-level simulations of millions of so-called leaky integrate and fire

neurons with fixed, static connections to study the dynamics of learning in such

ensembles. Paul Rhodes and his team of researchers at Evolved Machines have

taken things a step further in implementing a model that allows for the dynamic

creation of edges by simulating dendritic tree growth and the chemical gradients

that serve to implement Hebbian learning. In each case, the basic model for a neuron

is incredibly simple when compared to the real biology. It is not at all surprising

that Henry Markram and his colleagues at EPFL (Ecole Polytechnique Fédérale

de Lausanne) require a powerful supercomputer to simulate even a single cortical

column at the molecular level. In all three of these examples, the researchers use

high-performance computing alternatives to the cluster-of-commodity-computers

distributed architectures that characterize most industrial data warehouses. While

the best computing architecture for simulating cortical models may not be clear,

it is commonly believed that we either how have or soon will have the computing

power to simulate significant portions of cortex at some level of abstraction. This

assumes, of course, that we can figure out what the cortex is actually computing.

7 Beyond Early Visual Processing

The grid of columnar processing units which constitutes the primate cortex and

the retinotopic maps that characterize the areas participating in early vision, might

suggest more familiar engineered vision systems consisting of frame buffers and

graphics processors. But this analogy doesn’t even apply to the simplest case in

which the human subject is staring at a static image. As pointed out earlier, our

eyes make large — up to 90◦ of visual angle — movements several times a second

and tiny adjustments much more often.

132

Graphical Models of the Visual Cortex

A typical saccade of, say, 18◦ of visual angle takes 60–80ms to complete [Harwood,

Mezey, and Harris 1999], a period during which we are essentially blind. During

the subsequent 200–500ms interval until the next saccade, the image on the fovea is

relatively stable, accounting for small adjustments due to micro saccades. So even

a rough model for the simplest sort of human visual processing has to be set against

the background of two or three fixations per second, each spanning less than half a

second, and separated by short — less than 1/10 of a second — periods of blindness.

During each fixation we have 200–500ms in which to make sense of the events

projected on the fovea; simplifying enormously, that’s time enough to view around

10–15 frames of a video shown at 30 frames per second. In most of our experience,

during such a period there is a lot going on in our visual field; our eyes, head

and body are often moving and the many objects in our field of view are also in

movement, more often than not, moving independent of one another. Either by

focusing on a small patch of an object that is motionless relative to our frame

of reference or by performing smooth pursuit, we have a brief period in which

to analyze what amounts to a very short movie as seen through a tiny aperture.

Most individual neurons have receptive fields that span an even smaller spatial and

temporal extent.

If we try to interpret movement with too restrictive a spatial extent, we can

mistake the direction of travel of a small patch of texture. If we try to work on

too restrictive a temporal extent, then we are inundated with small movements

many of which are due to noise or uninteresting as they arise from the analog of

smooth camera motion. During that half second or so we need to identify stable

artifacts, consisting of the orientation, direction, velocity, etc., of small patches

of texture and color, and then combine these artifacts to capture features of the

somewhat larger region of the fovea we are fixating on. Such a combination need

not entail recognizing shape; it could, for example, consist of identifying a set of

candidate patches, that may or may not belong to the same object, and summarizing

the processing performed during the fixation interval as a collection of statistics

pertaining to such patches, including their relative — but not absolute — positions,

velocities, etc.

In parallel with processing foveal stimuli, attentional machinery in several neural

circuits and, in particular, the lateral intraparietal cortex — which is retinotopically

mapped when the eyes are fixated — estimates the saliency of spatial locations

throughout the retina, including its periphery where acuity and color sensitivity

are poor. These estimates of “interestingness” are used to decide what location to

saccade to next. The oculomotor system keeps track of the dislocations associated

with each saccade, and this locational information can be fused together using

statistics collected over a series of saccades. How such information is combined and

the exact nature of the resulting internal representations is largely a mystery.

The main point of the above discussion is that, while human visual processing

may begin early in the dorsal and ventral pathways with something vaguely related

133

Thomas Dean

to computer image processing using a fixed, spatially-mapped grid of processing and

memory units, it very quickly evolves into a process that requires us to combine

disjoint intervals of relatively stable imagery into a pastiche from which we can infer

properties critical to our survival. Imagine starting with a collection of snapshots

taken through a telephoto lens rather than a single high-resolution image taken with

a wide-angle lens. This is similar to what several popular web sites do with millions

of random, uncalibrated tourist photos.

The neural substrate responsible for performing these combinations must be able

to handle a wide range of temporal and spatial scales, numbers and arrangements

of inferred parts and surfaces, and a myriad of possible distractions and clutter

irrelevant to the task at hand. We know that this processing can be carried out on

a more-or-less regular grid of processors — the arrangement of cortical columns is

highly suggestive of such a grid. We are even starting to learn the major pathways

— bundles of axons sheathed with myelin insulation to speed transmission — con-

necting these biological processors using diffusion-tensor-imaging techniques. What

we don’t know is how the cortex allocates its computational resources beyond those

areas most directly tied to the peripheral nervous system and that are registered

spatially with the locations of the sensors arrayed on the periphery.

From a purely theoretical standpoint, we can simulate any Turing machine with a

large enough Boolean circuit, and we can approximate any first-order predicate logic

representation that has a finite domain using a propositional representation. Even

so, it seems unlikely that even the cortex, with its 1011 neurons and 1015 connections,

has enough capacity to cover the combinatorially many possible arrangements of

primitive features that are likely inferred in early vision. This implies that different

portions of the cortex must be allocated dynamically to perform processing on very

different arrangements of such features.

Bruno Olshausen [1993] theorized that neural circuits could be used to route

information so that stimuli corresponding to objects and their parts could be trans-

formed to a standard scale and pose, thereby simplifying pattern recognition. Such

transformations could, in principle, be carried out by a graphical model. The neu-

ral circuitry that serves as the target of such transformations — think of it as a

specialized frame buffer of sorts — could be allocated so that different regions are

assigned to different parts — this allocation being an instance of the so-called sym-

bol binding problem in connectionist models [Rumelhart and McClelland 1986] of

distributed processing.

8 Escaping Retinotopic Tyranny

While much of the computational neuroscience of primate vision seems mired in the

first 200 milliseconds or so of early vision when the stimulus is reasonably stable and

the image registered on the fovea is mapped retinotopically to areas in V1 through

V4, other research on the brain is revealing how we keep track of spatial relationships

involving the frames of reference of our head, body, nearby objects, and the larger

134

Graphical Models of the Visual Cortex

world in which we operate. The brain maintains detailed maps of the body and

its surrounding physical space in the hippocampus and somatosensory, motor, and

parietal cortex [Rizzolatti, Sinigaglia, and Anderson 2007; Blakeslee and Blakeslee

2007]. Recall that the dorsal — “where” and “how” — visual pathway leads to the

parietal cortex, which plays an important role in visual attention and our perception

of shape. These maps are dynamic, constantly adapting to changes in the body as

well as reflecting both short- and long-term knowledge of our surroundings and

related spatial relationships.

When attempting to gain insight from biology in building engineered vision sys-

tems, it is worth keeping in mind the basic tasks of evolved biological vision sys-

tems. Much of primate vision serves three broad and overlapping categories of tasks:

recognition, navigation and manipulation. Recognition for foraging, mating, and a

host of related social and survival tasks; navigation for exploration, localization and

controlling territory; manipulation for grasping, climbing, throwing, tool making,

etc.

The view [Lengyel 1998] that computer vision is really just inverse graphics ig-

nores the fact that most of these tasks don’t require you to be able to construct an

accurate 3-D representation of your visual experience. For many recognition tasks

it suffices to identify objects, faces, and landmarks you’ve seen before and associate

with these items task-related knowledge gained from prior experience. Navigation

to avoid obstacles requires the ability to determine some depth information but

not necessarily to recover full 3-D structure. Manipulation is probably the most

demanding task in terms of the richness of shape information apparently required,

but even so it may be that we are over-emphasizing the role of static shape memory

and under-emphasizing the role of dynamic visual servoing — see the discussion

in [Rizzolatti, Sinigaglia, and Anderson 2007] for an excellent introduction to what

is known about how we understand shape in terms of affordances for manipulation.

But when it comes right down to it, we don’t know a great deal about how

the visual system handles shape [Tarr and Bülthoff 1998] despite some tantalizing

glimpses into what might be going on the inferotemporal cortex [Tsunoda, Yamane,

Nishizaki, and Tanifuji 2001; Yamane, Tsunoda, Matsumoto, Phillips, and Tanifuji

2006]. Let’s suppose for the sake of discussion that we can build a graphical model

of the cortex that handles much of the low-level feature extraction managed by the

early visual pathways (V1 through V4) using existing algorithms for performing

inference on Markov and conditional random fields and related graphical models.

How might we construct a graphical model that captures the part of visual memory

that pools together all these low-level features to provide us with such a rich visual

experience? Lacking any clear direction from computational neuroscience, we’ll take

a somewhat unorthodox path from here on out.

As mentioned earlier, several popular web sites offer rich visual experiences that

are constructed by combining large image corpora. Photo-sharing web sites like

Flickr, Google Picasa and Microsoft Live Labs PhotoSynth are able to combine

135

136

Graphical Models of the Visual Cortex

some fixed-width receptive field and relates them by using low-level features ex-

tracted in V1 through V4 as keypoints to estimate geometric and other meaningful

relationships among patches? The use of the word “novel” in this context is meant

to convey that some method for statistical pooling of similar patches is required

to avoid literally storing every possible patch. This is essentially what Jing and

Baluja [2008] do by taking a large corpus of images, extracting low-level features

from each image, and then quantifying the similarity between pairs of images by

analyzing the features that they have in common. The result is a large graph whose

vertices are images and whose edges quantify pair-wise similarity (see Figure 6). By

using the low-level features as indices, Jing and Baluja only have to search a small

subset of the possible pairs of images, and of those only the ones that pass a specified

threshold for similarity are connected by edges. Jing and Baluja further enhance

the graph by using a form of spectral graph analysis to rank images in much the

same way as Google ranks web pages. Torralba et al [2007] have demonstrated that

even small image patches contain a great deal of useful information, and further-

more that very large collections of images can be quickly and efficiently searched

to retrieve semantically similar images given a target image as a query [Torralba,

Fergus, and Weiss 2008].

In principle, such a graph could be represented as a probabilistic graphical model

and the spectral analysis reformulated in terms of inference on graphical models.

The process whereby the graph is grown over time, incorporating new images and

new relationships, currently cannot be formulated as inference on a graphical model,

but it is interesting to speculate about very large, yet finite graphs that could evolve

over time in response to new evidence. Learning the densities used to quantify the

edges in graphical models can can be formulated in terms of hyper-parameters

directly incorporated into the model and carried out by traditional inference algo-

rithms [Buntine 1994; Heckerman 1995]. Learning graphs whose size and topol-

ogy change over time is somewhat more challenging to cast in terms of traditional

methods for learning graphical models. Graph size is probably not the determining

technical barrier however. Very large graphical models consisting of documents,

queries, genes, and other entities are now quite common, and, while exact inference

in such graphs is typically infeasible, approximate inference is often good enough

to provide the foundation for industrial-strength tools.

Unfortunately, there is no way to tie up the many loose ends which have been

left dangling in this short survey. Progress depends in part on our better under-

standing the brain and in particular the parts of the brain that are further from

the periphery of the body where our senses are directly exposed to external stimuli.

Neuroscience has made significant progress in understanding the brain at the cel-

lular and molecular level, even to the point that we are now able to run large-scale

simulations with some confidence that our models reflect important properties of

the biology. Computational neuroscientists have also made considerable progress

developing models — and graphical models in particular — that account for fea-

137

Thomas Dean

tures that appear to play an important role in early visual processing. The barrier

to further progress seems to be the same impediment that we run into in so many

other areas of computer vision, machine learning and artificial intelligence more

generally, namely the problem of representation. How and what does the brain rep-

resent about the blooming, buzzing world in which we are embedded? The answer

to that question will take some time to figure out, but no doubt probabilistic graph-

ical models will continue to provide a powerful tool in this inquiry, thanks in no

small measure to the work of Judea Pearl, his students and his many collaborators.

References

Anderson, J. and J. Sutton (1997). If we compute faster, do we understand better?

Behavior Ressearch Methods, Instruments and Computers 29, 67–77.

Bengio, Y., P. Lamblin, D. Popovici, and H. Larochelle (2007). Greedy layer-

wise training of deep networks. In Advances in Neural Information Processing

Systems 19, pp. 153–160. Cambridge, MA: MIT Press.

Bienenstock, E. and S. Geman (1995). Compositionality in neural systems. In

M. Arbib (Ed.), The Handbook of Brain Theory and Neural Networks, pp.

223–226. Bradford Books/MIT Press.

Blakeslee, S. and M. Blakeslee (2007). The Body Has a Mind of Its Own. Random

House.

Brady, N. and D. J. Field (2000). Local contrast in natural images: normalisation

and coding efficiency. Perception 29 (9), 1041–1055.

Buntine, W. L. (1994). Operations for learning with graphical models. Journal

of Artificial Intelligence Research 2, 159–225.

Cadieu, C. and B. Olshausen (2008). Learning transformational invariants from

time-varying natural images. In D. Schuurmans and Y. Bengio (Eds.), Ad-

vances in Neural Information Processing Systems 21. Cambridge, MA: MIT

Press.

Dean, T. (2005). A computational model of the cerebral cortex. In Proceedings

of AAAI-05, Cambridge, Massachusetts, pp. 938–943. MIT Press.

Dean, T. (2006, August). Learning invariant features using inertial priors. Annals

of Mathematics and Artificial Intelligence 47 (3-4), 223–250.

Dean, T., G. Corrado, and R. Washington (2009, December). Recursive sparse,

spatiotemporal coding. In Proceedings of the Fifth IEEE International Work-

shop on Multimedia Information Processing and Retrieval.

Dean, T. and M. Wellman (1991). Planning and Control. San Francisco, Califor-

nia: Morgan Kaufmann Publishers.

DeGroot, M. (1970). Optimal Statistical Decisions. New York: McGraw-Hill.

138

Graphical Models of the Visual Cortex

DeGroot, M. H. (1986). Probability and Statistics. Reading, MA: Second edition,

Addison-Wesley.

Dehaene, S. (2009). Reading in the Brain: The Science and Evolution of a Human

Invention. Viking Press.

Fine, S., Y. Singer, and N. Tishby (1998). The hierarchical hidden Markov model:

Analysis and applications. Machine Learning 32 (1), 41–62.

Földiák, P. (1991). Learning invariance from transformation sequences. Neural

Computation 3, 194–200.

George, D. and J. Hawkins (2005). A hierarchical Bayesian model of invariant

pattern recognition in the visual cortex. In Proceedings of the International

Joint Conference on Neural Networks, Volume 3, pp. 1812–1817. IEEE.

Harwood, M. R., L. E. Mezey, and C. M. Harris (1999). The spectral main se-

quence of human saccades. The Journal of Neuroscience 19, 9098–9106.

Heckerman, D. (1995). A tutorial on learning Bayesian networks. Technical Re-

port MSR-95-06, Microsoft Research.

Hinton, G. and R. Salakhutdinov (2006, July). Reducing the dimensionality of

data with neural networks. Science 313 (5786), 504–507.

Hinton, G. E. (2005). What kind of a graphical model is the brain? In Proceedings

of the 19th International Joint Conference on Artificial Intelligence.

Hoffman, D. (1998). Visual Intelligence: How We Create What we See. New York,

NY: W. W. Norton.

Hoiem, D., A. Efros, and M. Hebert (2007). Recovering surface layout from an

image. International Journal of Computer Vision 75 (1), 151–172.

Hubel, D. H. and T. N. Wiesel (1962). Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. Journal of Physiology 160,

106–154.

Hubel, D. H. and T. N. Wiesel (1968). Receptive fields and functional architecture

of monkey striate cortex. Journal of Physiology 195, 215–243.

Hyvärinen, A., J. Hurri, and J. Väyrynen (2003). Bubbles: a unifying framework

for low-level statistical properties of natural image sequences. Journal of the

Optical Society of America 20 (7), 1237–1252.

Izhikevich, E. M. and G. M. Edelman (2008). Large-scale model of mam-

malian thalamocortical systems. Proceedings of the National Academy of Sci-

ence 105 (9), 3593–3598.

Jin, Y. and S. Geman (2006). Context and hierarchy in a probabilistic image

model. In Proceedings of the 2006 IEEE Conference on Computer Vision and

Pattern Recognition, Volume 2, pp. 2145–2152. IEEE Computer Society.

139

Thomas Dean

Jing, Y. and S. Baluja (2008). Pagerank for product image search. In Proceedings

of the 17th World Wide Web Conference.

Kivinen, J. J., E. B. Sudderth, and M. I. Jordan (2007). Learning multiscale

representations of natural scenes using dirichlet processes. In Proceedings of

the 11th IEEE International Conference on Computer Vision.

Konen, C. S. and S. Kastner (2008). Two hierarchically organized neural systems

for object information in human visual cortex. Nature Neuroscience 11 (2),

224–231.

LeCun, Y. and Y. Bengio (1995). Convolutional networks for images, speech, and

time-series. In M. Arbib (Ed.), The Handbook of Brain Theory and Neural

Networks. Bradford Books/MIT Press.

Lee, T. S. and D. Mumford (2003). Hierarchical Bayesian inference in the visual

cortex. Journal of the Optical Society of America 2 (7), 1434–1448.

Lengyel, J. (1998). The convergence of graphics and vision. Computer 31 (7),

46–53.

Mountcastle, V. B. (2003, January). Introduction to the special issue on compu-

tation in cortical columns. Cerebral Cortex 13 (1), 2–4.

Mumford, D. (1991). On the computational architecture of the neocortex I: The

role of the thalamo-cortical loop. Biological Cybernetics 65, 135–145.

Mumford, D. (1992). On the computational architecture of the neocortex II: The

role of cortico-cortical loops. Biological Cybernetics 66, 241–251.

Newman, M., D. Watts, and S. Strogatz (2002). Random graph models of social

networks. Proceedings of the National Academy of Science 99, 2566–2572.

Olshausen, B. and C. Cadieu (2007). Learning invariant and variant components

of time-varying natural images. Journal of Vision 7 (9), 964–964.

Olshausen, B. A., A. Anderson, and D. C. Van Essen (1993). A neurobiological

model of visual attention and pattern recognition based on dynamic routing

of information. Journal of Neuroscience 13 (11), 4700–4719.

Olshausen, B. A. and D. J. Field (2005). How close are we to understanding V1?

Neural Computation 17, 1665–1699.

Osindero, S. and G. Hinton (2008). Modeling image patches with a directed

hierarchy of markov random fields. In J. Platt, D. Koller, Y. Singer, and

S. Roweis (Eds.), Advances in Neural Information Processing Systems 20, pp.

1121–1128. Cambridge, MA: MIT Press.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. San Francisco, California: Morgan Kaufmann.

140

Graphical Models of the Visual Cortex

Ranzato, M., Y. Boureau, and Y. LeCun (2007). Sparse feature learning for deep

belief networks. In Advances in Neural Information Processing Systems 20.

Cambridge, MA: MIT Press.

Riesenhuber, M. and T. Poggio (1999, November). Hierarchical models of object

recognition in cortex. Nature Neuroscience 2 (11), 1019–1025.

Rizzolatti, G., C. Sinigaglia, and F. Anderson (2007). Mirrors in the Brain How

Our Minds Share Actions, Emotions, and Experience. Oxford, UK: Oxford

University Press.

Rumelhart, D. E. and J. L. McClelland (Eds.) (1986). Parallel Distributed Pro-

cessing: Explorations in the Microstructure of Cognition, Volume I: Founda-

tions. Cambridge, Massachusetts: MIT Press.

Russell, S. and P. Norvig (2003). Artificial Intelligence: A Modern Approach.

Upper Saddle River, NJ: Second edition, Prentice Hall.

Saxena, A., S. Chung, and A. Ng (2007). 3-D depth reconstruction from a single

still image. International Journal of Computer Vision 76 (1), 53–69.

Sporns, O. and J. D. Zwi (2004). The small world of the cerebral cortex. Neu-

roinformatics 2 (2), 145–162.

Tarr, M. and H. Bülthoff (1998). Image-based object recognition in man, monkey

and machine. Cognition 67, 1–20.

Tenenbaum, J. and H. Barrow (1977). Experiments in interpretation-guided seg-

mentation. Artificial Intelligence 8, 241–277.

Torralba, A., R. Fergus, and W. Freeman (2007). Object and scene recognition

in tiny images. Journal of Vision 7 (9), 193–193.

Torralba, A., R. Fergus, and Y. Weiss (2008). Small codes and large image

databases for recognition. In Proceedings of IEEE Computer Vision and Pat-

tern Recognition, pp. 1–8. IEEE Computer Society.

Tsunoda, K., Y. Yamane, M. Nishizaki, and M. Tanifuji (2001). Complex ob-

jects are represented in macaque inferotemporal cortex by the combination of

feature columns. Nature Neuroscience 4, 832–838.

Ullman, S. and S. Soloviev (1999). Computation of pattern invariance in brain-

like structures. Neural Networks 12, 1021–1036.

Ullman, S., M. Vidal-Naquet, and E. Sali (2002). Visual features of intermediate

complexity and their use in classification. Nature Neuroscience 5 (7), 682–687.

Wiskott, L. and T. Sejnowski (2002). Slow feature analysis: Unsupervised learn-

ing of invariances. Neural Computation 14 (4), 715–770.

Yamane, Y., K. Tsunoda, M. Matsumoto, N. A. Phillips, and M. Tanifuji (2006).

Representation of the spatial relationship among object parts by neurons in

macaque inferotemporal cortex. Journal Neurophysiology 96, 3147–3156.

141

9

On the Power of Belief Propagation:
A Constraint Propagation Perspective

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

1 Introduction

In his seminal paper, Pearl [1986] introduced the notion of Bayesian networks and

the first processing algorithm, Belief Propagation (BP), that computes posterior

marginals, called beliefs, for each variable when the network is singly connected.

The paper provided the foundation for the whole area of Bayesian networks. It was

the first in a series of influential papers by Pearl, his students and his collaborators

that culminated a few years later in his book on probabilistic reasoning [Pearl 1988].

In his early paper Pearl showed that for singly connected networks (e.g., polytrees)

the distributed message-passing algorithm converges to the correct marginals in a

number of iterations equal to the diameter of the network. In his book Pearl goes

further to suggest the use of BP for loopy networks as an approximation algorithm

(see page 195 and exercise 4.7 in [Pearl 1988]). During the decade that followed

researchers focused on extending BP to general loopy networks using two principles.

The first is tree-clustering, namely, the transformation of a general network into a

tree of large-domain variables called clusters on which BP can be applied. This led

to the join-tree or junction-tree clustering and to the bucket-elimination schemes

[Pearl 1988; Dechter 2003] whose time and space complexity is exponential in the

tree-width of the network. The second principle is that of cutset-conditioning that

decomposes the original network into a collection of independent singly-connected

networks all of which must be processed by BP. The cutset-conditioning approach

is time exponential in the network’s loop-cutset size and require linear space [Pearl

1988; Dechter 2003].

The idea of applying belief propagation directly to multiply connected networks

caught up only a decade after the book was published, when it was observed by

researchers in coding theory that high performing probabilistic decoding algorithms

such as turbo codes and low density parity-check codes, which significantly outper-

formed the best decoders at the time, are equivalent to an iterative application of

Pearl’s belief propagation algorithm [McEliece, MacKay, and Cheng 1998]. This

success intrigued researchers and started massive explorations of the potential of

these local computation algorithms for general applications. There is now a signifi-

cant body of research seeking the understanding and improvement of the inference

power of iterative belief propagation (IBP).

143

Kaoru
Text Box
Return to TOC

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

The early work on IBP showed its convergence for a single loop, provided empir-

ical evidence of its successes and failures on various classes of networks [Rish, Kask,

and Dechter 1998; Murphy, Weiss, and Jordan 2000] and explored the relationship

between energy minimization and belief-propagation shedding light on convergence

and stable points [Yedidia, Freeman, and Weiss 2000]. Current state of the art in

convergence analysis are the works by [Ihler, Fisher, and Willsky 2005; Mooij and

Kappen 2007] that characterize convergence in networks having no determinism.

The work by [Roosta, Wainwright, and Sastry 2008] also includes an analysis of

the possible effects of strong evidence on convergence which can act to suppress

the effects of cycles. As far as accuracy, the work of [Ihler 2007] considers how

weak potentials can make the graph sufficiently tree-like to provide error bounds, a

work which is extended and improved in [Mooij and Kappen 2009]. For additional

information see [Koller 2010].

While a significant progress has been made in understanding the relationship be-

tween belief propagation and energy minimization, and while many extensions and

variations were proposed, some with remarkable performance (e.g., survey propa-

gation for solving satisfiability for random SAT problems), the following questions

remain even now:

• Why does belief propagation work so well on coding networks?

• Can we characterize additional classes of problems for which IBP is effective?

• Can we assess the quality of the algorithm’s performance once and if it con-

verges.

In this paper we try to shed light on the power (and limits) of belief propagation

algorithms and on the above questions by explicating its relationship with constraint

propagation algorithms such as arc-consistency. Our results are relevant primarily

to networks that have determinism and extreme probabilities. Specifically, we show

that: (1) Belief propagation converges for zero beliefs; (2) All IBP-inferred zero be-

liefs are correct; (3) IBP’s power to infer zero beliefs is as weak and as strong as that

of arc-consistency; (4) Evidence and inferred singleton beliefs act like cutsets during

IBP’s performance. From points (2) and (4) it follows that if the inferred evidence

breaks all the cycles, then IBP converges to the exact beliefs for all variables.

Subsequently, we investigate empirically the behavior of IBP for inferred near-

zero beliefs. Specifically, we explore the hypothesis that: (5) If IBP infers that the

belief of a variable is close to zero then this inference is relatively accurate. We will

see that while our empirical results support the hypothesis on benchmarks having

no determinism, the results are quite mixed for networks with determinism.

Finally, (6) We investigate if variables that have extreme probabilities in all its

domain values (i.e., extreme support) also nearly cut off information flow. If that

hypothesis is true, whenever the set of variables with extreme support constitute a

144

On the Power of Belief Propagation

loop-cutset, IBP is likely to converge and, if the inferred beliefs for those variables

are sound, it will converge to accurate beliefs throughout the network.

On coding networks that posses significant determinism, we do see this desired

behavior. So, we could view this hypothesis as the first to provide a plausible expla-

nation to the success of belief propagation on coding networks. In coding networks

the channel noise is modeled through a normal distribution centered at the trans-

mitted character and controlled by a small standard deviation. The problem is

modeled as a layered belief network whose sink nodes are all evidence that trans-

mit extreme support to their parents, which constitute all the rest of the variables.

The remaining dependencies are functional and arc-consistency on this type of net-

works is strong and often complete. Alas, as we show, on some other deterministic

networks IBP’s performance inferring near zero values is utterly inaccurate, and

therefore the strength of this explanation is questionable.

The paper is based for the most part on [Dechter and Mateescu 2003] and also on

[Bidyuk and Dechter 2001]. The empirical portion of the paper includes significant

new analysis of recent empirical evaluations carried on in UAI 2006 and UAI 20081.

2 Arc-consistency

DEFINITION 1 (constraint network). A constraint network C is a triple C =

〈X,D, C〉, where X = {X1, ..., Xn} is a set of variables associated with a set of

discrete-valued domains D = {D1, ..., Dn} and a set of constraints C = {C1, ..., Cr}.

Each constraint Ci is a pair 〈Si, Ri〉 where Ri is a relation Ri ⊆ DSi
defined on

a subset of variables Si ⊆ X and DSi
is the Cartesian product of the domains of

variables Si. The relation Ri denotes all tuples of DSi
allowed by the constraint.

The projection operator π creates a new relation, πSj
(Ri) = {x | x ∈ DSj

and

∃y, y ∈ DSi\Sj
and x ∪ y ∈ Ri}, where Sj ⊆ Si. Constraints can be combined with

the join operator 1, resulting in a new relation, Ri 1 Rj = {x | x ∈ DSi∪Sj
and

πSi
(x) ∈ Ri and πSj

(x) ∈ Rj}.

DEFINITION 2 (constraint satisfaction problem). The constraint satisfaction prob-

lem (CSP) defined over a constraint network C = 〈X,D, C〉, is the task of finding a

solution, that is, an assignment of values to all the variables x = (x1, ..., xn), xi ∈ Di,

such that ∀Ci ∈ C, πSi
(x) ∈ Ri. The set of all solutions of the constraint network

C is sol(C) =1 Ri.

2.1 Describing Arc-Consistency Algorithms

Arc-consistency algorithms belong to the well-known class of constraint propagation

algorithms [Mackworth 1977; Dechter 2003]. All constraint propagation algorithms

are polynomial time algorithms that are at the center of constraint processing tech-

niques.

DEFINITION 3 (arc-consistency). [Mackworth 1977] Given a binary constraint net-

1http://graphmod.ics.uci.edu/uai08/Evaluation/Report

145

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

A

B C

D F

G

A

AB AC

ABD BCF

DFG

AB

2

1

3

A

23

2
C

1
A

12
32

13
23

3

2

B

1

1

A

1

3
F

23

2
C

1
B

312

132
213

1

2

3
D

23

3

2
B

1

1
A

3

3

G

1

2

F

2

1

D

4

1

5

3

6

2

2

4
h

2

5
h

6

5
h

=
6

5
h 3

1

F

B

4

6
h

D

4

5
h

B

F

()==
6

56

4

6
 hRh

D
π

2

D

()==
4

5

4

64

2

4
 hhRh

AB
π

3

B
1

A
5

6
h

()==
6

56

5

6
 hRh

F
π

1
F

()===
5

65

2

5

4

5
 hRhh

B
π

3

B

1

2
h A

()==
2

5

2

42

1

2
 hhRh

A
π

1

A

1
R

2
R

4
R

3
R

5
R

6
R

Figure 1. Part of the execution of RDAC algorithm

work C = 〈X, D,C〉, C is arc-consistent iff for every binary constraint Ri ∈ C s.t.

Si = {Xj , Xk}, every value xj ∈ Dj has a value xk ∈ Dk s.t. (xj , xk) ∈ Ri.

When a binary constraint network is not arc-consistent, arc-consistency algo-

rithms remove values from the domains of the variables until an arc-consistent net-

work is generated. A variety of such algorithms were developed over the past three

decades [Dechter 2003]. We will consider here a simple and not the most efficient

version, which we call relational distributed arc-consistency algorithm. Rather than

defining it on binary constraint networks we will define it directly over the dual

graph, extending the arc-consistency condition to non-binary networks.

DEFINITION 4 (dual graph). Given a set of functions/constraints F = {f1, ..., fr}

over scopes S1, ..., Sr, the dual graph of F is a graph DF = (V, E,L) that associates

a node with each function, namely V = F , and an arc connects any two nodes

whose scope share a variable, E = {(fi, fj)|Si ∩ Sj 6= ∅} . L is a set of labels for

the arcs, where each arc is labeled by the shared variables of its nodes, L = {lij =

Si ∩ Sj |(i, j) ∈ E}.

Algorithm Relational distributed arc-consistency (RDAC) is a message passing

algorithm defined over the dual graph DC of a constraint network C = 〈X,D, C〉. It

enforces what is known as relational arc-consistency [Dechter 2003]. Each node (a

constraint) in DCi
, for a constraint Ci ∈ C maintains a current set of viable tuples

Ri. Let ne(i) be the set of neighbors of Ci in DC . Every node Ci sends a message to

any node Cj ∈ ne(i), which consists of the tuples over their label variables lij that

are allowed by the current relation Ri. Formally, let Ri and Rj be two constraints

sharing scopes, whose arc in DC is labeled by lij . The message that Ri sends to Rj

denoted hj
i is defined by:

(1) hj
i ← πlij

(Ri 1 (1k∈ne(i) hi
k))

and each node updates its current relation according to:

(2) Ri ← Ri 1 (1k∈ne(i) hi
k)

EXAMPLE 5. Figure 1 describes part of the execution of RDAC for a graph col-

146

On the Power of Belief Propagation

oring problem, having the constraint graph shown on the left. All variables have

the same domain, {1,2,3}, except for variable C whose domain is 2, and variable G

whose domain is 3. The arcs correspond to not equal constraints, and the relations

are RA, RAB , RAC , RABD, RBCF , RDFG, where the subscript corresponds to their

scopes. The dual graph of this problem is given on the right side of the figure,

and each table shows the initial constraints (there are unary, binary and ternary

constraints). To initialize the algorithm, the first messages sent out by each node

are universal relations over the labels. For this example, RDAC actually solves the

problem and finds the unique solution A=1, B=3, C=2, D=2, F=1, G=3.

Relational distributed arc-consistency algorithm converges after O(r ·t) iterations

to the largest relational arc-consistent network that is equivalent to the original

network, where r is the number of constraints and t bounds the number of tuples

in each constraint. Its complexity can be shown to be O(r2t2 log t) [Dechter 2003].

3 Iterative Belief Propagation

DEFINITION 6 (belief network). A belief network is a quadruple B = 〈X, D, G, P 〉

where X = {X1, . . . , Xn} is a set of random variables, D = {D1, ..., Dn} is the set

of the corresponding domains, G = (X,E) is a directed acyclic graph over X and

P = {p1, ..., pn} is a set of conditional probability tables (CPTs) pi = P (Xi|pa(Xi)),

where pa(Xi) are the parents of Xi in G. The belief network represents a probability

distribution over X having the product form P (x1, . . . , xn) =
∏n

i=1 P (xi|xpa(Xi)).

An evidence set e is an instantiated subset of variables. The family of Xi, denoted

by fa(Xi), includes Xi and its parent variables. Namely, fa(Xi) = {Xi} ∪ pa(Xi).

DEFINITION 7 (belief updating problem). The belief updating problem defined

over a belief network B = 〈X, D, G, P 〉 is the task of computing the posterior

probability P (Y |e) of query nodes Y ⊆ X given evidence e. We will sometime

denote by PB the exact probability according the Baysian network B. When Y

consists of a single variable Xi, PB(Xi|e) is also denoted as Bel(Xi) and called

belief, or posterior marginal, or just marginal.

3.1 Describing Iterative Belief Propagation

Iterative belief propagation (IBP) is an iterative application of Pearl’s algorithm

that was defined for poly-trees [Pearl 1988]. Since it is a distributed algorithm, it

is well defined for any network. We will define IBP as operating over the belief

network’s dual join-graph.

DEFINITION 8 (dual join-graph). Given a belief network B = 〈X,D, G, P 〉, a dual

join-graph is an arc subgraph of the dual graph DB whose arc labels are subsets of

the labels of DB satisfying the running intersection property, namely, that any two

nodes that share a variable in the dual join-graph be connected by a path of arcs

whose labels contain the shared variable. An arc-minimal dual join-graph is one

for which none of the labels can be further reduced while maintaining the running

147

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

Algorithm IBP

Input: An arc-labeled dual join-graph DJ = (V, E, L) for a belief network B =

〈X, D, G, P 〉. Evidence e.

Output: An augmented graph whose nodes include the original CPTs and the messages

received from neighbors. Approximations of P (Xi|e) and P (fa(Xi)|e), ∀Xi ∈ X.

Denote by: hv
u the message from u to v; ne(u) the neighbors of u in V ; nev(u) =

ne(u) − {v}; luv the label of (u, v) ∈ E; elim(u, v) = fa(Xi) − fa(Xj), where u and v

are the vertexs of family fa(Xi) and fa(Xj) in DJ , respectively.

• One iteration of IBP

For every node u in DJ in a topological order and back, do:

1. Process observed variables

Assign evidence variables to each pi and remove them from the labeled arcs.

2. Compute and send to v the function:

hv
u =

∑

elim(u,v)

(pu ·
∏

{hu
i

,i∈nev(u)}

hu
i)

EndFor

• Compute approximations of P (Xi|e) and P (fa(Xi)|e):

For every Xi ∈ X (let u be the vertex of family fa(Xi) in DJ), do:

P (fa(Xi)|e) = α(
∏

hu
i

,u∈ne(i) hu
i) · pu

P (Xi|e) = α
∑

fa(Xi)−{Xi}
P (fa(Xi)|e)

EndFor

Figure 2. Algorithm Iterative Belief Propagation

intersection property.

In IBP each node in the dual join-graph sends a message over an adjacent arc

whose scope is identical to its label. Pearl’s original algorithm sends messages whose

scopes are singleton variables only. It is easy to show that any dual graph (which

itself is a dual join-graph) has an arc-minimal singleton dual join-graph which can

be constructed directly by labeling the arc between the CPT of a variable and the

CPT of its parent, by its parent variable. Algorithm IBP defined for any dual join-

graph is given in Figure 2. One iteration of IBP is time and space linear in the size

of the belief network, and when IBP is applied to the singleton labeled dual graph

it coincides with Pearl’s belief propagation. The inferred approximation of belief

P (X|e) output by IBP, will be denoted by PIBP (X|e).

4 Belief Propagation’s Inferred Zeros

We will now make connections between distributed relational arc-consistency and

iterative belief propagation. We first associate any belief network with a constraint

network that captures its zero probability tuples and define algorithm IBP-RDAC,

an IBP-like algorithm that achieves relational arc-consistency on the associated con-

straint network. Then, we show that IBP-RDAC and IBP are equivalent in terms

of removing inconsistent domain values and computing zero marginal probabilities,

respectively. Since arc-consistency algorithms are well understood, this correspon-

148

On the Power of Belief Propagation

dence between IBP-RDAC and IBP yields the main claims and provides insight into

the behavior of IBP for inferred zero beliefs. In particular, this relationship justi-

fies the iterative application of belief propagation algorithms, while also illuminates

their “distance” from being complete.

More precisely, in this section we will show that: (a) If a variable-value pair

is assessed in some iteration by IBP as having a zero-belief, it remains zero in

subsequent iterations; (b) Any IBP-inferred zero-belief is correct with respect to

the corresponding belief network’s marginal; and (c) IBP converges in finite time

for all its inferred zeros.

4.1 Flattening the Belief Network

Given a belief network B = 〈X,D, G, P 〉, we define the flattening of a belief network

B, called flat(B), as the constraint network where all the zero entries in a probability

table are removed from the corresponding relation. Formally,

DEFINITION 9 (flattening). Given a belief network B = 〈X, D,G, P 〉, its flattening

is a constraint network flat(B) = 〈X,D, flat(P)〉. Each CPT pi ∈ P over fa(Xi)

is associated with a constraint 〈Si, Ri〉 s.t. Si = fa(Xi) and Ri = {(xi, xpa(Xi)) ∈

DSi
|P (xi|xpa(Xi)) > 0}. The set flat(P) is the set of the constraints 〈Si, Ri〉,

∀pi ∈ P .

EXAMPLE 10. Figure 3 shows (a) a belief network and (b) its corresponding flat-

tening.

THEOREM 11. Given a belief network B = 〈X,D, G, P 〉, where X = {X1, . . . , Xn},

for any tuple x = (x1, . . . , xn): PB(x) > 0 ⇔ x ∈ sol(flat(B)), where sol(flat(B))

is the set of solutions of flat(B).

Proof. PB(x) > 0 ⇔ Πn
i=1P (xi|xpa(Xi)) > 0 ⇔ ∀i ∈ {1, . . . , n}, P (xi|xpa(Xi)) > 0

⇔ ∀i ∈ {1, . . . , n}, (xi, xpa(Xi)) ∈ RFi
⇔ x ∈ sol(flat(B)). ⊓⊔

Clearly this can extend to Bayesian networks with evidence:

COROLLARY 12. Given a belief network B = 〈X, D,G, P 〉, and evidence e

PB(x|e) > 0 ⇔ x ∈ sol(flat(B) ∧ e).

We next define algorithm IBP-RDAC and show that it achieves relational arc-

consistency on the flat network.

DEFINITION 13 (Algorithm IBP-RDAC). Given B = 〈X, D,G, P 〉 and evidence e,

let DB be a dual join-graph and Dflat(B) be a corresponding dual join-graph of the

constraint network flat(B). Algorithm IBP-RDAC applied to Dflat(B) is defined

using IBP’s specification in Figure 2 with the following modifications:

1. Pre-processing evidence: when processing evidence, we remove from each Ri ∈

flat(P) those tuples that do not agree with the assignments in evidence e.

2. Instead of
∏

, we use the join operator 1.

149

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

A

AB AC

ABD BCF

DFG

B
B

D F

A

A

A

C

A P(A)

1 .2

2 .5

3 .3

… 0

A B P(B|A)

1 2 .3

1 3 .7

2 1 .4

2 3 .6

3 1 .1

3 2 .9

… … 0

A B D P(D|A,B)

1 2 3 1

1 3 2 1

2 1 3 1

2 3 1 1

3 1 2 1

3 2 1 1

… … … 0 D F G P(G|D,F)

1 2 3 1

2 1 3 1

… … … 0

B C F P(F|B,C)

1 2 3 1

3 2 1 1

… … … 0

A C P(C|A)

1 2 1

3 2 1

… … 0

(a) Bayesian network

A

AB AC

ABD BCF

DFG

B
B

D F

A

A

A

C

A

1

2

3

A B

1 2

1 3

2 1

2 3

3 1

3 2

A B D

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

D F G

1 2 3

2 1 3

B C F

1 2 3

3 2 1

A C

1 2

3 2

(b) Flat constraint network

Figure 3. Flattening of a Bayesian network

3. Instead of
∑

, we use the projection operator π.

4. At the termination, we update the domains of variables by:

Di ← Di ∩ πXi
((1v∈ne(u) h(v,u)) 1 Ri)

By construction, it should be easy to see that,

PROPOSITION 14. Given a belief network B = 〈X, D,G, P 〉, algorithm IBP-

RDAC is identical to algorithm RDAC when applied to Dflat(B). Therefore, IBP-

RDAC enforces relational arc-consistency over flat(B).

Due to the convergence of RDAC, we get that:

PROPOSITION 15. Given a belief network B, algorithm IBP-RDAC over flat(B)

converges in O(n · t) iterations, where n is the number of nodes in B and t is the

maximum number of tuples over the labeling variables between two nodes that have

positive probability.

4.2 The Main Claim

In the following we will establish an equivalence between IBP and IBP-RDAC in

terms of zero probabilities.

PROPOSITION 16. When IBP and IBP-RDAC are applied in the same order of

computation to B and flat(B) respectively, the messages computed by IBP are iden-

tical to those computed by IBP-RDAC in terms of zero / non-zero probabilities.

That is, for any pair of corresponding messages, h(u,v)(t) 6= 0 in IBP iff t ∈ h(u,v)

in IBP-RDAC.

Proof. The proof is by induction. The base case is trivially true since messages h

in IBP are initialized to a uniform distribution and messages h in IBP-RDAC are

initialized to complete relations.

150

On the Power of Belief Propagation

The induction step. Suppose that hIBP
(u,v) is the message sent from u to v by

IBP. We will show that if hIBP
(u,v)(x) 6= 0, then x ∈ hIBP−RDAC

(u,v) where hIBP−RDAC
(u,v)

is the message sent by IBP-RDAC from u to v. Assume that the claim holds

for all messages received by u from its neighbors. Let f ∈ u in IBP and Rf

be the corresponding relation in IBP-RDAC, and t be an assignment of values

to variables in elim(u, v). We have hIBP
(u,v)(x) 6= 0 ⇔

∑

elim(u,v)

∏

f f(x) 6= 0

⇔ ∃t,
∏

f f(x, t) 6= 0 ⇔ ∃t, ∀f, f(x, t) 6= 0 ⇔ ∃t,∀f, πscope(Rf)(x, t) ∈ Rf ⇔

∃t, πelim(u,v)(1Rf
πscope(Rf)(x, t)) ∈ hIBP−RDAC

(u,v) ⇔ x ∈ hIBP−RDAC
(u,v) . ⊓⊔

Moving from tuples to domain values, we will show that whenever IBP computes

a marginal probability PIBP (xi|e) = 0, IBP-RDAC removes xi from the domain of

variable Xi, and vice-versa.

PROPOSITION 17. Given a belief network B and evidence e, IBP applied to B

derives PIBP (xi|e) = 0 iff IBP-RDAC over flat(B) decides that xi 6∈ Di.

Proof. According to Proposition 16, the messages computed by IBP and IBP-

RDAC are identical in terms of zero probabilities. Let f ∈ cluster(u) in IBP and

Rf be the corresponding relation in IBP-RDAC, and t be an assignment of values

to variables in χ(u)\Xi. We will show that when IBP computes P (Xi = xi) = 0

(upon convergence), then IBP-RDAC computes xi 6∈ Di. We have P (Xi = xi) =
∑

X\Xi

∏

f f(xi) = 0 ⇔ ∀t,
∏

f f(xi, t) = 0 ⇔ ∀t,∃f, f(xi, t) = 0 ⇔

∀t,∃Rf , πscope(Rf)(xi, t) 6∈ Rf ⇔ ∀t, (xi, t) 6∈ (1Rf
Rf (xi, t)) ⇔ xi 6∈ Di ∩ πXi

(1Rf

Rf (xi, t)) ⇔ xi 6∈ Di. Since arc-consistency is sound, so is the decision of zero

probabilities. ⊓⊔

We can now conclude that:

THEOREM 18. Given evidence e, whenever IBP applied to B infers PIBP (xi|e) =

0, the marginal Bel(xi) = PB(xi|e) = 0.

Proof. By Proposition 17, if IBP over B computes PIBP (xi|e) = 0, then IBP-

RDAC over flat(B) removes the value xi from the domain Di. Therefore, xi ∈ Di

is a no-good of the constraint network flat(B) and from Theorem 11 it follows that

Bel(xi) = 0. ⊓⊔

Next, we show that the time it takes IBP to find its inferred zeros is bounded.

PROPOSITION 19. Given a belief network B and evidence e, IBP finds all its xi

for which PIBP (xi|e) = 0 in finite time, that is, there exists a number k such that

no PIBP (xi|e) = 0 will be generated after k iterations.

Proof. This follows from the fact that the number of iterations it takes for IBP to

compute PIBP (Xi = xi|e) = 0 over B is exactly the same number of iterations IBP-

RDAC needs to remove xi from the domain Di over flat(B) (Propositions 16 and

17) and the fact that IBP-RDAC’s number of iterations is bounded (Proposition

15). ⊓⊔

151

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

3

1

2

X3

31

2

1

X2

1

1

H2

X1

X2

X3H1

H2

H3

a)

X1

X2

X3H1X1 X2

H2 X2 X3

H3X1 X3

c)

X1

X1

X2

X2

X3

X3
3

1

2

X2

31

2

1

X1

1

1

H1

3

2

1

X1

3

1

2

X3

31

2

1

X1

1

1

H3

3

2

1

X2

3

2

1

X3

100
True
belief

0.5.5300

1e-260……200

1e-129……100

.49986

.49721

.45

Bel(X
i

= 2)

.00027

.00545

.1

Bel(X
i

= 3)

.499863

.49721

.45

Bel(X
i

= 1)

2

1

#iter

b)

Figure 4. a) A belief network; b) Example of a finite precision problem; and (c) An

arc-minimal dual join-graph.

4.3 A Finite Precision Problem

Algorithms should always be implemented with care on finite precision machines.

In the following example we show that IBP’s messages converge in the limit (i.e. in

an infinite number of iterations), but they do not stabilize in any finite number of

iterations.

EXAMPLE 20. Consider the belief network in Figure 4a defined over 6 variables

X1, X2, X3, H1, H2, H3. The domain of the X variables is {1, 2, 3} and the domain

of the H variables is {0, 1}. The priors on X variables are:

P (Xi) =

0.45, if Xi = 1;

0.45, if Xi = 2;

0.1, if Xi = 3;

There are three CPTs over the scopes: {H1, X1, X2}, {H2, X2, X3}, and {H3, X1, X3}.

The values of the CPTs for every triplet of variables {Hk, Xi, Xj} are:

P (hk = 1|xi, xj) =

1, if (3 6= xi 6= xj 6= 3);

1, if (xi = xj = 3);

0, otherwise ;

P (hk = 0|xi, xj) = 1 − P (hk = 1|xi, xj).

Consider the evidence set e = {H1 = H2 = H3 = 1}. This Bayesian network

expresses the probability distribution that is concentrated in a single tuple:

P (x1, x2, x3|e) =

{

1, if x1 = x2 = x3 = 3;

0, otherwise.

The belief for any of the X variables as a function of the number of iteration is

given in Figure 4b. After about 300 iterations, the finite precision of our computer

is not able to represent the value for Bel(Xi = 3), and this appears to be zero,

152

On the Power of Belief Propagation

yielding the final updated belief (.5, .5, 0), when in fact the true updated belief

should be (0, 0, 1). Notice that (.5, .5, 0) cannot be regarded as a legitimate fixed

point for IBP. Namely, if we would initialize IBP with the values (.5, .5, 0), then

the algorithm would maintain them, appearing to have a fixed point. However,

initializing IBP with zero values cannot be expected to be correct. Indeed, when

we initialize with zeros we forcibly introduce determinism in the model, and IBP

will always maintain it afterwards.

However, this example does not contradict our theory because, mathematically,

Bel(Xi = 3) never becomes a true zero, and IBP never reaches a quiescent state.

The example shows however that a close to zero inferred belief by IBP can be

arbitrarily inaccurate. In this case the inaccuracy seems to be due to the initial

prior belief which are so different from the posterior ones.

4.4 Zeros Inferred by Generalized Belief Propagation

Belief propagation algorithms were extended yielding the class of generalized be-

lief propagation (GBP) algorithms [Yedidia, Freeman, and Weiss 2000]. These al-

gorithms fully process subparts of the networks, transforming it closer to a tree

structure on which IBP can be more effective [Dechter, Mateescu, and Kask 2002;

Mateescu, Kask, Gogate, and Dechter 2010]. The above results for IBP can now be

extended to GBP and in particular to the variant of iterative join-graph propagation,

IJGP [Dechter, Mateescu, and Kask 2002]. The algorithm applies message passing

over a partition of the CPTs into clusters, called a join-graph, rather than over

the dual graph. The set of clusters in such a partition defines a unique dual graph

(i.e., each cluster is a node). This dual graph can be associated with various dual

join-graphs, each defined by the labeling on the arcs between neighboring cluster

nodes.

Algorithm IJGP has an accuracy parameter i, called i-bound, which restricts the

maximum number of variables that can appear in a cluster and it is more accurate

as i grows. The extension of all the previous observations regarding zeros to IJGP

is straightforward and is summarized next, where the inferred approximation of the

belief PcalB(Xi|e) computed by IJGP is denoted by PIJGP (Xi|e).

THEOREM 21. Given a belief network B to which IJGP is applied then:

1. IJGP generates all its PIJGP (xi|e) = 0 in finite time, that is, there exists a

number k, such that no PIJGP (xi) = 0 will be generated after k iterations.

2. Whenever IJGP determines PIJGP (xi|e) = 0, it stays 0 during all subsequent

iterations.

3. Whenever IJGP determines PIJGP (xi|e) = 0, then Bel(xi) = 0.

5 The Impact of IBP’s Inferred Zeros

This section discusses the ramifications of having sound inferred zero beliefs.

153

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

5.1 The Inference Power of IBP

We now show that the inference power of IBP for zeros is sometimes very limited

and other times strong, exactly wherever arc-consistency is weak or strong.

Cases of weak inference power. Consider the belief network described in Ex-

ample 20. The flat constraint network of that belief network is defined over the

scopes S1={H1, X1, X2}, S2={H2, X2, X3}, S3={H3, X1, X3}. The constraints are

defined by: RSi
= {(1, 1, 2), (1, 2, 1), (1, 3, 3), (0, 1, 1), (0, 1, 3), (0, 2, 2), (0, 2, 3),

(0, 3, 1), (0, 3, 2)}. The prior probabilities for Xi’s imply unary constraints equal

to the full domain {1,2,3}. An arc-minimal dual join-graph that is identical to the

constraint network is given in Figure 4b. In this case, IBP-RDAC sends as messages

the full domains of the variables and thus no tuple is removed from any constraint.

Since IBP infers the same zeros as arc-consistency, IBP will also not infer any zeros.

Since the true probability of most tuples is zero, we can conclude that the inference

power of IBP on this example is weak or non-existent.

The weakness of arc-consistency in this example is not surprising. Arc-consistency

is known to be far from complete. Since every constraint network can be expressed

as a belief network (by adding a variable for each constraint as we did in the above

example) and since arc-consistency can be arbitrarily weak on some constraint net-

works, so could be IBP.

Cases of strong inference power. The relationship between IBP and arc-

consistency ensures that IBP is zero-complete, whenever arc-consistency is. In

general, if for a flat constraint network of a belief network B, arc-consistency re-

moves all the inconsistent domain values, then IBP will also discover all the true

zeros of B. Examples of constraint networks that are complete for arc-consistency

are max-closed constraints. These constraints have the property that if 2 tuples are

in the relation so is their intersection. Linear constraints are often max-closed and

so are Horn clauses (see [Dechter 2003]). Clearly, IBP is zero complete for acyclic

networks which include binary trees, polytrees and networks whose dual graph is a

hypertree [Dechter 2003]. This is not too illuminating though as we know that IBP

is fully complete (not only for zeros) for such networks.

An interesting case is when the belief network has no evidence. In this case,

the flat network always corresponds to the causal constraint network defined in

[Dechter and Pearl 1991]. The inconsistent tuples or domain values are already

explicitly described in each relation and no new zeros can be inferred. What is

more interesting is that in the absence of evidence IBP is also complete for non-zero

beliefs for many variables as we show later.

5.2 IBP and Loop-Cutset

It is well-known that if evidence nodes form a loop-cutset, then we can transform

any multiply-connected belief network into an equivalent singly-connected network

154

On the Power of Belief Propagation

which can be solved by belief propagation, leading to the loop-cutset conditioning

method [Pearl 1988]. Now that we established that inferred zeros, and in particular

inferred evidence (i.e., when only a single value in the domain of a variable has a non-

zero probability) are sound, we show that evidence play the cutset role automatically

during IBP’s performance. Indeed, we can show that during IBP’s operation, an

observed node Xi in a Bayesian network blocks the path between its parents and its

children as defined in the d-separation criteria. All the proofs of claims appearing

in Section 5.2 and Section 5.3 can be found in [Bidyuk and Dechter 2001].

PROPOSITION 22. Let Xi be an observed node in a belief network B. Then for

any child Yj of node Xi, the belief of Yj computed by IBP is not dependent on the

messages that Xi receives from its parents pa(Xi) or the messages that node Xi

receives from its other children Yk, k 6= j.

From this we can conclude that:

THEOREM 23. If evidence nodes, original or inferred, constitute a loop-cutset,

then IBP converges to the correct beliefs in linear time.

5.3 IBP on Irrelevant Nodes

An orthogonal property is that unobserved nodes that have only unobserved descen-

dents are irrelevant to the beliefs of the remaining nodes and therefore, processing

can be restricted to the relevant subgraphs. In IBP, this property is expressed by

the fact that irrelevant nodes send messages to their parents that equally support

each value in the domain of a parent and thus do not affect the computation of

marginal posteriors of its parents.

PROPOSITION 24. Let Xi be an unobserved node without observed descendents

in B and let B′ be a subnetwork obtained by removing Xi and its descendents from

B. Then, ∀Y ∈ B′ the belief of Y computed by IBP over B equals the belief of Y

computed by IBP over B′.

Thus, in a loopy network without evidence, IBP always converges after 1 iteration

since only propagation of top-down messages affects the computation of beliefs and

those messages do not change. Also in that case, IBP converges to the correct

marginals for any node Xi such that there exists only one directed path from any

ancestor of Xi to Xi. This is because the relevant subnetwork that contains only the

node and its ancestors is singly-connected and by Proposition 24 they are the same

as the beliefs computed by applying IBP to the complete network. In summary,

THEOREM 25. Let B′ be a subnetwork obtained from B by recursively eliminating

all its unobserved leaf nodes. If observed nodes constitute a loop-cutset of B′, then

IBP applied to B converges to the correct beliefs for all nodes in B′.

THEOREM 26. If a belief network does not contain any observed nodes or only has

observed root nodes, then IBP always converges.

In summary, in Sections 5.2 and 5.3 we observed that IBP exploits the two prop-

155

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

erties of observed and unobserved nodes, automatically, without any outside inter-

vention for network transformation. As a result, the correctness and convergence of

IBP on a node Xi in a multiply-connected belief network will be determined by the

structure restricted to Xi’s relevant subgraph. If the relevant subnetwork of Xi is

singly-connected relative to the evidence (observed or inferred), IBP will converge

to the correct beliefs for node Xi.

6 Experimental Evaluation

The goal of the experiments is two-fold. First, since zero values inferred by IBP/IJGP

are proved correct, we want to explore the behavior of IBP/IJGP for near zero

inferred beliefs. Second, we want to explore the hypothesis that the loop-cutset

impact on IBP’s performance, as discussed in Section 5.2, also extends to variables

with extreme support. The next two subsections are devoted to these two issues,

respectively.

6.1 On the Accuracy of IBP in Near Zero Marginals

We test the performance of IBP and IJGP both on cases of strong and weak inference

power. In particular, we look at networks where probabilities are extreme and

investigate empirically the accuracy of IBP/IJGP across the range of belief values

from 0 to 1. Since zero values inferred by IBP/IJGP are proved correct, we focus

especially on the behavior of IBP/IJGP for near zero inferred beliefs.

Using names inspired by the well known measures in information retrieval, we

report Recall Absolute Error and Precision Absolute Error over small intervals span-

ning [0, 1]. Recall is the absolute error averaged over all the exact beliefs that fall

into the interval, and can therefore be viewed as capturing the level of completeness.

For precision, the average is taken over all the belief values computed by IBP/IJGP

that fall into the interval, and can be viewed as capturing soundness.

The X coordinate in Figure 5 and Figure 10 denotes the interval [X, X + 0.05).

For the rest of the figures, the X coordinate denotes the interval (X−0.05, X], where

the 0 interval is [0, 0]. The left Y axis corresponds to the histograms (the bars),

while the right Y axis corresponds to the absolute error (the lines). For problems

with binary variables, we only show the interval [0, 0.5] because the graphs are

symmetric around 0.5. The number of variables, number of evidence variables and

induced width w* are reported in each graph.

Since the behavior within each benchmark is similar, we report a subset of the

results (for an extended report see [Rollon and Dechter 2009].

Coding networks. Coding networks are the famous case where IBP has impressive

performance. The instances are from the class of linear block codes, with 50 nodes

per layer and 3 parent nodes for each variable. We experiment with instances having

three different values of channel noise: 0.2, 0.4 and 0.6. For each channel value, we

generate 1000 samples.

Figure 5 shows the results. When the noise level is 0.2, all the beliefs computed

156

On the Power of Belief Propagation

%

%

%

%

%

%

%

%

%

%

%

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

noise = 0.60

0

0.01

0.02

0.03

0.04

0.05

A
b

s
o

lu
te

 E
rr

o
r

%

%

%

%

%

%

%

%

%

%

%

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

noise = 0.40

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

noise = 0.20

P
e

rc
e

n
ta

g
e

Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 5. Coding, N=200, evidence=100, w*=15, 1000 instances.

by IBP are extreme. The Recall and Precision are very small, of the order of 10−11.

So, in this case, all the beliefs are very small (i.e., ǫ small) and IBP is able to infer

them correctly, resulting in almost perfect accuracy (IBP is indeed perfect in this

case for the bit error rate). As noise increases, the Recall and Precision get closer

to a bell shape, indicating higher error for values close to 0.5 and smaller error for

extreme values. The histograms show that fewer belief values are extreme as noise

increases.

Linkage Analysis networks. Genetic linkage analysis is a statistical method for

mapping genes onto a chromosome. The problem can be modeled as a belief net-

work. We experimented with four pedigree instances from the UAI08 competition.

The domain size ranges between 1 to 4. For these instances exact results are avail-

able. Figure 6 shows the results. We observe that the number of exact 0 beliefs

is small and IJGP correctly infers all of them. The behavior of IJGP for ǫ small

beliefs varies accross instances. For pedigree1, the Exact and IJGP histograms are

about the same (for all intervals). Moreover, Recall and Precision errors are rela-

tively small. For the rest of the instances, the accuracy of IJGP for extreme inferred

marginals decreases. Notice that IJGP infers more ǫ small beliefs than the number

of exact extremes in the corresponding intervals, leading to relatively high Preci-

sion error while small Recall error. The behaviour for beliefs in the 0.5 interval is

reversed, leading to high Recall error while small Precision error. As expected, the

accuracy of IJGP improves as the value of the control parameter i-bound increases.

Grid networks. Grid networks are characterized by two parameters (N, D), where

N × N is the size of the network and D is the percentage of determinism (i.e., the

percentage of values in all CPTs assigned to either 0 or 1). We experiment with

grids2 instances from the UAI08 competition. They are characterized by parameters

({16, . . . , 42}, {50, 75, 90}). For each parameter configuration, there are samples of

size 10 generated by randomly assigning value 1 to one leaf node.

Figure 7 and Figure 8 report the results. IJGP correctly infers all 0 beliefs.

157

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

P
e

rc
e

n
ta

g
e

A
b

s
o

lu
te

 E
rr

o
r

pedigree1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0
0
.0

5
0
.1

0
.1

5
0
.2

0
.2

5
0
.3

0
.3

5
0
.4

0
.4

5
0
.5

0
.5

5
0
.6

0
.6

5
0
.7

0
.7

5
0
.8

0
.8

5
0
.9

0
.9

5 1 0
0

.0
5

0
.1

0
.1

5
0

.2
0

.2
5

0
.3

0
.3

5
0

.4
0

.4
5

0
.5

0
.5

5
0

.6
0

.6
5

0
.7

0
.7

5
0

.8
0

.8
5

0
.9

0
.9

5 1

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

Exact Histogram IJGP Histogram Recall Abs. Error Precision Abs. Error

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0
0
.0

5
0
.1

0
.1

5
0
.2

0
.2

5
0
.3

0
.3

5
0
.4

0
.4

5
0
.5

0
.5

5
0
.6

0
.6

5
0
.7

0
.7

5
0
.8

0
.8

5
0
.9

0
.9

5 1 0
0
.0

5
0
.1

0
.1

5
0
.2

0
.2

5
0
.3

0
.3

5
0
.4

0
.4

5
0
.5

0
.5

5
0
.6

0
.6

5
0
.7

0
.7

5
0
.8

0
.8

5
0
.9

0
.9

5 1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

P
e

rc
e

n
ta

g
e

A
b

s
o

lu
te

 E
rr

o
r

pedigree23

P
e

rc
e

n
ta

g
e

A
b

s
o

lu
te

 E
rr

o
r

pedigree37

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0
0
.0

5
0
.1

0
.1

5
0
.2

0
.2

5
0
.3

0
.3

5
0
.4

0
.4

5
0
.5

0
.5

5
0
.6

0
.6

5
0
.7

0
.7

5
0
.8

0
.8

5
0
.9

0
.9

5 1 0
0

.0
5

0
.1

0
.1

5
0

.2
0

.2
5

0
.3

0
.3

5
0

.4
0

.4
5

0
.5

0
.5

5
0

.6
0

.6
5

0
.7

0
.7

5
0

.8
0

.8
5

0
.9

0
.9

5 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

P
e

rc
e

n
ta

g
e

A
b

s
o

lu
te

 E
rr

o
r

pedigree38

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0
0
.0

5
0
.1

0
.1

5
0
.2

0
.2

5
0
.3

0
.3

5
0
.4

0
.4

5
0
.5

0
.5

5
0
.6

0
.6

5
0
.7

0
.7

5
0
.8

0
.8

5
0
.9

0
.9

5 1 0
0
.0

5
0
.1

0
.1

5
0
.2

0
.2

5
0
.3

0
.3

5
0
.4

0
.4

5
0
.5

0
.5

5
0
.6

0
.6

5
0
.7

0
.7

5
0
.8

0
.8

5
0
.9

0
.9

5 1

 0

 0.05

 0.1

 0.15

 0.2

i-bound = 3 i-bound = 7

Figure 6. Results on pedigree instances. Each row is the result for one instance.

Each column is the result of running IJGP with i-bound equal to 3 and 7, respec-

tively. The number of variables N , number of evidence variables NE, and induced

width w* of each instance is as follows. Pedigree1: N = 334, NE = 36 and w*=21;

pedigree23: N = 402, NE = 93 and w*=30; pedigree37: N = 1032, NE = 306 and

w*=30; pedigree38: N = 724, NE = 143 and w*=18.

158

On the Power of Belief Propagation

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

Exact Histogram IJGP Histogram Recall Abs. Error Precision Abs. Error

P
e

rc
e

n
ta

g
e

A
b

s
o

lu
te

 E
rr

o
r

(16, 50)

(16, 75)

i-bound = 3 i-bound = 5 i-bound = 7

P
e

rc
e

n
ta

g
e

A
b

s
o

lu
te

 E
rr

o
r

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Figure 7. Results on grids2 instances. First row shows the results for parameter

configuration (16, 50). Second row shows the results for (16, 75). Each column is

the result of running IJGP with i-bound equal to 3, 5, and 7, respectively. Each

plot indicates the mean value for up to 10 instances. Both parameter configurations

have 256 variables, one evidence variable, and induced width w*=22.

However, its performance for ǫ small beliefs is quite poor. Only for networks with

parameters (16, 50) the Precision error is relatively small (less than 0.05). If we fix

the size of the network and the i-bound, both Precision and Recall errors increase

as the determinism level D increases. The histograms clearly show the gap between

the number of true ǫ small beliefs and the ones inferred by IJGP. As before, the

accuracy of IJGP improves as the value of the control parameter i-bound increases.

Two-layer noisy-OR networks. Variables are organized in two layers where the

ones in the second layer have 10 parents. Each probability table represents a noisy

OR-function. Each parent variable yj has a value Pj ∈ [0..Pnoise]. The CPT for each

variable in the second layer is then defined as, P (x = 0|y1, . . . , yP) =
∏

yj=1 Pj and

P (x = 1|y1, . . . , yP) = 1 − P (x = 0|y1, . . . , yP). We experiment on bn2o instances

from the UAI08 competition.

Figure 9 reports the results for 3 instances. In this case, IJGP is very accurate

for all instances. In particular, the accuracy in ǫ small beliefs is very high.

CPCS networks. These are medical diagnosis networks derived from the Computer-

Based Patient Care Simulation system (CPCS) expert system. We tested on two

159

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

Exact Histogram IJGP Histogram Recall Abs. Error Precision Abs. Error

P
e

rc
e

n
ta

g
e

A
b

s
o

lu
te

 E
rr

o
r

(26, 75)

(26, 90)

i-bound = 3 i-bound = 5 i-bound = 7

P
e

rc
e

n
ta

g
e

A
b

s
o

lu
te

 E
rr

o
r

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

 0

 0.05

 0.1

 0.15

 0.2

Figure 8. Results on grids2 instances. First row shows the results for parameter

configuration (26, 75). Second row shows the results for (26, 90). Each column is

the result of running IJGP with i-bound equal to 3, 5 and 7, respectively. Each

plot indicates the mean value for up to 10 instances. Both parameter configurations

have 676 variables, one evidence variable, and induced width w*=40.

networks, cpcs54 and cpcs360, with 54 and 360 variables, respectively. For the first

network, we generate samples of size 100 by randomly assigning 10 variables as

evidence. For the second network, we also generate samples of the same size by

randomly assigning 20 and 30 variables as evidence.

Figure 10 shows the results. The histograms show opposing trends in the distri-

bution of beliefs. Although irregular, the absolute error tends to increase towards

0.5 for cpcs54. In general, the error is quite small throughout all intervals and, in

particular, for inferred extreme marginals.

6.2 On the Impact of Epsilon Loop-Cutset

In [Bidyuk and Dechter 2001] we explored also the hypothesis that the loop-cutset

impact on IBP’s performance, as discussed in Section 5.2, extends to variables with

extreme support. Extreme support is expressed in the form of either extreme prior

value P (xi) < ǫ or strong correlation with an observed variable. We hypothesize

that a variable Xi with extreme support nearly-cuts the information flow from its

parents to its children similar to an observed variable. Subsequently, we conjecture

that when a subset of variables with extreme support, called ǫ-cutset, form a loop-

160

On the Power of Belief Propagation

Exact Histogram IJGP Histogram Recall Abs. Error Precision Abs. Error

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

P
e

rc
e

n
ta

g
e

A
b

s
o

lu
te

 E
rr

o
r

bn2o-30-15-150-1a

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

P
e

rc
e

n
ta

g
e

A
b

s
o

lu
te

 E
rr

o
r

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

bn2o-30-20-200-1a

P
e

rc
e

n
ta

g
e

A
b

s
o

lu
te

 E
rr

o
r

bn2o-30-25-250-1a

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

i-bound = 3 i-bound = 11 i-bound = 15

Figure 9. Results on bn2o instances. Each row is the result for one instance. Each

column in each row is the result of running IJGP with i-bound equal to 3, 5 and

7, respectively. The number of variables N , number of evidence variables NE,

and induced width w* of each instance is as follows. bn2o-30-15-150-1a: N = 45,

NE = 15, and w*=24; bn2o-30-20-200-1a: N = 50, NE = 20, and w*=27; bn2o-

30-25-250-1a: N = 55, NE = 25, and w*=26.

cutset of the graph, IBP converges and computes beliefs that approach exact ones.

We will briefly recap the empirical evidence supporting the hypothesis in 2-layer

noisy-OR networks. The number of root nodes m and total number of nodes n

was fixed in each test set (indexed m − n). Generating the networks, each leaf

node Yj was added to the list of children of a root node Ui with probability 0.5.

All nodes were bi-valued. All leaf nodes were observed. We used average absolute

error in the posterior marginals (averaged over all unobserved variables) to measure

IBP’s accuracy and the percent of variables for which IBP converged as a measure

of convergence. In each group of experiments, the results were averaged over 100

instances.

In one set of experiments, we measured the performance of IBP while changing

161

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

%

%

%

%

%

%

%

%

%

%

%

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

cpcs54, evidence = 10

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

A
b

s
o

lu
te

 E
rr

o
r

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

cpcs360, evidence = 20

P
e

rc
e

n
ta

g
e

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

cpcs360, evidence = 30

Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 10. CPCS54, 100 instances, w*=15; CPCS360, 5 instances, w*=20

the number of observed loop-cutset variables (we fixed all priors to (.5, .5) and

picked observed value for loop-cutset variables at random). The results are shown

in Figure 11, top. As expected, the number of converged nodes increased and the

absolute average error decreased monotonically as number of observed loop-cutset

nodes increased.

Then, we repeated the experiment except now, instead of instantiating a loop-

cutset variable, we set its priors to extreme (ǫ, 1-ǫ) with ǫ=1E − 10, i.e., instead of

increasing the number of observed loop-cuset variables, we increased the number of

ǫ-cutset variables. If our hypothesis is correct, increasing the size of ǫ-cutset should

produce an effect similar to increasing the number of observed loop-cutset variables,

namely, improved convergence and better accuracy in IBP computed beliefs. The

results, in Figure 11, bottom, demonstrate that initially, as the number of ǫ-cutset

variables grows, the performance of IBP improves just as we conjectured. However,

the percentage of nodes with converged beliefs never reaches 100% just like the

average absolute error converges to some δ > 0. In the case of 10-40 network, the

number of converged beliefs (average absolute error) reaches maximum of ≈ 95%

(minimum of ≈ .001) at 3 ǫ-cutset nodes and then drops to ≈ 80% (increases to

≈ .003) as the size of ǫ-cutset increases.

To further investigate the effect of the strength of ǫ-support on the performance of

IBP, we experimented on the same 2-layer networks varying the prior values of the

loop-cutset nodes from (ǫ, 1-ǫ) to (1-ǫ, ǫ) for ǫ ∈ [1E−10, .5]. As shown in Figure 12,

initially, as ǫ decreased, the convergence and accuracy of IBP worsened. This effect

was previously reported by Murphy, Weiss, and Jordan [Murphy, Weiss, and Jordan

2000]. However, as the priors of loop-cutset nodes continue to approach 0 and 1,

the average error value approaches 0 and the number of converged nodes reaches

100%. Note that convergence is not symmetric with respect to ǫ. The average

absolute error and percentage of converged nodes approach 0 and 1 respectively for

ǫ=1-(1E-10) but not for ǫ=1E-10 (which we also observed in Figure 11, bottom).

162

On the Power of Belief Propagation

2-layer, Ave Error

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 1 2 3 4 5 6 7 8

observed loop-cutset nodes

5-20

7-23

10-40

2-layer, % converged

40

50

60

70

80

90

100

110

0 1 2 3 4 5 6 7 8

observed loop-cutset nodes

5-20

7-23

10-40

Ave Error

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 1 2 3 4 5 6 7 8

size of epsilon-cutset e=1E-10

5-20

7-23

10-40

% converged

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8

size of epsilon-cutset e=1E-10

5-20

7-23

10-40

Figure 11. Results for 2-layer Noisy-OR networks. The average error and the

number of converged nodes vs the number of truly observed loop-cutset nodes (top)

and the size of of ǫ-cutset (bottom).

7 Conclusion

The paper provides insight into the power of the Iterative Belief Propagation (IBP)

algorithm by making its relationship with constraint propagation explicit. We show

that the power of belief propagation for zero beliefs is identical to the power of arc-

consistency in removing inconsistent domain values. Therefore, the strength and

weakness of this scheme can be gleaned from understanding the inference power of

arc-consistency. In particular we show that the inference of zero beliefs (marginals)

by IBP and IJGP is always sound. These algorithms are guaranteed to converge

for inferred zeros and are as efficient as the corresponding constraint propagation

algorithms.

Then the paper empirically investigates whether the sound inference of zeros by

IBP is extended to near zeros. We show that while the inference of near zeros is

often quite accurate, it can sometimes be extremely inaccurate for networks hav-

ing significant determinism. Specifically, for networks without determinism IBP’s

near zero inference was sound in the sense that the average absolute error was con-

tained within the length of the 0.05 interval (see two layer noisy-OR and CPCS

benchmarks). However, the behavior was different on benchmark networks having

determinism. For example, experiments on coding networks show that IBP is al-

most perfect, while for pedigree and grid networks the results are quite inaccurate

163

R. Dechter, B. Bidyuk, R. Mateescu and E. Rollon

2-layer, 100 instances, Ave Err P(x|e)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1E-10 1E-07 0.0001 0.05 0.3 0.6 0.9 0.999 1

root priors

5-20

7-23

10-40

2-layer, 100 instances, % nodes converged

0

20

40

60

80

100

120

1E-10 1E-07 0.0001 0.05 0.3 0.6 0.9 0.999 1

root priors

5-20

7-23

10-40

Figure 12. Results for 2-layer Noisy-OR networks. The average error and the

percent of converged nodes vs ǫ-support.

near zeros.

Finally, we show that evidence, observed or inferred, automatically acts as a

cycle-cutting mechanism and improves the performance of IBP. We also provide

preliminary empirical evaluation showing that the effect of loop-cutset on the accu-

racy of IBP extends to variables that have extreme probabilities.

Acknowledgement: This work was supported in part by NSF grant IIS-0713118

and by NIH grant 5R01HG004175-03.

References

Bidyuk, B. and R. Dechter (2001). The epsilon-cutset effect in Bayesian networks,

r97, r97a in http://www.ics.uci.edu/ dechter/publications. Technical report,

University of California, Irvine.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann Publishers.

Dechter, R. and R. Mateescu (2003). A simple insight into iterative belief propa-

gation’s success. In Proceedings of the Nineteenth Conference on Uncertainty

in Artificial Intelligence (UAI’03), pp. 175–183.

Dechter, R., R. Mateescu, and K. Kask (2002). Iterative join-graph propaga-

tion. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial

Intelligence (UAI’02), pp. 128–136.

Dechter, R. and J. Pearl (1991). Directed constraint networks: A relational frame-

work for causal reasoning. In Proceedings of the Twelfth International Joint

Conferences on Artificial Intelligence (IJCAI’91), pp. 1164–1170.

Ihler, A. T. (2007). Accuracy bounds for belief propagation. In Proceedings of the

Twenty Third Conference on Uncertainty in Artificial Intelligence (UAI’07).

Ihler, A. T., J. W. Fisher, III, and A. S. Willsky (2005). Loopy belief propagation:

Convergence and effects of message errors. J. Machine Learning Research 6,

905–936.

164

On the Power of Belief Propagation

Koller, D. (2010). Belief propagation in loopy graphs. In Heuristics, Probabilities

and Causality: A tribute to Judea Pearl, Editors, R. Dechter, H. Gefner and

J. Halpern.

Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelli-

gence 8 (1), 99–118.

Mateescu, R., K. Kask, V. Gogate, and R. Dechter (2010). Iterative join-graph

propagation. Journal of Artificial Intelligence Research (JAIR) (accepted,

2009).

McEliece, R. J., D. J. C. MacKay, and J. F. Cheng (1998). Turbo decoding as

an instance of Pearl’s belief propagation algorithm. IEEE J. Selected Areas

in Communication 16 (2), 140–152.

Mooij, J. M. and H. J. Kappen (2007). Sufficient conditions for convergence of the

sum-product algorithm. IEEE Trans. Information Theory 53 (12), 4422–4437.

Mooij, J. M. and H. J. Kappen (2009). Bounds on marginal probability distribu-

tions. In Advances in Neural Information Processing Systems 21 (NIPS’08),

pp. 1105–1112.

Murphy, K., Y. Weiss, and M. Jordan (2000). Loopy-belief propagation for ap-

proximate inference: An empirical study. In Proceedings of the Sixteenth Con-

ference on Uncertainty in Artificial Intelligence (UAI’00), pp. 467–475.

Pearl, J. (1986). Fusion, propagation, and structuring in belief networks. Artifi-

cial. Intelligence 29 (3), 241–288.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-

mann Publishers.

Rish, I., K. Kask, and R. Dechter (1998). Empirical evaluation of approxima-

tion algorithms for probabilistic decoding. In Proceedings of the Fourteenth

Conference on Uncertainty in Artificial Intelligence (UAI’98), pp. 455–463.

Rollon, E. and R. Dechter (December, 2009). Some new em-

pirical analysis in iterative join-graph propagation, r170 in

http://www.ics.uci.edu/ dechter/publications. Technical report, Univer-

sity of California, Irvine.

Roosta, T. G., M. J. Wainwright, and S. S. Sastry (2008). Convergence analysis

of reweighted sum-product algorithms. IEEE Trans. Signal Processing 56 (9),

4293–4305.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2000). Generalized belief propa-

gation. In Advances in Neural Information Processing Systems 13 (NIPS’00),

pp. 689–695.

165

10

Bayesian Nonparametric Learning:

Expressive Priors for Intelligent Systems

Michael I. Jordan

1 Introduction

One of the milestones in the development of artificial intelligence (AI) is the em-

brace of uncertainty and inductive reasoning as primary concerns of the field. This

embrace has been a surprisingly slow process, perhaps because the naive interpre-

tation of “uncertain” seems to convey an image that is the opposite of “intelligent.”

That the field has matured beyond this naive opposition is one of the singular

achievements of Judea Pearl. While the pre-Pearl AI researcher tended to focus on

mimicking the deductive capabilities of human intelligence, a post-Pearl researcher

has been sensitized to the inevitable uncertainty that intelligent systems face in

any realistic environment, and the need to explicitly represent that uncertainty so

as to be able to mitigate its effects. Not only does this embrace of uncertainty

accord more fully with the human condition, but it also recognizes that the first ar-

tificially intelligent systems—necessarily limited in their cognitive capabilities—will

be if anything more uncertain regarding their environments than us humans. It is

only by embracing uncertainty that a bridge can be built from systems of limited

intelligence to those having robust human-level intelligence.

A computational perspective on uncertainty has two aspects: the explicit rep-

resentation of uncertainty and the algorithmic manipulation of this representation

so as to transform and (often) to reduce uncertainty. In his seminal 1988 book,

Probabilistic Reasoning in Intelligent Systems, Pearl showed that these aspects are

intimately related. In particular, obtaining a compact representation of uncer-

tainty has important computational consequences, leading to efficient algorithms

for marginalization and conditioning. Moreover, marginalization and conditioning

are the core inductive operations that tend to reduce uncertainty. Thus, by devel-

oping an effective theory of the representation of uncertainty, Pearl was able to also

develop an effective computational approach to probabilistic reasoning.

Uncertainty about an environment can also be reduced by simply observing that

environment; i.e., by learning from data. Indeed, another response to the early focus

on deduction in AI has been to emphasize learning as a pathway to the development

of intelligent systems. In the 1980’s, concurrently with Pearl’s work on probabilis-

tic expert systems, this perspective was taken up in earnest, building on an earlier

tradition in pattern recognition (which itself built on even earlier traditions in statis-

167

Kaoru
Text Box
Return to TOC

Michael I. Jordan

tics). The underlying inductive principle was essentially the law of large numbers,

a principle of probability theory which states that the statistical aggregation of

independent, identically distributed samples yields a decrease of uncertainty that

goes (roughly speaking) at a rate inversely proportional to the square root of the

number of samples. The question has been how to perform this “aggregation,” and

the learning field has been avidly empirical, exploring a variety of computational

architectures, including extremely simple representations (e.g., nearest neighbor),

ideas borrowed from deductive traditions (e.g., decision trees), ideas closely related

to classical statistical models (e.g., boosting and the support vector machine), and

architectures motivated at least in part by complex biological and physical systems

(e.g., neural networks). Several of these architectures have factorized or graphical

representations, and numerous connections to graphical models have been made.

A narrow reader of Pearl’s book might wish to argue that learning is not distinct

from the perspective on reasoning presented in that book; in particular, observing

the environment is simply a form of conditioning. This perspective on learning is

indeed reasonable if we assume that a learner maintains an explicit probabilistic

model of the environment; in that case, making an observation merely involves

instantiating some variable in the model. However, many learning researchers do

not wish to make the assumption that the learner maintains an explicit probabilistic

model of the environment, and many algorithms developed in the learning field

involve some sort of algorithmic procedure that is not necessarily interpretable as

computing a conditional probability. These procedures are instead justified in terms

of their unconditional performance when used again and again on various data sets.

Here we are of course touching on the distinction between the Bayesian and the

frequentist approaches to statistical inference. While this is not the place to develop

that distinction in detail, it is worth noting that statistics—the field concerned

with the theory and practice of inference—involves the interplay of the conditional

(Bayesian) and the unconditional (frequentist) perspectives and this interplay also

underlies many developments in AI research. Indeed, the trend since Pearl’s work

in the 1980’s has been to blend reasoning and learning: put simply, one does not

need to learn (from data) what one can infer (from the current model). Moreover,

one does not need to infer what one can learn (intractable inferential procedures

can be circumvented by collecting data). Thus learning (whether conditional or

not) and reasoning interact. The most difficult problems in AI are currently being

approached with methods that blend reasoning with learning. While the extremes

of classical expert systems and classical tabula rasa learning are still present and

still have their value in specialized situations, they are not the centerpieces of the

field. Moreover, the caricatures of probabilistic reasoning and statistical inference

that fed earlier ill-informed debates in AI have largely vanished. For this we owe

much to Judea Pearl.

There remain, however, a number of limitations—both perceived and real—of

probabilistic and statistical approaches to AI. In this essay, I wish to focus on some

168

Bayesian Nonparametric Learning

of these limitations and provide some suggestions as to the way forward.

It is both a perception and reality that to use probabilistic methods in AI one

is generally forced to write down long lists of assumptions. This is often a helpful

exercise, in that it focuses a designer to bring hidden assumptions to the foreground.

Moreover, these assumptions are often qualitative in nature, with the quantitative

details coming from elicitation methods (i.e., from domain experts) and learning

methods. Nonetheless, the assumptions are not always well motivated. In par-

ticular, independence assumptions are often imposed for reasons of computational

convenience, not because they are viewed as being true, and the effect on inference

is not necessarily clear. More subtly, and thus of particular concern, is the fact

that the tail behavior of probability distributions is often not easy to obtain (from

elicitation or from data), and choices of convenience are often made.

A related issue is that probabilistic methods are often not viewed as sufficiently

expressive. One common response to this issue has involved trying to bring ideas

from first-order logic to bear on probabilistic modeling. This line of work has,

however, mainly involved using logical representations as a high-level interface for

model specification and then compiling these representations down to flat proba-

bilistic representations for inference. It is not yet clear how to bring together the

powerful inferential methods of logic and probability into an effective computational

architecture.

In the current paper, we will pursue a different approach to expressive probabilis-

tic representation and to a less assumption-laden approach to inference. The idea

is to move beyond the simple fixed-dimensional random variables that have been

generally used in graphical models (multinomials, Gaussians and other exponential

family distributions) and to consider a wider range of probabilistic representations.

We are motivated by the ubiquity of flexible data structures in computer science—

the field is based heavily on objects such as trees, lists and collections of sets that

are able to expand and contract as needed. Moreover, these data structures are

often associated with combinatorial and algebraic identities that lead to efficient

algorithms. We would like to mimic this flexibility within the world of probabilistic

representations.

In fact, the existing field of stochastic processes provides essentially this kind

of flexibility. Recall that a stochastic process is an indexed collection of random

variables, where the index set can be infinite (countably infinite or uncountably

infinite) [Karlin and Taylor 1975]. Within the general theory of stochastic processes

it is quite natural to define probability distributions on objects such trees, lists

and collections of sets. It is also possible to define probability distributions on

spaces of probability distributions, yielding an appealing recursivity. Moreover,

many stochastic processes have interesting ties to combinatorics (and to other areas

of mathematics concerned with compact structure, such as algebra). Probability

theorists have spent many decades developing these ties and a rich literature on

“combinatorial stochastic processes” has emerged [Pitman 2002]. It is natural to

169

Michael I. Jordan

take this literature as a point of departure for the development of expressive data

structures for computationally efficient reasoning and learning.

One general way to use stochastic processes in inference is to take a Bayesian per-

spective and replace the parametric distributions used as priors in classical Bayesian

analysis with stochastic processes. Thus, for example, we could consider a model

in which the prior distribution is a stochastic process that ranges over trees of ar-

bitrary depth and branching factor. Combining this prior with a likelihood, we

obtain a posterior distribution that is also a stochastic process that ranges over

trees of arbitrary depth and branching factor. Bayesian learning amounts to up-

dating one flexible representation (the prior stochastic process) into another flexible

representation (the posterior stochastic process).

This idea is not new, indeed it is the core idea in an area of research known as

Bayesian nonparametrics, and there is a small but growing community of researchers

who work in the area. The word “nonparametrics” needs a bit of explanation. The

word does not mean “no parameters”; indeed, many stochastic processes can be

usefully viewed in terms of parameters (often, infinite collections of parameters).

Rather, it means “not parametric,” in the sense that Bayesian nonparametric in-

ference is not restricted to objects whose dimensionality stays fixed as more data is

observed. The spirit of Bayesian nonparametrics is that of flexible data structures—

representations can grow as needed. Moreover, stochastic processes yield a much

broader class of probability distributions than the class of exponential family distri-

butions that is the focus of the graphical model literature. In this sense, Bayesian

nonparametric learning is less assumption-laden than classical Bayesian parametric

learning.

In this paper we offer an invitation to Bayesian nonparametrics. Our presenta-

tion is meant to evoke Pearl’s presentation of Bayesian networks in that our focus

is on foundational representational issues. As in the case of graphical models, if

the representational issues are handled well, then there are favorable algorithmic

consequences. Indeed, the parallel is quite strong—in the case of graphical mod-

els, these algorithmic consequences are combinatorial in nature (they involve the

combinatorics of sums and products), and in the case of Bayesian nonparametrics

favorable algorithmic consequences also arise from the combinatorial properties of

certain stochastic process priors.

2 De Finetti’s theorem and the foundations of Bayesian

inference

A natural point of departure for our discussion is a classical theorem due to Bruno

De Finetti that is one of the pillars of Bayesian inference. This core result not

only suggests the need for prior distributions in statistical models but it also leads

directly to the consideration of stochastic processes as Bayesian priors.

Consider an infinite sequence of random variables, (X1, X2, . . .). To simplify our

discussion somewhat, let us assume that these random variables are discrete. We say

170

Bayesian Nonparametric Learning

that such a sequence is infinitely exchangeable if the joint probability distribution

of any finite subset of those random variables is invariant to permutation. That

is, for any N , we have p(x1, x2, . . . , xN) = p(xπ(1), xπ(2), . . . , xπ(N)), where π is a

permutation and p is a probability mass function. De Finetti’s theorem states that

(X1, X2, . . .) are infinitely exchangeable if and only the joint probability distribution

of any finite subset can be written as a marginal probability in the following way:

p(x1, x2, . . . , xN) =

∫ N
∏

i=1

p(xi |G)P (dG). (1)

In one direction this theorem is straightforward: If the joint distribution can be

written as in integral in this way, then we clearly have invariance to permutation

(because the product is invariant to permutation). It is the other direction that

is non-trivial. It states that for exchangeable random variables, there necessarily

exists an underlying random element G, and a probability distribution P , such that

the random variables Xi are conditionally independent given G, and such that their

joint distribution is obtained by integrating over the distribution P . If we view G as

a “parameter,” then this theorem can be interpreted as stating that exchangeability

implies the existence of an underlying parameter and a prior distribution on that

parameter. As such, De Finetti’s theorem is often viewed as providing foundational

support for the Bayesian paradigm.

We placed “parameter” in quotes in the preceding paragraph because there is no

restriction that G should be a finite-dimensional object. Indeed, the full import of

De Finetti’s theorem is clear when we realize that in many instances G is in fact an

infinite-dimensional object, and P defines a stochastic process.

Let us give a simple example. The Pólya urn model is a simple probability

model for sequentially labeling the balls in an urn. Consider an empty urn and a

countably infinite collection of colors. Pick a color at random according to some

fixed distribution G0 and place a ball having that color in the urn. For all subsequent

balls, either choose a ball from the urn (uniformly at random) and return that ball

to the urn with another ball of the same color, or choose a new color from G0 and

place a ball of that color in the urn. Mathematically, we have:

p(Xi = k |x1, . . . xi−1) ∝

{

nk if xj = k for some j ∈ {1, . . . , i − 1}

α0 otherwise,
(2)

where α0 > 0 is a parameter of the process.

It turns out that the Pólya urn model is exchangeable. That is, even though we

defined the model by picking a particular ordering of the balls, the resulting distri-

bution is independent of the order. This is proved by writing the joint distribution

p(x1, x2, . . . , xN) as a product of conditionals of the form in Eq. (2) and noting

(after some manipulation) that the resulting expression is independent of order.

While the Pólya urn model defines a distribution on labels, it can also be used to

induce a distribution on partitions. This is achieved by simply partitioning the balls

171

Michael I. Jordan

into groups that have the same color. This distribution on partitions is known as the

Chinese restaurant process [Aldous 1985]. As we discuss in more detail in Section 4,

the Chinese restaurant process and the Pólya urn model can be used as the basis of

a Bayesian nonparametric model of clustering where the random partition provides

a prior on clusterings and the color associated with a given cell can be viewed as a

parameter vector for a distribution associated with a given cluster.

The exchangeability of the Pólya urn model implies—by De Finetti’s theorem—

the existence of an underlying random element G that renders the ball colors con-

ditionally independent. This random element is not a classical fixed-dimension

random variable; rather, it is a stochastic process known as the Dirichlet process.

In the following section we provide a brief introduction to the Dirichlet process.

3 The Dirichlet process

In thinking about how to place random distributions on infinite objects, it is natural

to begin with the special case of the positive integers. A distribution π = (π1, π2, . . .)

on the integers can be viewed as a sequence of nonnegative numbers that sum to

one. How can we obtain random sequences that sum to one?

One solution to this problem is provided by a procedure known as “stick-breaking.”

Define an infinite sequence of independent random variables as follows:

βk ∼ Beta(1, α0) k = 1, 2, . . . , (3)

where α0 > 0 is a parameter. Now define an infinite random sequence as follows:

π1 = β1, πk = βk

k−1
∏

l=1

(1 − βl) k = 2, 3, (4)

It is not difficult to show that
∑

∞

k=1 πk = 1 (with probability one).

We can exploit this construction to generate a large class of random distributions

on sets other than the integers. Consider an arbitrary measurable space Ω and let

G0 be a probability distribution on Ω. Draw an infinite sequence of points {φk}

independently from G0. Now define:

G =
∞
∑

k=1

πkδφk
, (5)

where δφk
is a unit mass at the point φk. Clearly G is a measure. Indeed, for any

measurable subset B of Ω, G(A) just adds up the values πk for those k such that

φk ∈ B, and this process satisfies the countable additivity needed in the definition

of a measure. Moreover, G is a probability measure, because G(Ω) = 1.

Note that G is random in two ways—the weights πk are obtained by a random

process, and the locations φk are also obtained by a random process. While it seems

clear that such an object is not a classical finite-dimensional random variable, in

172

Bayesian Nonparametric Learning

what sense is G is a stochastic process; i.e., an indexed collection of random vari-

ables? The answer is that G is a stochastic process where the indexing variables

are the measurable subsets of Ω. Indeed, for any fixed A ⊆ Ω, G(A) is a random

variable. Moreover (and this is not an obvious fact), ranging over sets of subsets,

{A1, A2, . . . , AK}, the joint distributions on the collections of random variables

{G(Ai)} are consistent with each other. This shows, via an argument in the spirit

of the Kolmogorov theorem that G is a stochastic process. A more concrete under-

standing of this fact can be obtained by specializing to sets {A1, A2, . . . , AK} that

form a partition of Ω. In this case, the random vector (G(A1), G(A2), . . . , G(AK))

can be shown to have a classical finite-dimensional Dirichlet distribution:

(G(A1), . . . , G(AK)) ∼ Dir(α0G0(A1), . . . , α0G0(AK)), (6)

from which the needed consistency properties follow immediately from classical

properties of the Dirichlet distribution. For this reason, the stochastic process

defined by Eq. (5) is known as a Dirichlet process. Eq. (6) can be summarized as

saying that a Dirichlet process has Dirichlet marginals.

Having defined a stochastic process G, we can now turn De Finetti’s theorem

around and ask what distribution is induced on a sequence (X1, X2, . . . , XN) if

we draw these variables independently from G and then integrate out G. The

answer: the Pólya urn. We say that the Dirichlet process is the De Finetti mixing

distribution underlying the Pólya urn.

In the remainder of this chapter, we denote the stochastic process defined by

Eq. (5) as follows:

G ∼ DP(α0, G0). (7)

The Dirichlet process has two parameters, a concentration parameter α0, which is

proportional to the probability of obtaining a new color in the Pólya urn, and the

base measure G0, which is the source of the “atoms” φk.

The set of ideas introduced in this section emerged slowly over several decades.

The basic definition of the Dirichlet process as a stochastic process is due to Fergu-

son [1973], based on earlier work by Freedman [1963]. The fact that the Dirichlet

process is the De Finetti mixing distribution underlying the Pólya urn model is due

to Blackwell and MacQueen [1973]. The stick-breaking construction of the Dirich-

let process was presented by Sethuraman [1994]. The application of these ideas to

Bayesian modeling and inference required some additional work as described in the

following section.

The Dirichlet process and the stick-breaking process are essential tools in Bayesian

nonparametrics. It is as important for a Bayesian nonparametrician to master them

as it is for a graphical modeler to master Pearl’s book. See Hjort et al. [2010] for a

book-length treatment of the Dirichlet process and related ideas.

173

Michael I. Jordan

4 Dirichlet process mixtures

With an interesting class of stochastic process priors in hand, let us now describe

an application of these priors to a Bayesian nonparametric modeling problem. In

particular, as alluded to in the previous section, the Dirichlet process defines a

prior on partitions of objects, and this prior can be used to develop a Bayesian

nonparametric approach to clustering. A notable aspect of this approach is that

one does not have to fix the number of clusters a priori.

Let (X1, X2, . . . , XN) be a sequence of random vectors, whose realizations we

want to model in terms of an underlying set of clusters. We treat these variables as

exchangeable (i.e., as embedded in an infinitely-exchangeable sequence) and, as sug-

gested by De Finetti’s theorem, treat these variables as conditionally independent

given an underlying random element G. In particular, letting G be a draw from a

Dirichlet process, we define a Dirichlet process mixture model (DP-MM) [Antoniak

1974; Lo 1984] as follows:

G ∼ DP(α0, G0)

θi |G ∼ G, i = 1, . . . , N

xi | θi ∼ p(xi | θi), i = 1, . . . , N,

where p(xi | θi) is a cluster-specific distribution (e.g., a Gaussian distribution, where

θi is a mean vector and covariance matrix). This probabilistic specification is indeed

directly related to De Finetti’s theorem—the use of the intermediate variable θi is

simply an expanded way to write the factor p(xi |G) in Eq. (1). In particular, G

is a sum across atoms, and thus θi is simply one of the atoms in G, chosen with

probability equal to the weight associated with that atom.

We provide a graphical model representation of the DP-MM in Figure 1. As this

figure suggests, it is entirely possible to use the graphical model formalism to display

Bayesian nonparametric models. Nodes in such a graph are associated with general

random elements, and the distributions on these random elements can be general

stochastic processes. By going to stochastic process priors we have not strayed

beyond probability theory, and all of the conditional independence semantics of

graphical models continue to apply.

5 Inference for Dirichlet process mixtures

Inference with stochastic processes is an entire topic of its own, and we limit our-

selves here to a brief description of one particular Markov chain Monte Carlo

(MCMC) inference procedure for the DP-MM. This particular procedure is due

to Escobar [1994], and its virtue is simplicity of exposition, but it should not be

viewed as the state of the art. See Neal [2000] for a discussion of a variety of other

MCMC inference procedures for DP-MMs.

We begin by noting that the specification in Eq. (8) induces a Pólya urn marginal

distribution on θ = (θ1, θ2, . . . , θN). The joint distribution of θ and X = (X1, X2, . . . , XN)

174

Bayesian Nonparametric Learning

Gα 0

G0

θi

xi

Figure 1. A graphical model representation of the Dirichlet process mixture model.

Recall that the plate representation means that the parameters θi are drawn in-

dependently conditional on G. On the right side of the figure we have depicted

specific instantiations of the random elements G and θi and the distribution of the

observation xi.

is thus the following product:

p(θ, x) = p(θ1, θ2, . . . , θN)
N
∏

i=1

p(xi | θi), (8)

where the first factor is the Pólya urn model. This can be viewed as a product of

a prior (the first factor) and a likelihood (the remaining factors).

The variable x is held fixed in inference (it is the observed data) and the goal is

to sample θ. We develop a Gibbs sampler for this purpose. The main problem is to

sample a particular component θi while holding all of the other components fixed. It

is here that the property of exchangeability is essential. Because the joint probability

of (θ1, . . . , θN) is invariant to permutation, we can permute the vector to move θi to

the end of the list. But the prior probability of the last component given all of the

preceding variables is given by the urn model specification in Eq. (2). We multiply

each of the distributions in this expression by the likelihood p(xi | θ) and integrate

with respect to θ. (We are assuming that G0 and the likelihood are conjugate that

this integral can be done in closed form.) The result is the conditional distribution

of θi given the other components and given xi. This conditional is sampled to yield

the updated value of θi. This is done for all of the indices i ∈ {1, . . . , N} and the

175

Michael I. Jordan

process iterates.

This link between exchangeability and an efficient inference algorithm is an im-

portant one. In other more complex Bayesian nonparametric models, while we may

no longer assume exchangeability, we generally aim to maintain some weaker notion

(e.g., partial exchangeability) so as to have some hope of tractable inference.

6 Hierarchical Dirichlet processes

The spirit of the graphical model formalism—in particular the Bayesian network

formalism based on directed graphs—is that of hierarchical Bayesian modeling. In a

hierarchical Bayesian model, the joint distribution of all of the variables in the model

is obtained as a product over conditional distributions, where each conditional may

depend on other variables in the model. While the graphical model literature has

focused almost exclusively on parametric hierarchies—where each of the conditionals

is a finite-dimensional distribution—it is also possible to build hierarchies in which

the components are stochastic processes. In this section we consider how to do this

for the Dirichlet process.

One of the simplest and most useful ways in which hierarchies arise in Bayesian

models is in the form of a conditional independence motif in which a set of variables,

(θ1, θ2, . . . , θm), are coupled via an underlying variable θ0. For example, θi might be

a Gaussian variable whose mean is equal to θ0, which is also Gaussian; moreover, the

θi are conditionally independent given θ0. The inferential effect of this construction

is to “shrink” the posterior distributions of θi towards each other. This is often

a desirable effect, particularly when m is large relative to the number of observed

data points.

The same tying of distributions can be done with Dirichlet processes. Recall that

a Dirichlet process, Gi ∼ DP(α0, G0), is a random measure Gi that has a “param-

eter” G0 that is itself a measure. If we treat G0 as itself a draw from a Dirichlet

process, and let the measures {G1, G2, . . . , Gm} be conditionally independent given

G0, we obtain the following hierarchy:

G0 | γ, H ∼ DP(γ, H)

Gi |α, G0 ∼ DP(α0, G0) i = 1, . . . ,m,

where γ and H are concentration and base measure parameters at the top of the

hierarchy. This construction—which is known as a hierarchical Dirichlet process

(HDP)—yields an interesting kind of “shrinkage.” Recall that G0 is a discrete

random measure, with its support on a countably infinite set of atoms. Drawing

Gi ∼ DP(α0, G0) means that Gi will also have its support on the same set of atoms,

and this will be true for each of {G1, G2, . . . , Gm}. Thus these measures will share

atoms. They will differ in the weights assigned to these atoms. The weights are

obtained via conditionally independent stick-breaking processes.

One application of this sharing of atoms is to share mixture components across

multiple clustering problems. Consider in particular a problem in which we have

176

Bayesian Nonparametric Learning

m groups of data, {(x11, x12, . . . , x1N1
), . . . , (xm1, xm2, . . . xmNm

)}, where we wish

to cluster the points {xij} in the ith group. Suppose, moreover, that we view the

groups as related, and we think that clusters discovered in one group might also be

useful in other groups. To achieve this, we define the following hierarchical Dirichlet

process mixture model (HDP-MM):

G0 | γ, H ∼ DP(γ, H)

Gi |α, G0 ∼ DP(α0, G0) i = 1, . . . ,m,

θij |Gi ∼ Gi j = 1, . . . , Ni,

xij | θij ∼ F (xij , θij) j = 1, . . . , Ni.

This model is shown in graphical form in Figure 2. To see how the model achieves

our goal of sharing clusters across groups, recall that the Dirichlet process clusters

points within a single group by assigning the same parameter vector to those points.

That is, if θij = θij′ , the points xij and xij′ are viewed as belonging to the same

cluster. This equality of parameter vectors is possible because both θij and θij′ are

drawn from Gi, and Gi is a discrete measure. Now if Gi and Gi′ share atoms, as

they do in the HDP-MM, then points in different groups can be assigned to the

same cluster. Thus we can share clusters across groups.

The HDP was introduced by Teh, Jordan, Beal and Blei [2006] and it has since

appeared as a building block in a variety of applications. One application is to the

class of models known as grade of membership models [Erosheva 2003], an instance

of which is the latent Dirichlet allocation (LDA) model [Blei, Ng, and Jordan 2003].

In these models, each entity is associated not with a single cluster but with a

set of clusters (in LDA terminology, each “document” is associated with a set of

“topics”). To obtain a Bayesian nonparametric version of these models, the DP

does not suffice; rather, the HDP is required. In particular, the topics for the ith

document are drawn from a random measure Gi, and the random measures Gi are

drawn from a DP with a random base measure G0; this allows the same topics to

appear in multiple documents.

Another application is to the hidden Markov model (HMM) where the number of

states is unknown a priori. At the core of the HMM is the transition matrix, each

row of which contains the conditional probabilities of transitioning to the “next

state” given the “current state.” Viewing states as clusters, we obtain a set of

clustering problems, one for each row of the transition matrix. Using a DP for each

row, we obtain a model in which the number of next states is open-ended. Using

an HDP to couple these DPs, the same pool of next states is available from each of

the current states. The resulting model is known as the HDP-HMM [Teh, Jordan,

Beal, and Blei 2006]. Marginalizing out the HDP component of this model yields an

urn model that is known as the infinite HMM [Beal, Ghahramani, and Rasmussen

2002].

Similarly, it is also possible to use the HDP to define an architecture known as

177

Michael I. Jordan

Gα 0

G0

θ

x

i

ij

ij

γ

H

Figure 2. A graphical model representation of the hierarchical Dirichlet process

mixture model. The nested plate representation means that G0 is first drawn and

held fixed, then the random measures {Gi} are drawn independently (conditional

on G0), and finally the parameters {θij} are drawn independently (conditional on

Gi). On the right side of the figure we have depicted draws from G0 and the {Gi}.

Note that the atoms in these measures are at the same locations; only the weights

associated with the atoms differ.

178

Bayesian Nonparametric Learning

the HDP hidden Markov tree (HDP-HMT), a Markovian tree in which the number

of states at each node in the tree is unknown a priori and the state space is shared

across the nodes. The HDP-HMT has been shown to be useful in image denoising

and scene recognition problems [Kivinen, Sudderth, and Jordan 2007].

Let us also mention that the HDP can be also used to develop a Bayesian non-

parametric approach to probabilistic context free grammars. In particular, the

HDP-PCFG of Liang, Jordan and Klein [2010] involves an HDP-based lexicalized

grammar in which the number of nonterminal symbols is open-ended and inferred

from data (see also Finkel, Grenager and Manning [2007] and Johnson, Griffiths and

Goldwater [2007]). When a new nonterminal symbol is created at some location in

a parse tree, the tying achieved by the HDP makes this symbol available at other

locations in the parse tree.

There are other ways to connect multiple Dirichlet processes. One broadly useful

idea is to use a Dirichlet process to define a distribution on Dirichlet processes.

In particular, let {G∗

1, G
∗

2, . . .} be independent draws from a Dirichlet process,

DP(γ, H), and then let G be equal to G∗

k with probability πk, where the weights

{πk} are drawn from the stick-breaking process in Eq. (4). This construction (which

can be extended to multiple levels) is known as a nested Dirichlet process [Rodŕıguez,

Dunson, and Gelfand 2008]. Marginalizing over the Dirichlet processes the resulting

urn model is known as the nested Chinese restaurant process [Blei, Griffiths, and

Jordan 2010], which is a model that can be viewed as a tree of Chinese restaurants.

A customer enters the tree at a root Chinese restaurant and sits at a table. This

points to another Chinese restaurant, where the customer goes to dine on the fol-

lowing evening. The construction then recurses. Thus a given customer follows a

path through the tree of restaurants, and successive customers tend to follow the

same paths, eventually branching off.

These nested constructions differ from the HDP in that they do not share atoms

among the multiple instances of lower-level DPs. That is, the draws {G∗

1, G
∗

2, . . .}

involve disjoint sets of atoms. The higher-level DP involves a choice among these

disjoint sets.

A general discussion of some of these constructions involving multiple DPs and

their relationships to directed graphical model representations can be found in

Welling, Porteous and Bart [2008]. Finally, let us mention the work of MacEach-

ern [1999], whose dependent Dirichlet processes provide a general formalism for

expressing probabilistic dependencies among both the stick-breaking weights and

the atom locations in the stick-breaking representation of the Dirichlet process.

7 Completely random measures

The Dirichlet process is not the only tool in the Bayesian nonparametric toolbox. In

this section we briefly consider another class of stochastic processes that significantly

expands the range of models that can be considered.

From the graphical model literature we learn that probabilistic independence of

179

Michael I. Jordan

random variables has desirable representational and computational consequences.

In the Bayesian nonparametric setting, random variables arise by evaluating a ran-

dom measure G on subsets of a measurable space Ω; in particular, for fixed subsets

A1 and A2, G(A1) and G(A2) are random variables. If A1 and A2 are disjoint it

seems reasonable to ask that G(A1) and G(A2) be independent. Such an indepen-

dence relation would suggest a divide-and-conquer approach to inference.

The class of stochastic processes known as completely random measures are char-

acterized by this kind of independence—for a completely random measure the

random masses assigned to disjoint subsets of the sample space Ω are indepen-

dent [Kingman 1967]. Note that the Dirichlet process is not a completely random

measure—the fact that the total mass is one couples the random variables {G(Ai)}.

The Dirichlet process provides a latent representation for a clustering problem,

where each entity is assigned to one and only cluster. This couples the cluster

assignments and suggests (correctly) that the underlying stochastic process is not

completely random. If, on the other hand, we consider a latent trait model—one

in which entities are described via a set of non-mutually-exclusive binary traits—

it is natural to consider completely random processes as latent representations. In

particular, the beta process is a completely random measure in which a draw consists

of a countably infinite collection of atoms, each associated with a probability, where

these probabilities are independent [Hjort 1990; Thibaux and Jordan 2007]. In

effect, a draw from a beta process yields an infinite collection of independent coins.

Tossing these coins once yields a binary featural representation for a single entity.

Tossing the coins multiple times yields an exchangeable featural representation for

a set of entities.

The beta process arises via the following general construction. Consider the

product space Ω⊗(0, 1). Place a product measure on this space, where the measure

associated with Ω is the base measure B0, and the measure associated with (0, 1)

is obtained from the improper beta density, cp−1(1 − p)c−1, where c > 0 is a

parameter. Treating this product measure as a rate measure for a nonhomogeneous

Poisson process, draw a set of points {(ωi, pi)} in the product space Ω⊗(0, 1). From

these points, form a random measure on Ω as follows:

B =
∞
∑

i=1

piδωi
. (9)

The fact that we obtain an infinite collection of atoms is due to the fact that we

have used a beta density that integrates to infinity. This construction is depicted

graphically in Figure 3.

If we replace the beta density in this construction with other densities (generally

defined on the positive real line rather than the unit interval (0,1)), we obtain

other completely random measures. In particular, we obtain the gamma process

by using an improper gamma density in place of the beta density. The gamma

process provides a natural latent representation for models in which entities are

180

181

Michael I. Jordan

a binary-valued matrix in which the rows are customers and the columns are the

dishes, and where Zn,k = 1 if customer n samples dish k. Customer n samples

dish k with probability mk/n, where mk is the number of customers who have

previously sampled dish k; that is, Zn,k ∼ Ber(mk/n). (Note that this rule can

be interpreted in terms of classical Bayesian analysis as sampling the predictive

distribution obtained from a sequence of Bernoulli draws based on an improper

beta prior.) Having sampled from the dishes previously sampled by other customers,

customer n then goes on to sample an additional number of new dishes determined

by a draw from a Poiss(α/n) distribution.

The connection to the beta process delineated by Thibaux and Jordan [2007] is

as follows (see Teh and Jordan [2010] for an expanded discussion). Dishes in the

IBP correspond to atoms in the beta process, and the independent beta/Bernoulli

updating of the dish probabilities in the IBP reflects the independent nature of

the atoms in the beta process. Moreover, the fact that a Poisson distribution is

adopted for the number of dishes in the IBP reflects the fact that the beta process

is defined in terms of an underlying Poisson process. The exchangeability of the

IBP (which requires considering equivalence classes of matrices if argued directly

on the IBP representation) follows immediately from the beta process construction

(by the conditional independence of the rows of Z given the underlying draw from

the beta process).

It is also possible to define hierarchical beta processes for models involving mul-

tiple beta processes that are tied in some manner [Thibaux and Jordan 2007]. This

is done by simply letting the base measure for the beta process itself be drawn from

the beta process:

B0 ∼ BP(c0, B00)

B ∼ BP(c,B0),

where BP(c,B0) denotes the beta process with concentration parameter c and base

measure B0. This construction can be used in a manner akin to the hierarchical

Dirichlet process; for example, we can use it to model groups of entities that are

described by sparse binary vectors, where we wish to share the sparsity pattern

among groups.

8 Conclusions

Judea Pearl’s work on probabilistic graphical models yielded a formalism that was

significantly more expressive than existing probabilistic representations in AI, but

yet retained enough mathematical structure that it was possible to design efficient

computational procedures for a wide class of useful models. In this short article,

we have argued that Bayesian nonparametrics provides a framework in which this

agenda can be taken further. By replacing the traditional parametric prior distri-

butions of Bayesian analysis with stochastic processes, we obtain a rich vocabulary,

182

Bayesian Nonparametric Learning

encompassing probability distributions on objects such as trees of infinite depth,

partitions, subsets of features, measures and functions. We also obtain natural

notions of recursion. In addition to this structural expressiveness, the Bayesian

nonparametric framework also permits a wide range of distributional shapes. Fi-

nally, although we have devoted little attention to computation in this article, the

stochastic processes that have been used in Bayesian nonparametrics have proper-

ties (e.g., exchangeability, independence of measure on disjoint sets) that permit

the design of efficient inference algorithms. Certainly the framework is rich enough

to design some intractable models, but the same holds true for graphical models.

The point is that the Bayesian nonparametric framework opens the door to a richer

class of useful models for AI. The growing list of successful applications of Bayesian

nonparametrics testifies to the practical value of the framework [Hjort, Holmes,

Mueller, and Walker 2010].

A skeptical reader might question the value of Bayesian nonparametric model-

ing given that for any given finite data set the posterior distribution of a Bayesian

nonparametric model will concentrate on a finite set of degrees of freedom, and it

would be possible in principle to build a parametric model that mimics the non-

parametric model on those degrees of freedom. While this skepticism should not

be dismissed out of hand—and we certainly do not wish to suggest that parametric

modeling should be abandoned—this skeptical argument has something of the flavor

of a computer scientist arguing that data structures such as linked lists and heaps

are not needed because they can always be mimicked by fixed-dimension arrays.

The nonparametric approach can lead to conceptual insights that are only available

at the level of an underlying stochastic process. Moreover, by embedding a model

for a fixed number of data points in a sequence of models for a growing number

of data points, one can often learn something about the statistical properties of

the model—this is the spirit of nonparametric statistics in general. Finally, infinite

limits often lead to simpler mathematical objects.

In short, we view Bayesian nonparametrics as providing an expressive, useful

language for probabilistic modeling, one which follows on directly from the tradition

of graphical models. We hope and expect to see Bayesian nonparametrics have as

broad of an effect on AI as that of graphical models.

References

Aldous, D. (1985). Exchangeability and related topics. In Ecole d’Eté de Proba-

bilités de Saint-Flour XIII–1983, pp. 1–198. Springer, Berlin.

Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to

Bayesian nonparametric problems. Annals of Statistics 2, 1152–1174.

Beal, M. J., Z. Ghahramani, and C. E. Rasmussen (2002). The infinite hidden

Markov model. In Advances in Neural Information Processing Systems, Vol-

ume 14, Cambridge, MA. MIT Press.

183

Michael I. Jordan

Blackwell, D. and J. B. MacQueen (1973). Ferguson distributions via Pólya urn

schemes. Annals of Statistics 1, 353–355.

Blei, D. M., T. L. Griffiths, and M. I. Jordan (2010). The nested Chinese

restaurant process and Bayesian inference of topic hierarchies. Journal of the

ACM 57.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2003). Latent Dirichlet allocation.

Journal of Machine Learning Research 3, 993–1022.

Erosheva, E. A. (2003). Bayesian estimation of the grade of membership model.

In Bayesian Statistics, Volume 7, Oxford, UK, pp. 501–510. Oxford University

Press.

Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior.

Journal of the American Statistical Association 89, 268–277.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems.

Annals of Statistics 1, 209–230.

Finkel, J. R., T. Grenager, and C. D. Manning (2007). The infinite tree. In

Proceedings of the Annual Meeting of the Association for Computational Lin-

guistics, Prague, Czech Republic.

Freedman, D. (1963). On the asymptotic behavior of Bayes estimates in the

discrete case. Annals of Mathematical Statistics 34, 1386–1403.

Griffiths, T. L. and Z. Ghahramani (2006). Infinite latent feature models and the

Indian buffet process. In Advances in Neural Information Processing Systems,

Volume 18, Cambridge, MA. MIT Press.

Hjort, N., C. Holmes, P. Mueller, and S. Walker (2010). Bayesian Nonparamet-

rics: Principles and Practice. Cambridge, UK: Cambridge University Press.

Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta processes in

models for life history data. Annals of Statistics 18, 1259–1294.

Johnson, M., T. L. Griffiths, and S. Goldwater (2007). Adaptor grammars: A

framework for specifying compositional nonparametric Bayesian models. In

Advances in Neural Information Processing Systems, Volume 19, Cambridge,

MA. MIT Press.

Karlin, S. and H. M. Taylor (1975). A First Course in Stochastic Processes. New

York, NY: Springer.

Kingman, J. F. C. (1967). Completely random measures. Pacific Journal of Math-

ematics 21, 59–78.

Kivinen, J., E. Sudderth, and M. I. Jordan (2007). Learning multiscale repre-

sentations of natural scenes using Dirichlet processes. In IEEE International

Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil.

184

Bayesian Nonparametric Learning

Liang, P., M. I. Jordan, and D. Klein (2010). Probabilistic grammars and hier-

archical Dirichlet processes. In The Handbook of Applied Bayesian Analysis,

Oxford, UK. Oxford University Press.

Lo, A. (1984). On a class of Bayesian nonparametric estimates: I. Density esti-

mates. Annals of Statistics 12, 351–357.

MacEachern, S. (1999). Dependent nonparametric processes. In Proceedings of

the Section on Bayesian Statistical Science. American Statistical Association.

Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture

models. Journal of Computational and Graphical Statistics 9, 249–265.

Pitman, J. (2002). Combinatorial stochastic processes. Technical Report 621,

Department of Statistics, University of California at Berkeley.

Rodŕıguez, A., D. B. Dunson, and A. E. Gelfand (2008). The nested Dirichlet

process. Journal of the American Statistical Association 103, 1131–1154.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica

Sinica 4, 639–650.

Teh, Y. W. and M. I. Jordan (2010). Hierarchical Bayesian nonparametric mod-

els with applications. In Bayesian Nonparametrics: Principles and Practice.

Cambridge, UK: Cambridge University Press.

Teh, Y. W., M. I. Jordan, M. J. Beal, and D. M. Blei (2006). Hierarchical Dirichlet

processes. Journal of the American Statistical Association 101, 1566–1581.

Thibaux, R. and M. I. Jordan (2007). Hierarchical beta processes and the Indian

buffet process. In Proceedings of the International Workshop on Artificial In-

telligence and Statistics, Volume 11, San Juan, Puerto Rico.

Welling, M., I. Porteous, and E. Bart (2008). Infinite state Bayesian networks for

structured domains. In Advances in Neural Information Processing Systems,

Volume 20, Cambridge, MA. MIT Press.

185

11

Judea Pearl and Graphical Models

for Economics

Michael Kearns

Judea Pearl’s tremendous influence on the fields of artificial intelligence and ma-

chine learning began with the fundamental insight that much of traditional statis-

tical modeling lacked expressive means for articulating known or learned structure

and relationships between probabilistic entities. Judea and his early colleagues

focused their efforts on a type of structure that proved to be particularly impor-

tant — namely network structure, or the graph-theoretic structure that arises from

pairwise influences between random variables. Judea’s legacy includes not only the

introduction of Bayesian networks — perhaps the most important class of proba-

bilistic graphical models — but a rich series of results establishing firm semantics

for inference, independence and causality, and efficient algorithms and heuristics for

fundamental probabilistic computations. His body of work is one of those rare in-

stances in which the contributions range from the most conceptual and philosophical

to the eminently practical.

Inspired by the program established by Judea for statistical models, about a

decade ago a number of us became intrigued by the possibility of replicating it in

the domains of strategic, economic and game-theoretic modeling. At its highest

level, the proposed metaphor was both simple and natural. Rather than a large

number of random variables related by a joint distribution, imagine we have a

large number of players in a (normal-form) game. Instead of the edges of a network

representing direct probabilistic influences between random variables, they represent

direct influences on payoffs by the actions of neighboring players. As opposed to

being concerned primarily with conditional inferences on the joint distribution, we

are interested in the computation of Nash and other types of equilibrium for the

game. As with probabilistic graphical models, although the network succinctly

articulates only local influences, in the game-theoretic setting, at equilibrium there

are certainly global influences and coordination via the propagation of local effects.

And finally, if we were lucky, we might hope to capture for game theory some of

the algorithmic benefits that models like Bayesian networks brought to statistical

modeling.

The early work following this metaphor was broadly successful in its goals. The

first models proposed, which included graphical games [Kearns, Littman, and Singh

2001; Kearns 2007] and Multi-Agent Influence Diagrams [Koller and Milch 2003;

Vickrey and Koller 2002], provided succinct languages for expressing strategic struc-

187

Kaoru
Text Box
Return to TOC

Michael Kearns

ture in the form of networks over the players. The NashProp algorithm for com-

puting (approximate) Nash equilibria in graphical games was the strategic analogue

of the belief propagation algorithm developed by Judea and others, and like that

algorithm it came in both provably efficient form for restricted network topologies,

or in more heuristic but more general form for “loopy” or highly cyclical struc-

tures [Ortiz and Kearns 2003]. There are also works carefully relating probabilistic

and game-theoretic graphical models in interesting ways, as in a result showing

that the distributions forming the correlated equlibria of a graphical game can be

succinctly represented by a (probabilistic) Markov network using (almost) the same

underlying graph structure [Kakade, Kearns, Langford, and Ortiz 2003]. Graphical

games have also played an important role in some recent complexity-theoretic work,

most notably the breakthrough proof establishing that the problem of computing

Nash equilibria in general games for even 2 players is PPAD-complete and thus

potentially intractable [Daskalakis, Goldberg, and Papadimitriou 2006].

In short, we now have a rather rich set of network-based models for game the-

ory, and a firm understanding of their semantic and algorithmic properties. The

execution of this agenda relied on Judea’s work in many places for inspiration and

guidance, from the very conception of the models studied to the usage of cutset

conditioning and distributed dynamic programming techniques in the development

of NashProp and its variants.

Encouraged by this success, more recent works have sought to expand its scope

to include more specifically economic models, developing networked variants of

the classical exchange economies studied by Arrow and Debreu, Fisher, and oth-

ers [Kakade, Kearns, and Ortiz 2004]. Now network structure represents permissible

trading partners or relationships, and again the primary solution concept of interest

is an equilibrium — but now an equilibrium in prices or exchange rates that permits

self-interested traders to clear the market in all goods. While, as to be expected,

there are different technical details, we can again establish the algorithmic benefits

of such models in the form of a price propagation algorithm for computing an ap-

proximate equilibrium. Perhaps more interesting are examinations of how network

topology and equilibrium properties interact. It is worth noting that for probabilis-

tic graphical models such as Bayesian networks, the question of what the “typical”

structure looks like is somewhat nonsensical — the reply might be that there is no

“typical” structure, and topology will depend highly on the domain (whether it be

machine vision, medical diagnosis, and so on). In contrast, the emerging literature

on social and economic networks is indeed beginning to establish at least broad

topological features that arise frequently in empirical networks. This invites, for

example, results establishing that if the network structure exhibits a heavy-tailed

distribution of connectivity (degrees), agent wealths at equilibrium will also be

distributed in highly unequal fashion [Kakade, Kearns, Ortiz, Pemantle, and Suri

2005] . Thus social network structure may be (just one) explanation for observed

disparities in wealth.

188

Graphical Models for Economics

The lines of research sketched above continue to grow and deepen, and have

become one of the many topics of mutual interest between computer scientists,

economists and sociologists. Those of us who were exposed to and inspired by

Judea’s work in probabilistic graphical models were indeed most fortunate to have

had the opportunity to help initiate a fundamental and interdisciplinary subject

only shortly before social, economic and technological network structure became a

topic of such general interest.

Thank you Judea!

References

Daskalakis, C., P. Goldberg, and C. Papadimitriou (2006). The complexity of

computing a Nash equilibrium. In Proceedings of the Thirty-Eighth ACM Sym-

posium on the Theory of Computing, pp. 71–78. ACM Press.

Kakade, S., M. Kearns, J. Langford, and L. Ortiz (2003). Correlated equilibria

in graphical games. In Proceedings of the 4th ACM Conference on Electronic

Commerce, pp. 42–47. ACM Press.

Kakade, S., M. Kearns, and L. Ortiz (2004). Graphical economics. In Proceed-

ings of the 17th Annual Conference on Learning Theory, pp. 17–32. Springer

Berlin.

Kakade, S., M. Kearns, L. Ortiz, R. Pemantle, and S. Suri (2005). Economic

properties of social networks. In L. Saul, Y. Weiss, and L. Bottou (Eds.),

Advances in Neural Information Processing Systems 17, pp. 633–640. MIT

Press.

Kearns, M. (2007). Graphical games.

Kearns, M., M. Littman, and S. Singh (2001). Graphical models for game theory.

In Proceedings of the 17th Annual Conference on Uncertainty in Artificial

Intelligence, pp. 253–260. Morgan Kaufmann.

Koller, D. and B. Milch (2003). Multi-agent influence diagrams for representing

and solving games. Games and Economic Behavior 45 (1), 181–221.

Ortiz, L. and M. Kearns (2003). Nash propagation for loopy graphical games. In

S. Becker, S. Thrun, and K. Obermayer (Eds.), Advances in Neural Informa-

tion Processing Systems 15, pp. 793–800. MIT Press.

Vickrey, D. and D. Koller (2002). Multi-agent algorithms for solving graphical

games. In Proceedings of the 18th National Conference on Artificial Intelli-

gence, pp. 345–351. AAAI Press.

189

12

Belief Propagation in Loopy Graphs

Daphne Koller

1 Introduction and Historical Perspective

Of Judea Pearl’s many seminal contributions, perhaps the one that has had the

greatest impact (so far) is the development of key ideas in the representation, se-

mantics, and inference of probabilistic graphical models. This formalism provides an

elegant and practical framework for representing a probability distribution over a

high-dimensional space defined as the set of possible assignments to a set of random

variables X1, . . . , Xn. The number of such assignments grows exponentially in n,

but due to the key insights of Pearl and others, we now understand how conditional

independence properties of the joint probability distribution P (X1, . . . , Xn) allow

it to be represented compactly and naturally using a graph annotated with local

probabilistic interactions (see section 2). The family of probabilistic graphical mod-

els includes Bayesian networks, which are based on directed graphs, and Markov

networks (also called Markov random fields), which use undirected graphs.

The number of applications of this framework is far too large to enumerate. One

of the earliest applications is in the area of medical diagnosis. Here, we might have

hundreds of random variables, representing predisposing factors, possible diseases,

symptoms, and test results. The framework of Bayesian networks allows such a

distribution to be encoded using a limited set of local (directed) interactions, such

as those between a disease and its predisposing factors, or those between a symp-

tom and the diseases that cause it (e.g., [Heckerman, Horvitz, and Nathwani 1992;

Shwe, Middleton, Heckerman, Henrion, Horvitz, Lehmann, and Cooper 1991]). In a

very different application, we might want to encode a probability distribution over

possible segmentations of an image — labelings of the pixels in the image into dif-

ferent semantic categories (such as sky, grass, building, person, etc.). Here, we have

a random variable for each pixel in the image (hundreds of thousands even for the

smallest images), representing its possible labels. And yet, the distribution over the

space of possible segmentations is often well-represented in a Markov network, using

only terms that encode each pixel’s individual preferences over possible labels and

(undirected) local interactions between the labels of adjacent pixels (see Szeliski,

Zabih, Scharstein, Veksler, Kolmogorov, Agarwala, Tappen, and Rother [2008] for

a survey).

A key question, however, is how to use this compact representation to answer

questions about the distribution. The most common types of questions are condi-

191

Kaoru
Text Box
Return to TOC

Daphne Koller

tional probability queries, where we wish to infer the probability distribution over

some (small) subset of variables given evidence concerning some of the others; for

example, in the medical diagnosis setting, we might want to infer the distribution

over each possible disease given observations about the patient’s predisposing fac-

tors, symptoms, and some test results. A second common type of query is the

maximum a posteriori (or MAP) query, where we wish to find the most likely joint

assignment to all of our random variables; for example, we often wish to find the

most likely joint segmentation to all of the pixels in an image.

In general, it is not difficult to show that both of these inference problems are

NP-hard [Cooper 1990; Shimony 1994], yet (as always) this is not end of the story.

In their seminal paper, Kim and Pearl [1983] presented an algorithm that passes

messages between the nodes in the Bayesian network graph to propagate beliefs

between them. The algorithm was developed in the context of singly connected

directed graphs, also known as polytrees, where there is at most one path (ignoring

edge directionality) between each pair of nodes. In this case, the message passing

process produces correct posterior beliefs for each node in the graph.

Pearl also considered what happens when the algorithm is executed (without

change) over a loopy (multiply connected) graph. In his seminal book, Pearl [1988]

says:

When loops are present, the network is no longer singly connected and

local propagation schemes will invariably run into trouble . . . If we ignore

the existence of loops and permit the nodes to continue communicating

with each other as if the network were singly connected, messages may

circulate indefinitely around the loops and the process may not con-

verge to a stable equilibrium . . . Such oscillations do not normally occur

in probabilistic networks . . . which tend to bring all messages to some

stable equilibrium as time goes on. However, this asymptotic equilib-

rium is not coherent, in the sense that it does not represent the posterior

probabilities of all nodes of the networks.

As a consequence of these problems, the idea of loopy belief propagation was largely

abandoned for many years.

The revival of this approach is surprisingly due to a seemingly unrelated advance

in coding theory. The area of coding addresses the problem of sending messages over

a noisy channel, and recovering it from the garbled result. We send a k-bit message,

redundantly coded using n bits. These n bits are sent over the noisy channel, so the

received bits are possibly corrupted. The decoding task is to recover the original

message from the bits received. The bit error rate is the probability that a bit is

ultimately decoded incorrectly. This error rate depends on the code and decoding

algorithm used and on the amount of noise in the channel. The rate of a code is

k/n — the ratio between the number of bits in the message and the number of bits

used to transmit it. In 1948, Claude Shannon provided a theoretical analysis of

192

Belief Propagation in Loopy Graphs

the coding problem [Shannon 1948]. For a given rate, Shannon provided an upper

bound on the maximum noise level that can be tolerated while still achieving a

certain bit error rate, no matter which code is used. Shannon also showed that

there exist channel codes that achieve this limit, but his proof was nonconstructive

— he did not present practical encoders and decoders that achieve this limit.

Since Shannon’s landmark result, multiple codes were suggested. However, de-

spite a gradual improvement in the quality of the code (bit-error rate for a given

noise level), none of the codes even came close to the Shannon limit. The big

breakthrough came in the early 1990s, when Berrou, Glavieux, and Thitimajshima

[1993] came up with a new scheme that they called a turbocode, which, empirically,

came much closer to achieving the Shannon limit than any other code proposed up

to that point. However, their decoding algorithm had no theoretical justification,

and, while it seemed to work well in real examples, could be made to diverge or

converge to the wrong answer. The second big breakthrough was the subsequent

realization, due to McEliece, MacKay, and Cheng [1998] and Frey and MacKay

[1997] that the turbocoding procedure was simply performing loopy belief propaga-

tion message passing on a Bayesian network representing the probability model for

the code and the channel noise!

This revelation had a tremendous impact on both the coding theory community

and the graphical models community. For the former, loopy belief propagation

provides a general-purpose algorithm for decoding a large family of codes. By sep-

arating the algorithmic question of decoding from the question of the code design,

it allowed the development of many new coding schemes with improved properties.

These codes have come much, much closer to the Shannon limit than any previous

codes, and they have revolutionized both the theory and the practice of coding.

For the graphical models community, it was the astounding success of loopy belief

propagation for this application that led to the resurgence of interest in these ap-

proaches. Subsequent work showed that this algorithm works very well in practice

on a broad range of other problems (see, for example, Weiss [1996] and Murphy,

Weiss, and Jordan [1999]), leading to a large amount of work on this topic. In this

short paper, we review only some of the key ideas underlying this important class

of methods; see section 6 for some discussion and further references.

2 Background

2.1 Probabilistic Graphical Models

Probabilistic graphical models are a general family of representations for probability

distributions over high-dimensional spaces. Specifically, our goal is to encode a joint

probability distribution over the possible assignments to a set of random variables

X = {X1, . . . , Xn}. We focus on the discrete setting, where each random variable

Xi takes values in some set Val(Xi). In this case, the number of possible assignments

grows exponentially with the number of variables n, making an explicit enumeration

of the joint distribution infeasible.

193

Daphne Koller

Probabilistic graphical models use a factored representation to avoid the expo-

nential representation of the joint distribution. In the most general setting, the

distribution is defined via a set of factors Φ. A factor φk is defined over a scope

Scope[φk] = Xk ⊆ X; the factor is a function φk : Val(Xk) 7→ IR+. The joint

distribution PΦ is defined by multiplying together all the factors in Φ, and renor-

malizing to form a distribution:

P̃Φ(x) =
∏

k

φk(xk)

Z =
∑

x∈Val(X)

P̃Φ(x)

PΦ(x) =
1

Z
P̃Φ(x).

For example, if we have a distribution over {X1, . . . , X3}, defined by two pairwise

factors φ1(X1, X2) and φ2(X2, X3), then P̃Φ(x1, x2, x3) = φ1(x1, x2) · φ2(x2, x3).

The normalizing constant Z is historically called the partition function.

This factorization is generally tied to a graph whose nodes represent the vari-

ables X1, . . . , Xn and whose edge structure corresponds to the factorization of the

distribution. In particular, the Markov network representation uses an undirected

graph H over the nodes X1, . . . , Xn. A factorized distribution PΦ is said to fac-

torize over H if, for every factor φk ∈ PΦ, we have that Scope[φk] is a completely

connected subgraph in H (so that every Xi, Xj ∈ Scope[φk] are connected by an

undirected edge in H). A Bayesian network uses a directed acyclic graph G to

represent the distribution. In this case, each variable Xi has a set of Parents PaG

Xi
.

The distribution is now parameterized using a set of factors Φ which take the form

P (Xi | PaG

Xi
). In other words, in this factorization, we have precisely one factor

for each variable Xi containing {Xi} ∪ PaG

Xi
, and this factor is locally normalized

so that
∑

xi∈Val(Xi)
P (xi | ui) = 1 for each assignment ui ∈ Val(PaG

Xi
). For this

set of factors, the partition function is guaranteed to be 1, and so we can now say

that a distribution P factorizes over G if it can be written as:

P (X1, . . . , Xn) =
∏

i

P (Xi | PaG

Xi
),

a formula typically known as the chain rule for Bayesian networks.

We note that the graph structure associated with a distribution PΦ reveal in-

dependence properties that hold in PΦ. That is, an examination of the network

structure over which PΦ factorizes provides us with a set of independencies that are

guaranteed to hold for PΦ, regardless of the specific parameterization. The connec-

tion between the graph structure and the independencies in the distribution was a

large focus of the early work on graphical models, and many of the key contributions

were developed by Pearl and his students. However, this topic is outside the scope

of this paper.

194

Belief Propagation in Loopy Graphs

2.2 Inference Tasks

Our probabilistic model P (X1, . . . , Xn) often defines a general-purpose distribution

that can be applied in multiple cases. For example, in a medical diagnosis setting,

we typically have a distribution over diseases, symptoms, and test results that

might hold for an entire patient population. Given a particular patient, we might

observe values values for some subset of the variables (say some symptoms and test

results), so that we know E = e. Thus, we now have a conditional distribution

P (W | E = e), where W = X − E. This conditional distribution has the form

P (W , e)/P (e), where P (e) =
∑

W P (W , e) is a normalizing constant.

Importantly, if our distribution is derived as PΦ for some set of factors Φ, we

can easily obtain a factored form for the numerator by simply reducing each factor

in Φ to contain only those entries that are consistent with E = e. The resulting

reduced factors can be multiplied to produce P (W , e). If the original distribution

PΦ factorizes over a Markov network H, the conditional distribution now factorizes

over the Markov network where we simply remove the nodes in E from the graph.

If the original distribution PΦ factorizes over a Bayesian network, the resulting

reduced factors no longer satisfy the local normalization requirements defined by

the directed graph. Since these local normalization requirements (even if they hold)

do not play a role in most inference algorithms, it is generally easier to ignore them

and simply consider a distribution defined by a set of (possibly reduced) factors Φ.

This will be our focus for the rest of the discussion.

In this setting, we generally consider two main inference tasks. The first is

computing the marginal distribution over one or more query variables; for example,

we might want to compute

PΦ(Y) =
∑

W

PΦ(Y ,W) =
1

Z

∑

W

∏

k

φk(Y k,W k),

where Y k,W k represents the assignment in Y ,W to Xk = Scope[φk]. The form

of this expression gives rise to the name sum-product for this type of inference task.

This task is used in the many settings (such as medical diagnosis, for example)

where we wish to compute the posterior distribution over some small subset of

variables given our current observations.

A second task is computing a single joint assignment x to all variables X that

achieves the highest joint probability:

xmap = argmaxxPΦ(x) = argmaxx

1

Z
P̃Φ(x) = argmaxxP̃Φ(x), (1)

where the partition function cancels since it has no effect on the choice of maximiz-

ing assignment. This assignment xmap is known as the maximum a posteriori, or

MAP, assignment. The form of this expression gives rise to the name max-product

for this inference task. MAP queries are used in tasks where we wish to find a

single consistent joint hypothesis about the unobserved variables in our domain, for

195

Daphne Koller

example, a single consistent segmentation of an image or the most likely utterance

in a speech recognition system.

3 Exact Inference: Clique Trees

One approach to addressing the problem of exact inference in a graphical model is

by using a graphical structure called a clique tree. Let T be an undirected graph,

each of whose nodes i is associated with a subset Ci ⊆ X . We say that T is family-

preserving with respect to Φ if each factor φ ∈ Φ must be associated with a cluster

C, denoted α(φ), such that Scope[φ] ⊆ Ci. Each edge between a pair of clusters

Ci and Cj is associated with a sepset Si,j = Ci ∩Cj . We say that T satisfies the

running intersection property if, whenever there is a variable X such that X ∈ Ci

and X ∈ Cj , then for every edge e in the unique path between Ci and Cj , we

have that X ∈ Se. If T satisfies the family-preservation and running-intersection

properties, we say that it is a clique tree for the graphical model defined by Φ.

We can now specify a general inference algorithm that can be implemented via

message passing in a clique tree. Let T be a clique tree with the cliques C1, . . . ,Ck.

Roughly speaking, we begin by multiplying the factors assigned to each clique,

resulting in our initial potentials. We then use the clique-tree data structure to

pass messages between neighboring cliques.

More precisely, recall that each factor φ ∈ Φ is assigned to some clique α(φ). We

define the initial potential of Cj to be:

π0
j [Cj] =

∏

φ : α(φ)=j

φ.

Because each factor is assigned to exactly one clique, we have that

∏

φ

φ =
∏

j

π0
j .

We now use the clique tree structure to pass messages. The message from Ci

to another clique Cj is computed using the following sum-product message passing

operation:

δi→j =
∑

Ci−Si,j

π0
i ×

∏

k∈(Ni−{j})

δk→i. (2)

In words, the clique Ci multiplies all incoming messages from its other neighbors

with its initial clique potential, resulting in a factor ψ whose scope is the clique.

It then sums out all variables except those in the sepset between Ci and Cj , and

sends the resulting factor as a message to Cj .

This computation can be scheduled in a variety of ways. Most generally, we say

that Ci is ready to transmit a message to Cj when Ci has messages from all of its

neighbors except from Cj . In such a setting, Ci can compute the message δi→j(Si,j)

by multiplying its initial potential with all of its incoming messages except the one

from Cj , and then eliminate the variables in Ci − Si,j . Although the algorithm is

196

Belief Propagation in Loopy Graphs

defined asynchronously, the message-passing process performed by the algorithm is

equivalent to a much more systematic process that consists of an upward pass where

all messages are sent toward a clique known as the root, and then a downward pass

where messages are sent to all the leaves.

At the end of this process, all cliques have all of their incoming messages, at

which point each clique can compute a factor called the beliefs:

πr[Ci] = π0
i ×

∏

k∈NCi

δk→i.

This algorithm, when applied to a clique tree that satisfies the family preservation

and running intersection property, computes messages and beliefs repesenting well-

defined expressions. In particular, we can show that the message passed from Ci

to Cj is the product of all the factors in F≺(i→j), marginalized over the variables

in the sepset (that is, summing out all the others):

δi→j(Si,j) =
∑

V≺(i→j)

∏

φ∈F≺(i→j)

φ.

It then follows that, when the algorithm terminates, we have, for each clique i

πi[Ci] =
∑

X−Ci

P̃Φ(X), (3)

that is, the value of the unnormalized measure P̃Φ, marginalized over the variables

in Ci.

We note that this expression holds for all cliques; thus, in one upward-downward

pass of the algorithm, we obtain all of the marginals of all of the cliques in the

network, from which we can also obtain the marginals over all variables: to compute

the marginal probability over a particular variable X, we can select a clique whose

scope contains X, and marginalize all variables other than X. This capability is

very valuable in many applications; for example, in a medical-diagnosis setting, we

generally want the probability of several possible diseases.

An important consequence of (3) is that we obtain the same marginal distribution

over X regardless of the from which we extracted it. More generally, for any two

adjacent cliques Ci, we must have that

∑

Ci−Si,j

πi[Ci] =
∑

Cj−Si,j

πj [Cj].

In this case, we say that Ci and Cj are calibrated.

These message passing rules, albeit in a simplified form, were first developed in

Pearl’s analysis [Kim and Pearl 1983; Pearl 1988] on inference in singly connected

(polytree) Bayesian networks. In this case, each clique represents a family — a set

comprising an individual variable and its parents — and the connections between the

cliques follow the structure of the original Bayesian network. With that mapping,

197

Daphne Koller

1: A, B, C
B

B

D

B
C E

D

4: B, E

2: B, C, D 5: D, E

3: B, D, F

1: A, B, C
B

B

D

B,C E

D

4: B, E

2: B, C, D 5: D, E

3: B, D, F

Figure 1. Two examples of generalized cluster graph for an MRF with

potentials over {A,B,C}, {B,C,D}, {B,D,F}, {B,D} and {D,E}.

the clique tree message passing algorithm we described is precisely Pearl’s belief

propagation algorithm. The more general case of this particular algorithm was

developed by Shafer and Shenoy [1990], who described it in a much broader form

that applies to many factored models other than probabilistic graphical models.

An alternative but ultimately equivalent message passing scheme (which uses a

sum-product-divide sequence for each message passing step) was was developed in

parallel, in a series of papers by Lauritzen and Spiegelhalter [1988] and Jensen,

Olesen, and Andersen [1990].

4 Belief Propagation in Loopy Graphs

While very compelling, the clique tree algorithm often hits against significant com-

putational barriers. There are many graphical models for which any legal clique tree

— one that satisfies family preservation and running intersection — has cliques that

are very large. For example, any clique tree for a pairwise Markov network encoding

an n × n grid (a class of network commonly used in computer vision applications)

has cliques involving at least n variables. In such cases, inference in a clique tree

requires computation that is exponential in the size of the graphical model. In a

sense, this is inevitable in the worst case, given that the exact inference problem

is NP-hard. However, since this exponential blowup arises in many applications of

significant practical impact, another solution is necessary.

4.1 Cluster Graphs

One generalization of the basic algorithm relaxes the requirements on the message

passing structure. In particular, we generalize the clique tree structure to that of a

cluster graph. This structure is also comprised of a set of clusters Ci ⊆ X connected

by edges. There are three important differences: (1) a cluster graph need not be

a tree; (2) the sepsets are required only to satisfy Si,j ⊆ Ci ∩ Cj ; and (3) we

have a modified version of the running intersection property, where we require that

whenever X ∈ Ci and X ∈ Cj , there is exactly one path between Ci and Cj for

which X ∈ Se for all edges e in the path. The generalized running intersection

property implies that all edges associated with X form a tree that spans all the

clusters that contain X. Thus, intuitively, there is only a single path by which

information that is directly about X can flow in the graph. Both parts of this

assumption are significant. The fact that some path must exist forces information

198

Belief Propagation in Loopy Graphs

about X to flow between all clusters that contain it, so that, in a calibrated cluster

graph, all clusters must agree about the marginal distribution of X. The fact

that there is at most one path prevents loops in the cluster graph where all of the

clusters contain X. In graphs that contain such loops, a message passing algorithm

can propagate information about X endlessly around the loop, making the beliefs

more extreme due to “cyclic arguments.”

Importantly, however, since the graph is not necessarily a tree, the same pair of

clusters might also be connected by other paths. For example, in the cluster graph

of figure 1a, we see that the edges labeled with B form a subtree that spans all

the clusters that contain B. However, there are loops in the graph. For example,

there are two paths from C3 = {B,D,F} to C2 = {B,C,D}. The first, through

C4, propagates information about B, and the second, through C5, propagates

information about D. Thus, we can still get circular reasoning, albeit less directly

than we would in a graph that did not satisfy the running intersection property.

Note that while in the case of trees the definition of running intersection implied

that Si,j = Ci ∩Cj , in a graph this equality is no longer enforced by the running

intersection property. For example, cliques C1 and C2 in figure 1a have B in

common, but S1,2 = {C}.

We note that there are many possible choices for the cluster graph, and the

decision on which to use can make a significant difference to the algorithm. In

particular, different graphs can lead to very different computational cost, different

convergence behavior and even different answers.

EXAMPLE 1. Consider, for example, the cluster graphs U1 and U2 of figure 1a and

figure 1b. Both are fairly similar, yet in U2 the edge between C1 and C2 involves

the marginal distribution over B and C. On the other hand, in U1, we propagate

the marginal only over C. Intuitively, we expect inference in U2 to better capture

the dependencies between B and C. For example, assume that the potential of

C1 introduces strong correlations between B and C (say B = C). In U2, this

correlation is conveyed to C2 directly. In U1, the marginal on C is conveyed on

the edge (1–2), while the marginal on B is conveyed through C4. In this case, the

strong dependency between the two variables is lost. In particular, if the marginal

on C is diffuse (close to uniform), then the message C1 sends to C4 will also have

a uniform distribution on B, and from C2’s perspective the messages on B and C

will appear as two independent variables.

One class of networks for which a simple cluster graph construction exists is the

class of pairwise Markov networks. In these networks, we have a univariate potential

φi[Xi] over each variable Xi, and in addition a pairwise potential φ(i,j)[Xi, Xj] over

some pairs of variables. These pairwise potentials correspond to edges in the Markov

network. Many problems are naturally formulated as pairwise Markov networks,

such as the grid networks common in computer vision applications. Indeed, if we

are willing to transform our variables, any distribution can be reformulated as a

199

Daphne Koller

pairwise Markov network.

One straightforward transformation of a pairwise Markov network into a cluster

graph is as follows: For each potential, we introduce a corresponding cluster, and

put edges between the clusters that have overlapping scope. In other words, there

is an edge between the cluster C(i,j) that corresponds to the edge Xi—Xj and

the clusters Ci and Cj that correspond to the univariate factors over Xi and Xj .

Because there is a direct correspondence between the clusters in the cluster graphs

and variables or edges in the original Markov network, it is often convenient to think

of the propagation steps as operations on the original network. Moreover, since each

pairwise cluster has only two neighbors, we can consider two propagation steps along

the path Ci—C(i,j)—Cj as propagating information between Xi and Xj .

A highly related transformation applies to Bayesian networks. Here, as in the

case of polytrees, we define a cluster Ci for each family {Xi}∪PaXi
. For every edge

Xi → Xj , we connect Ci to Cj via a sepset whose scope is Xi. With this cluster

graph construction, the message passing algorithm described below is performing

precisely the loopy belief propagation for Bayesian networks first proposed by Pearl.

A related but more general construction that applies to arbitrary sets of factors

is the Bethe cluster graph. This construction uses a bipartite graph: The first

layer consists of “large” clusters, with one cluster for each factor φ in Φ, whose

scope is Scope[φ]. These clusters ensure that we satisfy the family-preservation

property. The second layer consists of “small” univariate clusters, one for each

random variable. Finally, we place an edge between each univariate cluster X on

the second layer and each cluster in the first layer that includes X; the scope of

this edge is X itself. We can easily verify that this cluster graph is a proper one.

First, by construction, it satisfies the family preservation property. Second, the

edges that mention a variable X form a star-shaped subgraph with edges from the

univariate cluster for X to all the large clusters that contain X. The construction

of this cluster graph is simple and can easily be automated.

The broader notion of message passing on a more general cluster graph was first

proposed by Yedidia, Freeman, and Weiss [2000] and Dechter, Kask, and Mateescu

[2002]. Indeed, Yedidia, Freeman, and Weiss [2000, 2005] defined an even more

general notion of message passing on a region graph, which is outside the scope of

this paper.

4.2 Message Passing in Cluster Graphs

How do we perform inference in a cluster graph rather than a clique tree? From

the local perspective of a single cluster Ci, there is not much difference between a

cluster graph and a clique tree. The cluster is related to each neighbor through an

edge that conveys information on variables in the sepset. Thus, we can transmit

information by simply having one cluster pass a message to the other. Of course, as

the graph may have no leaves, we might initially not have any cliques that are ready

to transmit. We address this issue by initializing all messages δi→j = 1. Clusters

200

Belief Propagation in Loopy Graphs

Procedure CGraph-SP-Calibrate (

Φ, // Set of factors

U // Generalized cluster graph Φ

)

1 for each cluster Ci

2 πi ←
∏

φ : α(φ)=i φ

3 for each edge (i–j) ∈ EU
4 δi→j ← 1; δj→i ← 1

5

6 while graph is not calibrated

7 Select (i–j) ∈ EU

8 δi→j(Si,j)←
∑

Ci−Si,j

(

π0
i ×

∏

k∈(Ni−{j}) δk→i

)

9

10 for each clique i

11 πi ← π0
i ×

∏

k∈Ni
δk→i

12 return {πi}

Figure 2. Calibration using sum-product belief propagation in a cluster graph

then pass messages to their neighbors, summarizing the current beliefs derived from

their own initial potentials and from the messages received by their neighbors. The

algorithm is shown in figure 2. Convergence is achieved when the cluster graph is

calibrated ; that is, if for each edge (i–j), connecting the clusters Ci and Cj , we

have that
∑

Ci−Si,j

πi =
∑

Cj−Si,j

πj .

Note that this definition is weaker than cluster tree calibration, since the clusters do

not necessarily agree on the joint marginal of all the variables they have in common,

but only on those variables in the sepset. However, if a calibrated cluster graph

satisfies the running intersection property, then the marginal of a variable X is

identical in all the clusters that contain it. This algorithm clearly generalizes the

clique-tree message-passing algorithm described earlier.

EXAMPLE 2. With this framework in hand, we can now revisit the message de-

coding task. Assume that we wish to send a k-bit message u1, . . . , uk. We code

the message using a number of bits x1, . . . , xn, which are then sent over the noisy

channel, resulting in a set of (possibly corrupted) outputs y1, . . . , yn. The message

decoding task is to recover an estimate û1, . . . , ûk from y1, . . . , yn. We first observe

that message decoding can easily be reformulated as a probabilistic inference task:

We have a prior over the message bits U = 〈U1, . . . , Uk〉, a (usually deterministic)

function that defines how a message is converted into a sequence of transmitted

bits X1, . . . , Xn, and another (stochastic) model that defines how the channel ran-

201

Daphne Koller

(b)(a)

Y1 Y2 Y3 Y4

X1 X2 X3 X4

U1 U2 U3 U4

W1

U1

Y1 Y7Y3 Y5

Z1

X2

W2

U2

Z2

W3

Permuter

U3

Z3

X6

Y2 Y6

W4

U4

Y4 Y8

X4 X8

Z4

X5 X6 X7

Y5 Y6 Y7

Figure 3. Two examples of codes (a) A k = 4, n = 7 parity check code, where

every four message bits are sent along with three bits that encode parity checks.

(b) A k = 4, n = 8 turbocode. Here, the Xa bits X1, X3, X5, X7 are simply the

original bits U1, U2, U3, U4 and are omitted for clarity of the diagram; the Xb bits

use a shift register — a state bit that changes with each bit of the message, where

the ith state bit depends on the (i− 1)st state bit and on the ith message bit. The

code uses two shift registers, one applied to the original message bits and one to a

set of permuted message bits (using some predetermined permutations). The sent

bits contain both the original message bits and some number of the state bits.

domly corrupts the Xi’s to produce Yi’s. The decoding task can then be viewed

as finding the most likely joint assignment to U given the observed message bits

y = 〈y1, . . . , yn〉, or (alternatively) as finding the posterior P (Ui | y) for each bit

Ui. The first task is a MAP inference task, and the second task one of computing

posterior probabilities. Unfortunately, the probability distribution is of high dimen-

sion, and the network structure of the associated graphical model is quite densely

connected and with many loops.

The turbocode approach, as first proposed, comprised both a particular coding

scheme, and the use of a message passing algorithm to decode it. The coding

scheme transmits two sets of bits: one set comprises the original message bits Xa =

〈Xa
1 , . . . , X

a
k 〉 = u, and the second some set Xb = 〈Xb

1, . . . , X
b
k〉 of transformed bits

202

Belief Propagation in Loopy Graphs

(like the parity check bits, but more complicated). The received bits then can also

be partitioned into the noisy ya,yb. Importantly, the code is designed so that the

message can be decoded (albeit with errors) using either ya or yb. The turbocoding

algorithm then works as follows: It uses the model of Xa (trivial in this case)

and of the channel noise to compute a posterior probability over U given ya. It

then uses that posterior πa(U1), . . . , πa(Uk) as a prior over U and computes a new

posterior over U , using the model for Xb and the channel, and yb as the evidence,

to compute a new posterior πb(U1), . . . , πb(Uk). The “new information,” which is

πb(Ui)/πa(Ui), is then transmitted back to the first decoder, and the process repeats

until a stopping criterion is reached. In effect, the turbocoding idea was to use two

weak coding schemes, but to “turbocharge” them using a feedback loop. Each

decoder is used to decode one subset of received bits, generating a more informed

distribution over the message bits to be subsequently updated by the other. The

specific method proposed used particular coding scheme for the Xb bits, illustrated

in figure 3b.

This process looked a lot like black magic, and in the beginning, many people

did not even believe that the algorithm worked. However, when the empirical

success of these properties was demonstrated conclusively, an attempt was made

to understand its theoretical properties. McEliece, MacKay, and Cheng [1998] and

Frey and MacKay [1997] subsequently showed that the specific message passing

procedure proposed by Berrou et al. is precisely an application of belief propagation

(with a particular message passing schedule) to the Bayesian network representing

the turbocode (as in figure 3b).

4.3 Convergence of Loopy Belief Propagation

Pearl’s main reason for rejecting the loopy belief propagation algorithm was the fact

that it may fail to converge. Indeed, this is one of the thorniest issues associated

with the use of belief propagation in practical applications — much more so than

the fact that the resulting beliefs may not be exact. Nonconvergence is particularly

problematic when we build systems that use inference as a subroutine within other

tasks, for example, as the inner loop of a learning algorithm. Much work has

been done on analyzing the convergence properties of generalized belief propagation

algorithms, producing some valuable theoretical insights into its properties (such as

the recent work of Ihler, Fisher, and Willsky [2005] and Mooij and Kappen [2007]).

In practice, several approaches have been used for addressing the nonconvergence

issue, some of which we now describe.

A first observation is that nonconvergence is often a local problem. In many prac-

tical cases, most of the beliefs in the network do converge, and only a small portion

of the network remains problematic. In such cases, it is often quite reasonable sim-

ply to stop the algorithm at some point (for example, when some predetermined

amount of time has elapsed) and use the beliefs at that point, or a running average

of the beliefs over some time window. This heuristic is particularly reasonable when

203

Daphne Koller

we are not interested in individual beliefs, but rather in some aggregate over the

entire network, for example, in a learning setting.

A second observation is that nonconvergence is often due to oscillations in the

beliefs. As proposed by Murphy, Weiss, and Jordan [1999] and Heskes [2002], we

can dampen the oscillations by reducing the difference between two subsequent

updates. In particular, we can replace the update rule in (2) by a smoothed version

that averages the update δi→j with the previous message between the two cliques:

δi→j ← λ

∑

Ci−Si,j

∏

k 6=j

δk→i

 + (1− λ)δoldi→j , (4)

where λ is the damping weight and δoldi→j is the previous value of the message. When

λ = 1, this update is equivalent to standard belief propagation. For 0 < λ < 1,

the update is partial and although it shifts πj toward agreement with πi, it leaves

some momentum for the old value of the belief, a dampening effect that in turn

reduces the fluctuations in the beliefs. It turns out that this smoothed update rule

is “equivalent” to the original update rule, in that a set of beliefs is a convergence

point of the smoothed update if and only if it is a convergence point of standard

updates. Moreover, one can show that, if run from a point close enough to a

stable convergence point of the algorithm, with a sufficiently small λ, this smoothed

update rule is guaranteed to converge. Of course, this guarantee is not very useful

in practice, but there are indeed many cases where the smoothed update rule is

convergent, whereas the original update rule oscillates indefinitely (see figure 4).

A broader-spectrum heuristic, which plays an important role not only in en-

suring convergence but also in speeding it up considerably, is intelligent message

scheduling. The simplest and perhaps most natural approach is to implement BP

message passing as a synchronous algorithm, where all messages are updated at

once. Asynchronous message passing updates messages one at a time, using the

most recent version of the incoming messages to generate the outgoing message. It

turns out that, in most cases, the synchronous schedule is far from optimal, both in

terms of reaching convergence, and in the number of messages required for conver-

gence. As one simple example, consider a cluster graph with m edges, and diameter

d, synchronous message passing requires m(d − 1) messages to pass information

from one side of the graph to the other. By contrast, asynchronous message pass-

ing, appropriately scheduled, can pass information between two clusters at opposite

ends of the graph using d − 1 messages. Moreover, the fact that, in synchronous

message passing, each cluster uses messages from its neighbors that are based on

their previous beliefs appears to increase the chances of oscillatory behavior and

nonconvergence in general.

In practice, an asynchronous message passing schedule works significantly better

than the synchronous approach (see figure 4). Moreover, even greater improvements

can be obtained by scheduling messages in a guided way. One approach, called tree

204

Belief Propagation in Loopy Graphs

reparameterization (TRP) [Wainwright, Jaakkola, and Willsky 2003], selects a set of

trees, each of which spans a large number of the clusters, and whose union covers all

of the edges in the network. The TRP algorithm then iteratively selects a tree and

does an upward-downward calibration of the tree, keeping all other messages fixed.

Of course, calibrating this tree has the effect of “uncalibrating” other trees, and so

this process repeats. This approach has the advantage of passing information more

globally within the graph. It therefore converges more often, and more quickly, than

other asynchronous schedules, particularly if the trees are selected using a careful

design that accounts for the properties of the problem.

An even more flexible approach attempts to detect dynamically in which parts of

the network messages would be most useful. Specifically, as we observed, often some

parts of the network converge fairly quickly, whereas others require more messages.

We can schedule messages in a way that accounts for their potential usefulness; for

example, we can pass a message between clusters where the beliefs disagree most

strongly on the sepset. This approach, called residual belief propagation [Elidan,

McGraw, and Koller 2006] is convenient, since it is fully general and does not require

a deep understanding of the properties of the network. It also works well across a

range of different real-world networks.

To illustrate these issues, we show the behavior of loopy belief propagation on an

11× 11 grid with binary-valued variables; the network is parameterized as an Ising

model — one where the pairwise potentials are defined as: φi,j(xi, xj) = expwi,jxixj .

The network potentials were randomly sampled as follows: Each univariate potential

was sampled uniformly in the interval [0, 1]; for each pair of variables Xi, Zj , wi,j is

sampled uniformly in the range [−C,C]. This sampling process creates an energy

function where some potentials are attractive (wi,j > 0), causing adjacent variables

to prefer taking the same value, and some are repulsive (wi,j < 0). This regime can

result in very difficult inference problems. The magnitude of C (11 in this example)

controls the magnitude of the forces and higher values correspond, on average, to

more challenging inference problems.

Figure 4 illustrates the convergence behavior on this problem. (a) shows the per-

centage of messages converged as a function of time for three variants of the belief

propagation algorithm: synchronous BP with smoothing (dashed line), where only

a small fraction of the messages ever converge; asynchronous BP with smoothing

that converges (solid line); asynchronous BP with no smoothing (dash-dot line)

that does not fully converge. The benefit of using asynchronous propagation over

synchronous updating is obvious. At early round, smoothing tends to slow conver-

gence, because some messages converge quickly when updates are not slowed down

by smoothing. However, as the algorithm progresses, smoothing allows all mes-

sages to achieve convergence, whereas the unsmoothed algorithm never converges.

We note that smoothing is equally beneficial for synchronous updates; indeed, the

graph for unsmoothed synchronous updates is not shown because virtually none of

the messages achieve convergence.

205

Daphne Koller

Synchronous Asynchronous No smoothing True

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
10 20 30 40 50 60 70 80 90 100

Time (seconds)

%
 o

f
m

e
s
s
a

g
e

s
 c

o
n

v
e

rg
e

d

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Time (seconds)

P
(X

1
0

=
0
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5

Time (seconds)

P
(X

11
5

=
0
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Time (seconds)

P
(X

6
1

=
0
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Time (seconds)

P
(X

1
7

=
0
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Time (seconds)

P
(X

7
=

0
)

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

(a)

(d)

(b)

(e)

(c)

(f)

Figure 4. Example of behavior of BP in practice on an 11 × 11 Ising

grid. Comparison of three different BP variants: synchronous BP with smoothing

(dashed line), asynchronous BP with smoothing (solid line), and asynchronous BP

with no smoothing (dash-dot line — only shown in (a)). (a) Percentage of messages

converged as a function of time. (b) A marginal where both variants converge

rapidly. (c–e) Marginals where the synchronous BP marginals oscillate around the

asynchronous BP marginals. (f) A marginal where both variants are inaccurate.

The remaining panels illustrate the progression of the marginal beliefs over the

course of the algorithm. (b) shows a marginal where both the synchronous and

asynchronous updates converge quite rapidly and are close to the true marginal (thin

solid black). Such behavior is atypical, and it comprises only around 10 percent

of the marginals in this example. In the vast majority of the cases (almost 80

percent in this example), the synchronous beliefs oscillate around the asynchronous

ones ((c)–(e)). In many cases, such as the ones shown in (e), the entropy of the

synchronous beliefs is quite significant. For about 10 percent of the marginals (for

example (f)), both the asynchronous and synchronous marginals are inaccurate. In

these cases, using more informed message schedules can significantly improve the

algorithms performance.

These qualitative differences between the BP variants are quite consistent across

many random and real-life models. Typically, the more complex the inference prob-

lem, the larger the gaps in performance. For very complex real-life networks in-

206

Belief Propagation in Loopy Graphs

volving tens of thousands of variables and multiple cycles, even asynchronous BP is

not very useful and more elaborate propagation methods or convergent alternatives

must be adopted.

5 Max-Product Message Passing for MAP Inference

We now consider the application of belief propagation algorithms to the task of

computing the MAP assignment, as in (1).

5.1 Computing Max-Marginals

The MAP task goes hand in hand with finding the value of the unnormalized prob-

ability of the most likely assignment: maxx P̃Φ(x). We note that, given an assign-

ment x, we can easily compute its unnormalized probability simply by multiplying

all of the factors in Φ, evaluated at x. However, we cannot retrieve the actual

probability of x without computing the partition function, a problem that requires

that we also solve the sum-product task. Because P̃Φ is a product of factors, tasks

that involve maximizing P̃Φ are often called max-product inference tasks.

A large subset of algorithms for the MAP problem operate by first computing

a set of factors that are max-marginals. For a general function f , we define the

max-marginal of f relative to a set of variables Y as

MaxMargf (y) = max
x〈Y 〉=y

f(x), (5)

for any assignment y ∈ Val(Y). For example, the max-marginal MaxMargP̃Φ
(Y)

is a factor that determines a value for each assignment y to Y ; this value is the

unnormalized probability of the most likely joint assignment consistent with y.

The same belief propagation algorithms that we showed for sum-product can

easily be adapted to the case of max-product. In particular, the max-product belief

propagation algorithm in clique trees executes precisely the same initialization and

overall message scheduling as in the sum-product clique tree algoirthm; the only

difference is that we replace (2) with the following:

δi→j = max
Ci−Si,j

π0
i ×

∏

k∈(Ni−{j})

δk→i. (6)

As for sum-product message passing, the algorithm will converge after a single

upward and downward pass. After those steps, the resulting clique tree T will

contain the appropriate max-marginal in every clique. In particular, for each clique

Ci and each assignment ci to Ci, we will have that

πi[ci] = MaxMargP̃Φ
(ci). (7)

That is, the clique belief contains, for each assignment ci to the clique variables,

the (unnormalized) measure P̃Φ(x) of the most likely assignment x consistent with

ci. Note that, because the max-product message passing process does not compute

207

Daphne Koller

the partition function, we cannot derive from these max-marginals the actual prob-

ability of any assignment; however, because the partition function is a constant,

we can still compare the values associated with different assignments, and therefore

compute the assignment x that maximizes P̃Φ(x).

Because max-product message passing over a clique tree produces max-marginals

in every clique, and because max-marginals must agree, it follows that any two

adjacent cliques must agree on their sepset:

max
Ci−Si,j

πi = max
Cj−Si,j

πj = µi,j(Si,j). (8)

In this case, the clusters are said to be max-calibrated. We say that a clique tree is

max-calibrated if all pairs of adjacent cliques are max-calibrated.

The same transformation from sum-product to max-product can be applied to

the case of loopy belief propagation. Here, the algorithm is the same as in figure 2,

except that we replace the sum-product message computation with the max-product

computation of (6). As for sum-product, there are no guarantees that this algorithm

will converge. Indeed, in practice, it tends to converge somewhat less often than

the sum-product algorithm, perhaps because the averaging effect of the summation

operation tends to smooth out messages, and reduce oscillations. The same ideas

that we discussed in section 4.3 can be used to improve convergence in this algorithm

as well.

At convergence, the result will be a set of calibrated clusters: As for sum-product,

if the clusters are not calibrated, convergence has not been achieved, and the algo-

rithm will continue iterating. However, the resulting beliefs will not generally be

the exact max-marginals; these beliefs are often called pseudo-max-marginals.

5.2 Locally Optimal Assignments

How do we go from a set of (approximate) max-marginals to a consistent joint

assignment that has high probability? One obvious solution is to use the max-

marginal for each variable Xi to compute its own optimal assignment, and thereby

compose a full joint assignment to all variables. However, this simplistic approach

may not always work, even if we have exact max-marginals.

EXAMPLE 3. Consider a simple XOR-like distribution P (X1, X2) that gives prob-

ability 0.1 to the assignments where X1 = X2 and 0.4 to the assignments where

X1 6= X2. In this case, for each assignment to X1, there is a corresponding as-

signment to X2 whose probability is 0.4. Thus, the max-marginal of X1 is the

symmetric factor (0.4, 0.4), and similarly for X2. Indeed, we can choose either of

the two values for X1 and complete it to a MAP assignment, and similarly for X2.

However, if we choose the values for X1 and X2 in an inconsistent way, we may get

an assignment whose probability is much lower. Thus, our joint assignment cannot

be chosen by separately optimizing the individual max-marginals.

Such examples cannot arise if the max-marginals are unambiguous: For each

208

Belief Propagation in Loopy Graphs

variable Xi, there is a unique x∗i that maximizes:

x∗i = max
xi∈Val(Xi)

MaxMargf (xi). (9)

This condition prevents symmetric cases like the one in the preceding example.

Indeed, it is not difficult to show that the following two conditions are equivalent:

• The set of node beliefs {MaxMargP̃Φ
(Xi) : Xi ∈ X} is unambiguous, with

x∗i = argmaxxi
MaxMargP̃Φ

(Xi)

the unique optimizing value for Xi;

• P̃Φ has a unique MAP assignment (x∗1, . . . , x
∗

n).

For generic probability measures, the assumption of unambiguity is not overly strin-

gent, since we can always break ties by introducing a slight random perturbation

into all of the factors, making all of the elements in the joint distribution have

slightly different probabilities. However, if the distribution has special structure —

deterministic relationships or shared parameters — that we want to preserve, this

type of ambiguity may be unavoidable.

The situation where there are ties in the node beliefs is more complex. In this

case, we say that an assignment x∗ has the local optimality property if, for each

cluster Ci in the tree, we have that

x∗〈Ci〉 ∈ argmaxci
πi[ci], (10)

that is, the assignment to Ci in x∗ optimizes the Ci belief. The task of finding

a locally optimal assignment x∗ given a max-calibrated set of beliefs is called the

decoding task.

Importantly, for approximate max-marginals derived from loopy belief propaga-

tion, a locally optimal joint assignment may not exist:

EXAMPLE 4. Consider a cluster graph with the three clusters {A,B}, {B,C}, {A,C}

and the beliefs

a1 a0

b1 1 2

b0 2 1

b1 b0

c1 1 2

c0 2 1

a1 a0

c1 1 2

c0 2 1

These beliefs are max-calibrated, in that all messages are (2, 2). However, there is

no joint assignment that maximizes all of the cluster beliefs simultaneously. For

example, if we select a0, b1, we maximize the value in the A,B belief. We can

now select c0 to maximize the value in the B,C belief. However, we now have a

nonmaximizing assignment a0, c0 in the A,C belief. No matter which assignment

of values we select in this example, we do not obtain a single joint assignment that

maximizes all three beliefs. Loops such as this are often called frustrated.

209

Daphne Koller

How do we find a locally optimal joint assignment, if one exists? Recall from the

definition that an assignment is locally optimal if and only if it selects one of the

optimizing assignments in every single cluster. Thus, we can essentially label the

assignments in each cluster as either “legal” if they optimize the belief or “illegal” if

they do not. We now must search for an assignment to X that results in a legal value

for each cluster. This problem is precisely an instance of a constraint satisfaction

problem (CSP). A constraint satisfaction problem can be defined in terms of a

Markov network (or factor graph) where all of the entries in the beliefs are either 0

or 1. The CSP problem is now one of finding an assignment whose (unnormalized)

measure is 1, if one exists, and otherwise reporting failure. In other words, the

CSP problem is simply that of finding the MAP assignment in this model with

{0, 1}-valued beliefs. The field of CSP algorithms is a large one, and a detailed

survey is outside the scope of the paper; see Dechter [2003] for a recent survey.

Interestingly, it is an area to which Pearl also made important early contributions

[Dechter and Pearl 1987]. Recent work has reinvigorated this trajectory, studying

the surprisingly deep connections between CSP methods and belief propagation, and

exploiting it (for example, within the context of the survey propagation algorithm

[Maneva, Mossel, and Wainwright 2007]).

Thus, given a max-product calibrated cluster graph, we can convert it to a

discrete-valued CSP by simply taking the belief in each cluster, changing each as-

signment that locally optimizes the belief to 1 and all other assignments to 0. We

then run some CSP solution method. If the outcome is an assignment that achieves

1 in every belief, this assignment is guaranteed to be a locally optimal assignment.

Otherwise, there is no locally optimal assignment. Importantly, as we discuss below,

for the case of calibrated clique trees, we are guaranteed that this approach finds a

globally optimal assignment.

In the case where there is no locally optimal assignment, we must resort to the

use of alternative solution methods. One heuristic in this latter situation is to use

information obtained from the max-product propagation to construct a partial as-

signment. For example, assume that a variable Xi is unambiguous in the calibrated

cluster graph, so that the only value that locally optimizes its node marginal is xi.

In this case, we may decide to restrict attention only to assignments where Xi = xi.

In many real-world problems, a large fraction of the variables in the network are

unambiguous in the calibrated max-product cluster graph. Thus, this heuristic can

greatly simplify the model, potentially even allowing exact methods (such as clique

tree inference) to be used for the resulting restricted model. We note, however, that

the resulting assignment would not necessarily satisfy the local optimality condition,

and all of the guarantees we will present hold only under that assumption.

5.3 Optimality Guarantees

The local optimality property comes with some fairly strong guarantees. In partic-

ular, for exact max-marginals, one can show the following result:

210

Belief Propagation in Loopy Graphs

1: A, B, C 4: B, E

(a) (b)

2: B, C, D

B

B
B

C C E

1: A, B, C 4: B, E

2: B, C, D 5: D, E

3: B, D, F

Figure 5. Two induced subgraphs derived from figure 1a. (a) Graph over

{B,C}; (b) Graph over {C,E}.

THEOREM 5. Let πi[Ci] be a set of max-marginals for the distribution P̃Φ, and

let µi,j be the associated sepset beliefs. Then an assignment x∗ satisfies the local

optimality property relative to the beliefs {πi[Ci]}i∈VT
if and only if it is the global

MAP assignment relative to P̃Φ.

What type of guarantee can we provide for a decoded assignment from the

pseudo-max-marginals produced by the max-product belief propagation algorithm?

It is certainly not the case that this assignment is the MAP assignment; nor is it

even the case that we can guarantee that the probability of this assignment is “close”

in any sense to that of the true MAP assignment. However, if we can construct a

locally optimal assignment x∗ relative to the beliefs produced by max-product BP,

we can prove that x∗ is a strong local maximum, in the following sense: For certain

subsets of variables Y ⊂ X , there is no assignment x′ that is higher-scoring than

x∗ and differs from it only in the assignment to Y . These subsets Y are those that

induce any disjoint union of subgraphs each of which contains at most a single loop

(including trees, which contain no loops).

More precisely, for a subset of variables Y , we define the induced subgraph UY

to be the subgraph of clusters and sepsets in U that contain some variable in Y .

In the straightforward cluster graph for a pairwise Markov network (as described

earlier), the induced subgraph for a set Y is simply the set of nodes corresponding

to Y and any edges that contain them. Figure 5 shows two examples of an induced

subgraph for a more general cluster graph.

We can now state the following important theorem:

THEOREM 6. Let U be a max-product calibrated cluster graph for P̃Φ, and let x∗

be a locally optimal assignment for U . Let Z be any set of variables for which UZ

is a collection of disjoint subgraphs each of which contains at most a single loop.

Then for any assignment x′ which is the same as x∗ except for the assignment to

the variables in Z, we have that P̃Φ(x′) ≤ P̃Φ(x∗).

This result generalizes one by Weiss and Freeman [2001], who showed a corre-

sponding version in the unambiguous case, for a pairwise Markov network. Its proof

in the more general case rests heavily on the analysis of Wainwright, Jaakkola, and

Willsky [2005], who proved that a different variant of max-product message passing,

211

Daphne Koller

if it converges to an unambiguous solution, is guaranteed to produce the true MAP

assignment.

This theorem implies as a corollary the (well-known) result that, for a max-

product calibrated clique tree, the decoding process is guaranteed to produce a

globally optimal (MAP) assignment. However, its more important implications are

in the context of a loopy cluster graph.

EXAMPLE 7. Consider a 4 × 4 grid network, and assume that we use the pair-

wise cluster graph construction described earlier. In this case, theorem 6 implies

that the MAP solution found by max-product belief propagation has higher prob-

ability than any assignment obtained by changing the assignment to any of the

following subsets of variables Y : a set of variables in any single row, such as

Y = {A1,1, A1,2, A1,3, A1,4}; a set of variables in any single column; a “comb”

structure such as the variables in row 1, column 2 and column 4; a single loop,

such as Y = {A1,1, A1,2, A2,2, A2,1}; or a collection of disconnected subsets of the

preceding form.

This result is a powerful one, inasmuch as it shows that the solution obtained

from max-product belief propagation is robust against large perturbations. Thus,

although one can construct examples where max-product belief propagation obtains

the wrong solutions, these solutions are strong local maxima, and therefore they of-

ten have high probability. Conversely, it is important to realize the limitations of

this result. For one, it only applies if the max-product belief propagation algorithm

converges to a fixed point, which is not always the case; indeed, as we mentioned

earlier, convergence here is generally harder to achieve than in the sum-product

variant. Second, even if convergence is achieved, one has to be able to decode the

resulting pseudo-max-marginals in order to obtain a locally-optimal joint assign-

ment. It is only if these two conditions hold that this result can be brought to

bear.

6 Conclusions

This paper has reviewed a small fraction of the recent results regarding the belief

propagation algorithm. This line of work has been hugely influential in the area

of probabilistic modeling, both in practice and in theory. On the practical side,

belief propagation algorithms are among the most commonly used for inference in

graphical models for which exact inference is intractable. They have been used

successfully for a broad range of applications, including message decoding, natural

language processing, computer vision, computational biology, web analysis, and

many more. There have also been tremendous developments on the algorithmic

side, with many important extensions to the basic approach.

On the theoretical side, the work of many people has served to provide a much

deeper understanding of the theoretical foundations of this algorithm, which has

tremendously influenced our entire perspective on probabilistic inference. One sem-

212

Belief Propagation in Loopy Graphs

inal line of work along these lines was initiated by the landmark paper of Yedidia,

Freeman, and Weiss [2000, 2005], showing that beliefs obtained as fixed points of

the belief propagation algorithm are also solutions to an optimization problem; this

problem is an approximation to another optimization problem whose solutions are

the exact marginals that would be obtained from clique tree inference. Thus, both

exact (clique tree) and approximate (cluster graph) inference can be viewed in terms

of optimization of an objective. This observation was the basis for the development

of a whole range of novel methods that explored different variations on the for-

mulation of the optimization problem, or different algorithms for performing the

optimization. One such line of work uses convex versions of the optimization prob-

lem underlying belief propagation, a trajectory initiated by Wainwright, Jaakkola,

and Willsky [2002]. Algorithms based on this approach (e.g., [Heskes 2006; Hazan

and Shashua 2008]) can also guarantee convergence as well as provide bounds on

the partition function.

For the MAP problem, a similar optimization-based view has also recently come

to dominate the field. Here, the original MAP problem is reformulated as an inte-

ger programming problem, where the (discrete-valued) variables in the optimization

represent the space of possible assignments x. This discrete optimization is then re-

laxed to produce a continuous-valued optimization problem that is a linear program

(LP). This LP-relaxation approach was first proposed by Schlesinger [1976], and

then subsequently rediscovered independently by several researchers. Most notably,

Wainwright, Jaakkola, and Willsky [2005] established the first connection between

the dual problem to this LP and message passing algorithms, and proposed a new

message-passing algorithm (TRW) based on this connection. Many recent works

build on these ideas and develop a suite of increasingly better algorithms for solv-

ing the MAP inference problem. Some of these algorithms utilize message-passing

techniques; others merely adopt the idea of using the LP dual but utilize other

optimization methods for solving it. Importantly, for several of these algorithms,

one can guarantee that a solution, if one is found, is guaranteed to be the optimal

MAP assignment.

In summary, the simple message-passing algorithm first proposed by Pearl has

recently returned to revolutionize the world of inference in graphical models. It

has dramatically affected both the practice in the field and has led to a new,

optimization-based perspective on the foundations of the inference task. This new

understanding has, in turn, given rise to the development of much better algorithms,

which continue to improve our ability to apply probabilistic graphical models to

challenging, real-world applications.

Acknowledgments This material in this review paper is extracted from the book

of Koller and Friedman [2009], published by MIT Press. Some of this material

is based on contributions by Nir Friedman and Gal Elidan. I also thank Amir

Globerson, David Sontag, and Yair Weiss for useful discussions regarding MAP

inference.

213

Daphne Koller

References

Berrou, C., A. Glavieux, and P. Thitimajshima (1993). Near Shannon limit error-

correcting coding: Turbo codes. In Proc. International Conference on Com-

munications, pp. 1064–1070.

Cooper, G. (1990). Probabilistic inference using belief networks is NP-hard. Ar-

tificial Intelligence 42, 393–405.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Dechter, R., K. Kask, and R. Mateescu (2002). Iterative join-graph propagation.

In Proc. 18th Conference on Uncertainty in Artificial Intelligence (UAI), pp.

128–136.

Dechter, R. and J. Pearl (1987). Network-based heuristics for constraint-

satisfaction problems. Artificial Intelligence 34 (1), 1–38.

Elidan, G., I. McGraw, and D. Koller (2006). Residual belief propagation: In-

formed scheduling for asynchronous message passing. In Proc. 22nd Confer-

ence on Uncertainty in Artificial Intelligence (UAI).

Frey, B. and D. MacKay (1997). A revolution: Belief propagation in graphs with

cycles. In Proc. 11th Conference on Neural Information Processing Systems

(NIPS).

Hazan, T. and A. Shashua (2008). Convergent message-passing algorithms for

inference over general graphs with convex free energies. In Proc. 24th Confer-

ence on Uncertainty in Artificial Intelligence (UAI).

Heckerman, D., E. Horvitz, and B. Nathwani (1992). Toward normative ex-

pert systems: Part I. The Pathfinder project. Methods of Information in

Medicine 31, 90–105.

Heskes, T. (2002). Stable fixed points of loopy belief propagation are minima

of the Bethe free energy. In Proc. 16th Conference on Neural Information

Processing Systems (NIPS), pp. 359–366.

Heskes, T. (2006). Convexity arguments for efficient minimization of the Bethe

and Kikuchi free energies. Journal of Machine Learning Research 26, 153–190.

Ihler, A. T., J. W. Fisher, and A. S. Willsky (2005). Loopy belief propagation:

Convergence and effects of message errors. Journal of Machine Learning Re-

search 6, 905–936.

Jensen, F. V., K. G. Olesen, and S. K. Andersen (1990, August). An algebra

of Bayesian belief universes for knowledge-based systems. Networks 20 (5),

637–659.

Kim, J. and J. Pearl (1983). A computational model for combined causal and

diagnostic reasoning in inference systems. In Proc. 7th International Joint

Conference on Artificial Intelligence (IJCAI), pp. 190–193.

214

Belief Propagation in Loopy Graphs

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models: Principles

and Techniques. MIT Press.

Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local computations with probabil-

ities on graphical structures and their application to expert systems. Journal

of the Royal Statistical Society, Series B B 50 (2), 157–224.

Maneva, E., E. Mossel, and M. Wainwright (2007, July). A new look at survey

propagation and its generalizations. Journal of the ACM 54 (4), 2–41.

McEliece, R., D. MacKay, and J.-F. Cheng (1998, February). Turbo decoding

as an instance of Pearl’s “belief propagation” algorithm. IEEE Journal on

Selected Areas in Communications 16 (2).

Mooij, J. M. and H. J. Kappen (2007). Sufficient conditions for convergence of

the sum-product algorithm. IEEE Trans. Information Theory 53, 4422–4437.

Murphy, K. P., Y. Weiss, and M. Jordan (1999). Loopy belief propagation for

approximate inference: an empirical study. In Proc. 15th Conference on Un-

certainty in Artificial Intelligence (UAI), pp. 467–475.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Mateo, Cal-

ifornia: Morgan Kaufmann.

Schlesinger, M. (1976). Sintaksicheskiy analiz dvumernykh zritelnikh singnalov

v usloviyakh pomekh (syntactic analysis of two-dimensional visual signals in

noisy conditions). Kibernetika 4, 113–130.

Shafer, G. and P. Shenoy (1990). Probability propagation. Annals of Mathematics

and Artificial Intelligence 2, 327–352.

Shannon, C. (1948). A mathematical theory of communication. Bell System Tech-

nical Journal 27, 379–423; 623–656.

Shimony, S. (1994). Finding MAPs for belief networks in NP-hard. Artificial

Intelligence 68 (2), 399–410.

Shwe, M., B. Middleton, D. Heckerman, M. Henrion, E. Horvitz, H. Lehmann,

and G. Cooper (1991). Probabilistic diagnosis using a reformulation of the

INTERNIST-1/QMR knowledge base. I. The probabilistic model and infer-

ence algorithms. Methods of Information in Medicine 30, 241–55.

Szeliski, R., R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala,

M. Tappen, and C. Rother (2008, June). A comparative study of energy min-

imization methods for Markov random fields with smoothness-based priors.

IEEE Trans. on Pattern Analysis and Machine Intelligence 30 (6), 1068–1080.

See http://vision.middlebury.edu/MRF for more detailed results.

Wainwright, M., T. Jaakkola, and A. Willsky (2003). Tree-based reparameteri-

zation framework for analysis of sum-product and related algorithms. IEEE

Transactions on Information Theory 49 (5).

215

Daphne Koller

Wainwright, M., T. Jaakkola, and A. Willsky (2005). MAP estimation via agree-

ment on trees: Message-passing and linear programming. IEEE Transactions

on Information Theory .

Wainwright, M., T. Jaakkola, and A. S. Willsky (2002). A new class of upper

bounds on the log partition function. In Proc. 18th Conference on Uncertainty

in Artificial Intelligence (UAI).

Weiss, Y. (1996). Interpreting images by propagating bayesian beliefs. In Proc.

10th Conference on Neural Information Processing Systems (NIPS), pp. 908–

914.

Weiss, Y. and W. Freeman (2001). On the optimality of solutions of the max-

product belief propagation algorithm in arbitrary graphs. IEEE Transactions

on Information Theory 47 (2), 723–735.

Yedidia, J., W. Freeman, and Y. Weiss (2005). Constructing free-energy approx-

imations and generalized belief propagation algorithms. IEEE Trans. Infor-

mation Theory 51, 2282–2312.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2000). Generalized belief propa-

gation. In Proc. 14th Conference on Neural Information Processing Systems

(NIPS), pp. 689–695.

216

13

Extending Bayesian Networks to the

Open-Universe Case

Brian Milch and Stuart Russell

1 Introduction

One of Judea Pearl’s now-classic examples of a Bayesian network involves a home

alarm system that may be set off by a burglary or an earthquake, and two neighbors

who may call the homeowner if they hear the alarm. Like most scenarios modeled

with BNs, this example involves a known set of objects (one house, one alarm,

and two neighbors) with known relations between them (the alarm is triggered by

events that affect this house; the neighbors can hear this alarm). These objects and

relations determine the relevant random variables and their dependencies, which

are then represented by nodes and edges in the BN.

In many real-world scenarios, however, the relevant objects and relations are ini-

tially unknown. For instance, suppose we have a set of ASCII strings containing

irregularly formatted and possibly erroneous academic citations extracted from on-

line documents, and we wish to make a list of the distinct publications that are

referred to, with correct author names and titles. In this case, the publications,

authors, venues, and so on are not known in advance, nor is the mapping between

publications and citations. The same challenge of making inferences about unknown

objects is called coreference resolution in natural language processing, data associ-

ation in multitarget tracking, and record linkage in database systems. The issue is

actually much more widespread than this short list suggests; it arises in any data

interpretation problem in which objects or events come without unique identifiers.

In this chapter, we show how the Bayesian network (BN) formalism that Judea

Pearl pioneered has been extended to handle such scenarios. The key contribution

on which we build is the use of acyclic directed graphs of local conditional distri-

butions to generate well-defined, global probability distributions. We begin with a

review of relational probability models (RPMs), which specify how to construct a BN

for a given set of objects and relations. We then describe open-universe probability

models, or OUPMs, which represent uncertainty about what objects exist. OUPMs

may not boil down to finite, acyclic BNs; we present results from Milch [2006]

showing how to extend the factorization and conditional independence semantics

of BNs to models that are only context-specifically finite and acyclic. Finally, we

discuss how Markov chain Monte Carlo (MCMC) methods can be used to perform

approximate inference on OUPMs and briefly describe some applications.

217

Kaoru
Text Box
Return to TOC

Brian Milch and Stuart Russell

Title(Pub2)Title(Pub1)

CitTitle(C1) CitTitle(C2) CitTitle(C3)

Figure 1. A BN for a bibliography scenario where we know that citations Cit1 and

Cit3 refer to Pub1, while citation Cit2 refers to Pub2.

Title(p) ∼ TitlePrior()

CitTitle(c) ∼ TitleEditCPD(Title(PubCited(c)))

Figure 2. Dependency statements for a bibliography scenario, where p ranges over

publications and c ranges over citations. This model assumes that the PubCited

function and the sets of publications and citations are known.

2 Relational probability models

Suppose we are interested in inferring the true titles of publications given some

observed citations, and we know the set of publications and the mapping from

citations to publications. Assuming we have a prior distribution for true title strings

(perhaps a word n-gram model) and a conditional probability distribution (CPD)

for citation titles given true titles, we can construct a BN for this scenario, as shown

in Figure 1.

2.1 The RPM formalism

A relational probability model represents such a BN compactly using dependency

statements (see Figure 2), which specify the CPDs and parent sets for whole classes

of variables at once. In this chapter, we will not specify any particular syntax for

dependency statements, although we use a syntax based loosely on Blog [Milch

et al. 2005]. The important point is that dependencies are specified via relations

among objects. For example, the dependency statement for CitTitle in Figure 2

specifies that each CitTitle(c) variable depends (according to the conditional distri-

bution TitleEditCPD that describes how titles may be erroneously transcribed) on

Title(PubCited(c))—that is, on the true title of the publication that c cites. The

PubCited relation is nonrandom, and thus forms part of the known relational skele-

ton of the RPM. In this case, the skeleton also includes the sets of citations and

publications.

Formally, it is convenient to think of an RPM M as defining a probability distri-

bution over a set of model structures of a typed first-order logical language. These

structures are called the possible worlds of M and denoted ΩM . The function sym-

218

Open-Universe Probability Models

bols of the logical language (including constant and predicate symbols) are divided

into a set of nonrandom function symbols whose interpretations are specified by

the relational skeleton, and a set of random function symbols whose interpretations

vary between possible worlds. An RPM includes one dependency statement for each

random function symbol.

Each RPM M defines a set of basic random variables VM , one for each application

of a random function to a tuple of arguments. We will write X(ω) for the value

of a random variable X in world ω. If X represents the value of the random

function f on some arguments, then the dependency statement for f defines a

parent set and CPD for X. The parent set for X, denoted Pa(X), is the set of basic

variables that are needed to evaluate the expressions in the dependency statement

in any possible world. For instance, if we know that PubCited(Cit1) = Pub1, then

the dependency statement in Figure 2 yields the single parent Title(Pub1) for the

variable CitTitle(Cit1). The CPD for a basic variable X is a function ϕX (x, pa)

that defines a conditional probability distribution over values x of X given each

instantiation pa of Pa(X). We obtain this CPD by evaluating the expressions in

the dependency statement (such as Title(PubCited(Cit1))) and passing them to an

elementary distribution function such as TitleEditCPD.

Thus, an RPM defines a BN over its basic random variables. If this BN is

acyclic, it defines a joint distribution for the basic RVs. Since there is a one-to-

one correspondence between full instantiations of VM and worlds in ΩM , this BN

also gives us a probability measure over ΩM . We define this to be the probability

measure represented by the RPM.

2.2 Relational uncertainty

This formalism also allows us to model cases of relational uncertainty, such as a

scenario where the mapping from citations to publications is unknown. We can

handle this by making PubCited a random function and giving it a dependency

statement such as:

PubCited(c) ∼ Uniform({Pub p}) .

This statement says that each citation refers to a publication chosen uniformly at

random from the set of all publications p. The dependency statement for CitTitle

in Figure 2 now represents a context-specific dependency: for a given citation Ci,

the Title(p) variable that CitTitle(Ci) depends on varies from world to world.

In the BN defined by this model, shown in Figure 3, the parents of each CitTitle(c)

variable include all variables that might be needed to evaluate the dependency

statement for CitTitle(c) in any possible world. This includes PubCited(c) and all

the Title(p) variables. The CPD in the BN is a multiplexer that conditions on the

appropriate Title(p) variable for each value of PubCited(c). If the BN constructed

this way is still finite and acyclic, the usual BN semantics hold.

219

Brian Milch and Stuart Russell

Title(Pub2)Title(Pub1)

CitTitle(C1) CitTitle(C2)

Title(Pub3)

PubCited(C1) PubCited(C2)

Figure 3. A BN arising from an RPM with relational uncertainty.

2.3 Names, objects, and identity uncertainty

We said earlier that the function symbols of an RPM include the constants and pred-

icate symbols. For predicates, this simply means that a predicate can be thought

of as a Boolean function that returns true or false for each tuple of arguments. The

constants, on the other hand, are 0-ary functions that refer to objects. In most RPM

languages, all constants are nonrandom and assumed to refer to distinct objects—

the unique names assumption for constants. With this assumption, there is no need

to distinguish between constant symbols and the objects they refer to, which is why

we are able to name the basic random variables Title(Pub1), Title(Pub2) and so

on, even though, strictly speaking, the arguments should be objects in the domain

rather than constant symbols.

If the RPM language allows constants to be random functions, then the equivalent

BN will include a node for each such constant. For example, suppose that Milch

asks Russell to “fix the typo in the Pfeffer citation.” Russell’s mental software may

already have formed nonrandom constant symbols C1, C2, and so on for all the

citations at the end of the chapter, and these are in one-to-one correspondence with

all the objects in this particular universe. It may then form a new constant symbol

ThePfefferCitation, which co-refers with one of these. Because there is more than

one citation to a work by Pfeffer, there is identity uncertainty concerning which

citation object the new symbol refers to. Identity uncertainty is a degenerate form

of relational uncertainty, but often has a quite distinct flavor.

3 Open-universe probability models

For all RPMs, even those with relational and identity uncertainty, the objects are

known and are the same across all possible worlds. If the set of objects is unknown,

however—e.g., if we don’t know the set of publications that exist and might be

cited—then RPMs as we have described them do not suffice. Whereas an RPM

can be seen as defining a generative process that chooses a value for each random

function on each tuple of arguments, an open-universe probability model (OUPM)

includes generative steps that add objects to the world. These steps set the values

of number variables.

220

Open-Universe Probability Models

Title((Pub,2))Title((Pub,1))

CitTitle(C1) CitTitle(C2)

Title((Pub,3))

PubCited(C1) PubCited(C2)

#Pub

Figure 4. A BN that defines a probability distribution over worlds with unbounded

numbers of publications.

3.1 Number variables

For the bibliography example, we introduce just one number variable, defining the

total number of publications. There is no reason to place any a priori upper bound

on the number of publications; we might be interested in asking how many publi-

cations there are for which we have found no citations (this question becomes more

well-defined and pressing if we ask, say, how many aircraft are in an area but have

not generated a blip on our radar screens). Thus, this number variable may have a

distribution that assigns positive probability to all natural numbers.

We can specify the conditional probability distribution for a number variable

using a dependency statement. In our bibliography example, we might use a very

simple statement:

#Pub ∼ NumPubsPrior() .

Number variables can also depend on other variables; we will consider an example

of this below.

In the RPM where we had a fixed set of publications, the relational skeleton

specified a constant symbol such as Pub1 for each publication. In an OUPM where

the set of publications is unknown, it does not make sense for the language to include

such constant symbols. The possible worlds contain publication objects—which will

assume are pairs 〈Pub, 1 〉, 〈Pub, 2 〉, etc.—but now they are not necessarily in one-

to-one correspondence with any constant symbols.

The set of basic variables now includes the number variable #Pub itself, and

variables for the application of each random function to all arguments that exist in

any possible world. Figure 4 shows the BN over these variables. Note that we have

an infinite sequence of Title variables: if we had a finite number, our BN would

not define probabilities for worlds with more than that number of publications. We

stipulate that if a basic variable has an object o as an argument, then in worlds

where o does not exist, the variable takes on the special value null. Thus, #Pub

is a parent of each Title(p) variable, determining whether that variable takes the

value null or not. The set of publications available for selection in the dependency

221

Brian Milch and Stuart Russell

#Researcher ∼ NumResearchersPrior()

Position(r) ∼ [0.7 : GradStudent, 0.2 : PostDoc, 0.1 : Prof]

#Pub(FirstAuthor = r) ∼ NumPubsCPD(Position(r))

Figure 5. Dependency statements that augment our bibliography model to represent

a set of researchers, the position of each researcher, and the set of first-authored

publications by each researcher.

statement for PubCited(c) also depends on the number variable.

Objects of a given type may be generated by more than one event in the generative

process. For instance, if we include objects of type Researcher in our model and

add a function FirstAuthor(p) that maps publications to researchers, we may wish

to say that each researcher independently generates a crop of papers on which

he or she is the first author. The number of papers generated may depend on

the researcher’s position (graduate student, professor, etc.). We now get a family

of number variables #Pub(FirstAuthor = r), where r ranges over researchers. The

number of researchers may itself be governed by a number variable. Figure 5 shows

the dependency statements for these aspects of the scenario.

In this model, FirstAuthor(p) is an origin function: in the generative model un-

derlying the OUPM, it is set when p is created, not in a separate generative step.

The values of origin functions on an object tell us which number variable gov-

erns that object’s existence; for example, if FirstAuthor(p) is 〈Researcher , 5 〉, then

#Pub(FirstAuthor = 〈Researcher , 5 〉) governs the existence of p. Origin functions

can also be used in dependency statements, just like any other function: for in-

stance, we might change the dependency statement for PubCited(c) so that more

significant publications are more likely to be cited, with the significance of a publi-

cation p being influenced by Position(FirstAuthor(p)).

In the scenario we have considered so far, each possible world contains finitely

many Researcher and Pub objects. OUPMs can also accommodate infinite numbers

of objects. For instance, we could define a model for academia where each researcher

r generates a random number of new researchers r′ such that Advisor(r′) = r. Some

possible worlds in this model may contain infinitely many researchers.

3.2 Possible worlds and basic random variables

In defining the semantics of RPMs, we said that a model M defines a BN over its

basic random variables VM , and then we exploited the one-to-one correspondence

between full instantiations of those variables and possible worlds. In an OUPM,

however, there may be instantiations of the basic random variables that do not

correspond to any possible world. An example in our bibliography scenario is an

222

Open-Universe Probability Models

instantiation where #Pub = 100, but Title(p) takes on a non-null value for 200

publications.

To facilitate using the basic variables to define a probability measure over the

possible worlds, we would like to have a one-to-one mapping between ΩM and a

set of achievable instantiations of VM . This is straightforward in cases like our

first OUPM, where there is only one number variable for each type of object. Then

our semantics specifies that the non-guaranteed objects of each type—that is, the

objects that exist in some possible worlds and not others, like the publications in our

example—are pairs 〈Pub, 1 〉, 〈Pub, 2 〉, In each world, the set of non-guaranteed

objects of each type that exist is required to be a prefix of this numbered sequence.

Thus, if we know that #Pub = 4 in a world ω, we know that the publications in ω

are 〈Pub, 1 〉 through 〈Pub, 4 〉, not some other set of non-guaranteed objects.

Things are more complicated when we have multiple number variables for a type,

as in our example with researchers generating publications. Given values for all the

number variables of the form #Pub(FirstAuthor = r), we do not want there to be

any uncertainty about which non-guaranteed objects have each FirstAuthor value.

We can achieve this by letting the non-guaranteed objects be nested tuples that

encode their generation history. For the publications with 〈Researcher , 5 〉 as their

first author, we use tuples

〈Pub, 〈FirstAuthor, 〈Researcher, 5〉〉, 1 〉

〈Pub, 〈FirstAuthor, 〈Researcher, 5〉〉, 2 〉

and so on. As before, in each possible world, the set of tuples in each sequence must

form a prefix of the sequence. This construction yields the following lemma.

LEMMA 1. In any OUPM M , each complete instantiation of VM is consistent

with at most one possible world in ΩM .

Section 4.3 of Milch [2006] gives a more rigorous formulation and proof of this

result. Given this lemma, the probability measure defined by an OUPM M on ΩM

is well-defined if the OUPM specifies a joint probability distribution for VM that

is concentrated on the set of achievable instantiations. Since the OUPM’s CPDs

implicitly force a variable to take the value null when any of its arguments do not

exist, any distribution consistent with the CPDs will indeed put probability one on

achievable instantiations.

Informally, the probability distribution for the basic random variables can be de-

fined by a generative process that builds up an instantiation step-by-step, sampling

a value for each variable according to its dependency statement. In the next section,

we show how this intuitive semantics can be formalized using an extended version

of Bayesian networks.

4 Extending BN semantics

There are two equivalent ways of defining the probability distribution represented

by a BN B. The first is based on conditional independence statements; specifically,

223

Brian Milch and Stuart Russell

#Pub ∼ NumPubsPrior()

Title(p) ∼ TitlePrior()

Date(c) ∼ DatePrior()

SourceCopied(c) ∼ [0.9 : null,

0.1 : Uniform({Citation c2 :

(PubCited(c2) =PubCited(c))

∧ (Date(c2) < Date(c))})]

CitTitle(c) ∼ if SourceCopied(c) = null

then TitleEditCPD(Title(PubCited(c)))

else TitleEditCPD(CitTitle(SourceCopied(c)))

Figure 6. Dependency statements for a model where each citation was written on

some date, and a citation may copy the title from an earlier citation of the same

publication rather than copying the publication title directly.

the directed local Markov property: each variable is conditionally independent of

its non-descendants given its parents. The second is based on a product expression

for the joint distribution; if σ is any instantiation of the full set of variables VB in

the BN, then

P (σ) =
∏

X∈VB

ϕX (σ[X], σ [Pa(X)]) .

The remarkable property of BNs is that if the graph is finite and acyclic, then there

is guaranteed to be exactly one joint distribution that satisfies these conditions.

4.1 Infinite sets of variables

Note that in the BN in Figure 4, the CitTitle(c) variables have infinitely many par-

ents. The fact that the BN has infinitely many nodes means that we can no longer

use the standard product-expression semantics for the BN, because the product of

the CPDs for all variables is an infinite product, and will typically be zero for all

values of the variables. We would like to specify probabilities for certain partial, fi-

nite instantiations of the variables that are sufficient to define the joint distribution.

As noted by Kersting and DeRaedt [2001], if it is possible to number the nodes of

the BN in topological order, then it suffices to specify the product expression for

each finite prefix of this numbering. However, if a variable has infinitely many par-

ents, then the BN has no topological numbering—if we try numbering the nodes in

topological order, we will spend forever on X’s parents and never reach X.

224

Open-Universe Probability Models

Source(C2)Source(C1)

CitTitle(C1) CitTitle(C2)

Date(C1)

Date(C2)

Figure 7. Part of the BN defined by the OUPM in Figure 6, for two citations.

4.2 Cyclic sets of potential dependencies

In OUPMs and even RPMs with relational uncertainty, it is fairly easy to write

dependency statements that define a cyclic BN. For instance, suppose that some

citations are composed by copying another citation, and we do not know who copied

whom. We can specify a model where each citation was written at some unknown

date, and with probability 0.1, a citation copies an earlier citation to the same

publication if one exists. Figure 6 shows the dependency statements for this model.

(Note that Date here is the date the citation was written, i.e., the date of the citing

paper, not the date of the paper being cited.)

The BN defined by this OUPM is cyclic, as shown in Figure 7. In general, a

cyclic BN may fail to define a distribution; there may be no joint distribution with

the specified CPDs. However, in this case, it is intuitively clear that that cannot

happen. Since a citation can only copy another citation with a strictly earlier date,

the dependencies that are active in any positive-probability world must be acyclic.

There are actually elements of the possible world set ΩM where the dependencies

are cyclic: these are worlds where, for some citation c, SourceCopied(c) does not

have an earlier date than c. But the CPD for SourceCopied forces these worlds to

have probability zero.

The difficult aspect of semantics for this class of cyclic BNs is the directed local

Markov property. It is no longer sufficient to assert that X is independent of its non-

descendants in the full BN given its parents, because its set of non-descendants in

the full BN may be too small. In this model, all the CitTitle nodes are descendants of

each other, so the standard directed local Markov property would yield no assertions

of conditional independence between them.

225

Brian Milch and Stuart Russell

4.3 Partition-based semantics for OUPMs

We can solve these difficulties by exploiting the context-specific nature of dependen-

cies in an OUPM, as revealed by dependency statements.1 For each basic random

variable X, an OUPM defines a partition ΛX of ΩM . Two worlds are in the same

block of this partition if evaluating the dependency statement for X in these two

worlds yields the same conditional distribution for X. For instance, in our OUPM

for the bibliography domain, the partition blocks for CitTitle(Cit1) are sets of worlds

that agree on the value of Title(PubCited(Cit1)). For each block λ ∈ ΛX , the OUPM

defines a probability distribution ϕX (x, λ) over values of X.

One defining property of the probability measure PM specified by an OUPM M

is that for each basic random variable X ∈ VM and each partition block λ ∈ ΛX ,

PM (X = x |λ) = ϕX (x, λ) (1)

To fully define PM , however, we need to make an assertion analogous to a BN’s

factorization property or directed local Markov property. We will say that a partial

instantiation σ supports a random variable X if there is some block λ ∈ ΛX such

that σ ⊆ λ. An instantiation that supports X in an OUPM is an analogous to

an instantiation that assigns values to all the parents of X in a BN. We define an

instantiation σ to be self-supporting if for each variable X ∈ vars(σ), the restriction

of σ to vars(σ) \ {X} (denoted σ−X) supports X. We can now state a factorization

property for OUPMs.

PROPERTY 2 (Factorization property for an OUPM M). For each finite, self-

supporting instantiation σ on VM ,

PM (σ) =
∏

X∈vars(σ)

ϕX (σ[X], λX(σ−X))

where λX(σ−X) is the partition block in ΛX that has σ−X as a subset.

We can also define an analogue of the directed local Markov property for OUPMs.

Recall that in the BN case, the directed local Markov property asserts that X is

conditionally independent of every subset of its non-descendants given Pa(X). In

fact, it turns out to be sufficient to make this assertion for only a special class of

non-descendant subsets, namely those that are ancestral (closed under the parent

relation). Any ancestral set of variables that does not contain X contains only

non-descendants of X. So in the BN case, we can reformulate the directed local

Markov property to assert that given Pa(X), X is conditionally independent of any

ancestral set of variables that does not contain X.

In OUPMs, the equivalent of a variable set that is closed under the parent relation

is a self-supporting instantiation. We can formulate the directed local Markov

property for an OUPM M as follows:

1We will assume all random variables are discrete in this treatment, but the ideas can be

extended to the continuous case.

226

Open-Universe Probability Models

PROPERTY 3 (Directed local Markov property for an OUPM M). For each basic

random variable X ∈ VM , each block λ ∈ ΛX , and each self-supporting instanti-

ation σ on VM such that X /∈ vars(σ), X is conditionally independent of σ given

λ.

Under what conditions is there a unique probability measure PM on ΩM that

satisfies Properties 2 and 3? In the BN case, it suffices for the graph to admit a

topological numbering. We can define a similar notion that is specific to individual

worlds: a supportive numbering for a world ω ∈ ΩM is a numbering X0, X1, . . . of

VM such that for each natural number n, the instantiation (X0(ω), . . . , Xn−1(ω))

supports Xn.

THEOREM 4. Let M be an OUPM such that for every world ω ∈ ΩM , either:

• ω has a supportive numbering, or

• for some basic random variable X ∈ VM , ϕX (X(ω), λX(ω)) = 0.

Then there is exactly one probability measure on ΩM satisfying the factorization

property (Property 2), and it is also the unique probability measure that satisfies

both Equation 1 and the directed local Markov property (Property 3).

This theorem follows from Lemma 1 and results proved in Section 3.4 of Milch

[2006]. Note that the theorem does not require supportive numberings for worlds

that are directly disallowed—that is, those that are forced to have probability zero

by the CPD for some variable.

In our basic bibliography scenario with unknown publications, we can construct a

supportive numbering for each possible world ω by taking first the number variable

#Pub, then the PubCited(c) variables, then the Title(p) variables for the publications

that serve as values of PubCited(c) variables in ω, then the CitTitle(c) variables,

and finally the infinitely many Title(p) variables for publications that are uncited

or do not exist in ω. For the scenario where citation titles can be copied from

earlier citations, we have to add the Date(c) variables and then the SourceCopied(c)

variables before the CitTitle(c) variables. We order the CitTitle(c) variables in a way

that is consistent with Date(c). This procedure yields a supportive numbering in

all worlds except those where ∃c Date(SourceCopied(c)) ≥ Date(c), but such worlds

are directly disallowed by the CPD for SourceCopied(c).

4.4 Representing OUPMs as contingent Bayesian networks

The semantics we have given for OUPMs so far does not make reference to any

graph. But we can also view an OUPM as defining a contingent Bayesian network

(CBN) [Milch et al. 2005], which is a BN where each edge is labeled with an event.

The event indicates when the edge is active, in a sense we will soon make precise.

Figures 8 and 9 show CBNs corresponding to the infinite BN in Figure 4 and the

cyclic BN in Figure 7, respectively.

227

Brian Milch and Stuart Russell

Title((Pub,2))Title((Pub,1)) Title((Pub,3))

CitTitle(C1) CitTitle(C2)

PubCited(C1) PubCited(C2)

#Pub

P
u
b
C
ite
d
(C
1
)=
(P
u
b
,1
)

P
u
b
C
ite
d
(C
2
)=
(P
u
b
,2
)

PubCited(C2)=(Pub,1)

P
u
b
C
it
e
d
(C
1
)=
(P
u
b
,2
)

P
u
b
C
it
e
d
(C
2
)=
(P
u
b
,3
)

Pu
bC
ite
d(C
1)=
(P
ub
,3
)

Figure 8. A contingent BN for the bibliography scenario with unknown objects.

Source(C2)Source(C1)

CitTitle(C1) CitTitle(C2)

Date(C1)

Date(C2)

Source(C2)=C1

Source(C1)=C2

Figure 9. Part of a contingent BN for the OUPM in Figure 6.

A CBN can be viewed as a partition-based model where the partition ΛX for each

random variable X is defined by a decision tree. The internal nodes in this decision

tree are labeled with random variables; the edges are labeled with variable values;

and the leaves specify conditional probability distributions for X. The blocks in

ΛX correspond to the leaves in this tree (we assume the tree has no infinite paths,

so the leaves cover all possible worlds). The restriction to decision trees allows us

to define a notion of a parent being active in a particular world: if we walk along

X’s tree from the root, following edges consistent with a given world ω, then the

random variables on the nodes we visit are the active parents of X in ω. The label

on an edge W → X in a CBN is the event consisting of those worlds where W is an

active parent of X. (In diagrams, we omit the trivial label A = ΩM , which indicates

that the dependency is always active.)

228

Open-Universe Probability Models

The abstract notions of a self-supporting instantiation and a supportive number-

ing have simple graphical analogues in a CBN. We will use Bσ to denote the BN

obtained from a CBN B by keeping only those edges whose conditions are entailed

by σ. An instantiation σ supports a variable X if and only if all the parents of X

in Bσ are in vars(σ), and it is self-supporting if and only if vars(σ) is an ancestral

set in Bσ. A supportive numbering for a world ω is a topological numbering of

the BN Bω obtained by keeping only those edges whose conditions are satisfied by

ω. Thus, the well-definedness condition in Theorem 4 can be stated for CBNs as

follows: for each world ω ∈ ΩM that is not directly disallowed, Bω must have a

topological numbering.

Not all partitions can be represented exactly as the leaves of a decision tree, so

there are sets of context-specific independence properties that can be captured by

OUPMs and not CBNs. However, when we perform inference on an OUPM, we

typically use a function that evaluates the dependency statement for each variable,

looking up the values of other random variables in a given world (or partial instan-

tiation) as needed. For example, a function evaluating the dependency statement

for CitTitle(Cit1) will always access PubCited(Cit1), and then it will access a partic-

ular Title variable depending on the value of the PubCited variable. This evaluation

process implicitly defines a decision tree; the order of splits in the tree depends on

the evaluation order used. When we discuss inference for OUPMs, we will assume

that we are operating on the CBN implicitly defined by some evaluation function.

5 Inference

Given an OUPM, we would like to be able to compute the probability of a query

event Q given an evidence event E. For example, Q could be the event that

PubCited(Cit1) = PubCited(Cit2) and E could be the event that CitTitle(Cit1) =

“Learning Probabilistic Relational Models” and CitTitle(Cit2) = “Learning Prob-

abilitsic Relation Models”. The ideas we present can be extended to other tasks

such as computing the posterior distribution of a random variable, or finding the

maximum a posteriori (MAP) assignment of values to a set of random variables.

5.1 MCMC over partial worlds

Sampling-based or Monte Carlo inference algorithms are well-suited for OUPMs

because each sample specifies what objects exist and what relations hold among

them. We focus on Markov chain Monte Carlo (MCMC), where we simulate a

Markov chain over possible worlds consistent with the evidence E, such that the

stationary distribution of the chain is the posterior distribution over worlds given E.

Such a chain can be constructed using the Metropolis–Hastings method, where we

use an arbitrary proposal distribution q(ω′|ωt), but accept or reject each proposal

based on the relative probabilities of ω′ and ωt.

Specifically, at each step t in our Markov chain, we sample ω′ from q(ω′|ωt) and

229

Brian Milch and Stuart Russell

then compute the acceptance probability :

α = min

(

1,
PM (ω′)q(ωt|ω

′)

PM (ωt)q(ω′|ωt)

)

.

With probability α, we accept the proposal and let ωt+1 = ω′; otherwise we reject

the proposal and let ωt+1 = ωt.

The difficulty in OUPMs is that each world may be very large. For instance, if we

have a world where #Pub = 1000, but only 100 publications are referred to by our

observed citations, then the world must also specify the titles of the 900 unobserved

publications. Sampling values for these 900 Title variables and computing their

probabilities will slow down our algorithm unnecessarily. In scenarios where some

possible worlds have infinitely many objects, specifying a possible world completely

may be impossible.

Thus, we would like to run MCMC over partial descriptions that specify values

only for certain random variables. The set of instantiated variables may vary from

world to world. Since a partial instantiation σ defines an event (the set of worlds

that are consistent with it), a Markov chain over partial instantiations can be viewed

as a chain over events. Thus, we use the acceptance probability:

α = min

(

1,
PM (σ′)q(σt|σ

′)

PM (σt)q(σ′|σt)

)

where PM (σ) is the probability of the event σ. As long as the set Σ of partial

instantiations that can be returned by q forms a partition of E, and each partial

instantiation is specific enough to determine whether Q is true, we can estimate

P (Q|E) using a Markov chain on Σ with stationary distribution proportional to

PM (σ) [Milch and Russell 2006].

In general, computing the probability PM (σ) involves summing over all the vari-

ables not instantiated in σ—which is precisely what we want to avoid by using

a Monte Carlo inference algorithm. Fortunately, if each instantiation in Σ is self-

supporting, we can compute its probability using the product expression from Prop-

erty 2. Thus, our partial worlds are self-supporting instantiations that include the

query and evidence variables. We also make sure to use minimal instantiations sat-

isfying this condition—that is, instantiations that would cease to be self-supporting

if we removed any non-query, non-evidence variable. It can be shown that in a

CBN, such minimal self-supporting instantiations are mutually exclusive . So if our

set of partial worlds Σ covers all of E, we are guaranteed to have a partition of E,

as required. An example of a partial world in our bibliography scenario is:

#Pub = 50, CitTitle(Cit1) = “Calculus”, CitTitle(Cit2) = “Intro to Calculus”,

PubCited(Cit1) = 〈Pub, 17 〉, PubCited(Cit2) = 〈Pub, 31 〉,

Title(〈Pub, 17 〉) = “Calculus”,Title(〈Pub, 31 〉) = “Intro to Calculus”

230

Open-Universe Probability Models

5.2 Abstract partial worlds

In the partial instantiation above, we specify the tuple representation of each publi-

cation, as in PubCited(Cit1) = 〈Pub, 17 〉. If partial worlds are represented this way,

then the code that implements the proposal distribution has to choose numbers for

any new objects it adds, keep track of the probability of its choices, and compute

the probability of the reverse proposal. Some kinds of moves are impossible unless

the proposer renumbers the objects: for instance, the total number of publications

cannot be decreased from 1000 to 900 when publication 941 is in use.

To simplify the proposal distribution, we can use partial worlds that abstract

away the identities of objects using existential quantifiers:

∃ distinct x, y

#Pub = 50, CitTitle(Cit1) = “Calculus”, CitTitle(Cit2) = “Intro to Calculus”,

PubCited(Cit1) = x,PubCited(Cit2) = y,

Title(x) = “Calculus”, Title(y) = “Intro to Calculus”

The probability of the event corresponding to an abstract partial world depends on

the number of ways the logical variables can be mapped to distinct objects. For

simplicity, we will assume that there is only one number variable for each type.

If an abstract partial world σ uses logical variables for a type τ , we require it to

instantiate the number variable for that type. We also require that for each logical

variable x, there is a distinct ground term tx such that σ implies tx = x; this ensures

that each mapping from logical variables to tuple representations yields a distinct

possible world. Let T be the set of types of logical variables in σ, and for each type

τ ∈ T , let nτ be the value of #τ in σ and ℓτ be the number of logical variables of

type τ in σ. Then we have:

P (σ) = Pc(σ)
∏

τ∈T

nτ !

(nτ − ℓτ)!

where Pc(σ) is the probability of any one of the “concrete” instantiations obtained

by substituting distinct tuple representations for the logical variables in σ.

5.3 Locality of computation

Given a current instantiation σt and a proposed instantiation σ′, computing the

acceptance probability involves computing the ratio:

PM (σ′)q(σt|σ
′)

PM (σt)q(σ′|σt)
=

q(σt|σ
′)

∏

X∈vars(σ′) ϕX (σ′[X], σ′ [Paσ′(X)])

q(σ′|σt)
∏

X∈vars(σt)
ϕX (σt[X], σt [Paσt

(X)])

where Paσ(X) is the set of parents of X whose edge conditions are entailed by

σ. This expression is daunting, because even though the instantiations σt and

σ′ are only partial descriptions of possible worlds, they may still assign values to

large sets of random variables — and the number of instantiated variables grows at

least linearly with the number of observations we have. Since we may want to run

231

Brian Milch and Stuart Russell

millions of MCMC steps, having each step take time proportional to the number of

observations would make inference prohibitively expensive.

Fortunately, with most proposal distributions used in practice, each step changes

the values of only a small set of random variables. Furthermore, if the edges that

are active in any given possible world are fairly sparse, then σ [Paσ′(X)] will also

be the same as σt [Paσt
(X)] for many variables X. Thus, many factors will cancel

out in the ratio above.

We need to compute the “new” and “old” probability factors for a variable X

only if either σ′[X] 6= σt[X], or there is some active parent W ∈ Paσt
(X) such that

σ′[W] 6= σt[W]. (We take these inequalities to include the case where σ′ assigns a

value to the variable and σt does not, or vice versa.) Note that it is not possible

for Paσ′(X) to be different from Paσt
(X) unless one of the “old” active parents in

Paσt
(X) has changed: given that σt is a self-supporting instantiation, the values

of X’s instantiated parents in σt determine the truth values of the conditions on

all the edges into X, so the set of active edges into X cannot change unless one of

these parent variables changes.

This fact is exploited in the Blog system [Milch and Russell 2006] to efficiently

detect which probability factors need to be computed for a given proposal. The

system maintains a graph of the edges that are active in the current instantiation σt.

The proposer provides a list of the variables that are changed in σ′, and the system

follows the active edges in the graph to identify the children of these variables,

whose probability factors also need to be computed. Thus, the graphical locality

that is central to many other BN inference algorithms also plays a role in MCMC

over relational structures.

6 Related work

The connection between probability and first-order languages was first studied by

Carnap [1950]. Gaifman [1964] and Scott and Krauss [1966] defined a formal se-

mantics whereby probabilities could be associated with first-order sentences and for

which models were probability measures on possible worlds. Within AI, this idea

was developed for propositional logic by Nilsson [1986] and for first-order logic by

Halpern [1990]. The basic idea is that each sentence constrains the distribution over

possible worlds; one sentence entails another if it expresses a stronger constraint.

For example, the sentence ∀xP (Hungry(x)) > 0.2 rules out distributions in which

any object is hungry with probability less than 0.2; thus, it entails the sentence

∀xP (Hungry(x)) > 0.1. Bacchus [1990] investigated knowledge representation is-

sues in such languages. It turns out that writing a consistent set of sentences in

these languages is quite difficult and constructing a unique probability model nearly

impossible unless one adopts the representational approach of Bayesian networks

by writing suitable sentences about conditional probabilities.

The impetus for the next phase of work came from researchers working with

BNs directly. Rather than laboriously constructing large BNs by hand, they built

232

Open-Universe Probability Models

them by composing and instantiating “templates” with logical variables that de-

scribed local causal models associated with objects [Breese 1992; Wellman et al.

1992]. The most important such language was Bugs (Bayesian inference Using

Gibbs Sampling) [Gilks et al. 1994], which combined Bayesian networks with the

indexed-random-variable notation common in statistics. These languages inherited

the key property of Bayesian networks: every well-formed knowledge base defines a

unique, consistent probability model. Languages with well-defined semantics based

on unique names and domain closure drew on the representational capabilities of

logic programming [Poole 1993; Sato and Kameya 1997; Kersting and De Raedt

2001] and semantic networks [Koller and Pfeffer 1998; Pfeffer 2000]. Initially, in-

ference in these models was performed on the equivalent Bayesian network. Lifted

inference techniques borrow from first-order logic the idea of performing an inference

once to cover an entire equivalence class of objects [Poole 2003; de Salvo Braz et al.

2007; Kisynski and Poole 2009]. MCMC over relational structures was introduced

by Pasula and Russell [2001]. Getoor and Taskar [2007] collect many important

papers on first-order probability models and their use in machine learning.

Probabilistic reasoning about identity uncertainty has two distinct origins. In

statistics, the problem of record linkage arises when data records do not contain

standard unique identifiers—for example, in financial, medical, census, and other

data [Dunn 1946; Fellegi and Sunter 1969]. In control theory, the problem of data

association arises in multitarget tracking when each detected signal does not identify

the object that generated it [Sittler 1964]. For most of its history, work in symbolic

AI assumed erroneously that sensors could supply sentences with unique identifiers

for objects. The issue was studied in the context of language understanding by

Charniak and Goldman [1993] and in the context of surveillance by Huang and

Russell [1998] and Pasula et al. [1999]. Pasula et al. [2003] developed a complex

generative model for authors, papers, and citation strings, involving both relational

and identity uncertainty, and demonstrated high accuracy for citation information

extraction. The first formally defined language for open-universe probability models

was Blog [Milch et al. 2005], from which the material in the current chapter was

developed. Laskey [2008] describes another open-universe modeling language called

multi-entity Bayesian networks.

Another important thread goes under the name of probabilistic programming

languages, which include Ibal [Pfeffer 2007] and Church [Goodman et al. 2008].

These languages represent first-order probability models using a programming lan-

guage extended with a randomization primitive; any given “run” of a program can

be seen as constructing a possible world, and the probability of that world is the

probability of all runs that construct it.

The OUPMs we have described here bear some resemblance to probabilistic pro-

grams, since each dependency statement can be viewed as a program fragment for

sampling a value for a child variable. However, expressions in dependency state-

ments have different semantics from those in a probabilistic functional language

233

Brian Milch and Stuart Russell

such as Ibal: if an expression such as Title(Pub5) is evaluated in several depen-

dency statements in a given possible world, it returns the same value every time,

whereas the value of an expression in Ibal is sampled independently each time it ap-

pears. The Church language incorporates aspects of both approaches: it includes

a stochastic memoization construct that lets the programmer designate certain ex-

pressions as having values that are sampled once and then reused. McAllester et al.

[2008] define a probabilistic programming language that makes sources of random

bits explicit and has a possible-worlds semantics similar to OUPMs.

This chapter has described generative, directed models. The combination of

relational and first-order notations with (undirected) Markov networks is also inter-

esting [Taskar et al. 2002; Richardson and Domingos 2006]. Undirected formalisms

are convenient because there is no need to avoid cycles. On the other hand, an es-

sential assumption underlying relational probability models is that one set of CPD

parameters is appropriate for a wide range of relational structures. For instance, in

our RPMs, the prior for a publication’s title does not depend on how many citations

refer to it. But in an undirected model, adding more citations to a publication (and

thus more potentials linking Title(p) to CitTitle(c) variables) will usually change

the marginal on Title(p), even when none of the CitTitle(c) values are observed.

This suggests that all the potentials must be learned jointly on a training set with

roughly the same distribution of relational structures as the test set; in the directed

case, we are free to learn different CPDs from different data sources.

7 Discussion

This chapter has stressed the importance of unifying probability theory with first-

order logic—particularly for cases with unknown objects—and has presented one

possible approach based on open-universe probability models, or OUPMs. OUPMs

draw on the key idea introduced into AI by Judea Pearl: generative probability

models based on local conditional distributions. Whereas BNs generate worlds by

assigning values to variables one at a time, relational models can assign values to a

whole class of variables through a single dependency assertion, while OUPMs add

object creation as one of the generative steps.

OUPMs appear to enable the straightforward representation of a wide range

of situations. In addition to the citation model mentioned in this chapter (see

Milch [2006] for full details), models have been written for multitarget tracking,

plan recognition, sibyl attacks (a security threat in which a reputation system is

compromised by individuals who create many fake identities), and detection of

nuclear explosions using networks of seismic sensors [Russell and Vaidya 2009]. In

each case, the model is essentially a transliteration of the obvious English description

of the generative process.

Inference, however, is another matter. The generic Metropolis–Hastings inference

engine written for Blog in 2006 is far too slow to support any of the applications

described in the preceding paragraph. For the citation problem, Milch [2006] de-

234

Open-Universe Probability Models

scribes an application-specific proposal distribution for the generic M–H sampler

that achieves speeds comparable to a completely hand-coded, application-specific

inference engine. This approach is feasible in general but requires a significant cod-

ing effort by the user. Current efforts in the Blog project are aimed instead at

improving the generic engine: implementing a generalized Gibbs sampler for struc-

turally varying models; enabling the user to specify blocks of variables that are to be

sampled jointly to avoid problems with slow mixing; borrowing compiler techniques

from the logic programming field to reduce the constant factors; and building in

parametric learning. With these changes, we expect Blog to be usable over a wide

range of applications with only minimal user intervention.

References

Bacchus, F. (1990). Representing and Reasoning with Probabilistic Knowledge.

MIT Press.

Breese, J. S. (1992). Construction of belief and decision networks. Computational

Intelligence 8 (4), 624–647.

Carnap, R. (1950). Logical Foundations of Probability. Univ. of Chicago Press.

Charniak, E. and R. P. Goldman (1993). A Bayesian model of plan recognition.

Artificial Intelligence 64 (1), 53–79.

de Salvo Braz, R., E. Amir, and D. Roth (2007). Lifted first-order probabilis-

tic inference. In L. Getoor and B. Taskar (Eds.), Introduction to Statistical

Relational Learning. MIT Press.

Dunn, H. L. (1946). Record linkage. Am. J. Public Health 36 (12), 1412–1416.

Fellegi, I. and A. Sunter (1969). A theory for record linkage. J. Amer. Stat. As-

soc. 64, 1183–1210.

Gaifman, H. (1964). Concerning measures in first order calculi. Israel J. Math. 2,

1–18.

Getoor, L. and B. Taskar (Eds.) (2007). Introduction to Statistical Relational

Learning. MIT Press.

Gilks, W. R., A. Thomas, and D. J. Spiegelhalter (1994). A language and program

for complex Bayesian modelling. The Statistician 43 (1), 169–177.

Goodman, N. D., V. K. Mansinghka, D. Roy, K. Bonawitz, and J. B. Tenenbaum

(2008). Church: A language for generative models. In Proc. 24th Conf. on

Uncertainty in AI.

Halpern, J. Y. (1990). An analysis of first-order logics of probability. Artificial

Intelligence 46, 311–350.

Huang, T. and S. J. Russell (1998). Object identification: A Bayesian analysis

with application to traffic surveillance. Artificial Intelligence 103, 1–17.

235

Brian Milch and Stuart Russell

Kersting, K. and L. De Raedt (2001). Adaptive Bayesian logic programs. In

Proc. 11th International Conf. on Inductive Logic Programming, pp. 104–117.

Kisynski, J. and D. Poole (2009). Lifted aggregation in directed first-order prob-

abilistic models. In Proc. 21st International Joint Conf. on Artificial Intelli-

gence, pp. 1922–1929.

Koller, D. and A. Pfeffer (1998). Probabilistic frame-based systems. In Proc. 15th

AAAI National Conf. on Artificial Intelligence, pp. 580–587.

Laskey, K. B. (2008). MEBN: A language for first-order Bayesian knowledge

bases. Artificial Intelligence 172, 140–178.

McAllester, D., B. Milch, and N. D. Goodman (2008). Random-world semantics

and syntactic independence for expressive languages. Technical Report MIT-

CSAIL-TR-2008-025, Massachusetts Institute of Technology.

Milch, B., B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov (2005).

BLOG: Probabilistic models with unknown objects. In Proc. 19th Interna-

tional Joint Conf. on Artificial Intelligence, pp. 1352–1359.

Milch, B., B. Marthi, D. Sontag, S. Russell, D. L. Ong, and A. Kolobov (2005).

Approximate inference for infinite contingent Bayesian networks. In Proc. 10th

International Workshop on Artificial Intelligence and Statistics.

Milch, B. and S. Russell (2006). General-purpose MCMC inference over relational

structures. In Proc. 22nd Conf. on Uncertainty in Artificial Intelligence, pp.

349–358.

Milch, B. C. (2006). Probabilistic Models with Unknown Objects. Ph.D. thesis,

Univ. of California, Berkeley.

Nilsson, N. J. (1986). Probabilistic logic. Artificial Intelligence 28 (1), 71–87.

Pasula, H., B. Marthi, B. Milch, S. Russell, and I. Shpitser (2003). Identity uncer-

tainty and citation matching. In Advances in Neural Information Processing

Systems 15. MIT Press.

Pasula, H. and S. Russell (2001). Approximate inference for first-order proba-

bilistic languages. In Proc. 17th International Joint Conf. on Artificial Intel-

ligence, pp. 741–748.

Pasula, H., S. J. Russell, M. Ostland, and Y. Ritov (1999). Tracking many ob-

jects with many sensors. In Proc. 16th International Joint Conf. on Artificial

Intelligence, pp. 1160–1171.

Pfeffer, A. (2000). Probabilistic Reasoning for Complex Systems. Ph.D. thesis,

Stanford Univ.

Pfeffer, A. (2007). The design and implementation of IBAL: A general-purpose

probabilistic language. In L. Getoor and B. Taskar (Eds.), Introduction to

Statistical Relational Learning. MIT Press.

236

Open-Universe Probability Models

Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks. Artificial

Intelligence 64 (1), 81–129.

Poole, D. (2003). First-order probabilistic inference. In Proc. 18th International

Joint Conf. on Artificial Intelligence, pp. 985–991.

Richardson, M. and P. Domingos (2006). Markov logic networks. Machine Learn-

ing 62, 107–136.

Russell, S. and S. Vaidya (2009). Machine learning and data mining for Com-

prehensive Test Ban Treaty monitoring. Technical Report LLNL-TR-416780,

Lawrence Livermore National Laboratory.

Sato, T. and Y. Kameya (1997). PRISM: A symbolic–statistical modeling lan-

guage. In Proc. 15th International Joint Conf. on Artificial Intelligence, pp.

1330–1335.

Scott, D. and P. Krauss (1966). Assigning probabilities to logical formulas. In

J. Hintikka and P. Suppes (Eds.), Aspects of Inductive Logic. North-Holland.

Sittler, R. W. (1964). An optimal data association problem in surveillance theory.

IEEE Trans. Military Electronics MIL-8, 125–139.

Taskar, B., P. Abbeel, and D. Koller (2002). Discriminative probabilistic models

for relational data. In Proc. 18th Conf. on Uncertainty in Artificial Intelli-

gence, pp. 485–492.

Wellman, M. P., J. S. Breese, and R. P. Goldman (1992). From knowledge bases

to decision models. Knowledge Engineering Review 7, 35–53.

237

14

A Heuristic Procedure for Finding Hidden

Variables

Azaria Paz

1 Introduction

This paper investigates Probabilistic Distribution (PD) induced independency rela-

tions which are representable by Directed Acyclic Graphs (DAGs), and are marginal-

ized over a subset of their variables. PD-induced relations have been shown in the

literature to be representable as relations that can be defined on various graphical

models. All those graphical models have two basic properties: They are compact,

i.e., the space required for storing such a model is polynomial in the number of vari-

ables, and they are decidable, i.e., a polynomial algorithm exists for testing whether

a given independency is represented in the model. In particular, two such mod-

els will be encountered in this paper; the DAG model and the Annotated Graph

(AG) model. The reader is supposed to be familiar with the DAG-model which was

studied extensively in the literature. An ample introduction to the DAG model is

included in Pearl [7, 1988], Pearl [8, 2000], and Lauritzen [2, 1996].1

The AG-model in a general form was introduced by Paz, Geva, and Studeny in

[5, 2000] and a restricted form of this model, which is all we need for this paper,

was introduced by Paz [3, 2003a] and investigated further in Paz [4, 2003b]. For

the sake of completeness, we shall reproduce here some of the basic definitions and

properties of those models which are relevant for this paper.

Given a DAG-representable PD-induced relation it is often the case that we need

to marginalize the relation over a subset of variables. Unfortunately it is seldom

the case that such a marginalized relation can be represented by a DAG, which is

an easy to manage and a well understood model.

In the paper [4, 2003] the author proved a set of necessary corelations for a given

AG to be equivalent to a DAG (see Lemma 1 in the next section). In the same paper

a decision procedure is given for checking whether a given AG which satisfies the

necessary conditions is equivalent to a DAG. Moreover, if the answer is ”yes”, the

procedure constructs an equivalent DAG to the given AG. In a subsequent paper

[6, 2006], the author generalizes the AG model and gives a procedure which enables

the representation of any marginalized DAG representable relation by a generalized

model.

1The main part of this work was done while the author visited the Cognitive Systems Laboratory

at UCLA and was supported in part by grants from Air Force, NSF and ONR (MURI).

239

Kaoru
Text Box
Return to TOC

Azaria Paz

2 Preliminaries

2.1 Definitions and notations

UGs will denote undirected graphs G = (V,E) where V is a set of vertices and E is

a set of undirected edges connecting between two vertices. Two vertices connected

by an edge are adjacent or neighbors. A path in G of length k is a sequence of

vertices v1 . . . vk+1 such that (vi, vi+1) is an edge in E for i < 1, . . . , k. A DAG is

an acyclic directed graph D = (V,E) where V is a set of vertices and E is a set of

directed arcs connecting between two vertices in V . A trail of length k in D is a

sequence v1 . . . vk+1 of vertices in V such that (vi, vi+1) is an arc in E for i = 1 . . . k.

If all the arcs on the trail are directed in the same direction then the trail is called

a directed path. If a directed path exists in D from vi to vj then vj is a descendant

of vi and vi is a predecessor or ancestor of vj . If the path is of length one then vi

is a parent of vj who is a child of vi.

The skeleton of a DAG is the UG derived from the DAG when the orientations

of the arcs are removed. A pattern of the form vi → vj ← vk is a collider pattern

where vj is the collider. If there is no arc between vi and vk then vj is an uncoupled

collider. The moralizing procedure is the procedure generating a UG from a DAG,

by first joining both parents of uncoupled colliders in the DAG by an arc, and then

removing the orientation of all arcs. The edges resulting from the coupling of the

uncoupled collider are called moral edges. As mentioned in the introduction UG’s

and DAG’s represent PD-induced relations whose elements are triplets t = (X; Y |Z)

over the set of vertices of the graphs. For a given triplet t we denote by v(t) the set

of vertices v(t) = X ∪ Y ∪ Z. Two graph models are equivalent if they represent

the same relation.

2.2 DAG-model

Let D = (V,E) be a DAG whose vertices are V and whose arcs are E. D represents

the relation R(D) = {t = (X; Y |Z)|t ∈ D} where X, Y, Z are disjoint subsets of V ,

the vertices in V represent variables in a PD, t is interpreted as “X is independent

of Y given Z” and t ∈ D means: t is represented in D. To check whether a given

triplet t is represented in D we use the Algorithm L1 below due to Lauritzen et al.

[1, 1990].

Algorithm L1:

Input : D = (V,E) and t = (X; Y |Z).

1. Let V ′ be the set of ancestors of v(t) = X ∪ Y ∪ Z and let D′(t) be the

subgraph of D over V ′.

2. Moralize D′(t) (i.e., join all uncoupled parents of uncoupled colliders in D′(t)).

Denote the resulting graph by D′′(t).

3. Remove all orientations in D′′(t) and denote the resulting UG by G(D′′(t)).

4. t ∈ G(D′′(t)) iff t ∈ D.

240

A Heuristic Procedure for Finding Hidden Variables

REMARK 1. t ∈ G where G is a UG if and only if Z is a cutset in G (not necessarily

minimal) between X and Y .

The definition above and the L1 Algorithm show that the DAG model is both

compact and decidable.

2.3 Annotated Graph – model

Let D = (V,E) be a DAG. We derive from D an AG A = (G, K) where G is a UG

And K is a set of elements K = {e = (d, r(d))} as follows: G is derived from D by

moralizing D and removing all orientations from it.

For every moral edge d in G we put an element e = (d, r(d)) in K such that

d(a, b), the domain of e, is the pair of endpoints of the moral edge and r(d), the

range of e, is the set of vertices including all the uncoupled colliders in D whose

parents are a and b, and all the successors of those colliders. Notice that d denotes

both a moral edge and the pair of its endpoints. The relation R(A) defined by the

AG A is the relation below:

R(A) = {t = (X; Y |Z)|t ∈ A}

In order to check whether t ∈ A we use the algorithm L2 due to Paz [3, 2003a]

below.

Algorithm L2

Input : An AG A = (G, K).

1. For every element e = (d, r(d)) in K such that r(d)∩v(t) = ∅ (v(t) = X ∪Y ∪

Z). Disconnect the edge (a, b) in G corresponding to d and remove from G

all the vertices in r(d) and incident edges. Denote the resulting UG by G(t).

2. t ∈ A if and only if t ∈ G(t).

REMARK 2. It is clear from the definitions and from the L2 Algorithm that the

AG model is both compact and decidable. In addition, it was shown in [3, 2003a]

that the AG model has the following uniqueness property: R(A1) = R(A2) implies

that A1 = A2 when A1 and A2 are AG’s. This property does not hold for DAG

models where it is possible for two different (and equivalent) DAGs to define the

same relation. In fact the AG (D) derived from a DAG D represents the equivalence

class of all DAGs which are equivalent to the given DAG D.

REMARK 3. The AGs derived from DAG’s are a particular case of AGs as defined

in Paz et al. [5, 2000] and there are additional ways to derive AGs that represent

PD-induced relations which are not DAG-representable. Consider e.g., the example

below. It was shown by Pearl [7, 1988 Ch. 3] that every DAG representable relation

is a PD-induced relation. Therefore the relation defined by the DAG in Fig. 1

represents a PD-induced relation.

241

Azaria Paz

f

e

dcba

Figure 1. DAG representing relation

If we marginalize this relation over the vertices e and f we get another rela-

tion, PD-induced, that can be represented by the AG A in Fig. 2, as will be

shown in the sequel, under the semantics of the L2 Algorithm, with R(A) =

c dba K= }
((b,d), {a})

((a,b),{c,d})
{

Figure 2. AG A representing a marginalized relation

{(a; b|∅), (b; d|c) + symmetric images}. But R(A) above cannot be represented by

a DAG. This follows from the following lemma that was proven in [4, 2003b].

LEMMA 1. Let (G(D),K(D)) be the annotated graph representation of a DAG

D. K(D) has the following properties:

1. For every element ((a, b), r) ∈ K(D), there is a vertex v ∈ r which is a child

of both a and b and every vertex w ∈ r is connected to some vertex v in r

whose parents are both a and b.

2. For any two elements (d1, r1), (d2, r2) in K(D), if d1 = d2 then r1 = r2.

3. For every ((a, b), r) ∈ K(D), (a, b) is an edge in G(D).

4. The set of elements K(D) is a poset (=partially ordered set) with regards to

the relation “�” defined as follows: For any two elements (dp, rp) and (dq, rq).

If dp∩rq 6= ∅ then (dp, rp) ≻ (dq, rq), in words “(dp, rp) is strictly greater than

(dq, rq)”. Moreover (dp, rp) ≻ (dq, rq) implies that rp ⊂ rq.

5. For any two elements (d1, r1) and (d2, r2) If r1 ∩ r2 6= ∅ and r1, r2 are not

a subset of one another, then there is an element (d3, r3) in K(D) such that

r3 ⊆ r1 ∩ r2.

242

A Heuristic Procedure for Finding Hidden Variables

As is easy to see the annotation, K in Fig. 2 does not satisfy the condition 4 of

the lemma since the first element in K is bigger than the second but it’s range is not

a subset of the range of the second element. Therefore A is not DAG-representable.

REMARK 4. An algorithm is provided in [3, 2003a] that tests whether a given AG,

possibly derived from a marginalized DAG relation, which satisfies the (necessary

but not sufficient) conditions in Lemma 1 above, is DAG-representable. The main

result of this work is to provide a polynomial algorithm which generates a “gener-

alized annotated graph” representation (concept to be defined in the sequel) which

is both compact and decidable. In some cases the generalized annotated graph re-

duces to a regular annotated graph which satisfies the condition of Lemma 1. If

this is the case than, using the testing algorithm in [4, 2003b] we can check whether

the given AG is DAG-representable. It is certainly not DAG-representable if the

generalized annotated graph is not a regular AG or is a regular AG but does not

satisfy the conditions of Lemma 1.

REMARK 5. When a given AG A is derived from a DAG then the annotation set

K = {(d, r(d))} can be interpreted as follows: The edge (a, b), in G, corresponding

to d, (a moral edge) represents a conditional dependency. That is: there is some

set of vertices, disjoint of r(d), Sab such that (aib|Sab) is represented in A but a

and b become dependent if any proper subset of r(d) is observed i.e., ¬(a; b|S) if

∅ 6= S ⊆ r(d).

In this paper we are concerned with the following problem: Given a relation which

is represented by a generalized UG model and is not representable by a DAG (see

[4, 2003]). Is it possible to find hidden variables such that the given relation results

from the marginalization of the DAG representable relation over the expanded set

of variables, including the hidden variables in addition to the given AG variables.

We do not have a full solution to this problem which is so far an open problem.

We present only a heuristic procedure, illustrated by several examples, for partially

solving the problem.

3 PD-induced relations not representable as a marginalized

DAG-representable relations-an example

While DAG’s are widely used as a model that can represent PD-induced relations

one may ask whether it might be possible to represent every PD-induced relation

either by a DAG or, assuming the existence of latent variables, by a marginalized

DAG. The answer to this question is negative as should be expected. A counterex-

ample is given below.

Consider the following PD-induced relation, over 3 variable x, y, and z, consisting

of two triplets only:

R = {(x; y|∅), (x; y|z) + symmetric triplets}

Then R cannot be represented by a marginalized DAG. To prove this claim

243

Azaria Paz

assume that there is a DAG D with n variables, including x, y and z such that

when D is marginalized over {x, y, z}, the marginalized DAG represents R. This

assumption leads to a contradiction: Since (x; z|∅) and (y; z|∅) are not in R there

must be trails πxz and πyz in D with no colliders included in them. Let πxy be the

concatenation of the two trails πxz and πzy (which is the trail πyz reversed). Then

πxy connects between x and y and has no colliders on it except perhaps the vertex

z. If z is a collider then (x; y|z) is not represented in D. If z is not a collider then

πxy has no colliders on it and therefore (x; y|∅) is not represented in D. Therefore

R cannot be represented by marginalizing D over {x, y, z}, a contradiction. That R

is a PD-induced relation was shown by Milan Studeny [9, private communication,

2000] as follows:

Consider the PD over the binary variables x, y and the ternary variable z. The

probability of the three variables for the different values of x, y, z is given below

p(0, 0, 0) = p(0, 0, 1) = p(1, 0, 1) = p(1, 0, 2) = 1
8

p(0, 1, 0) = p(1, 1, 1) = 1
4

p(x, y, z) = 0 for all other configurations

The reader can convince himself that the relation induced by the above PD is

the relation R = {(x; y|∅), (x; y|z)}. Notice however that the relation R above is

represented by the annotated graph below

G : x—z—y K = {((x, y), {z})}

see Paz [4, 2003b].

4 Finding Hidden Variables

In this section we consider the following problem. Given an AG which represents

a relation that is not DAG representable, e.g. the relation represented by the AG

shown in Fig. 2. Is it possible to find hidden variables which when added to the

variables of the given relation will enable the representation of the given relation

as a marginalized DAG representable relation, over the extra hidden variables. At

this stage of the research we do not have an algorithmic procedure for solving this

problem,a nd we do not have a characterization lemma, similar to Lemma 1 for AGs

representing marginalized DAG representable relations. We can however present a

heuristic procedure for tackling with this problem. We hope that it will be possible

to extend the procedure into a full algorithm in the future. The procedure will be

illustrated here by examples. The examples we will use however are such that we

know in advance that the problem can be solved for them. This is due to the fact

that we can not characterize so far the AG’s for which the problem is solvable, as

mentioned above. On the other hand we should keep in mind that not every PD-

induced relation can be represented as a marginalized DAG-representable relation,

as shown in the previous section.

244

A Heuristic Procedure for Finding Hidden Variables

4.1 Example 1

Consider the DAG D shown in Fig. 3. An equivalent AG, representing the same

relation [4, 2003b] is shown in Fig. 4 where the broken lines (edges) represent con-

ditional dependencies and correspond to uncoupled parents of colliders in Fig. 3.

Assume now that we want to marginalize the relation represented by the AG

shown in Fig. 4 over the variables p and q. Using the procedure given in [6, 2006]

we get a relation represented by the AG shown in Fig. 5 below.

The Derivation of the AG in Fig. 5 can be explained as follows:

a c
b

f

qp

e

Figure 3. DAG D

caG(D):

fe

p q

b
K=

((a,p),{e})

((a,b), {e})

((q,c), {f})

((p,q), {b,e})

{ }

Figure 4. The annotated graph A(D)

245

Azaria Paz

(a,b), {e}

(b,c), {f}

(a,f), {e}

(e,c), {f}

(a,c), {e,f}

{ }K =

e f

ca
b

Figure 5. AG for the marginalized relation

• The solid edge b-f is induced by the path, in the AG shown in Fig. 4, b-q-f ,

through the marginalized variable q.

• Similarly, the solid edge e-f in Fig. 5 is induced by the path, in Fig. 4, e −

p− q − f through the marginalized variables p and q.

• The element ((a, b), {e}) in Fig. 5 was transferred from Fig. 4 since it involves

only non marginalized variables.

• The element ((b, c), {f}) in Fig. 5 is induced by the path b − q − c in Fig. 4

which is activated if f is observed.

• ((a, f){e}) is induced by the path a− p− q− f which is activated in Fig. 4 if

e is observed.

• ((e, c), {f}) is induced by the path in Fig. 4 e − p − q − c which is activated

if f is observed.

• Finally ((a, c), {e ∧ f} is induced by the path a− p− q − c in Fig. 4 which is

activated if both e and f are observed.

REMARK 6. The dependency conditional shown in the fifth element of K in Fig.

5 is different from the conditionals in any AG representing DAG-representable rela-

tions in the following sense.The conditionals for DAG-representable relations consist

of a set of variables such that, if any variable in the set is observed then the condi-

tional is activated. In Fig. 5, in order to activate the conditional of the fifth element

in K both variables e and f must be observed.

Assume now that we are given the AG shown in Fig. 5 with no prior knowledge

that it represents a marginalized DAG-representable relation. We can see imme-

diately that the relation represented in it is not DAG-representable. This follows

from the remark above and also from the fact that K does not satisfy the necessary

conditions of Lemma 1. E.g. the conditional {f} in the second element is included

in the pair {a, f} of the third element but {e} is not a subset of the conditional {f}

as required by Lemma 1, part 4.

246

A Heuristic Procedure for Finding Hidden Variables

(a,b), {e}

(b,c), {f}

(a,u), {e}

(u,c), {f}

(u,b), {e,f}

{

u

}K =

e f

ca
b

Figure 6. Extended AG

u

e f

ca
b

Figure 7. DAG which is equivalent to the AG in Fig. 6

Given the fact that the relation is not DAG-representable, we ask ourselves

whether it is possible to add hidden variables to the variables of the relation

such that the extended relation is DAG-representable and is such that when it

is marginalized over the added (hidden) variables, it reduces to the given no DAG-

representable relation. Consider first the fifth element (see Fig. 5) (a, c){e ∧ f}

of K for the given relation. The conditional {e ∧ f} of this element does not fit

DAG-representable relation.

We notice that this element can be eliminated if we add a hidden variableu that

is connected by solid lines (unconditional dependant) to the variables e and f and

is conditionally dependant on a with conditional e and is conditionally dependant

on c with conditional f . The resulting graph is shown in Fig. 6.

The reader will easily convince himself that the annotation K shown in Fig. 6

fits the extended graph, where the first 2 elements are inherited from Fig. 5 and

the other 3 elements are induced by the (hidden) new variable u.The solid edge

(e, f) in Fig. 5 is removed in Fig. 6 since it is implied by the path e− u− f when

the extended relation is marginalized over u. The reader will also easily convince

himself that if the relation shown in Fig. 6 is marginalized over u we get back the

relation shown in Fig. 5. Moreover the annotation K in Fig. 6 complies with the

necessary conditions of Lemma 1. Indeed the relation represented by the AG in Fig.

6 is DAG representable: Just direct all solid edges incident with e into e, direct all

247

Azaria Paz

1

8 9

4

2 3

10

67 5

Figure 8. DAG for Example 2

1

8 9

4

2 3

10
{

(1,4), {8 ^ 9}

(1,9), {8,10}

(8,4), {9,10}
}K =

Figure 9. UG equivalent with the DAG in Fig. 8

solid edges incident with f into f and remove all broken edges. The result is shown

in Fig. 7.

Notice that the DAG in Fig. 7 is quite different from the DAG shown in Fig. 3,

but both reduce to the same relation when marginalized over their extra variables.

4.2 Example 2

Consider the DAG shown in Fig. 8. Using methods similar to the methods we used

in the previous example we can get an equivalent AG which when marginalized over

the vertices 5, 6 and 7 results in the UG shown in Fig. 9.

Here again we can check and verify that K does not satisfy the conditions of

Lemma 1, in particular the first element in K is a compound statement that does

not fit DAG representable relations. So the relation represented by the AG in Fig. 9

is not DAG representable.Trying to eliminate the first element in K, we may assume

the existence of a hidden variable u which is connected by solid edges to both 8

and 9, but is conditionally dependent on 1 with conditional 8 and is conditionally

dependent on 4 with conditional 9. The resulting extended AG is shown in Fig. 10.

The K in Fig. 10 satisfies the conditions of Lemma 1 and one can see that the AG

in DAG is equivalent. Moreover marginalizing it over u reduces to the UG shown

in Fig. 9. The equivalent DAG is shown in Fig. 11.

Notice that the DAG in Fig. 11 is quite different from the DAG in Fig. 8, but both

result in the same AG when marginalizing over their corresponding extra variables.

248

A Heuristic Procedure for Finding Hidden Variables

1

8 9

4

2 3

10
{

(1,u), {8,10}

(u,4), {9,10}

(8,9), {10}

u

}K =

Figure 10. Expanded DAG equivalent AG

1

8 9

4

2 3

10
{

(1,u), {8,10}

(u,4), {9,10}

(8,9), {u}

u

}K =

Figure 11. DAG equivalent to the AG in Fig. 10

4.3 Example 3

In this last example we consider the AG shown in Fig. 2 which is reproduced here,

for convenience as Fig. 12.

While the K sets in the previous examples included elements with compound

conditionals, both conditionals in this example are simple but the conditions of

Lemma 1 are not satisfied: d in the first element is included in the second conditional

and a of the second element is included in the first conditional, but the conditionals

are no a subset of each other. Consider first the second element. We can introduce

an additional variable u so that u will be conditionally dependent on b, and the

element (u, b), {c, d} will replace the element (a, b), {c, d}. The resulting AG is

shown in Fig. 13 below.

It is easy to see that the graph in Fig. 13 reduces to graph in Fig. 12 when

marginalized over u. We still need to take care of the first element since it is not

satisfying the conditions of Lemma 1. We can now add additional new variable v

and replace the first element (b, d), {a} by the element (u, v), {a}. The resulting

larger AG is shown in Fig. 14. Notice that the graph in Fig. 14 will reduce to the

graph in Fig. 12.

To verify this we observe that marginalization over u and v induces the element

(b, d), {a} since when a and d are observed b gets connected to u (by d and the

second element) and u is connected to v by the first element so that the path

b− u− v − d is activated through the extra variables (b, d and a exist in Fig. 12).

One can also verify that the AG in Fig. 14 is DAG equivalent after some simples

249

Azaria Paz

{ }K=

((a,b),{c,d})

((b,d), {a})

c dba

Figure 12. AG from Fig. 2

u

(u,b), {c,d}
c dba

(b,d), {a}

}K= {

Figure 13. First extension of the AG in Fig. 12

modifications: we can remove the edges (a, c) and (a, d) since they are implied when

marginalizing over u and v and we need to add the element (v, c), {d} and a corre-

sponding broken edge between v and c, which will be discarded when marginalizing.

The equivalent DAG is shown in Fig. 15 and is identical with the DAG shown in

Fig. 1.

Acknowledgment

I would like to thank the editors for allowing me to contribute this paper to the

book honoring Judea Pearl, a friend and collaborator for more than 20 years now.

Much of my scientific work in the past 20 years was influenced by discussions I

had with him. His sharp intuition and his ability to pinpoint important problems

and ask the right questions helped me in choosing the problems to investigate and

finding their solutions, resulting in several scientific papers, including this one.

References

[1] S .L. Lauritzen, A. P. Dawid, B. N. Larsen, and H. G. Leimer. Independence

properties of directed Markov fields. Networks, 20:491–505, 1990.

[2] S.L. Lauritzen. Graphical Models. Claredon, Oxford, U.K., 1996.

[3] A. Paz. An alternative version of Lauritzen et al’s algorithm for checking rep-

resentation of independencies. Journal of Soft Computing, pages 491–505,

2003a.

[4] A. Paz. The annotated graph model for representing DAG-representable re-

lations – algorithmic approach. Technical Report Technical Report R-312,

250

A Heuristic Procedure for Finding Hidden Variables

u

v

{ }K=

((a,b),{c,d})

c dba
(u,v), {a}

Figure 14. Extended AG

a b c d

u

v

Figure 15. DAG which is equivalent to the AG in Fig. 14

Computer Science Department, UCLA, 2003b.

[5] A. Paz, R.Y. Geva, and M. Studeny. Representation of irrelevance relations by

annotated graphs. Fundamenta Informaticae, 48:149–199, 2000.

[6] A. Paz. A New Graphical Model for the Representation of Marginalized DAG-

Representable Relations. prodeedings of the 7th Workshop on Uncertainty

Processing, pages 111–137, 2006, Mikulov, The Check Republic.

[7] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,

San Mateo, CA, 1988.

[8] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University

Press, New York, 2000.

[9] M. Studeny, 2000. Private communication.

[10] T. Verma and J. Pearl. Equivalence and synthesis of causal models. In

L.N. Kanal P. Bonissone, M. Henrion and J.F. Lemmer, editors, Uncer-

tainty in Artificial Intelligence 6, pages 225–268, B.V., 1991. Elsevier Sci-

ence Publishers.

251

15

Probabilistic Programming Languages:

Independent Choices and Deterministic

Systems

David Poole

Pearl [2000, p. 26] attributes to Laplace [1814] the idea of a probabilistic model as a

deterministic system with stochastic inputs. Pearl defines causal models in terms of

deterministic systems with stochastic inputs. In this paper, I show how determinis-

tic systems with (independent) probabilistic inputs can also be seen as the basis of

modern probabilistic programming languages. Probabilistic programs can be seen

as consisting of independent choices (over which there are probability distributions)

and deterministic programs that give the consequences of these choices. The work

on developing such languages has gone in parallel with the development of causal

models, and many of the foundations are remarkably similar. Most of the work in

probabilistic programming languages has been in the context of specific languages.

This paper abstracts the work on probabilistic programming languages from specific

languages and explains some design choices in the design of these languages.

Probabilistic programming languages have a rich history starting from the use of

simulation languages such as Simula [Dahl and Nygaard 1966]. Simula was designed

for discrete event simulations, and the built-in random number generator allowed

for stochastic simulations. Modern probabilistic programming languages bring three

extra features:

conditioning: the ability to make observations about some variables in the simu-

lation and to compute the posterior probability of arbitrary propositions given

these observations. The semantics can be seen in terms of rejection sampling:

accept only the simulations that produce the observed values, but there are

other (equivalent) semantics that have been developed.

inference: more efficient inference for determining posterior probabilities than re-

jection sampling.

learning: the ability to learn probabilities from data.

In this paper, I explain how we can get from Bayesian networks [Pearl 1988] to in-

dependent choices plus a deterministic system (by augmenting the set of variables).

I explain the results from [Poole 1991; Poole 1993b], abstracted to be language

independent, and show how they can form the foundations for a diverse set of

probabilistic programming languages.

253

Kaoru
Text Box
Return to TOC

David Poole

Consider how to represent a probabilistic model in terms of a deterministic system

with independent inputs. In essence, given the probabilistic model, we construct

a random variable for each free parameter of the original model. A deterministic

system can be used to obtain the original variables from the new variables. There

are two possible worlds structures, the original concise set of possible worlds in terms

of the original variables, and the augmented set of possible worlds in terms of the

new random variables. The dimensionality of the augmented space is the number

of free parameters which is greater than the dimensionality of the original space

(unless all variables were independent). However, the variables in the augmented

worlds can be assumed to be independent, which makes them practical to use in a

programming environment. The original worlds can be obtained using abduction.

Independent choices with a deterministic programming language can be seen as

the basis for most of the probabilistic programming languages, where the determin-

istic system can be a logic program [Poole 1993b; Sato and Kameya 1997; De Raedt,

Kimmig, and Toivonen 2007], a functional program [Koller, McAllester, and Pfeffer

1997; Pfeffer 2001; Goodman, Mansinghka, Roy, Bonawitz, and Tenenbaum 2008],

or even a low-level language like C [Thrun 2000].

There had been parallel developments in the development of causality [Pearl

2000], with causal models being deterministic systems with stochastic inputs. The

augmented variables in the probabilistic programming languages are the variables

needed for counterfactual reasoning.

1 Probabilistic Models and Deterministic Systems

In order to understand probabilistic programming languages, it is instructive to

see how a probabilistic model in terms of a Bayesian network [Pearl 1988] can be

represented as a deterministic system with probabilistic inputs.

Consider the following simple belief network, with Boolean random variables:

A B C

There are 5 free parameters to be assigned for this model; for concreteness assume

the following values (where A = true is written as a, and similarly for the other

variables):

P (a) = 0.1

P (b|a) = 0.8

p(b|¬a) = 0.3

P (c|b) = 0.4

p(c|¬b) = 0.75

To represent such a belief network in a probabilistic programming language, there

are probabilistic inputs corresponding to the free parameters, and the programming

254

Probabilistic Programming Languages

language specifies what follows from them. For example, in Simula [Dahl and Ny-

gaard 1966], this could be represented as:

begin

Boolean a,b,c;

a := draw(0.1);

if a then

b := draw(0.8);

else

b := draw(0.3);

if b then

c := draw(0.4);

else

c := draw(0.75);

end

where draw(p) is a Simula system predicate that returns true with probability p;

each time it is called, there is an independent drawing.

Suppose c was observed, and we want the posterior probability of b. The con-

ditional probability P (b|c) is the proportion of those runs with c true that have b

true. This could be computed using the Simula compiler by doing rejection sam-

pling: running the program many times, and rejecting those runs that do not assign

c to true. Out of the non-rejected runs, it returns the proportion that have b true.

Of course, conditioning does not need to implemented that way; much of the de-

velopment of probabilistic programming languages over the last twenty years is in

devising more efficient ways to implement conditioning.

Another equivalent model to the Simula program can be given in terms of logic.

There can be 5 random variables, corresponding to the independent draws, let’s

call them A, Bifa, Bifna, Cifb Cifnb. These are independent with P (a) = 0.1,

P (bifa) = 0.8, P (bifna) = 0.3, P (cifb) = 0.4, and P (cifnb) = 0.75. The other

variables can be defined in terms of these:

b ⇐⇒ (a ∧ bifa) ∨ (¬a ∧ bifna) (1)

c ⇐⇒ (b ∧ cifb) ∨ (¬b ∧ cifnbc) (2)

These two formulations are essentially the same, they differ in how the determin-

istic system is specified, whether it is in Simula or in logic.

Any discrete belief network can be represented as a deterministic system with

independent inputs. This was proven by Poole [1991, 1993b] and Druzdzel and

Simon [1993]. These papers used different languages for the deterministic systems,

but gave essentially the same construction.

255

David Poole

2 Possible Worlds Semantics

A probabilistic programming language needs a specification of a deterministic sys-

tem (given in some programming language) and a way to specify distributions over

(independent) probabilistic inputs, or a syntactic variant of this. We will also as-

sume that there are some observations, and that there are some query proposition

for which we want the posterior probability.

In developing the semantics of a probabilistic programming language, we first

define the set of possible worlds, and then a probability measure over sets of possible

worlds [Halpern 2003].

In probabilistic programming, there are (at least) two sets of possible world that

interact semantically. It is easiest to see these in terms of the above example. In

the above belief network, there were three random variables A, B and C, which had

complex inter-dependencies amongst them. With three binary random variables,

there are 8 possible worlds. These eight possible worlds give a concise characteriza-

tion of the probability distribution over these variables. I will call this the concise

space of possible worlds.

In the corresponding probabilistic program, there is an augmented space with

five inputs, each of which can be considered a random variable (these are A, Bifa,

Bifna, Cifb and Cifnb in the logic representation). With five binary random vari-

ables, there are 32 possible worlds. The reason to increase the number of variables,

and thus possible worlds, is that in this the augmented space, the random variables

can be independent.

Note that the variables in the augmented space do not have to be indepen-

dent. For example, P (bifna|a) can be assigned arbitrarily since, when a is true,

no other variable depends on bifna. In the augmented space, there is enough free-

dom to make the variables independent. Thus, we can arbitrarily set P (bifna|a) =

P (bifna|¬a), which will be the same as P (b|¬a). The independence assumption

makes the semantics and the computation simpler.

There are three semantics that could be given to a probabilistic program:

• The rejection sampling semantics; running the program with a random num-

ber generator, removing those runs that do not predict the observations, the

posterior probability of a proposition is the limit, as the number of runs in-

creases, of the proportion of the non-rejected runs that have the proposition

true.

• The independent-choice semantics, where a possible world specifies the out-

come of all possible draws. Each of these draws is considered to be indepen-

dent. Given a world, the (deterministic) program would specify what follows.

In this semantics, a possible world would select values for all five of the input

variables in the example above, and thus gives rise to the augmented space of

the above program with 32 worlds.

256

Probabilistic Programming Languages

• The program-trace semantics, where a possible world specifies a sequence

of outcomes for the draws encountered in one run of the program. In this

semantics, a world would specify the values for three of the draws in the above

program, as only three draws are encountered in any run of the program, and

thus there would be 8 worlds.

In the logical definition of the belief network (or in the Simula definition if the

draws are named), there are 32 worlds in the independent choice semantics:

World A Bifa Bifna Cifb Cifnb Probability

w0 false false false false false 0.9 × 0.2 × 0.7 × 0.6 × 0.25

w1 false false false false true 0.9 × 0.2 × 0.7 × 0.6 × 0.75

. . .

w30 true true true true false 0.1 × 0.8 × 0.3 × 0.4 × 0.75

w31 true true true true true 0.1 × 0.8 × 0.3 × 0.4 × 0.75

The probability of each world is the product of the probability of each variable (as

each of these variables is assumed to be independent). Note that in worlds w30 and

w31, the original variables A, B and C are all true; the value of Cifnb is not used

when B is true. These variables are also all true in the worlds that only differ in

the value of Bifna, as again, Bifna is not used when A is true.

In the program-trace semantics there are 8 worlds for this example, but not all

of the augmented variables are defined in all worlds.

World A Bifa Bifna Cifb Cifnb Probability

w0 false ⊥ false ⊥ false 0.9 × 0.7 × 0.25

w1 false ⊥ false ⊥ true 0.9 × 0.7 × 0.75

. . .

w7 true true ⊥ false ⊥ 0.1 × 0.8 × 0.6

w8 true true ⊥ true ⊥ 0.1 × 0.8 × 0.4

where ⊥ means the variable is not defined in this world. These worlds cover all 8

cases of truth values for the original worlds that give values for A, B and C. The

values of A, B and C can be obtained from the program. The idea is that a run

of the program is never going to encounter an undefined value. The augmented

worlds can be obtained from the worlds defined by the program trace by splitting

the worlds on each value of the undefined variables. Thus each augmented world

corresponds to a set of possible worlds, where the distinctions that are ignored do

not make a difference in the probability of the original variables.

While it may seem that we have not made any progress, after all this is just a

simple Bayesian network, we can do the same thing for any program with prob-

abilistic inputs. We just need to define the independent inputs (often these are

called noise inputs), and a deterministic program that gives the consequences of

the choices of values for these inputs. It is reasonably easy to see that any belief

network can be represented in this way, where the number of independent inputs is

257

David Poole

equal to the number of free parameters of the belief network. However, we are not

restricted to belief networks. The programs can be arbitrarily complex. We also

do not need special “original variables”, but can define the augmented worlds with

respect to any variables of interest. Observations and queries (about which we want

the posterior probability) can be propositions about the behavior of the program

(e.g., that some assignment of the program variables becomes true).

When the language is Turing-equivalent, the worlds can be countably infinite,

and thus there can be uncountably many worlds. A typical assumption is that

the program eventually infers the observations and the query, that is, each run of

the program will eventually (with probability 1) assign a truth value to any given

observation and query. This is not always the case, such as when the query is to

determine the fixed point of a Markov chain (see e.g., Pfeffer and Koller [2000]). We

could also have non-discrete choices using continuous variables, which complicates

but does not invalidate the discussion here.

A probability measure is over sets of possible worlds that form an algebra or a

σ-algebra, depending on whether we want finite additivity or countable additivity

[Halpern 2003]. For a programming language, we typically want countable additiv-

ity, as this allows us to not have a bound on the number of steps it takes to prove

a query. For example, consider a person who plays the lottery until they win. The

person will win eventually. This case is easy to represent as a probabilistic program,

but requires reasoning about an infinite set of worlds.

The typical σ-algebra is the set of worlds that can be finitely described, and their

(countable) union. Finitely describable means there is a finite set of draws that have

their outcomes specified. Thus the probability measure is over sets of worlds that

all have the same outcomes for a finite set of draws, and the union of such sets of

worlds. We have a measure over such sets by treating the draws to be independent.

3 Abductive Characterization

Abduction is a form of reasoning characterized by “reasoning to the best explana-

tion”. It is typically characterized by finding a minimal consistent set of assumables

that imply some observation. This set of assumables is called an explanation of the

observation.

Poole [1991, 1993b] gave an abductive characterization of a probabilistic pro-

gramming language, which gave a mapping between the independent possible world

structure, and the descriptions of the worlds produced by abduction. This notion of

abduction lets us construct a concise set of sets of possible worlds that is adequate

to infer the posterior probability of a query.

The idea is that the the independent inputs become assumables. Given a prob-

abilistic program, a particular observation obs and a query q, we characterize a

(minimal) partition of possible worlds, where

• in each partition either ¬obs, obs ∧ q or obs ∧ ¬q can be inferred, and

258

Probabilistic Programming Languages

• in each partition the same (finite) set of choices for the values of some of the

inputs is made.

This is similar to the program-trace semantics, but will only need to make distinc-

tions relevant to computing P (q|obs). Given a probabilistic program, an observation

and a query, the “explanations” of the observation conjoined with the query or its

negation, produces such a partition of possible worlds.

In the example above, if the observation was C = true, and the query was B, we

want the minimal set of assignments of values to the independent choices that gives

C = true ∧ B = true or C = true ∧ B = false. There are 4 such explanations:

• A = true, Bifa = true, Cifb = true

• A = true, Bifa = false, Cifnb = true

• A = false, Bifna = true, Cifb = true

• A = false, Bifna = false, Cifnb = true

The probability of each of these explanations is the product of the choices made,

as these choices are independent. The posterior probability P (B|C = true) can be

easily computed by the weighted sum of the explanations in which B is true. Note

also that the same explanations would be true even if C has unobserved descendants.

As the number of descendants could be infinite if they were generated by a program,

it is better to construct the finite relevant parts than prune the infinite irrelevant

parts.

In an analogous way to how the probability of a real-variable is defined as a

limit of discretizations, we can compute the posterior probability of a query given

a probabilistic programming language. This may seem unremarkable until it is

realized that for programs that are guaranteed to halt, there can be countably

many possible worlds, and so there are uncountably many sets of possible worlds,

over which to place a measure. For programs that are not guaranteed to halt, such

as a sequence of lotteries, there are uncountably many possible worlds, and even

more sets of possible worlds upon which to place a measure. Abduction gives us the

sets of possible worlds in which to answer a conditional probability query. When

the programs are not guaranteed to halt, the posterior probability of a query can

be defined as the limit of the sets of possible worlds created by abduction, as long

as the query can be derived in finite time for all but a set of worlds with measure

zero.

In terms of the Simula program, explanations correspond to execution paths. In

particular, an explanation corresponds to the outcomes of the draws in one trace

of the program that infers the observations and a query or its negation. The set

of traces of the program gives a set of possible worlds from which to compute

probabilities.

259

David Poole

When the program is a logic program, it isn’t obvious what the program-trace

semantics is. However, the semantics in terms of independent choices and abduction

is well-defined. Thus it seems like the semantics in terms of abduction is more

general than the program-trace semantics, as it is more generally applicable. It is

also possible to define the abductive characterization independently of the details of

the programming language, whereas defining a trace or run of a program depends

on the details of the programming language.

Note that this abductive characterization is unrelated to MAP or MPE queries;

we are defining the marginal posterior probability distribution over the query vari-

ables.

4 Inference

Earlier algorithms (e.g. Poole [1993a]) extract the minimal explanations and com-

pute conditional probabilities from these. Later algorithms, such as used in IBAL

[Pfeffer 2001], use sophisticated variable elimination to carry out inference in this

space. IBAL’s computation graph corresponds to a graphical representation of the

explanations. Problog [De Raedt, Kimmig, and Toivonen 2007] compiles the com-

putation graph into BDDs.

In algorithms that exploit the conditional independent structure, like variable

elimination or recursive conditioning, the order that variables are summed out or

split on makes a big difference to efficiency. In the independent choice semantics,

there are more options available for summing out variables, thus there are more

options available for making inference efficient. For example, consider the following

fragment of a Simula program:

begin

Boolean x;

x := draw(0.1);

if x then

begin

Boolean y := draw(0.2);

...

end

else

begin

Boolean z := draw(0.7);

...

end

...

end

Here y is only defined when x is true and z is only defined when x is false. In

the program-trace semantics, y and z are never both defined in any world. In

260

Probabilistic Programming Languages

the independent-choice semantics, y and z are defined in all worlds. Efficiency

considerations may mean that we want to sum out X first. In the independent-

choice semantics, there is no problem, the joint probability on X and Y makes

perfect sense. However, in the program trace semantics, it isn’t clear what the joint

probability of X and Y means. In order to allow for flexible elimination orderings in

variable elimination or splitting ordering in recursive conditioning, the independent

choice semantics is the natural choice.

Another possible way to implement probabilistic programming is to use MCMC

[Milch, Marthi, Russell, Sontag, Ong, and Kolobov 2005; Goodman, Mansinghka,

Roy, Bonawitz, and Tenenbaum 2008; McCallum, Schultz, and Singh 2009]. It

is possible to do MCMC in either of the spaces of worlds above. The difference

arises in conditionals. In the augmented space, for the example above, an MCMC

state would include values for all of X, Y and Z. In the program-trace semantics,

it would contain values for X and Y when X = true, and values for X and Z

when X = false, as Y and Z are never simultaneously defined. Suppose X’s

value changes from true to false. In the augmented space, it would just use the

remembered values for Z. In the program-trace semantics, Z was not defined when

Z was true, thus changing X from true to false means re-sampling all of the

variables defined in that branch, including Z.

BLOG [Milch, Marthi, Russell, Sontag, Ong, and Kolobov 2005] and Church

[Goodman, Mansinghka, Roy, Bonawitz, and Tenenbaum 2008] assign values to all

of the variables in the augmented space. FACTORIE [McCallum, Schultz, and

Singh 2009] works in what we have called the abductive space. Which is these is

more efficient is an empirical question.

5 Learning Probabilities

The other aspect of modern probabilistic programming languages is the ability to

learn the probabilities. As the input variables are rarely observed, the standard

way to learn the probabilities is to use EM. Learning probabilities using EM in

probabilistic programming languages is described by Sato [1995] and Koller and

Pfeffer [1997]. In terms of available programming languages, EM forms the basis

for learning in Prism [Sato and Kameya 1997; Sato and Kameya 2001], IBAL [Pfeffer

2001; Pfeffer 2007] and many subsequent languages.

One can do EM learning in either of the semantic structures. The difference is

whether some data updates the probabilities of parameters that were not involved

in computing the data. By making this choice explicit, it is easy to see that one

should use the abductive characterization to only update the probabilities of the

choices that were used to derive the data.

Structure learning for probabilistic programming languages has really only been

explored in the context of logic programs, where the techniques of inductive logic

programming can be applied. De Raedt, Frasconi, Kersting, and Muggleton [2008]

overview this active research area.

261

David Poole

6 Causal Models

It is interesting that the research on causal modelling and probabilistic programming

languages have gone on in parallel, with similar foundations, but only recently have

researchers started to combine them by adding causal constructs to probabilistic

programming languages [Finzi and Lukasiewicz 2003; Baral and Hunsaker 2007;

Vennekens, Denecker, and Bruynooghe 2009].

In some sense, the programming languages can be seen as representations for

all of the counterfactual situations. A programming language gives a model when

some condition is true, but also defines the “else” part of a condition; what happens

when the condition is false.

In the future, I expect that programming languages will be the preferred way to

specify causal models, and for interventions and counterfactual reasoning to become

part of the repertoire of probabilistic programming languages.

7 Observation Languages

These languages can be used to compute conditional probabilities by having an

“observer” (either humans or sensors) making observations of the world that are

conditioned on. One problem that has long gone unrecognized is that it is often

not obvious how to condition when the language allows for multiple individuals and

relations among them. There are two main problems:

• The observer has to know what to specify and what vocabulary to use. Unfor-

tunately, we can’t expect an observer to “tell us everything that is observed”.

First, there are an unbounded number of true things one can say about a

world. Second, the observer does not know what vocabulary to use to describe

their observations of the world. As probabilistic models get more integrated

into society, the models have to be able to use observations from multiple

people and sensors. Often these observations are historic, or are created asyn-

chronously by people who don’t even know the model exists and are unknown

when the model is being built.

• When there are are unique names, so that the observer knows which object(s)

a model is referring to, an observer can provide a value to the random variable

corresponding to the property of the individual. However, models often refer

to roles [Poole 2007]. The problem is that the observer does not know which

individual in the world fills a role referred to in the program (indeed there

is often a probability distribution over which individuals fill a role). There

needs to be some other mechanism other than asking for the observed value

of a random variable or program variable, or the value of a property of an

individual.

The first problem can be solved using ontologies. An ontology is a specification

of the meaning of the symbols used in an information system. There are two main

262

Probabilistic Programming Languages

areas that have spun off from the expert systems work of the 1970’s and 1980’s.

One is the probabilistic revolution pioneered by Pearl. The other is often under the

umbrella of knowledge representation and reasoning [Brachman and Levesque 2004].

A major aspect of this work is in the representation of ontologies that specify the

meaning of symbols. An ontology language that has come to prominence recently is

the language OWL [Hitzler, Krötzsch, Parsia, Patel-Schneider, and Rudolph 2009]

which is one of the foundations of the semantic web [Berners-Lee, Hendler, and

Lassila 2001]. There has recently been work on representing ontologies to integrate

with probabilistic inference [da Costa, Laskey, and Laskey 2005; Lukasiewicz 2008;

Poole, Smyth, and Sharma 2009]. This is important for Bayesian reasoning, where

we need to condition on all available evidence; potentially applicable evidence is

(or should be) published all over the world. Finding and using this evidence is a

major challenge. This problem in being investigated under the umbrella of semantic

science [Poole, Smyth, and Sharma 2008].

To understand the second problem, suppose we want to build a probabilistic

program to model what apartments people will like for an online apartment finding

service. This is an example where models of what people want and descriptions

of the world are built asynchronously. Rather than modelling people’s preferences,

suppose we want to model whether they would want to move in and be happy

there in 6 months time (this is what the landlord cares about, and presumably

what the tenant wants too). Suppose Mary is looking for an apartment for her and

her daughter, Sam. Whether Mary likes an apartment depends on the existence

and the properties of Mary’s bedroom and of Sam’s bedroom (and whether they

are the same room). Whether Mary likes a room depends on whether it is large.

Whether Sam likes a room depends on whether it is green. Figure 1 gives one

possible probability model, using a belief network, that follows the above story.

If we observe a particular apartment, such as the one on the right of Figure

1, it isn’t obvious how to condition on the observations to determine the posterior

probability that the apartment is suitable for Mary. The problem is that apartments

don’t come labelled with Mary’s bedroom and Sam’s bedroom. We need some role

assignment that specifies which bedroom is Mary’s and which bedroom is Sam’s.

However, which room Sam chooses depends on the colour of the room. We may

also like to know the probability that a bachelor’s apartment (that contains no

bedrooms) would be suitable.

To solve the second problem, we need a representation of observations. These

observations and the programs need to refer to interoperating ontologies. The ob-

servations need to refer to the existence of objects, and so would seem to need some

subset of the first-order predicate calculus. However, we probably don’t want to

allow arbitrary first-order predicate calculus descriptions of observations. Arguably,

people do not observe arbitrary disjunctions. One simple, yet powerful, observation

language, based on RDF [Manola and Miller 2004] was proposed by Sharma, Poole,

and Smyth [2010]. It is designed to allow for the specification of observations of

263

264

Probabilistic Programming Languages

that there is not a fourth bedroom. This can be represented as:

〈apr, hasBedroom, R1, true〉

〈R1, size, medium, true〉

〈R1, color, red, true〉

〈apr, hasBedroom, R2, true〉

. . .

〈apr, hasBedroom, R4, false〉

Thus this language is analogous to observing conjunctions of propositional atoms.

However, it also lets us observe the existence and non-existence of objects, without

allowing for representing arbitrary disjunctions.

Such observational languages are an important complement to probabilistic pro-

gramming languages.

8 Pivotal Probabilistic Programming Language References

Probabilistic Horn abduction [Poole 1991; Poole 1993b] is the first language with

a probabilistic semantics that allows for conditioning. Much of the results of this

paper were presented there, in the context of logic programs. Probabilistic Horn

abduction was refined into the Independent Choice Logic [Poole 1997] that allowed

for choices made by multiple agents, and there is a clean integration with negation

as failure [Poole 2000]. Prism introduced learning into essentially the same frame-

work [Sato and Kameya 1997; Sato and Kameya 2001]. More recently, Problog

[De Raedt, Kimmig, and Toivonen 2007] has become a focus to implement many

logical languages into a common framework.

In parallel to the work on probabilistic logic programming languages, has been

work on developing probabilistic functional programming languages starting with

Stochastic Lisp [Koller, McAllester, and Pfeffer 1997], including IBAL [Pfeffer 2001;

Pfeffer 2007], A-Lisp [Andre and Russell 2002] and Church [Goodman, Mansinghka,

Roy, Bonawitz, and Tenenbaum 2008].

Other probabilistic programming languages are based on more imperative lan-

guages such as CES [Thrun 2000], based on C, and the languages BLOG [Milch,

Marthi, Russell, Sontag, Ong, and Kolobov 2005] and FACTORIE [McCallum,

Schultz, and Singh 2009] based on object-oriented languages. BLOG concentrates

on number and identity uncertainty, where the probabilistic inputs include the num-

ber of objects and whether two names refer to the same object or not.

9 Conclusion

This paper has concentrated on similarities, rather than the differences, between

the probabilistic programing languages. Much of the research in the area has con-

centrated on specific languages, and this paper is an attempt to put a unifying

structure on this work, in terms of independent choices and abduction.

265

David Poole

Unfortunately, it is difficult to implement an efficient learning probabilistic pro-

gramming language. Most of the languages that exist have just one implementation;

the one developed by the designers of the language. As these are typically research

code, the various implementations have concentrated on different aspects. For exam-

ple, the Prism implementation has concentrated on incorporating different learning

algorithms, the IBAL implementation has concentrated on efficient inference, my

AILog2 implementation of ICL has concentrated on debugging and explanation and

use by beginning students1. Fortunately, many of the implementations are publicly

available and open-source, so that they are available for others to modify.

One of the problems with the current research is that the language and the

implementation are often conflated. This means that researchers feel the need to

invent a new language in order to investigate a new learning or inference technique.

For example, the current IBAL implementation uses exact inference, but it does

not need to; different inference procedures could be used with the same language.

If we want people to use such languages, they should be able to take advantage of

the advances in inference or learning techniques without changing their code. One

interesting project is the ProbLog project [De Raedt, Kimmig, and Toivonen 2007],

which is building an infrastructure so that many of the different logic programming

systems can be combined, and so that the user can use a standard language, and it

can incorporate advances in inference and learning.

Probabilistic programming languages have an exciting future. We will want to

have rich languages to specify causal mechanisms, processes, and rich models. How

to program these models, learn them, and efficiently implement these are challenging

research problems.

Acknowledgments: Thanks to Peter Carbonetto, Mark Crowley, Jacek Kisyński

and Daphne Koller for comments on earlier versions of this paper. Thanks to Judea

Pearl for bringing probabilistic reasoning to the forefront of AI research. This work

could not have been done without the foundations he lay. This work was supported

by an NSERC discovery grant to the author.

References

Andre, D. and S. Russell (2002). State abstraction for programmable reinforce-

ment learning agents. In Proc. AAAI-02.

Baral, C. and M. Hunsaker (2007). Using the probabilistic logic programming

language P-log for causal and counterfactual reasoning and non-naive condi-

tioning. In Proc. IJCAI 2007, pp. 243–249.

Berners-Lee, T., J. Hendler, and O. Lassila (2001). The semantic web: A new

1We actually use it to teach logic programming to beginning students. They use it for assign-

ments before they learn that it can also handle probabilities. The language shields the students

from the non-declarative aspects of languages such as Prolog, and has many fewer built-in predi-

cates to encourage students to think about the problem they are trying to solve.

266

Probabilistic Programming Languages

form of web content that is meaningful to computers will unleash a revolution

of new possibilities. Scientific American May, 28–37.

Brachman, R. and H. Levesque (2004). Knowledge Representation and Reasoning.

Morgan Kaufmann.

da Costa, P. C. G., K. B. Laskey, and K. J. Laskey (2005, Nov). PR-OWL: A

Bayesian ontology language for the semantic web. In Proceedings of the ISWC

Workshop on Uncertainty Reasoning for the Semantic Web, Galway, Ireland.

Dahl, O.-J. and K. Nygaard (1966). Simula : an ALGOL-based simulation lan-

guage. Communications of the ACM 9 (9), 671–678.

De Raedt, L., P. Frasconi, K. Kersting, and S. H. Muggleton (Eds.) (2008).

Probabilistic Inductive Logic Programming. Springer.

De Raedt, L., A. Kimmig, and H. Toivonen (2007). ProbLog: A probabilistic

Prolog and its application in link discovery. In Proceedings of the 20th Inter-

national Joint Conference on Artificial Intelligence (IJCAI-2007), pp. 2462–

2467.

Druzdzel, M. and H. Simon (1993). Causality in Bayesian belief networks. In Proc.

Ninth Conf. on Uncertainty in Artificial Intelligence (UAI-93), Washington,

DC, pp. 3–11.

Finzi, A. and T. Lukasiewicz (2003). Structure-based causes and explanations

in the independent choice logic. In Proceedings of the 19th Conference on

Uncertainty in Artificial Intelligence (UAI 2003), Acapulco, Mexico, pp. 225–

232.

Goodman, N., V. Mansinghka, D. M. Roy, K. Bonawitz, and J. Tenenbaum

(2008). Church: a language for generative models. In Proc. Uncertainty in

Artificial Intelligence (UAI).

Halpern, J. Y. (2003). Reasoning about Uncertainty. Cambridge, MA: MIT Press.

Hitzler, P., M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph (2009).

OWL 2 Web Ontology Language Primer. W3C.

Koller, D., D. McAllester, and A. Pfeffer (1997). Effective Bayesian inference

for stochastic programs. In Proceedings of the 14th National Conference on

Artificial Intelligence (AAAI), Providence, Rhode Island, pp. 740–747.

Koller, D. and A. Pfeffer (1997). Learning probabilities for noisy first-order rules,.

In Proceedings of the 15th International Joint Conference on Artificial Intel-

ligence (IJCAI), Nagoya, Japan, pp. 1316–1321.

Laplace, P. S. (1814). Essai philosophique sur les probabilities. Paris: Courcier.

Reprinted (1812) in English, F.W. Truscott amd F. L. Emory (Trans.) by

Wiley, New York.

267

David Poole

Lukasiewicz, T. (2008). Expressive probabilistic description logics. Artificial In-

telligence 172 (6-7), 852–883.

Manola, F. and E. Miller (2004). RDF Primer. W3C Recommendation 10 Febru-

ary 2004.

McCallum, A., K. Schultz, and S. Singh (2009). Factorie: Probabilistic program-

ming via imperatively defined factor graphs. In Neural Information Processing

Systems Conference (NIPS).

Milch, B., B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov (2005).

BLOG: Probabilistic models with unknown objects. In Proc. 19th Interna-

tional Joint Conf. Artificial Intelligence (IJCAI-05), Edinburgh.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. San Mateo, CA: Morgan Kaufmann.

Pearl, J. (2000). Causality: Models, Reasoning and Inference. Cambridge Univer-

sity Press.

Pfeffer, A. (2001). IBAL: A probabilistic rational programming language. In Proc.

17th International Joint Conf. Artificial Intelligence (IJCAI-01).

Pfeffer, A. (2007). The design and implementation of IBAL: A general-purpose

probabilistic language. In L. Getoor and B. Taskar (Eds.), Statistical Rela-

tional Learning. MIT Press.

Pfeffer, A. and D. Koller (2000). Semantics and inference for recursive probability

models,. In National Conference on Artificial Intelligence (AAAI).

Poole, D. (1991, July). Representing Bayesian networks within probabilistic Horn

abduction. In Proc. Seventh Conf. on Uncertainty in Artificial Intelligence

(UAI-91), Los Angeles, pp. 271–278.

Poole, D. (1993a). Logic programming, abduction and probability: A top-down

anytime algorithm for computing prior and posterior probabilities. New Gen-

eration Computing 11 (3–4), 377–400.

Poole, D. (1993b). Probabilistic Horn abduction and Bayesian networks. Artificial

Intelligence 64 (1), 81–129.

Poole, D. (1997). The independent choice logic for modelling multiple agents

under uncertainty. Artificial Intelligence 94, 7–56. special issue on economic

principles of multi-agent systems.

Poole, D. (2000). Abducing through negation as failure: stable models in the

Independent Choice Logic. Journal of Logic Programming 44 (1–3), 5–35.

Poole, D. (2007, July). Logical generative models for probabilistic reasoning about

existence, roles and identity. In 22nd AAAI Conference on AI (AAAI-07).

Poole, D., C. Smyth, and R. Sharma (2008). Semantic science: Ontologies, data

and probabilistic theories. In P. C. da Costa, C. d’Amato, N. Fanizzi, K. B.

268

Probabilistic Programming Languages

Laskey, K. Laskey, T. Lukasiewicz, M. Nickles, and M. Pool (Eds.), Uncer-

tainty Reasoning for the Semantic Web I, LNAI/LNCS. Springer.

Poole, D., C. Smyth, and R. Sharma (2009, Jan/Feb). Ontology design for

scientific theories that make probabilistic predictions. IEEE Intelligent Sys-

tems 24 (1), 27–36.

Sato, T. (1995). A statistical learning method for logic programs with distribu-

tion semantics. In Proceedings of the 12th International Conference on Logic

Programming (ICLP95), Tokyo, pp. 715–729.

Sato, T. and Y. Kameya (1997). PRISM: A symbolic-statistical modeling lan-

guage. In Proceedings of the 15th International Joint Conference on Artificial

Intelligence (IJCAI97), pp. 1330–1335.

Sato, T. and Y. Kameya (2001). Parameter learning of logic programs for

symbolic-statistical modeling. Journal of Artificial Intelligence Research

(JAIR) 15, 391–454.

Sharma, R., D. Poole, and C. Smyth (2010). A framework for ontologically-

grounded probabilistic matching. International Journal of Approximate Rea-

soning In press.

Thrun, S. (2000). Towards programming tools for robots that integrate proba-

bilistic computation and learning. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), San Francisco, CA. IEEE.

Vennekens, J., M. Denecker, and M. Bruynooghe (2009). CP-logic: A language

of causal probabilistic events and its relation to logic programming. Theory

and Practice of Logic Programming (TPLP) to appear.

269

16

Arguing with a Bayesian Intelligence

Ingrid Zukerman

1 Introduction

Bayesian Networks (BNs) [Pearl 1988] constitute one of the most influential ad-

vances in Artificial Intelligence, with applications in a wide range of domains, e.g.,

meteorology, agriculture, medicine and environment. To further capitalize on its

clear technical advantages, a Bayesian intelligence (a computer system that em-

ploys a BN as its knowledge representation and reasoning formalism) should be

able to communicate with its users, i.e., users should be able to put forward their

views, and the system should be able to generate responses in turn. However, com-

munication between a Bayesian and a human intelligence poses some challenges, as

people generally do not engage in normative probabilistic reasoning when faced with

uncertainty [Evans, Barston, and Pollard 1983; Lichtenstein, Fischhoff, and Phillips

1982; Tversky and Kahneman 1982]. In addition, human discourse is typically en-

thymematic (i.e., it omits easily inferable information), and usually the beliefs and

inference patterns of conversational partners are not perfectly synchronized. As a

result, an addressee’s understanding may differ from the message intended by his

or her conversational partner.

In this chapter, we offer a mechanism that enables a Bayesian intelligence to

interpret human arguments for or against a proposition. This mechanism, which is

implemented in a system called bias (Bayesian Interactive Argumentation System),

constitutes a building block of a future system that will enable a Bayesian reasoner

to communicate with people.1

In order to address the above challenges, we adopt the view that discourse inter-

pretation is the process of integrating the contribution of a conversational partner

into the addressee’s mental model [Kashihara, Hirashima, and Toyoda 1995; Kintsch

1994], which in bias’s case is a BN. Notice, however, that when performing such

an integration, one cannot be sure that one is drawing the intended inferences or

reinstating the exact information omitted by the user. All an addressee can do is

construct an account of the conversational partner’s discourse that makes sense to

him or her. An interpretation of an argument that makes sense to bias is a subnet

of its BN and a set of beliefs.

To illustrate these ideas, consider the argument in Figure 1(a) regarding the guilt

1The complementary building block, a mechanism that generates arguments from BNs, is

described in [Korb, McConachy, and Zukerman 1997; Zukerman, McConachy, and Korb 1998].

271

Kaoru
Text Box
Return to TOC

Ingrid Zukerman

Fingerprints being found on the gun, and forensics matching the fin-

gerprints with Mr Green implies that Mr Green probably had the means

to murder Mr Body.

The Bayesian Times reporting that Mr Body seduced Mr Green’s

girlfriend implies that Mr Green possibly had a motive to murder Mr Body.

Since Mr Green probably had the means to murder Mr Body, and Mr Green

possibly had a motive to murder Mr Body, then Mr Green possibly murdered

Mr Body.

(a) Sample argument

NbourSawGreen
AroundGardenAt11

WitnessSaw

FballAt10:30

NbourHeard
GreenBody

ArgLastNight

Green’sLadderHas
OblongSupports

Oblong

ForensicMatch
BulletsWith
FoundGun

GunFound
InGarden

GreenAt

GreenInGarden

GreenInGardenAt11

GreenBody
Enemies

Green’sGirlfriend
BodySeduce

GreenInGardenAt
TimeOfDeath

BodyKilledFrom
OutsideWindow

InBody’sBody
BulletsFound

BrokenGlass
FoundInside

BrokenGlass
Found

WindowBroken
FromOutside

IndentationsFound

ArgueLastNight
GreenBodyFoundGun

FiredByGreen

MurderWeapon
FoundGunIs

FiredByGreen
MurderWeapon

BayesTimesReportBody
SeduceGreen’sGirlfriend

TimeOfDeath11

FoundOnGun
Fingerprints

Green’sLadder
AtWindow

LastNight
GreenVisitBody

Green’sFingerprints
ForensicMatch

BodyWasMurdered

GreenHasOpportunity

GreenMurderedBodyGreenHasMeans GreenHasMotive

(b) BN and argument interpretation

Figure 1. Argument, domain BN and interpretation of the argument

of Mr Green in the murder of Mr Body (this argument is a gloss of an argument

entered through a web interface).2 The argument is interpreted in the context of

the BN in Figure 1(b), which depicts the scenario for this murder mystery — the

domain where we tested our ideas [Zukerman and George 2005]. The light-shaded

bubble demarcates the BN subnet corresponding to the interpretation preferred

by bias.3 This interpretation contains propositions in the BN which bridge the

2We use the following linguistic terms, which are similar to those used in [Elsaesser 1987], to

convey degree of belief: Very Probable, Probable, Possible and their negations, and Even Chance.

According to our surveys, these terms are the most consistently understood by people [George,

Zukerman, and Niemann 2007].
3The observable evidence nodes are boxed, and the evidence nodes that were actually ob-

served by the user are boldfaced, as are the evidence nodes employed in the argument. The

272

Arguing with a Bayesian Intelligence

reasoning gaps in the user’s (enthymematic) argument.

Our approach casts the problem of finding a good interpretation of a user’s argu-

ment as a model selection problem, where the interpretation is the model and the

argument is the data. The criterion for selecting an interpretation is inspired by

the Minimum Message Length (MML) principle [Wallace 2005] — an operational

form of Occam’s Razor that balances model complexity against data fit. That is, we

aim to select the simplest model (interpretation) that explains well the observed data

(argument). The complexity of a model may be viewed as its probability in light

of background knowledge: models that depart from the background knowledge are

less probable than models that match the background knowledge, and structurally

complex models are less probable than simpler models. Data fit may be viewed as

the probability of the data given the model, i.e., the probability that a user who

intended a particular interpretation presented the given argument.

The model selection problem is represented as a search problem, where a search

procedure generates alternative interpretations, and an evaluation function assesses

the merit of each interpretation. Since interpretations must be generated in real

time, we use an (almost) anytime algorithm [Dean and Boddy 1988; Horvitz, Suer-

mondt, and Cooper 1989] as our search procedure (Section 3). Our evaluation

function is a probabilistic formulation of key aspects of the MML principle (Sec-

tion 4).

This chapter is organized as follows. In the next section, we define an interpreta-

tion. Our algorithm for postulating interpretations is described in Section 3, and our

probabilistic formulation for assessing an interpretation in Section 4. In Section 5

we present results of our evaluations, followed by a discussion of the limitations

of our system, and advances required to support practical Bayesian argumentation

systems.

2 What is an Interpretation?

As mentioned in Section 1, we view the interpretation of an argument as a “self

explanation” — an account of the argument that makes sense to the addressee.

For bias, such an account is specified by a tuple {IG, SC,EE}, where IG is an

interpretation graph, SC is a supposition configuration, and EE are explanatory

extensions.4

• An interpretation graph is a subnet of the domain BN that connects the

propositions in an argument. This subnet bridges inferential leaps in the

argument, but the bridges so constructed may not be those intended by the

user.

nodes corresponding to the consequents in the user’s argument (GreenHasMeans, GreenHasMotive and

GreenMurderedBody) are italicized and oval-shaded.
4In our initial work, our interpretations contained only interpretation graphs [Zukerman and

George 2005]. Subsequent trials with users demonstrated the need for supposition configurations

and explanatory extensions [George, Zukerman, and Niemann 2007].

273

Ingrid Zukerman

• A supposition configuration is a set of beliefs attributed to the user to

account for the beliefs expressed in the argument. A supposition may maintain

a belief shared with the system (i.e., nothing is supposed), instantiate a node

in a BN to true or false, or uninstantiate (forget) a previously instantiated

node.

• Explanatory extensions consist of nodes and links that are added to an

interpretation graph in order to make the inferences in the interpretation more

acceptable to people (in early trials of the system, inferences were deemed

unacceptable if they contained increases in certainty or large jumps in belief

between the antecedents and the consequent). Contrary to suppositions, the

beliefs in explanatory extensions are shared by the user and the system.

To illustrate these components, consider the brief argument in Figure 2(a) in

relation to our murder mystery, and the three segments under it. Each segment,

which highlights one of these components, shows the Bayesian subnet corresponding

to the preferred interpretation and its textual rendition. Figure 2(b) shows the

interpretation graph alone (the node that connects between the propositions in

the argument appears in boldface italics); Figure 2(c) adds a supposition to the

interpretation (in a shaded box); and Figure 2(d) adds an explanatory extension

(white text in a dark box).

Let us now examine in more detail the three segments in Figure 2. Only one

proposition (GreenInGardenAtTimeOfDeath, in boldface italics) needs to be added to

connect the argument propositions in the domain BN, and create the interpretation

graph in Figure 2(b). Note that the beliefs in this interpretation graph (obtained

by Bayesian propagation of the system’s beliefs in the domain BN) do not match

those in the argument. The argument antecedent GreenInGardenAt11 yields a belief

of PossiblyNot in GreenInGardenAtTimeOfDeath, which in turn implies that Mr Green

ProbablyNot had the opportunity to kill Mr Body, and VeryProbablyNot committed

the murder. To address this problem, the system supposes that the user believes

that TimeOfDeath11 is true (instead of the system’s belief of Probably). Figure 2(c)

shows how this supposition (in a shaded box) fits in the interpretation graph, and

depicts its impact on the beliefs in the interpretation. These beliefs now match

those in the argument. However, now the last inference in the argument goes from

Mr Green Possibly having the opportunity to kill Mr Body to Mr Green PossiblyNot

murdering Mr Body — a “jump in belief” which people find unacceptable. This

problem is addressed by an explanatory extension that justifies the consequent on

the basis of beliefs presumably shared with the user.5 In this case, the selected

proposition is that Mr Green ProbablyNot had the means to murder Mr Body.

Figure 2(d) shows how this explanatory extension (white text in a dark box) fits in

5Note that the interpretation graph in Figure 2(a) also requires explanatory extensions for all

the inferences (to overcome the jump in belief in the first inference, and the increases in certainty

in the next two inferences). We omitted these explanatory extensions for clarity of exposition.

274

Arguing with a Bayesian Intelligence

Mr Green probably being in the garden at 11 implies that he possibly had

the opportunity to kill Mr Body, but he possibly did not murder Mr Body.

(a) Sample argument

GreenHadOpportunity
ProbablyNot

VeryProbablyNot
GreenMurderedBody

GreenInGardenAt
TimeOfDeath

PossiblyNot

GreenInGardenAt11
Probably

GreenHadOpportunity
Possibly

Probably
GreenInGardenAt11

GreenMurderedBody
PossiblyNot

TimeOfDeath
GreenInGardenAt

Probably

TRUE
TimeOfDeath11 GreenInGardenAt11

Probably

TimeOfDeath
GreenInGardenAt

Probably

GreenHadOpportunity
Possibly

GreenMurderedBody
PossiblyNot

TimeOfDeath11
TRUE

GreenHadMeans
ProbablyNot

Assuming the time of Assuming the time of

death was 11, death was 11,

Mr Green probably was in Mr Green probably being in Mr Green probably being in

the garden at 11, but the garden at 11 implies that the garden at 11 implies that

he possibly was not in he probably was in he probably was in

the garden at the time of the garden at the time of the garden at the time of

death. death. death.

Hence, he probably did not Hence, he possibly had Hence, he possibly had

have the opportunity to kill the opportunity to kill the opportunity to kill

Mr Body. Mr Body, Mr Body,

but Mr Green probably

did not have the means.

So he very probably did not but he possibly did not Therefore, he possibly did not

murder Mr Body. murder Mr Body. murder Mr Body.

(b) Interpretation graph (c) Interpretation graph + (d) Interpretation graph +

Supposition config. Supposition config. +

Explanatory extension

Figure 2. Interpretation graph, supposition configuration and explanatory extension

the interpretation graph. Note that explanatory extensions do not affect the beliefs

in an interpretation, as they simply state previously held beliefs.

3 Proposing Interpretations

The problem of finding the best interpretation is exponential, as there are many

candidates for each component of an interpretation, and complex interactions be-

tween supposition configurations and interpretation graphs. For example, making

a supposition could invalidate an otherwise sound line of reasoning.

In order to generate reasonable interpretations in real time, we apply Algorithm 1

— an (almost) anytime algorithm [Dean and Boddy 1988; Horvitz, Suermondt, and

Cooper 1989] that iteratively proposes interpretations until time runs out, i.e., until

the system has to act upon a preferred interpretation or show the user one or more

interpretations for validation [George, Zukerman, and Niemann 2007; Zukerman and

George 2005]. At present, our interaction with the user stops when interpretations

275

Ingrid Zukerman

Algorithm 1 Argument Interpretation

Require: User argument, domain knowledge BN

1: while there is time do

2: Propose a supposition configuration SCi — this can be null, an existing

supposition configuration or a new one.

3: Propose a new interpretation graph IGij under supposition configuration

SCi.

4: Propose explanatory extensions EEij for interpretation graph IGij under

supposition configuration SCi as necessary.

5: Estimate the probability of interpretation {SCi, IGij , EEij}.

6: Retain the top K most probable interpretations.

7: end while

8: Present the retained interpretations to the user for validation.

are presented for validation. However, in a complete system, a dialogue module

would have to determine a course of action based on the generated interpretations.

In each iteration, the algorithm proposes an interpretation which consists of

a supposition configuration, an interpretation graph and explanatory extensions

(Steps 2-4). It then estimates the probability of this interpretation (Step 5), and

retains the top K most probable interpretations (Step 6). The procedure for build-

ing interpretation graphs is described in [Zukerman and George 2005], and the

procedures for postulating supposition configurations and generating explanatory

extensions are described in [George, Zukerman, and Niemann 2007]. Here we outline

the general interpretation process and briefly describe these procedures.

Figure 3(a) depicts a portion of the search tree generated by our algorithm,

with multiple supposition configurations considered in the first level, multiple in-

terpretation graphs in the second level, and one set of explanatory extensions per

interpretation graph in the third level. A supposition configuration is proposed

first because suppositions change the beliefs in the domain and affect the manner

in which beliefs influence each other. This happens because suppositions are im-

plemented as instantiations or uninstantiations of nodes, which may block a path

in a BN (precluding the propagation of evidence through this path), or unblock a

previously blocked path. These interactions, which are difficult to predict until an

interpretation graph is complete, motivate the large number of alternatives consid-

ered in the first two levels of the search tree. In contrast, explanatory extensions

do not seem to have complex interactions with interpretation graphs. Hence, they

are generated deterministically in the third level of the search tree — only one set

of explanatory extensions is proposed for each interpretation.

Figure 3(b) shows a portion of the search tree instantiated for the short argument

at the root node of this tree: “Mr Green probably being in the garden at 11 implies

that Mr Green possibly had the opportunity to kill Mr Body”. In this example, the

276

Arguing with a Bayesian Intelligence

EE −− explanatory extensions
IG −− interpretation graph
SC −− supposition configuration

SC1 SC2 SC3

IG11 IG12

EE12

IG13 IG21 IG22

EE21 EE22

SC4

Argument (connected propositions)

(a) Search tree in progress

Mr Green probably being in the garden at 11 implies that
Mr Green possibly had the opportunity to kill Mr Body.

NONE
SC1:

GreenInGardenAt11

GreenInGardenAtTimeOfDeath

GreenHasOpportunity

[Probably]

[Possibly]

[Probably]

SC3:
GreenVisitBodyLastNight: TRUE

SC2:
TimeOfDeath11: TRUE

GreenInGardenAt11 [Probably]

GreenInGardenAtTimeOfDeath

GreenHasOpportunity

[EvenChance]

[EvenChance]

IG11 IG21

EE21: NONE[EvenChance]EE11: TimeOfDeath11

(b) Sample search tree

[Probably]

[EvenChance]

[EvenChance]GreenHasOpportunity

GreenInGardenAtTimeOfDeath

GreenInGardenAt11
EE11: TimeOfDeath11 [EvenChance]

it is the best I could do given what I believe.

Since it is probable that Mr Green was in the

I know this is not quite what you said, but

garden at 11, and

time of death was 11

Mr Green was in the garden at the time of

death, which implies that it is even chance

that he had the opportunity to kill Mr Body.

it is even chance that the

, it is even chance that

(c) Interpretation (SC1, IG11, EE11)

GreenInGardenAtTimeOfDeath
[Probably]

Supposing that the time of death was 11 ,

Mr Green probably being in the garden

at 11 implies that he probably was in the

[Probably]GreenInGardenAt11

GreenHasOpportunity [Possibly]

garden at the time of death, which implies

that he possibly had the opportunity to

kill Mr Body.

SC2: TimeOfDeath11 TRUE

(d) Interpretation (SC2, IG21, EE21)

Figure 3. Argument interpretation process

user’s belief in the consequent of the argument differs from the belief obtained by

bias by means of Bayesian propagation from the evidence nodes in the domain BN.

As indicated above, bias attempts to address this problem by making suppositions

about the user’s beliefs. The first level of the sample search tree in Figure 3(b)

contains three supposition configurations SC1, SC2 and SC3. SC1 posits no beliefs

that differ from those in the domain BN, thereby retaining the mismatch between

the user’s belief in the consequent and bias’s belief; SC2 posits that the user believes

that the time of death is 11; and SC3 posits that the user believes that Mr Green

visited Mr Body last night.

The best interpretation graph for SC1 is IG11 (the evaluation of the goodness

of an interpretation is described in Section 4). Here the belief in the consequent

differs from that stated by the user, prompting the generation of a preface that

acknowledges this fact. In addition, the interpretation graph has a large jump in

belief (from Probably to EvenChance), which causes bias to add the mutually be-

lieved proposition TimeOfDeath11[EvenChance] as an explanatory extension. The

277

Ingrid Zukerman

resultant interpretation and its gloss appear in Figure 3(c). The best interpre-

tation graph for SC2 is IG21, which matches the beliefs in the user’s argument.

The resultant interpretation and its gloss appear in Figure 3(d). Note that both

(SC1, IG11, EE11) and (SC2, IG21, EE21) mention TimeOfDeath11, but in the first

interpretation this proposition is used as an explanatory extension (with a belief of

EvenChance obtained by Bayesian propagation), while in the second interpretation

it is used as a supposition (with a belief of true). Upon completion of this pro-

cess, bias retains the K most probable interpretations. In this example, the best

interpretation is {SC2, IG21, EE21}.

3.1 Generating individual components

Owing to the different ways in which supposition configurations, interpretation

graphs and explanatory extensions interact, we employ different techniques to gen-

erate each of these components: a dynamic priority queue is used to generate in-

terpretation graphs; supposition configurations are drawn from a static pool based

on a dynamic priority queue; and a deterministic algorithm is applied to generate

explanatory extensions.

Generating interpretation graphs

A priority queue is initialized with the smallest BN subnet that connects a user’s

statements. An iterative process is then followed, where in each iteration, the

candidate at the top of the queue is selected, its “children” are generated, and

their probability is calculated (Section 4). A child of an interpretation graph is

the smallest interpretation graph (BN subnet) that connects the argument proposi-

tions in a modified BN where an arc from the parent interpretation graph has been

removed. For example, in Figure 1(b), the smallest interpretation graph that con-

nects GreenInGardenAt11 with GreenHasOpportunity goes through GreenInGardenAtTime-

OfDeath. If we remove the arc between GreenInGardenAt11 and GreenInGardenAtTime-

OfDeath, bias generates an interpretation graph that goes from GreenInGardenAt11

to NbourHeardGreenBodyArgLastNight, GreenBodyArgueLastNight and GreenVisitBodyLast-

Night. The newly generated children are then slotted in the priority queue according

to their probability. This process yields good results for interpretation graphs, as

the order in which these graphs appear in the queue is indicative of their goodness

(graphs that appear earlier are usually better).

Generating supposition configurations

Supposition configurations are generated by considering the following options for

every node in the domain BN: (1) suppose nothing; (2) if the node is uninstanti-

ated then instantiate it to true and to false; and (3) if the node is instantiated,

uninstantiate it. The probability of each option is determined by its type (suppose

nothing, instantiate or uninstantiate), and by how close a supposed belief is to the

belief in the node in question, e.g., the probability of instantiating to true a node

with a belief of 0.8 is higher than the probability of instantiating it to false. A

278

Arguing with a Bayesian Intelligence

supposition configuration is generated by first taking the highest probability option

for all the nodes (which is the “suppose nothing” option), then taking the next

best option for each node in turn (leaving the others as they are), and so on. For

instance, in our domain BN, the second most probable option consists of setting

TimeOfDeath11 to true without changing the beliefs in the other nodes, next setting

just GreenVisitBodyLastNight to true, and so on.

This process is based on the closeness between the (new) supposed beliefs and

the system’s beliefs obtained by Bayesian propagation from evidence. However, it

does not take into account how well the system’s resultant beliefs in the argument

propositions match the user’s stated beliefs. Hence, we cannot simply rely on sup-

position configurations that are generated early in the interpretation process, as

later configurations may yield a better belief match overall. In order to be able to

access these later candidates and still achieve close to anytime performance, we cre-

ate a static pool of promising candidates at the start of the interpretation process.

This pool is populated by calling a priority queue of supposition configurations M

times as described above, and retaining the m best candidates (M ≫ m) on the

basis of both (1) how close are the supposed beliefs to the original beliefs in the BN,

and (2) how close are the system’s resultant beliefs in the argument propositions to

those stated by the user (these factors are respectively related to model complex-

ity and data fit, Section 4). During the interpretation process, a new supposition

configuration is probabilistically selected from this pool (the priority queue is never

recalled).

Generating explanatory extensions

We conducted surveys to assess the influence of the beliefs in the antecedents and

consequent of probabilistic inferences on the acceptability of these inferences. The

main insights from our surveys are that people object to two types of inferences:

(1) those which have more certainty regarding the consequent than regarding the

antecedents, e.g., Probably A ⇒ Very Probably C ; and (2) those where there is

a large change in certainty from the antecedents to the consequent, e.g., Probably

A ⇒ EvenChance C [Zukerman and George 2005]. In addition, among accept-

able inferences, people prefer BothSides inferences to SameSide inferences. Both-

Sides inferences have antecedents with beliefs on both “sides” of the belief in the

consequent (higher probability and lower), e.g., A[VeryProbably] & B[PossiblyNot]

⇒ C[Possibly]; while all the antecedents in SameSide inferences have beliefs on

“one side” of the belief in the consequent, e.g., A[VeryProbably] & B[Probably] ⇒

C[Possibly] [George, Zukerman, and Niemann 2007].6

Explanatory extensions are generated by considering the siblings of the an-

6Our surveys were restricted to direct inferences, where a high/low probability for an an-

tecedent yields a high/low probability for the consequent. We posit similar preferences for inverse

inferences, where a low/high probability antecedent yields a high/low probability consequent. The

work described in [George, Zukerman, and Niemann 2007] contains additional, more fine-grained

categories of inferences, but here we restrict our discussion to the main ones.

279

Ingrid Zukerman

tecedents of an unacceptable inference in an interpretation graph (these siblings

are not in the graph), and assigning each sibling to an inference category according

to its effect on the inference. The siblings in the most preferred inference cate-

gory are then added to the interpretation graph as an explanatory extension, e.g.,

if there is a set of siblings that turns an unacceptable inference into a BothSides

inference, then it is chosen. This simple approach yields interpretations that people

find acceptable (Section 5). However, further investigation is required to determine

whether different combinations of siblings would yield better results.

4 Probabilistic Formalism

As mentioned in Section 1, the Minimum Message Length (MML) principle [Wallace

2005] selects the simplest model that explains the observed data. In our case, the

data are the argument given by a user, and the candidate models are interpretations

of this argument. In addition to the data and the model, the MML principle requires

the specification of background knowledge — information shared by the system and

the user prior to the argument, e.g., domain knowledge (including shared beliefs)

and dialogue history.

We posit that the best interpretation is that with the highest posterior probabil-

ity.

IntBest = argmaxi=1,...,qPr(IGi, SCi, EEi|Argument,Background)

where q is the number of interpretations.

After assuming conditional independence between the argument and the back-

ground given an interpretation, this probability is represented as follows.

IntBest = argmaxi=1,...,q{Pr(IGi, SCi, EEi|Background) × (1)

Pr(Argument|IGi, SCi, EEi)}

The first factor, which is also known as model complexity, represents the prior

probability of the model, and the second factor represents data fit.

• The prior probability of a model or model complexity reflects how “easy”

it is to construct the model (interpretation) from background knowledge.

For instance, complex models (e.g., interpretations with larger interpretation

graphs) usually have a lower prior probability than simpler models.

• Data fit measures how similar the data (argument) are to the model (inter-

pretation). The closer the data are to the model, the higher the probability

of the data given the model (i.e., the probability that the user uttered the

argument when he or she intended the interpretation in question).

Both the argument and its interpretation contain structural information and be-

liefs. The beliefs are simply those stated in the argument and in the interpretation,

and suppositions made as part of the interpretation. The structural part of the

280

Arguing with a Bayesian Intelligence

argument comprises the stated propositions and the relationships between them,

while the structural part of the interpretation comprises the interpretation graph

and explanatory extensions. As stated above, smaller, simpler structures usually

have a higher prior probability than larger, more complex ones. However, the

simplest structure is not necessarily the best overall. For instance, the simplest

possible interpretation for any argument consists of a single proposition, but this

interpretation usually yields a poor data fit with most arguments. An increase in

structural complexity (and corresponding reduction in probability) may reduce the

discrepancy between the argument structure and the structure of the interpretation

graph, thereby improving data fit. If this improvement overcomes the reduction

in probability due to the higher model complexity, we obtain a higher-probability

interpretation overall.

The techniques employed to calculate the prior probability and data fit for both

types of information are outlined below (a detailed description appears in [George,

Zukerman, and Niemann 2007; Zukerman and George 2005]).

4.1 Prior probability of an interpretation:

Pr(IGi,SCi,EEi|Background)

As mentioned above, the prior probability of an interpretation reflects how well it

fits the background knowledge. In our case, the background knowledge comprises

(1) domain knowledge – the evidence in the BN (known to the user and the sys-

tem); (2) dialogue history – previously mentioned propositions; and (3) presentation

preferences – features of acceptable inferences (obtained from user surveys).

To estimate the prior probability of an interpretation, we separate the structure

of an interpretation and the beliefs in it (note that SCi comprises only beliefs, and

EEi comprises only structure).

Pr(IGi, SCi, EEi|Background) =

Pr(beliefs in IGi, struct of IGi, SCi, EEi|Background)

After applying the chain rule of probability, we obtain

Pr(IGi, SCi, EEi|Background) = (2)

Pr(beliefs in IGi|struct of IGi, SCi, EEi,Background) ×

Pr(EEi|struct of IGi, SCi,Background) ×

Pr(struct of IGi|SCi,Background) × Pr(SCi|Background)

The factors in Equation 2 are described below (we consider them from last to

first for clarity of exposition).

Supposition configuration: Pr(SCi|Background)

A supposition configuration addresses mismatches between the beliefs expressed

in an argument and those in an interpretation. It comprises beliefs attributed

281

Ingrid Zukerman

to the user in light of the beliefs shared with the system, which are encoded in

the background knowledge. Making suppositions has a lower probability than not

making suppositions (which has no discrepancy with the background knowledge).

However, as seen in the example in Figure 2(c), making a supposition that reduces

or eliminates the discrepancy between the beliefs stated in the argument and those

in the interpretation increases the data fit for beliefs.

Pr(SCi|Background) reflects how close the suppositions in a supposition config-

uration are to the current beliefs in the background knowledge. The closer they

are, the higher the probability of the supposition configuration. Assuming condi-

tional independence between the supposition for each node given the background

knowledge yields

Pr(SCi|Background) =
N
∏

j=1

Pr(sji|BelBkgrd(j))

where N is the number of nodes in the BN, sij is the supposition made for node j

in supposition configuration SCi, and BelBkgrd(j) is the belief in node j according

to the background knowledge. Pr(sji|BelBkgrd(j)) is estimated by means of the

heuristic function H.

Pr(sji|BelBkgrd(j)) = H(Type(sji),Bel(sji)|BelBkgrd(j))

where Type(sji) is the type of supposition sji (supposing nothing, supposing evi-

dence, or forgetting evidence), and Bel(sji) is the value of the supposition (true or

false when evidence is supposed for node j; and the belief in node j obtained from

belief propagation in the BN when evidence is forgotten for node j). Specifically,

we posit that supposing nothing has the highest probability, and supposing the

truth or falsehood of an inferred value is more probable than forgetting seen evi-

dence [George, Zukerman, and Niemann 2007]. In addition, strongly believed (high

probability) propositions are more likely to be supposed true than weakly believed

(lower probability) propositions, and weakly believed propositions are more likely

to be supposed false than strongly believed propositions [Lichtenstein, Fischhoff,

and Phillips 1982].

Structure of an interpretation: Pr(struct of IGi|SCi,Background)

Pr(struct of IGi|SCi,Background) is the probability of selecting the nodes and arcs

in IGi from the domain BN (which is part of the background knowledge). The

calculation of this probability is described in detail in [Zukerman and George 2005].

In brief, the prior probability of the structure of an interpretation graph is estimated

using the combinatorial notion of selecting the nodes and arcs in the graph from

those in the domain BN. To implement this idea, we specify an interpretation graph

IGi by indicating the number of nodes in it (ni), the number of arcs (ai), and the

actual nodes and arcs in it (Nodesi and Arcsi respectively). Thus, the probability

of the structure of IGi in the context of the domain BN (composed of A arcs and

282

Arguing with a Bayesian Intelligence

N nodes) is defined as follows.

Pr(struct IGi|Background) = Pr(Arcsi,Nodesi, ai, ni|Background)

Applying the chain rule of probability yields

Pr(struct IGi|Background) = Pr(Arcsi|Nodesi, ai, ni,Background) × (3)

Pr(ai|Nodesi, ni,Background) ×

Pr(Nodesi|ni,Background) × Pr(ni|Background)

These probabilities are calculated as follows.

• Pr(ni|Background) is the probability of having ni nodes in an interpretation

graph. We model this probability by means of a truncated Poisson distribu-

tion, Poisson(β), where β is the average number of nodes in an interpretation

(obtained from user trials).

• Pr(Nodesi|ni,Background) is the probability of selecting the particular ni

nodes in Nodesi from the N nodes in the domain BN. The simplest calculation

assumes that all nodes in an interpretation graph have an equal probability

of being selected, i.e., there are
(

N
ni

)

ways to select these nodes. This calcula-

tion generally prefers small models to larger ones.7 In [Zukerman and George

2005], we considered salience — obtained from dialogue history, which is part

of the background knowledge — to moderate the probability of selecting a

node. According to this scheme, recently mentioned nodes are more salient

(and have a higher probability of being selected) than nodes mentioned less

recently.

• Pr(ai|Nodesi, ni,Background) is the probability of having ai arcs in an in-

terpretation graph. The number of arcs in an interpretation is between the

minimum number of arcs needed to connect ni nodes (ni − 1), and the actual

number of arcs in the domain BN that connect the nodes in Nodesi, denoted

vai. We model the probability of ai by means of a uniform distribution be-

tween ni − 1 and vai.

• Pr(Arcsi|Nodesi, ai, ni,Background) is the probability of selecting the partic-

ular ai arcs in Arcsi from the vai arcs in the domain BN that connect the

nodes in IGi. Assuming an equiprobable distribution, there are
(

vai

ai

)

ways to

select these arcs.

Structure of an explanatory extension:

Pr(EEi|struct of IGi,SCi,Background)

Explanatory extensions are added to an interpretation graph to accommodate peo-

ple’s expectations regarding the relationship between the antecedents of an inference

7In the rare cases where the number of propositions in an interpretation exceeds N/2, smaller

models do not yield lower probabilities.

283

Ingrid Zukerman

and its consequent (rather than to connect between the propositions in an argu-

ment). These expectations, which are part of the background knowledge, were

obtained from our user studies. Explanatory extensions have no belief component,

as the nodes in them do not provide additional evidence, and hence do not affect

the beliefs in a BN.

Interpretations with explanatory extensions are more complex, and hence have a

lower probability, than interpretations without such extensions. At the same time,

as shown in the example in Figure 2(d), an explanatory extension that overcomes

an expectation violation regarding the consequent of an inference improves the

acceptance of the interpretation, thereby increasing the probability of the model.

According to our surveys, explanatory extensions that yield BothSides inferences

are preferred to those that yield SameSide inferences. In addition, as for interpreta-

tion graphs, shorter explanatory extensions are preferred to longer ones. Thus, our

estimate of the structural probability of explanatory extensions balances the size

of explanatory extensions (number of propositions) against their type (inference

category), as follows.8

Pr(struct of EEi|struct of IGi, SCi,Background) =
NFi
∏

j=1

Pr(InfCategory(EEij), np(EEij)|struct of IGi, SCi,Background)

where NFi is the number of inferences in IGi, InfCategory(EEij) is the category of

the inference obtained by adding explanatory extension EEij to the jth inference

in IGi, and np(EEij) is the number of propositions in EEij .

Applying the chain rule of probability yields

Pr(struct of EEi|struct of IGi, SCi,Background) = (4)
NFi
∏

j=1

{

Pr(InfCategory(EEij)|np(EEij), struct of IGi, SCi,Background)×

Pr(np(EEij)|struct of IGi, SCi,Background)

}

These probabilities are calculated as follows.

• Pr(InfCategory(EEij)|np(EEij), struct of IGi, SCi,Background) is estimated

using a heuristic function that represents people’s preferences: an explanatory

extension that yields a BothSides inference has a higher probability than an

explanatory extension that yields a SameSide inference.

• As for interpretation graphs, Pr(np(EEij)|struct of IGi, SCi,Background) is

estimated by means of a truncated Poisson distribution, Poisson(µ), where µ

is the average number of nodes in an explanatory extension.

8We do not estimate the probability of including particular nodes in an explanatory exten-

sion, because the nodes in an explanatory extension are completely determined by their inference

category.

284

Arguing with a Bayesian Intelligence

Beliefs in an interpretation:

Pr(beliefs in IGi|struct of IGi,SCi,EEi,Background)

The beliefs in an interpretation IGi are estimated by performing Bayesian propa-

gation from the beliefs in the domain BN and the suppositions. This is an algo-

rithmic process, hence the probability of obtaining the beliefs in IGi is 1. However,

the background knowledge has another aspect, viz users’ expectations regarding

inferred beliefs. In our preliminary trials, users objected to inferences that had

increases in certainty or large changes in belief from their antecedents to their con-

sequent [Zukerman and George 2005].

Thus, interpretations that contain objectionable inferences have a lower prob-

ability than interpretations where the beliefs in the consequents of the inferences

fall within an “acceptable range” of the beliefs in their antecedents. We use the

categories of acceptable inferences obtained from our surveys to estimate the prob-

ability of each inference in an interpretation — these categories define an acceptable

range of beliefs for the consequent of an inference given its antecedents. For ex-

ample, an inference with antecedents A[Probably] & B[Possibly] has the acceptable

belief range {Probably, Possibly, EvenChance} for its consequent. The probability

of an inference whose consequent falls within the acceptable range is higher than

the probability of an inference whose consequent falls outside this range. In addi-

tion, we extrapolate from the results of our surveys, and posit that the probability

of an unacceptable inference decreases as the distance of its consequent from the

acceptable range increases. We use the Zipf distribution to model the probability of

an inference, where the “rank” is the distance between the belief in the consequent

and the acceptable belief range.

As mentioned above, explanatory extensions are generated to satisfy people’s

expectations about the relationship between the beliefs in the antecedents of infer-

ences and the belief in their consequent (i.e., they bring the consequent into the

acceptable range of an inference, or at least closer to this range). Thus, they in-

crease the belief probability of an interpretation at the expense of its structural

probability.

4.2 Data fit between argument and interpretation:

Pr(Argument|IGi,SCi,EEi)

As mentioned above, data fit reflects the probability that a user who intended

a particular interpretation generated the given argument. This probability is a

function of the similarity between the argument and the interpretation: the higher

this similarity, the higher the probability of the argument given the interpretation.

As for prior probabilities, we consider structural similarity and belief similarity.

Pr(Argument|IGi, SCi, EEi) = Pr(struct of Argument, beliefs in Argument |

struct of IGi, beliefs in IGi, SCi, EEi)

We assume that given an interpretation graph, the argument is independent of

285

Ingrid Zukerman

the suppositions and explanatory extensions, which yields

Pr(Argument|IGi, SCi, EEi) = Pr(struct of Argument|struct of IGi) × (5)

Pr(beliefs in Argument|beliefs in IGi)

Structure of the argument given the structure of an interpretation:

Pr(struct of Argument|struct of IGi)

The estimation of the structural similarity between an argument and an interpre-

tation is based on the idea that the nodes and arcs in the argument are selected

from those in the interpretation graph. This idea is similar to that used to calcu-

late the prior probability of the structure of the interpretation graph, where the

nodes and arcs in IGi were selected from those in the domain BN (Section 4.1).

However, in this case there is a complicating factor, since as seen in our examples,

a user may mention implications (arcs) which are absent from the interpretation

graph (our web interface prevents the inclusion of nodes that do not appear in

the domain BN). Hence, the calculation of Pr(struct of Argument|struct of IGi) is

similar to the calculation of Pr(struct of IGi|Background) in Equation 3, but it dis-

tinguishes between arcs in Argument that are selected from IGi and arcs that are

newly inserted.

Beliefs in the argument given the beliefs in an interpretation:

Pr(beliefs in Argument|beliefs in IGi)

The closer the beliefs stated in an argument are to the beliefs in an interpretation,

the higher the probability that the user presented the argument when he or she

intended this interpretation. Thus, suppositions that reduce belief discrepancies

between the beliefs in an argument and those in an interpretation improve data

fit (at the expense of the prior probability of the interpretation, Section 4.1). We

employ the Zipf distribution to estimate the probability that the beliefs in an inter-

pretation were intended in the argument, where the “rank” is the difference between

the corresponding beliefs.

In a final step, we inspect the interpretation graph to determine whether it has

blocked paths. The presence of blocked paths in an interpretation graph suggests

that the lines of reasoning in the interpretation do not match those in the argument.

Thus, if blocked paths are found, the probability of the belief match between the

interpretation graph and the argument is reduced.

5 Evaluation

Our evaluation was designed to determine whether our approach to argument in-

terpretation by a Bayesian intelligence yields interpretations that are acceptable to

users. However, our target users are not those who constructed the argument, but

those who read the argument. Specifically, our evaluation determines whether peo-

ple reading someone else’s argument find bias’s highest-probability interpretations

acceptable (and better than other options).

286

Arguing with a Bayesian Intelligence

We evaluated the components of an interpretation separately in the order in which

they were developed: first interpretation graphs, next supposition configurations,

and finally explanatory extensions. Our evaluations relied on scenarios based on

BNs that were similar to that in Figure 1(b). Our participants were staff and

students in the Faculty of Information Technology at Monash University and people

known to the project team members (the participants exhibited different levels of

computer literacy).

Interpretation graphs. We constructed four evaluation sets, where each set con-

tained an argument (the argument in Figure 1(a), and three short arguments similar

to that in Figure 2(a)) and bias’s preferred interpretations.9 Between 17-25 partic-

ipants read each argument and the interpretations. They were then asked to give

each interpretation a score between 1 (Very UNreasonable) and 5 (Very Reason-

able), and to comment on aspects of the interpretations that they liked or disliked.

People generally found our interpretations acceptable, with average scores between

3.35 and 4. The lower scores were attributed to three main problems: (1) partici-

pants’ disagreement with the systems’ domain-related inferences, (2) discrepancies

between the argument’s beliefs in the consequents of inferences and the system’s

beliefs, and (3) unacceptable inferences. The first problem is discussed in Section 6,

and the other two problems are addressed by supposition configurations and ex-

planatory extensions respectively.

Supposition configurations. We constructed four scenarios, where each scenario

had two versions of an argument: (1) an original version, whose beliefs were obtained

by Bayesian propagation in the domain BN; and (2) a version given by a hypothetical

user, whose conclusion did not match that of the original version (bias had to

make a supposition in order to account for the beliefs in the user’s argument). 34

participants read both arguments, and were then asked whether it was reasonable

to make suppositions about the user’s beliefs in order to make sense of his or her

argument. To answer this question, they could (1) select one of four suppositions

we showed them (which included bias’s top-ranked supposition and other highly

ranked suppositions), (2) include an alternative supposition of their choice (from

bias’s knowledge base or of their own devising), or (3) indicate that no suppositions

were required. bias’s preferred supposition was consistently ranked first or second

by our trial subjects, with its average rank being the lowest (best) among all the

options. In addition, very few respondents felt that no suppositions were warranted.

Explanatory extensions. We constructed two evaluation sets, each consisting

of a short argument and two alternative interpretations — one with explanatory

extensions and one without. These sets were shown to 20 participants. The majority

of the participants preferred the interpretations with explanatory extensions. At

9The arguments were generated by project team members. We also conducted experiments

were people not associated with the project entered arguments, but interface problems affected

the evaluation (Section 6.4).

287

Ingrid Zukerman

the same time, about half of the participants felt that the extended interpretations

were too verbose. This problem may be partially attributed to the presentation

of the nodes as direct renditions of their propositional content, which makes the

interpretations appear repetitive in style. The generation of stylistically diverse text

is the subject of active research in Natural Language Generation, e.g., [Gardent

and Kow 2005].

6 Discussion

This chapter offers a probabilistic approach to argument interpretation by a system

that uses a BN as its knowledge representation and reasoning formalism. An inter-

pretation of a user’s argument is represented as beliefs in the BN (suppositions) and

a Bayesian subnet (interpretation graph and explanatory extensions). Our evalu-

ations show that people found bias’s interpretations generally acceptable, and its

suppositions and explanatory extensions both necessary and reasonable.

Our approach casts the generation of an interpretation as a model selection task,

and employs an (almost) anytime algorithm to generate candidate interpretations.

Our model selection approach balances the probability of the model in light of

background knowledge against its data fit (similarity between the model and the

data). In other words, our formalism balances the cost of adding extra elements

to an interpretation (e.g., suppositions) against the benefits obtained from these

elements. The calculations that implement this idea are based on three main ele-

ments: (1) combinatoric principles for extracting an interpretation graph from the

domain BN, and an argument from an interpretation; (2) known distributions, such

as Poisson for the number of nodes in an interpretation graph or explanatory ex-

tension, and Zipf for modeling discrepancies in belief; and (3) manually-generated

distributions for suppositions and for preferences regarding different types of in-

ferences. The parameterization of these distributions requires specific information.

For instance, the mean of the Poisson distribution, which determines the “penalty”

for having too many nodes in an interpretation or explanatory extension, must be

empirically determined. Similarly, the hand-tailored distributions for supposition

configurations and explanatory extensions require experimental fine-tuning or user

studies to gather these probabilities.

The applicability of our approach is mainly affected by our assumption that the

nodes in the domain BN are binary. Other factors to be considered when applying

our formalism are: the characteristics of the domain, the expressive power of BNs

vis a vis human reasoning, and the ability of users to interact with the system.

6.1 Binary node BNs

The assumption that the nodes in the domain BN are binary simplifies the estima-

tion of the probability of suppositions and explanatory extensions. The relaxation

of this assumption to multi-valued nodes would increase the search space for sup-

positions, and necessitate a generalization of the heuristics used to calculate the

288

Arguing with a Bayesian Intelligence

probability of a supposition (Section 4.1). The incorporation of multi-valued nodes

would also require a generalization of the procedure for generating explanatory ex-

tensions and estimating their probability (Sections 3.1 and 4.1 respectively). This in

turn would necessitate user studies to determine people’s presentation preferences

and expectations about inferences involving multi-valued nodes. For instance, peo-

ple may prefer such inferences to be presented in terms of a particular value of a

node or in terms of an aggregate of several values; and different models of expecta-

tions may be required for nodes with ordinal values (e.g., low, medium and high)

and nodes with scalar values (e.g., colours). Further, as indicated in Section 6.2,

these preferences and expectations are domain dependent.

6.2 Domain of argumentation

We selected a “commonsense” domain both for ease of design and to be able to

conduct trials with non-experts. The nodes and arcs in the domain BN and the

values in the Conditional Probability Tables (CPTs) were devised by the project

team members. A consequence of working in a commonsense domain is that people,

rather than computer systems, are the domain experts. As a result, users may

postulate ideas of which the system is unaware (e.g., Mr Green and Ms Scarlet were

in cahoots), and their inferences may validly differ from those of the system. For

instance, according to bias, Mr Green and Mr Body being enemies implies that Mr

Green very probably has a motive to kill Mr Body — an inference that several users

found objectionable.

To deal with the first of these issues, an argumentation system can (1) restrict

the user to use only the propositions known to the system, (2) ignore the user’s

propositions that are not known to the system, or (3) try to learn the import of

new propositions. Our experience with bias shows that the first solution is frus-

trating for users, as people did not like having to shoehorn their reasoning into the

propositions known to the system. The second solution leads to only a partial under-

standing of the user’s intentions, and hence potentially to a mis-directed discussion.

The third solution, which also applies to the synchronization of inference patterns

between the user and the system, is clearly the most sound. However, incorporating

new propositions into a BN, and modifying inference patterns, have significant im-

plications with respect to the system’s reasoning, and present non-trivial interface

design problems. These observations, together with the fact that at present the

strength of computer systems is their ability to perform expert reasoning, indicate

that a fruitful domain for the incorporation of argumentation capabilities into BNs

is an expert domain, where the system’s knowledge generally exceeds that of users.

Our procedures for generating interpretation graphs and supposition configura-

tions are domain independent. However, the generation of explanatory extensions

is domain dependent. This is because explanatory extensions are generated to ex-

plain surprising outcomes, and what is surprising often depends on the domain.

Further, in some domains what matters is the increase or reduction in probability,

289

Ingrid Zukerman

rather than its absolute value, e.g., an increase from 6% to 10% in the probability

of a patient having cancer may require an explanatory extension, even though both

probabilities belong to the VeryProbablyNot belief category.

6.3 BN reasoning and human reasoning

Our approach assumes that the underlying BN represents only ground predicates,

while human reasoning often involves general statements (quantified predicates).

Getoor et al. [Getoor, Friedman, Koller, and Taskar 2001] and Taskar et al. [Taskar,

Abbeel, and Koller 2002] studied probabilistic relational models, which combine ad-

vantages of relational logic and BNs, and can generalize over a variety of situations.

This is a promising representation for the interpretation of arguments that include

quantified predicates.

Belief propagation in BNs differs from human belief propagation when users em-

ploy different inference patterns from those in the BN, and when users do not engage

in normative probabilistic reasoning. As mentioned above, the synchronization of

inference patterns between the user and the system is a challenging task which falls

under the purview of probabilistic reasoning and human-computer interfaces.

People’s non-normative probabilistic reasoning is partly attributed to reasoning

fallacies [Evans, Barston, and Pollard 1983; Lichtenstein, Fischhoff, and Phillips

1982; Tversky and Kahneman 1982]. In previous research, we augmented a Bayesian

argument generation system with a (rather coarse) model of certain types of human

reasoning fallacies [Korb, McConachy, and Zukerman 1997]. An interesting avenue

for future research consists of developing finer, domain dependent models of human

reasoning fallacies, and incorporating them into our interpretation process.

6.4 Argumentation interface

bias requires users to construct their arguments using only propositions known to

the system, and assumes that the arguments are in premise-to-goal form. As men-

tioned in Section 6.2, users disliked having to shoehorn their ideas into a restricted

set of propositions. An alternative approach, which we considered in [Zukerman,

George, and Wen 2003], allowed users to provide Natural Language statements,

and then mapped these statements to propositions in the system’s knowledge base.

However, such a process runs the risk of producing an erroneous mapping. Hence,

this process should be able to determine when a mapping is questionable, and handle

this situation appropriately.

In addition to a premise-to-goal argumentation strategy, people employ strate-

gies such as reductio-ad-absurdum, inference to best explanation, and reasoning by

cases [Zukerman, McConachy, and Korb 2000]. These strategies must be identified

prior to rendering an argument into an interpretation graph. An interesting ap-

proach for addressing this problem involves using a graphical interface to help users

structure an argument [van Gelder 2005], while allowing them to express proposi-

tions in Natural Language.

290

Arguing with a Bayesian Intelligence

Acknowledgments

The author thanks her collaborators on the research described in this chapter:

Sarah George and Michael Niemann. This research was supported in part by grant

DP0878195 from the Australian Research Council (ARC) and by the ARC Centre

for Perceptive and Intelligent Machines in Complex Environments.

References

Dean, T. and M. Boddy (1988). An analysis of time-dependent planning. In

AAAI88 – Proceedings of the 7th National Conference on Artificial Intelli-

gence, St. Paul, Minnesota, pp. 49–54.

Elsaesser, C. (1987). Explanation of probabilistic inference for decision support

systems. In Proceedings of the AAAI-87 Workshop on Uncertainty in Artificial

Intelligence, Seattle, Washington, pp. 394–403.

Evans, J., J. Barston, and P. Pollard (1983). On the conflict between logic and

belief in syllogistic reasoning. Memory and Cognition 11, 295–306.

Gardent, C. and E. Kow (2005). Generating and selecting grammatical para-

phrases. In ENLG-05 – Proceedings of the 10th European Workshop on Nat-

ural Language Generation, Aberdeen, Scotland, pp. 49–57.

George, S., I. Zukerman, and M. Niemann (2007). Inferences, suppositions and

explanatory extensionsin argument interpretation. User Modeling and User-

Adapted Interaction 17 (5), 439–474.

Getoor, L., N. Friedman, D. Koller, and B. Taskar (2001). Learning probabilistic

models of relational structure. In Proceedings of the 18th International Con-

ference on Machine Learning, Williamstown, Massachusetts, pp. 170–177.

Horvitz, E., H. Suermondt, and G. Cooper (1989). Bounded conditioning: flexible

inference for decision under scarce resources. In UAI89 – Proceedings of the

1989 Workshop on Uncertainty in Artificial Intelligence, Windsor, Canada,

pp. 182–193.

Kashihara, A., T. Hirashima, and J. Toyoda (1995). A cognitive load application

in tutoring. User Modeling and User-Adapted Interaction 4 (4), 279–303.

Kintsch, W. (1994). Text comprehension, memory and learning. American Psy-

chologist 49 (4), 294–303.

Korb, K. B., R. McConachy, and I. Zukerman (1997). A cognitive model of ar-

gumentation. In Proceedings of the 19th Annual Conference of the Cognitive

Science Society, Stanford, California, pp. 400–405.

Lichtenstein, S., B. Fischhoff, and L. Phillips (1982). Calibrations of probabilities:

The state of the art to 1980. In D. Kahneman, P. Slovic, and A. Tversky

(Eds.), Judgment under Uncertainty: Heuristics and Biases, pp. 306–334.

Cambridge University Press.

291

Ingrid Zukerman

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Mateo, Cal-

ifornia: Morgan Kaufmann Publishers.

Taskar, B., P. Abbeel, and D. Koller (2002). Discriminative probabilistic models

for relational data. In Proceedings of the 18th Conference on Uncertainty in

Artificial Intelligence, Alberta, Canada, pp. 485–490.

Tversky, A. and D. Kahneman (1982). Evidential impact of base rates. In

D. Kahneman, P. Slovic, and A. Tversky (Eds.), Judgment under Uncertainty:

Heuristics and Biases, pp. 153–160. Cambridge University Press.

van Gelder, T. (2005). Teaching critical thinking: some lessons from cognitive

science. College Teaching 45 (1), 1–6.

Wallace, C. (2005). Statistical and Inductive Inference by Minimum Message

Length. Berlin, Germany: Springer.

Zukerman, I. and S. George (2005). A probabilistic approach for argument inter-

pretation. User Modeling and User-Adapted Interaction 15 (1-2), 5–53.

Zukerman, I., S. George, and Y. Wen (2003). Lexical paraphrasing for docu-

ment retrieval and node identification. In IWP2003 – Proceedings of the 2nd

International Workshop on Paraphrasing: Paraphrase Acquisition and Appli-

cations, Sapporo, Japan, pp. 94–101.

Zukerman, I., R. McConachy, and K. B. Korb (1998). Bayesian reasoning in an

abductive mechanism for argument generation and analysis. In AAAI98 –

Proceedings of the 15th National Conference on Artificial Intelligence, Madi-

son, Wisconsin, pp. 833–838.

Zukerman, I., R. McConachy, and K. B. Korb (2000). Using argumentation strate-

gies in automated argument generation. In INLG’2000 – Proceedings of the

1st International Conference on Natural Language Generation, Mitzpe Ra-

mon, Israel, pp. 55–62.

292

Part III: Causality

17

Instrumental Sets

Carlos Brito

1 Introduction

The research of Judea Pearl in the area of causality has been very much acclaimed.

Here we highlight his contributions for the use of graphical languages to represent

and reason about causal knowledge.1

The concept of causation seems to be fundamental to our understanding of the

world. Philosophers like J. Carroll put it in these terms: ”With regard to our total

conceptual apparatus, causation is the center of the center” [Carroll 1994]. Perhaps

more dramatically, David Hume states that causation together with resemblance

and contiguity are ”the only ties of our thoughts, ... for us the cement of the

universe” [Hume 1978]. In view of these observations, the need for an adequate

language to talk about causation becomes clear and evident.

The use of graphical languages was present in the early times of causal modelling.

Already in 1934, Sewall Wright [Wright 1934] represented the causal relation among

several variables with diagrams formed by points and arrows (i.e., a directed graph),

and noted that the correlations observed between the variables could be associated

with the various paths between them in the diagram. From this observation he

obtained a method to estimate the strength of the causal connections known as

The Method of Path Coefficients, or simply Path Analysis.

With the development of the research in the field, the graphical representation

gave way to a mathematical language, in which causal relations are represented by

equations of the form Y = α+βX+e. This movement was probably motivated by an

increasing interest in the quantitative aspects of the model, or by the rigorous and

formal appearance offered by the mathematical language. However it may be, the

consequence was a progressive departure from our basic causal intuitions. Today

people ask whether such an equation represents a functional or a causal relation

[Reiss 2005]. Sewall Wright and Judea Pearl would presumably answer: ”Causal,

of course!”.

2 The Identification Problem

We explore the feasibility of inferring linear cause-effect relationships from various

combinations of data and theoretical assumptions. The assumptions are represented

1This contribution is a simplified version of a joint paper with Judea Pearl in UAI 2002. A

great deal of technicality was removed, and new discussion was added, in the hope that the reader

will be able to easily follow and enjoy the argument.

295

Kaoru
Text Box
Return to TOC

Carlos Brito

Figure 1. (a) a bow-pattern; and (b) a bow-free model.

in the form of an acyclic causal diagram, which contains both arrows and bidirected

arcs [Pearl 1995; Pearl 2000a]. The arrows represent the potential existence of di-

rect causal relationships between the corresponding variables, and the bidirected

arcs represent spurious correlations due to unmeasured common causes. All inter-

actions among variables are assumed to be linear. Our task is to decide whether the

assumptions represented in the diagram are sufficient for assessing the strength of

causal effects from non-experimental data, and, if sufficiency is proven, to express

the target causal effect in terms of estimable quantities.

This decision problem has been tackled in the past half century, primarily by

econometricians and social scientists, under the rubric ”The Identification Prob-

lem” [Fisher 1966] - it is still unsolved. Certain restricted classes of models are

nevertheless known to be identifiable, and these are often assumed by social scien-

tists as a matter of convenience or convention [Duncan 1975]. A hierarchy of three

such classes is given in [McDonald 1997]: (1) no bidirected arcs, (2) bidirected arcs

restricted to root variables, and (3) bidirected arcs restricted to variables that are

not connected through directed paths.

In a further development [Brito and Pearl 2002], we have shown that the identifi-

cation of the entire model is ensured if variables standing in direct causal relationship

(i.e., variables connected by arrows in the diagram) do not have correlated errors;

no restrictions need to be imposed on errors associated with indirect causes. This

class of models was called ”bow-free”, since their associated causal diagrams are

free of any ”bow-pattern” [Pearl 2000a] (see Figure 1).

Most existing conditions for identification in general models are based on the

concept of Instrumental Variables (IV) [Pearl 2000b; Bowden and Turkington 1984].

IV methods take advantage of conditional independence relations implied by the

model to prove the identification of specific causal-effects. When the model is not

rich in conditional independence relations, these methods are not informative. In

[Brito and Pearl 2002] we proposed a new graphical criterion for identification which

does not make direct use of conditional independence, and thus can be successfully

applied to models in which the IV method would fail.

The result presented in this paper is a generalization of the graphical version

296

Instrumental Sets

of the method of instrumental variables, offered by Judea Pearl [Pearl 2000a], to

deal with several parameters of the model simultaneously. The traditional method

of instrumental variables involves conditions on the independence of the relevant

variables and on the rank of a certain matrix of correlations [McFadden]. The first

of these is captured by the notion of d-separation. As for the second, since we know

from [Wright 1934] that correlations correspond to paths in the causal diagram,

we can investigate which structural properties of the model give rise to the proper

conditions of the IV method. The results are graphical criteria that allow us to

conclude the identification of some parameters from consideration of the qualitative

information represented in the causal diagram.

3 Linear Models and Identification

A linear model for the random variables Y1, . . . , Yn is defined by a set of equations

of the form:

(1) Yj =
∑

i

cjiYi + ej , j = 1, . . . , n

An equation Y = cX + e encodes two distinct assumptions: (1) the possible

existence of (direct) causal influence of X on Y ; and, (2) the absence of causal

influence on Y of any variable that does not appear on the right-hand side of the

equation. The parameter c quantifies the (direct) causal effect of X on Y . That

is, the equation claims that a unit increase in X would result in c units increase

of Y , assuming that everything else remains the same. The variable e is called an

error or disturbance; it represents unobserved background factors that the modeler

decides to keep unexplained; this variable is assumed to have a normal distribution

with zero mean.

The specification of the equations and the pairs of error-terms (ei, ej) with non-

zero correlation defines the structure of the model. This structure can be represented

by a directed graph, called causal diagram, in which the set of nodes is defined by

the variables Y1, . . . , Yn, and there is a directed edge from Yi to Yj if Yi appears on

the right-hand side of the equation for Yj . Additionally, if error-terms ei and ej are

assumed to have non-zero correlation, we add a (dashed) bidirected edge between

Yi and Yj . Figure 2 shows a model with the respective causal diagram.

In this work, we consider only recursive models, which are defined by the restric-

tion that cji = 0, for all i ≥ j. This simply means that the directed edges in the

causal diagram do not form cycles.

The set of parameters of the model, denoted by Θ, is formed by the coefficients

cij and the non-zero entries of the error covariance matrix Ψ, [Ψij] = cov(ei, ej).

Fixing the structure and assigning values to the parameters Θ, the model deter-

mines a unique covariance matrix Σ over the observed variables Y1, . . . , Yn, given

by (see [Bollen 1989], page 85):

(2) Σ(Θ) = (I − C)−1Ψ[(I − C)−1]′

297

Carlos Brito

Figure 2. A simple linear model and its causal diagram.

where C is the matrix of coefficients cji.

Conversely, in the Identification Problem, after fixing the structure of the model,

one attempts to solve for Θ in terms of the observed covariance Σ. This is not

always possible. In some cases, no parametrization of the model is compatible with

a given Σ. In other cases, the structure of the model may permit several distinct

solutions for the parameters. In these cases, the model is called non-identified.

However, even if the model is non-identified, some parameters may still be

uniquely determined by the given assumptions and data. Whenever this is the

case, the specific parameters are said to be identified.

Finally, since the conditions we seek involve the structure of the model alone,

and do not depend on the numerical values of the parameters Θ, we insist only on

having identification almost everywhere, allowing few pathological exceptions. The

concept of identification almost everywhere can be formalized as follows.

Let h denote the total number of parameters in the model. Then, each vector

Θ ∈ ℜh defines a parametrization of the model. For each parametrization Θ, the

model G generates a unique covariance matrix Σ(Θ). Let Θ(λ1, . . . , λn) denotes the

vector of values assigned by Θ to the parameters λ1, . . . , λn.

Parameters λ1, . . . , λn are identified almost everywhere if

Σ(Θ) = Σ(Θ′) implies Θ(λ1, . . . , λn) = Θ′(λ1, . . . , λn)

except when Θ resides on a subset of Lebesgue measure zero of ℜh.

4 Graph Background

DEFINITION 1.

1. A path in a graph is a sequence of edges such that each pair of consecutive

edges share a common node, and each node appears only once along the path.

2. A directed path is a path composed only by directed edges, all of them oriented

298

Instrumental Sets

in the same direction. If there is a directed path going from X to Y we say

that Y is a descendant of X.

3. A path is closed if it has a pair of consecutive edges pointing to their common

node (e.g., . . .→ X ← . . . or . . .↔ X ← . . .). In this case, the common node

is called a collider. A path is open if it is not closed.

DEFINITION 2. A path p is blocked by a set of nodes Z (possibly empty) if either

1. Z contains some non-collider node of p, or

2. at least one collider of p and all of its descendants are outside Z.

The idea is simple. If the path is closed, then it is naturally blocked by its colliders.

However, if a collider, or one of its descendants, belongs to Z, then it ceases to be

an obstruction. But if a non-collider of p belongs to Z, then the path is definitely

blocked.

DEFINITION 3. A set of nodes Z d-separates X and Y if Z simultaneously blocks

all the paths between X and Y . If Z is empty, then we simply say that X and Y

are d-separated.

The significance of this definition comes from a result showing that if X and Y

are d-separated by Z in the causal diagram of a linear model, then the variables X

and Y are conditionally independent given Z [Pearl 2000a]. It is this sort of result

that makes the connection between the mathematical and graphical languages, and

allows us to express our conditions for identification in graphical terms.

DEFINITION 4. Let p1, . . . , pn be unblocked paths connecting the variables Z1, . . . , Zn

and the variables X1, . . . , Xn, respectively. We say that the set of paths p1, . . . , pn is

incompatible if we cannot rearrange their edges to form a different set of unblocked

paths p′1, . . . , p
′

n between the same variables.

A set of disjoint paths (i.e., paths with no common nodes) consists in a simple

example of an incompatible set of paths.

5 Instrumental Variable Methods

5.1 Identification of a Single Parameter

The method of Instrumental Variables (IV) for the identification of causal effects is

intended to address the situation where we cannot attribute the entire correlation

between two variables, say X and Y , to their causal connection. That is, part of the

correlation between X and Y is due to common causes and/or correlations between

disturbances. Figure 3 shows examples of this situation.

In the simplest cases, like in Figure 3a, we can find a conditioning set W such

that the partial correlation of X and Y given W can indeed be attributed to the

causal relation. In this example, if we take W = {W} we eliminate the source

299

Carlos Brito

Figure 3. Models with spurious correlation between X and Y .

of spurious correlation. The causal effect of X on Y is identified and given by

c = σXY.W.

There are cases, however, where this idea does not work, either because the

spurious correlation is originated by disturbances outside the model (Figure 3b),

or else because the conditioning itself introduces spurious correlations (Figure 3c).

In situations like these, the IV method asks us to look for a variable Z with the

following properties [Bowden and Turkington 1984]:

IV-1. Z is not independent of X.

IV-2. Z is independent of all error terms that have an influence on Y that is not

mediated by X.

The first condition simply states that there is a correlation between Z and X.

The second condition says that the only source of correlation between Z and Y

is due to a covariation bewteen Z and X that subsequently affects Y through the

causal connection X
c
→ Y .

If we can find a variable Z with these properties, then the causal effect of X on

Y is identified and given by c = σZY /σZX .

Using the notion of d-separation we can express the conditions (1) and (2) of

the IV method in graphical terms, thus obtaining a criterion for identification that

can be applied directly to the causal diagram of the model. Let G be the graph

representing the causal diagram of the model, and let Gc be the graph obtained

after removing the edge X
c
→ Y from G (see Figure 4). Then, Z is an instrumental

variable relative to X
c
→ Y if:

1. Z is not d-separated from X in Gc.

2. Z is d-separated from Y in Gc.

Using this criterion, it is easy to verify that Z is an instrumental variable relative

to X
c
→ Y in the models of Figure 3b and c.

300

Instrumental Sets

Figure 4. The causal diagram G of a linear model and the graph Gc.

5.2 Conditional Instrumental Variables

A generalization of the method of instrumental variables is offered through the use

of conditioning. A conditional instrumental variable is a variable Z that may not

have the properties (IV-1) and (IV-2) above, but after conditioning on a subset W

these properties do hold. When such pair (Z,W) is found, the causal effect of X

on Y is identified and given by c = σZY.W/σZX.W.

Again, we obtain a graphical criterion for a conditional IV using the notion of

d-separation. Variable Z is a conditional instrumental variable relative to X
c
→ Y

given W, if

1. W contains only non-descendants of Y .

2. W does not d-separate Z from X in Gc.

3. W d-separates Z from Y in Gc.

5.3 Identification of Multiple Parameters

So far we have been concerned with the identification of a single parameter of the

model, but in its full version the method of instrumental variables allows to prove

simultaneously the identification of several parameters in the same equation (i.e.,

the causal effects of several variables X1, . . . , Xk on the same variable Y).

Following [McFadden], assume that we have the equation

Y = c1X1 + . . . + ckXk + e

in our linear model. The variables Z1, . . . , Zj , with j ≥ k, are called instruments if

1. The matrix of correlations between the variables X1, . . . , Xk and the variables

Z1, . . . , Zj is of maximum possible rank (i.e., rank k).

2. The variables Z1, . . . , Zj are uncorrelated with the error term e.

301

Carlos Brito

Figure 5. The causal diagram G of a linear model and the graph Ḡ.

Next, we develop our graphical intuition and obtain a graphical criterion for

identification that corresponds to the full version of the IV method.

Consider the model in Figure 5a. Here, the variables Z1 and Z2 do not qualify

as instrumental variables (or even conditional IVs) with respect to either X1
c1→ Y

or X2
c2→ Y . But, following ideas similar to the ones developed in the previous

sections, in Figure 5b we show the graph obtained by removing edges X1 → Y and

X2 → Y from the causal diagram. Observe that now both d-separation conditions

for an instrumental variable hold for Z1 and Z2. This leads to the idea that Z1 and

Z2 could be used together as instruments to prove the identification of parameters

c1 and c2. Indeed, next we give a graphical criterion that is sufficient to guarantee

the identification of a subset of parameters of the model.

Fix a variable Y , and consider the edges X1
c1→ Y, . . . ,Xk

ck→ Y in the causal

diagram G of the model. Let Ḡ be the graph obtained after removing the edges

X1 → Y, . . . ,Xk → Y from G. The variables Z1, . . . , Zk are instruments relative to

X1
c1→ Y, . . . ,Xk

ck→ Y if

1. There exists an incompatible set of unblocked paths p1, . . . , pk connecting the

variables Z1, . . . , Zk to the variables X1, . . . , Xk.

2. The variables Zi are d-separated from Y in Ḡ.

3. Each variable Zi is not d-separated from the corresponding variable Xi in Ḡ.
2

THEOREM 5. If we can find variables Z1, . . . , Zk satisfying the conditions above,

then the parameters c1, . . . , ck are identified almost everywhere, and can be computed

by solving a system of linear equations.

2Notice that this condition is redundant, since it follows from the first condition.

302

Instrumental Sets

Figure 6. More examples of the new criterion.

Figure 6 shows more examples of application of the new graphical criterion.

Model (a) illustrates an interesting case, in which variable X2 is used as the in-

strumental variable for X1 → Y , while Z is the instrumental variable for X2 → Y .

Finally, in model (b) we have an example in which the parameter of edge X3 → Y

is non-identified, and still the graphical criterion allows to show the identfication of

c1 and c2.

6 Wright’s Method of Path Coefficients

Here, we describe an important result introduced by Sewall Wright [Wright 1934],

which is extensively explored in our proofs.

Given variables X and Y in a recursive linear model, the correlation coefficient

of X and Y , denoted by ρXY , can be expressed as a polynomial on the parameters

of the model. More precisely,

(3) σXY =
∑

p

T (p)

where the summation ranges over all unblocked paths p between X and Y , and each

term T (p) represents the contribution of the path p to the total correlation between

X and Y . The term T (p) is given by the product of the parameters of the edges

along the path p. We refer to Equation 3 as Wright’s equation for X and Y .

Wright’s method of path coefficients for identification consists in forming Wright’s

equations for each pair of variables in the model, and then solving for the parameters

in terms of the observed correlations. Whenever there is a unique solution for a

parameter c, this parameter is identified.

7 Proof of Theorem 1

7.1 Notation

Fix a variable Y in the model. Let X = {X1, . . . , Xn} be the set of all non-

descendants of Y which are connected to Y by an edge. Define the following set of

edges incoming Y :

303

Carlos Brito

(4) Inc(Y) = {(Xi, Y) : Xi ∈ X}

Note that for some Xi ∈ X there may be more than one edge between Xi and Y

(one directed and one bidirected). Thus, |Inc(Y)| ≥ |X|. Let λ1, . . . , λm, m ≥ k,

denote the parameters of the edges in Inc(Y).

It follows that edges X1
c1→ Y, . . . ,Xk

ck→ Y all belong to Inc(Y), because

X1, . . . , Xk are clearly non-descendants of Y . We assume that λi = ci, for i =

1, . . . , k, while λk+1, . . . , λm are the parameters of the remaining edges of Inc(Y).

Let Z be any non-descendant of Y . Wright’s equation for the pair (Z, Y) is given

by:

(5) σZY =
∑

p

T (p)

where each term T (p) corresponds to an unblocked path p between Z and Y . The

next lemma proves a property of such paths.

LEMMA 6. Any unblocked path between Y and one of its non-descendants Z must

include exactly one edge from Inc(Y).

Lemma 6 allows us to write equation 4 as:

(6) σZY =
m

∑

j=1

aj · λj

Thus, the correlation between Z and Y can be expressed as a linear function

of the parameters λ1, . . . , λm, with no constant term. In addition, we can say

something about the coefficients aj . Each term in Equation 5 corresponds to an

unblocked path that reaches Y through some egge, say Xj

λj

→ Y . When we group

the terms together according to the parameter λj and factor it out, we are, in a

sense, removing the edge Xj → Y from those paths. Thus, each coefficient aj in

Equation 6 is a sum of terms associated with unblocked paths between Z and Xj .

7.2 Basic Linear Equations

We have just seen that the correlations between the instrumental variables Zi and

Y can be written as a linear function of the parameters λ1, . . . , λm:

(7) ρZiY =
m

∑

j=1

aij · λj

Next, we prove an important result

LEMMA 7. The coefficients ai,k+1, . . . , aim in Equation 7 are all identically zero.

Proof. The fact that Zi is d-separated from Y in Ḡ implies that ρZiY = 0 in

any probability distribution compatible with Ḡ. Hence, the expression for ρZiY

must vanish when evaluated in the causal diagram Ḡ. But this implies that each

304

Instrumental Sets

coefficient aij in Equation 7 is identically zero, when the expression is evaluated in

Ḡ.

Next, we show that the only difference between the expression for ρZiY on the

causal diagrams G and Ḡ are the coefficients of the parameters λ1, . . . , λk.

Recall from the previous section that each coefficient aij is a sum of terms asso-

ciated with paths which can be extended by the edge
λj

→ Y to form an unblocked

path between Z and Y .

Fixing j > k, we observe that the insertion of edges x1 → Y, . . . ,Xk → Y in

Ḡ does not create any new such path (and clearly does not eliminate any existing

one). Hence, for j > k, the coefficients aij in the expression for ρZiY in the causal

diagrams G and Ḡ are exactly the same, namely, identically zero. ⊓⊔

The conclusion from Lemma 7 is that the expression for ρZiY is a linear function

only of parameters λ1, . . . , λk:

(8) ρZiY =
k

∑

j=1

aij · λj

7.3 System of Equations Φ

Writing Equation 8 for each instrumental variable Zi, we obtain the following system

of linear equations on the parameters λ1, . . . , λk:

(9) Φ =

ρZ1Y = a11λ1 + . . . , a1kλk

. . .

ρZkY = ak1λ1 + . . . , akkλk

Our goal now is to show that Φ can be solved uniquely for the parameters λi, and

so prove the identification of λ1, . . . , λk. Next lemma proves an important result in

this direction.

Let A denote the matrix of coefficients of Φ.

LEMMA 8. Det(A) is a non-trivial polynomial on the parameters of the model.

Proof. The determinant of A is defined as the weighted sum, for all permutations

π of 〈1, . . . , k〉, of the product of the entries selected by π. Entry aij is selected by a

permutation π if the ith element of π is j. The weights are either 1 or -1, depending

on the parity of the permutation.

Now, observe that each diagonal entry aii is a sum of terms associated with

unblocked paths between Zi and Xi. Since pi is one such path, we can write

aii = T (pi) + âii. From this, it is easy to see that the term

(10) T ∗ =
k

∏

j=1

T (pj)

305

Carlos Brito

appears in the product of permutation π = 〈1, . . . , n〉, which selects all the diagonal

entries of A.

We prove that det(A) does not vanish by showing that T ∗ is not cancelled out

by any other term in the expression for det(A).

Let τ be any other term appearing in the summation that defines the determinant

of A. This term appears in the product of some permutation π, and has as factors

exactly one term from each entry aij selected by π. Thus, associated with such factor

there is an unblocked path between Zi and Xj . Let p′1, . . . , p
′

k be the unblocked paths

associated with the factors of τ .

We conclude the proof observing that, since p1, . . . , pk is an incompatible set,

its edges cannot be rearranged to form a different set of unblocked paths between

the same variables, and so τ 6= T ∗. Hence, the term T ∗ is not cancelled out in the

summation, and the expression for det(A) does not vanish. ⊓⊔

7.4 Identification of λ1, . . . , λk

Lemma 8 gives that det(Q) is a non-trivial polynomial on the parameters of the

model. Thus, det(Q) only vanishes on the roots of this polynomial. However,

[Okamoto 1973] has shown that the set of roots of a polynomial has Lebesgue

measure zero. Thus, the system Φ has unique solution almost everywhere.

It just remains to show that we can estimate the entries of the matrix of coeffi-

cients A from the data. But this is implied by the following observation.

Once again, coefficient aij is given by a sum of terms associated with unblocked

paths between Zi and Xj . But, in principle, not every unblocked path between Zi

and Xj would contribute with a term to the sum; just those which can be extended

by the edge Xj → Y to form an unblocked path between Zi and Y . However, since

the edge Xj → Y does not point to Xj , every unblocked path between Zi and Xj

can be extended by the edge Xj → Y without creating a collider. Hence, the terms

of all unblocked paths between Zi and Xj appear in the expression for aij , and by

the method of path coefficients, we have aij = ρZiXj
.

We conclude that each entry of matrix A can be estimated from data, and we

can solve the system of linear equations Φ to obtain the parameters λ1, . . . , λk.

References

Bollen, K. (1989). Structural Equations with Latent Variables. John Wiley, New

York.

Bowden, R. and D. Turkington (1984). Instrumental Variables. Cambridge Univ.

Press.

Brito, C. and J. Pearl (2002). A graphical criterion for the identification of

causal effects in linear models. In Proc. of the AAAI Conference, Edmon-

ton, Canada..

Carroll, J. (1994). Laws of Nature. Cambridge University Press.

306

Instrumental Sets

Duncan, O. (1975). Introduction to Structural Equation Models. Academic Press.

Fisher, F. (1966). The Identification Problem in Econometrics. McGraw-Hill.

Hume, D. (1978). A Treatise of Human Nature. Oxford University Press.

McDonald, R. (1997). Haldane’s lungs: A case study in path analysis. Mult. Beh.

Res., 1–38.

McFadden, D. Lecture Notes for Econ 240b. Dept of Economics, UC Berkeley.

Okamoto, M. (1973). Distinctness of the eigenvalues of a quadratic form in a

multivariate sample. Annals of Statistics, 763–765.

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 669–710.

Pearl, J. (2000a). Causality: Models, Reasoning and Inference. Cambridge Press.

Pearl, J. (2000b). Parameter identification: A new perspective. Technical Report

R-276, UCLA.

Reiss, J. (2005). Causal instrumental variables and interventions. Philosophy of

Science. 72, 964–976.

Wright, S. (1934). The method of path coefficients. Ann. Math. Statistics., 161–

215.

307

18

Seeing and Doing: The Pearlian Synthesis

PHILIP DAWID

1 Introduction

It is relatively recently that much attention has focused on what, for want of a better term,

we might call “statistical causality”, and the subject has developed in a somewhat haphaz-

ard way, without a very clear logical basis. There is in fact a variety of current conceptions

and approaches [Campaner and Galavotti 2007; Hitchcock 2007; Galavotti 2008]—here we

shall distinguish in particular agency, graphical, probabilistic and modular conceptions of

causality—that tend to be mixed together in an informal and half-baked way, based on

“definitions” that often do not withstand detailed scrutiny. In this article I try to unpick this

tangle and expose the various different strands that contribute to it. Related points, with a

somewhat different emphasis, are made in a companion paper [Dawid 2009].

The approach of Judea Pearl [2009] cuts through this Gordian knot like the sword of

Alexander. Whereas other conceptions of causality may be philosophically questionable,

definitionally unclear, pragmatically unhelpful, theoretically skimpy, or simply confused,

Pearl’s theory is none of these. It provides a valuable framework, founded on a rich and

fruitful formal theory, by means of which causal assumptions about the world can be mean-

ingfully represented, and their implications developed. Here we will examine both the rela-

tionships of Pearl’s theory with the other conceptions considered, and its differences from

them. We extract the essence of Pearl’s approach as an assumption of “modularity”, the

transferability of certain probabilistic properties between observational and interventional

regimes: so, in particular, forging a synthesis between the very different activities of “see-

ing” and “doing”. And we describe a generalisation of this framework that releases it from

any necessary connexion to graphical models.

The plan of the paper is as follows. In § 2, I describe the agency, graphical and proba-

bilistic conceptions of causality, and their connexions and distinctions. Section 3 introduces

Pearl’s approach, showing its connexions with, and differences from, the other theories.

Finally, in § 4, I present the generalisation of that approach, emphasising the modularity

assumptions that underlie it, and the usefulness of the theory of “extended conditional in-

dependence” for describing and manipulating these.

Disclaimer I have argued elsewhere [Dawid 2000, 2007a, 2010] that it is important to dis-

tinguish arguments about “Effects of Causes” (EoC, otherwise termed “type”, or “generic”

causality”), from those about “Causes of Effects” (CoE, also termed “token”, or “indi-

vidual” causality); and that these demand different formal frameworks and analyses. My

concern here will be entirely focused on problems of generic causality, EoC. A number of

309

Kaoru
Text Box
Return to TOC

Philip Dawid

the current frameworks for statistical causality, such as Rubin’s “potential response mod-

els” [Rubin 1974, 1978], or Pearl’s “probabilistic causal models” [Pearl 2009, Chapter 7],

are more especially suited for handling CoE type problems, and will not be discussed fur-

ther here. There are also numerous other conceptions of causality, such as mechanistic

causality [Salmon 1984; Dowe 2000], that I shall not be considering here.

2 Some conceptions of causality

There is no generally agreed understanding of what “causality” is or how it should behave.

There are two conceptions in particular that are especially relevant for “statistical causal-

ity”: Agency Causality and Probabilistic Causality. The latter in turn is closely related to

what we might term Graphical Causality.

2.1 Agency causality

The “agency” or “manipulability” interpretation of causality [Price 1991; Hausman 1998;

Woodward 2003] depends on an assumed notion of external “manipulation” (or “interven-

tion”), that might itself be taken as a primitive—at any rate we shall not try and explicate it

further here. The basic idea is that causality is all about how an external manipulation that

sets the value of some variable (or set of variables) X will affect some other (unmanipu-

lated) “response variable” (or set of variables) Y . The emphasis is usually on comparison

of the responses ensuing from different settings x for X: a version of the “contrastive” or

“difference-making” understanding of causality. Much of Statistical Science—for exam-

ple, the whole subfield of Experimental Design—aims to address exactly these kinds of

questions about the comparative effects of interventions on a system, which are indeed a

major object of all scientific enquiry.

We can define certain causal terms quite naturally within the agency theory [Woodward

2003]. Thus we could interpret the statement

“X has no effect on Y ”1

as holding whenever, considering regimes that manipulate only X , the resulting value of Y

(or some suitable codification of uncertainty about Y , such as its probability distribution)

does not depend on the value x assigned to X . When this fails, X has an effect on Y ; we

might then go on to quantify this dependence in various ways.

We could likewise interpret

“X has no (direct) effect on Y , after controlling for W ”

as the property that, considering regimes where we manipulate both W and X , when we

manipulate W to some value w and X to some value x, the ensuing value (or uncertainty)

for Y will depend only on w, and not further on x.

Now suppose that, explicitly or implicitly, we restrict consideration to some collection

V of manipulable variables. Then we might interpret the statement

1Just as “zero” is fundamental to arithmetic and “independence” is fundamental to probability, so the concept

of “no effect” is fundamental to causality.

310

Seeing and Doing

“X is a direct cause of Y (relative to V)”

(where V might be left unmentioned, but must be clearly understood) as the negation of

“X has no direct effect on Y , after controlling for V \ {X, Y }”.2

It is important to bear in mind that all these assertions relate to properties of the real

world under the various regimes considered: in particular, they can not be given purely

mathematical definitions. And in real world problems there are typically various ways of

manipulating variables, so we must be very clear as to exactly what is intended.

EXAMPLE 1. Ideal gas law

Consider the “ideal gas law”:

(1) PV = kNT

where P is the absolute pressure of the gas, V is its volume, N is the number of molecules

of gas present, k is Boltzmann’s constant, and T is the absolute temperature. For our

current purposes this will be supposed to be universally valid , no matter how the values of

the variables in (1) may have come to arise.

Taking a fixed quantity N of gas in an impermeable container, we might consider inter-

ventions on any of P , V and T . (Note however that, because of the constraint (1), we can

not simultaneously and arbitrarily manipulate all three variables.)

An intervention that sets V to v and T to t will lead to the unique value p = kNt/v for

P . Because this depends on both v and t, we can say that there is a direct effect of each of

V and T on P (relative to V = {V, P, T}). Similarly, P has a direct effect on each of V

and T .

What if we wish to quantify, say, “the causal effect of V on P ”? Any attempt to do

this must take account of the fact that the problem requires additional specification to be

well-defined. Suppose the volume of the container can be altered by applying a force to

a piston. Initially the gas has V = v0, P = p0, T = t0. We wish to manipulate V to a

new value v1. If we do this isothermally, i.e. by sufficiently slow movement of the piston

that, through flow of heat through the walls of the container, the temperature of the gas

always remains the same as that of the surrounding heat bath, we will end up with V = v1,

P = p1 = v0p0/v1, T = t1 = t0. But if we move the piston adiabatically, i.e. so fast that

no heat can pass through the walls of the container, the relevant law is PV γ = constant,

where γ = 5/3 for a monatomic gas. Then we get V = v1, P = p∗1 = p0(v0/v1)
γ ,

T = t∗1 = p∗1v1/kN .

2.2 Graphical causality

By graphical causality we shall refer to an interpretation of causality in terms of an under-

lying directed acyclic graph (DAG) (noting in passing that other graphical representations

are also possible). As a basis for this, we suppose that there is a suitable “causal ambit”3 A

of variables (not all necessarily observable) that we regard as relevant, and a “causal DAG”

2Neapolitan [2003, p. 56] has a different and more complex interpretation of “direct cause”.
3The importance of the causal ambit will become apparent later.

311

Philip Dawid

D over a collection V ⊆ A. These ingredients are “known to Nature”, though not neces-

sarily to us: D is “Nature’s DAG”. Given such a causal DAG D, for X, Y ∈ V we interpret

“X is a direct cause of Y ” as synonymous with “X is a parent of Y in D”, and similarly

equate “cause” with “ancestor in D”. One can also use the causal DAG to introduce further

graphically defined causal terms, such as “causal chain”, “intermediate variable”, . . .

The concepts of causal ambit and causal DAG might be regarded as primitive notions,

or attempts might be made to define them in terms of pre-existing understandings of causal

concepts. In either case, it would be good to have criteria to distinguish a putative causal

ambit from a non-causal ambit, and a causal DAG from a non-causal DAG.

For example, we typically read [Hernán and Robins 2006]:

“A causal DAG D is a DAG in which:

(i). the lack of an arrow from Vj to Vm can be interpreted as the absence of a direct causal effect of Vj

on Vm (relative to the other variables on the graph)

(ii). all common causes, even if unmeasured, of any pair of variables on the graph are themselves on the

graph.4

If we start with a DAG D over V that we accept as being a causal DAG, and interpret

“direct cause” etc. in terms of that, then conditions (i) and (ii) will be satisfied by definition.

However, this begs the question of how we are to tell a causal from a non-causal DAG.

More constructively, suppose we start with a prior understanding of the term “direct

cause” (relative to V)—for example, though by no means necessarily,5 based on the agency

interpretation described in § 2.1 above. It appears that we could then use the above defini-

tion to check whether a proposed DAG D is indeed “causal”. But while this is essentially

straightforward so far as condition (i) is concerned (except that there is no obvious rea-

son to require a DAG representation), interpretation and implementation of condition (ii)

is more problematic. First, what is a “common cause”? Spirtes et al. [2000, p. 44] say

that a variable X is a common cause of variables Y and Z if and only if X is both a direct

cause of Y and a direct cause of Z — but in each case relative to the set {X,Y, Z}, so

that this definition is not dependent on the causal ambit V . Neapolitan [2003, p. 57] has

a different interpretation, which apparently is relative to an essentially arbitrary set V —

but then states that that problems can arise when at least one common cause is not in V , a

possibility that seems to be precluded by his definition.

As another attempt at clarification, Spirtes and Scheines [2004] require “that the set

of variables in the causal graph be causally sufficient, i.e. if V is the set of variables in

the causal graph, that there is no variable L not in V that is a direct cause (relative to

V ∪ {L}) of two variables in V”. If “L 6∈ V is not a direct cause of V ∈ V” is interpreted

in agency terms, it would mean that V would not respond to manipulations of L, when

holding fixed all the other variables in V . But whatever the interpretation of direct cause,

such a “definition” of causal sufficiency is ineffective when the range of possible choices

4The motivation for this requirement is not immediately obvious, but is related to the defensibility of the causal

Markov property described in § 2.3 below.
5See § 2.2 below.

312

Seeing and Doing

for the additional variable L is entirely unrestricted—for then how could we ever be sure

that it holds, without conducting an infinite search over all unmentioned variables L? That

is why we posit an appropriate clearly-defined “causal ambit” A: we can then restrict the

search to L ∈ A.

It seems to me that we should, realistically, allow that “causality” can operate, in parallel,

at several different levels of granularity. Thus while it may or may not be possible to

describe the medical effects of aspirin treatment in terms of quantum theory, even if we

could, it would be a category error to try and do so in the context of a clinical trial. So there

may be various different causal descriptions of the world, all operating at different levels,

each with its associated causal ambit A of variables and various causal DAGs D over sets

V ⊆ A. The meaning of any causal terms used should then be understood in relation to the

appropriate level of description.

The obvious questions to ask about graphical causality, which are however not at all easy

to answer, are: “When can a collection A of variables be regarded as a causal ambit?”, and

“When can a DAG be regarded as a causal DAG?”.

In summary, so long as we start with a DAG D over V that we are willing to accept as a

causal DAG (taken as a primitive concept), we can take V itself as our causal ambit, and use

the structure of D to define causal terms. Without having a prior primitive notion of what

constitutes a “causal DAG”, however, conditions such as (i) and (ii) are unsatisfactory as a

definition. At the very least, they require that we have specified (but how?) an appropriate

causal ambit A, relevant to our desired level of description, and have a clear pre-existing

understanding (i.e. not based on the structure of D, since that would be logically circular)

of the terms “direct causal effect”, “common cause” (perhaps relative to a set V).

Agency causality and graphical causality

It is tempting to use the agency theory as a basis for such prior causal understanding. How-

ever, graphical causality does not really sit well with agency causality. For, as seen clearly

in Example 1, in the agency intepretation it is perfectly possible for two variables each to

have a direct effect on the other—which could not hold under any DAG representation.

Similarly [Halpern and Pearl 2005; Hall 2000] there is no obvious reason to expect agency

causality to be a transitive relation, which would again be a requirement under the graphical

conception. For better or worse, the agency theory does not currently seem to be endowed

with a sufficiently rich axiomatic structure to guide manipulations of its causal properties;

and however such a general axiomatic structure might look, it would seem unduly restric-

tive to relate it closely to DAG models.

2.3 Probabilistic causality

Probabilistic Causality [Reichenbach 1956; Suppes 1970; Spohn 2001] depends on the

existence and properties of a probability distribution P over quantities of interest. At its

(over-)simplest, it equates causality with probability raising: “A is a cause of B” (where

A and B are events) if P (B | A) > P (B). This is more usefully re-expressed in its null

form, and referred to random variables X and Y : X is not a cause of Y if the distribu-

tion of Y given X is the same as the marginal distribution of Y ; and this is equivalent to

313

Philip Dawid

probabilistic independence of Y from X: Y ⊥⊥X . But this is clearly unsatisfactory as it

stands, since we could have dependence between X and Y , Y 6⊥⊥X , with, at the same time,

conditional independence given some other variable (or set of variables) Z: Y ⊥⊥X | Z. If

Z can be regarded as delimiting the context in which we are considering the relationship

between X and Y , we might still regard X and Y as “causally unrelated”. Thus probabilis-

tic causality is based on conditional (in)dependence properties of probability distributions.

However there remain obvious problems in simply equating the non-symmetrical relation

of cause-and-effect with the symmetrical relation of probabilistic (in)dependence, and with

clarifying what counts as an appropriate conditioning “context” variable Z, so that addi-

tional structure and assumptions (e.g. related to an assumed “causal order”, possibly but

not necessarily temporal) are required to complete the theory.

Most modern accounts locate probabilistic causality firmly within the graphical concep-

tion — so inheriting all the features and difficulties of that approach. It is assumed that

there is a DAG D, over a suitable collection V of variables, such that

(i). D can be interpreted as a causal DAG; and, in addition,

(ii). the joint probability distribution P of the variables in V is Markov over D, i.e. its

probabilistic conditional independence (CI) properties are represented by the same

DAG D, according to the “d-separation” semantics described by Pearl [1986], Verma

and Pearl [1990], Lauritzen et al. [1990].

In particular, from (ii), for any V ∈ V , V is independent of its non-descendants, nd(V), in

D, given its parents, pa(V), in D. Given the further interpretation (i) of D as a causal DAG,

this can be expressed as “V is independent of its non-effects, given its direct causes in V”—

the so-called causal Markov assumption. Also, (ii) implies that, for any sets of variables X

and Y in D, X ⊥⊥Y | an(X) ∩ an(Y) (where an(X) denotes the set of ancestors of X in

D, including X itself): again with D interpreted as causal, this can be read as saying “X and

Y are conditionally independent, given their common causes in V”. In particular, marginal

independence (where X ⊥⊥Y is represented in D) holds if and only if an(X)∩an(Y) = ∅,

i.e. (using (i)) “X and Y have no common cause” (including each other) in V; in the

“if” direction, this has been termed the weak causal Markov assumption [Scheines and

Spirtes 2008]. Many workers regard the causal and weak causal Markov assumptions as

compelling—but this must depend on making the “right” choice for V (essentially, through

appropriate delineation of the causal ambit.)

Note that this conception of causality involves, simultaneously, two very different ways

of interpreting the DAG D (see Dawid [2009] for more on this). The d-separation seman-

tics by means of which we relate D to conditional independence properties of the joint

distribution P , while clearly defined, are somewhat subtle: in particular, the arrows in D

are somewhat incidental “construction lines”, that only play a small rôle in the semantics.

But as soon as we also give D an interpretation as a “causal DAG” we are into a completely

different way of interpreting it, where the arrows themselves are regarded as directly car-

rying causal meaning. Probabilistic causality can thus be thought of as the progeny of a

shotgun wedding between two ill-matched parties.

314

Seeing and Doing

Causal discovery

The enterprise of Causal Discovery [Spirtes et al. 2000; Glymour and Cooper 1999;

Neapolitan 2003] is grounded in this probabilistic-cum-graphical conception of causality.

There are many variations, but all share the same basic philosophy. Essentially, one anal-

yses observational data in an attempt to identify conditional independencies (possibly in-

volving unobserved variables) in the distribution from which they arise. Some of these

might be discarded as “accidental” (perhaps because they are inconsistent with an a priori

causal order); those that remain might be represented by a DAG. The hope is that this dis-

covered conditional independence DAG can also be interpreted as a causal DAG. When,

as is often the case, there are several Markov equivalent DAG representations of the dis-

covered CI relationships, which, moreover, cannot be causally distinguished on a priori

grounds (e.g. in terms of an assumed causal order), this hope can not be fully realised; but

if we can assume that one of these, at least, is a causal DAG, then at least an arrow common

to all of them can be interpreted causally.

2.4 A spot of bother

Spirtes et al. [2000] and Pearl [2009], among others, have stressed the fundamental im-

portance of distinguishing between the activities of Seeing and Doing. Seeing involves

passive observation of a system in its natural state. Doing, on the other hand, relates to the

behaviour of the system in a disturbed state brought about by external intervention. As a

simple point of pure logic, there is no reason for there to be any relationship between these

two types of behaviour of a system.

The probabilistic interpretation of causality relates solely to the seeing regime, whereas

the agency account focuses entirely on what happens in doing regimes. As such these two

interpretations inhabit totally unrelated universes. There are non-trivial foundational diffi-

culties with the probabilistic (or other graphical) interpretations of causality (what exactly

is a causal DAG? how will we know when we have got one?); on the other hand agency

causality, while less obviously problematic and perhaps more naturally appealing, does not

currently appear to offer a rich enough theory to be very useful. Even at a purely technical

level, agency and probabilistic causality have very little in common. Probabilistic causality,

through its close ties with conditional independence, has at its disposal the well-developed

theoretical machinery of that concept, while the associated graphical structure allows for

ready interpretation of concepts such as “causal pathway”. Such considerations are how-

ever of marginal relevance to agency causality, which need not involve any probabilistic or

graphical connexions.

From the point of view of a statistician, this almost total disconnect between the causal

theories relating to the regimes of seeing and doing is particularly worrying. For one of

the major purposes of “causal inference” is to draw conclusions, from purely observational

“seeing” data on a system, about “doing”: how would the system behave were we to inter-

vene in it in certain ways? But not only is there no necessary logical connexion between

the behaviours in the different regimes, the very concepts and representations by which we

try to understand causality in the different regimes are worlds apart.

315

Philip Dawid

3 The Pearlian Synthesis

Building on ideas introduced by Spirtes et al. [2000], Pearl’s approach to causality, as laid

out for example in his book [Pearl 2009],6 attempts to square this circle: it combines the two

apparently incommensurable approaches of agency causality and probabilistic causality7

in a way that tries to bring together the best features of both, while avoiding many of their

individual problems and pitfalls.

Pearl considers a type of stochastic model, described by a DAG D over a collection V of

variables, that can be simultaneously interpreted in terms of both agency and probabilistic

causality. We could, if we wished, think of V as a “causal ambit”, and D as a “causal

DAG”, but little is gained (or lost) by doing so, since the interpretations of any causal terms

we may employ are provided internally by the model, rather than built on any pre-existing

causal conceptions.

In its probabilistic interpretation, such a DAG D represents the conditional indepen-

dence properties of the undisturbed system, which is supposed Markov with respect to D.

In its agency interpretation, the same DAG D is used to describe precisely how the sys-

tem responds, probabilistically, to external interventions that set the values of (an arbitrary

collection of) its variables. Specifically, such a disturbed probability distribution is sup-

posed still Markov with respect to D, and the conditional distribution of any variable V in

V , given its parents in D, is supposed the same in all regimes, seeing or doing (except of

course those that directly set the value of V itself, say at v, for which that distribution is

replaced by the 1-point distribution at v). The “parent-child” conditional distributions thus

constitute invariant “modular components” that (with the noted exception) can be trans-

ferred unchanged from one regime to another.

We term such a causal DAG model “Pearlian”. Whether or not a certain DAG D indeed

supplies a Pearlian DAG model for a given system can never be a purely syntactical ques-

tion about its graphical structure, but is, rather, a semantic question about its relationship

with the real world: do the various regimes actually have the probabilistic properties and

relationships asserted? This may be true or false, but at least it is a meaningful question,

and it is clear in principle how it can be addressed in purely empirical fashion: by observing

and comparing the behaviours of the system under the various regimes.8 A Pearlian DAG

6We in fact shall deal only with Pearl’s earlier, fully stochastic, theory. More recently (see the second-half of

Pearl [2009], starting with Chapter 7), he has moved to an interpretation of DAG models based on deterministic

functional relationships, with stochasticity deriving solely from unobserved exogenous variables. That interpre-

tation does however imply all the properties of the stochastic theory, and can be regarded as a specialisation of it.

We shall not here be considering any features (such as the possibility of counterfactual analysis) dependent on the

additional structure of Pearl’s deterministic approach, since these only become relevant when analysing “causes

of effects”—see Dawid [2000, 2002] for more on this.
7We have already remarked that probabilistic causality is itself the issue of an uneasy alliance between two

quite different ways of interpreting graphs. Further miscegenation with the agency conception of causality looks

like a eugenically risky endeavour!
8For this to be effective, the variables in V should have clearly-defined meanings and be observable in the

real-world. Some Pearlian models incorporate unobservable latent variables without clearly identified external

referents, in which case only the implications of such a model for the behaviour of observables can be put to

empirical test.

316

Seeing and Doing

model thus has the great virtue, all too rare in treatments of causality, of being totally clear

and explicit about what is being said—allowing one to accord it, in a principled way, ac-

ceptance or rejection, as deemed appropriate, in any given application. And when a system

can indeed be described by a Pearlian DAG, it is straightforward to learn (not merely qual-

itatively, but quantitatively too), from purely observational data, about the (probabilistic)

effects of any interventions on variables in the system.

3.1 Justification

The falsifiability of the property of being a Pearlian DAG (unlike, for example, the some-

what ill-defined property of being a “causal DAG”) is at once a great strength of the the-

ory (especially for those with a penchant for Karl Popper’s “falsificationist” Philosophy

of Science), and something of an Achilles’ heel. For all too often it will be impossible,

for a variety of pragamatic, ethical or financial reasons, to conduct the experiments that

would be needed to falsify the Pearlian assumptions. A lazy reaction might then simply

be to assume that a DAG found, perhaps by “causal discovery”, to represent observational

conditional independencies, but without any interventions having been applied, is indeed

Pearlian—and so also describes what would happen under interventions. While this may

well be an interesting working hypothesis to guide further experimental investigations, it

would be an illogical and dangerous point at which to conclude our studies. In particular,

further experimental investigations could well result in rejection of our assumed Pearlian

model.

Nevertheless, if forced to make a tentative judgment on the Pearlian nature, or other-

wise, of a putative DAG model9 of a system, there are a number of more or less reasonable,

more or less intuitive, arguments that can be brought to bear. As a very simple example, we

would immediately reject any putative “Pearlian DAG” in which an arrow goes backwards

in time,10 or otherwise conflicts with an accepted causal order. As another, if an “obser-

vational” regime itself involves an imposed physical randomisation to generate the value

of some variable X , in a way that might possibly take account of variables Z temporally

prior to X , we might reasonably regard the conditional distribution of some later variable

Y , given X and Z, as a modular component, that would be the same in a regime that in-

tervenes to set the value of X as it is in the (observational) randomisation regime.11 Such

arguments can be further extended to “natural experiments”, where it is Nature that im-

posed the external randomisation. This is the case for “Mendelian randomisation” [Didelez

and Sheehan 2007], which capitalises on the random assortment of genes under Mendelian

genetics. Other natural experiments rely on other causal assumptions about Nature: thus

the “discontinuity design” [Trochim 1984] assumes that Nature supplies continuous dose-

response cause-effect relationships. But all such justifications are, and must be, based on

(what we think are) properties of the real world, and not solely on the internal structure of

9Assumed, for the sake of non-triviality, already to be a Markov model of its observational probabilistic

properties.
10Assuming, as most would accept, that an intervention in a variable at some time can not affect any variable

whose value is determined at an earlier time.
11See Dawid [2009] for an attempted argument for this, as well as caveats as to its general applicability.

317

Philip Dawid

the putative Pearlian DAG. In particular, they are founded on pre-existing ideas we have

about causal and non-causal processes in the world, even though these ideas may remain

unformalised and woolly: the important point is that we have enough, perhaps tacit, shared

understanding of such processes to convince both ourselves and others that they can serve as

external justification for a suggested Pearlian model. Unless we have sufficient justification

of this kind, all the beautiful analysis (e.g. in Pearl [2009]) that develops the implications

of a Pearlian model will be simply irrelevant. To echo Cartwright [1994, Chapter 2], “No

causes in, no causes out”.

4 Modularity, extended conditional independence and

decision-theoretic causality

Although Pearlian causality as described above appears to be closely tied to graphical rep-

resentation, this is really an irrelevance. We can strip it of its graphical clothing, laying

bare its core ingredient: the property that certain conditional distributions12 are the same

across several different regimes. This modular conception provides us with yet another

interpretation of causality. When, as here, the regimes considered encompass both obser-

vation (seeing) and intervention (doing), it has the great advantage over other theories of

linking those disparate universes, thus supporting causal inference.

The modularity assumption can be conveniently expressed formally in the algebraic lan-

guage of conditional independence, suitably interpreted [Dawid 1979, 2002, 2009], mak-

ing no reference to graphs. Thus let F be a “regime indicator”, a non-stochastic parameter

variable, whose value indicates the regime whose probabilistic properties are under con-

sideration. If X and Y are stochastic variables, the “extended conditional independence”

(ECI) property

(2) Y ⊥⊥F | X

can be interpreted as asserting that the conditional distribution of Y , for specified regime

F = f and given observed value X = x, depends only on x and not further on the

regime f that is operating: in terms of densities we could write p(y | f, x) = p(y |

x). If F had been a stochastic variable this would be entirely equivalent to stochastic

conditional independence of Y and F given X; but it remains meaningful, with the above

interpretation, even when F is a non-stochastic regime indicator: Indeed, it asserts exactly

the modular nature of the conditional distribution p(y | x), as being the same across all the

regimes indicated by values of F . Such modularity properties, when expressed in terms of

ECI, can be formally manipulated—and, in those special cases where this is possible and

appropriate, represented and manipulated graphically—in essentially the same fashion as

for regular probabilistic conditional independence.

For applications of ECI to causal inference, we would typically want one or more of the

regimes indicated by F to represent the behaviour of the system when subjected to an inter-

vention of a specified kind—thus linking up nicely with the agency interpretation; and one

12More generally, we could usefully identify features of the different regimes other than conditional

distributions—for example, conditional expectations, or odds ratios—as modular components.

318

Seeing and Doing

regime to describe the undisturbed system on which observations are made—thus allowing

the possibility of “causal inference” and making links with probabilistic causality, but in a

non-graphical setting. Modularity/ECI assumptions can now be introduced, as considered

appropriate, and their implications extracted by algebraic or graphical manipulations, using

the established theory of conditional independence. We emphasise that, although the nota-

tion and technical machinery of conditional independence is being used here, this is applied

in a way that is very different from the approach of probabilistic causality: no assumptions

need be made connecting causal relationships with ordinary probabilistic conditional inde-

pendence.

Because it concerns the probabilistic behaviour of a system under interventions—a par-

ticular interpretation of agency causality—this general approach can be termed “decision-

theoretic” causality. With the emphasis now on modularity, intuitive or graphically mo-

tivated causal terms such as “direct effect” or “causal pathway” are best dispensed with

(and with them such assumptions as the causal Markov property). The decision-theoretic

approach should not be regarded as providing a philosophical foundation for “causality”,

or even as a way of interpreting causal terms, but rather as very useful machinery for ex-

pressing and manipulating whatever modularity assertions one might regard as appropriate

in a given problem.

4.1 Intervention DAGs

The assumptions that are implicit in a Pearlian model can be displayed very explicitly in

the decision-theoretic framework, by associating a non-stochastic “intervention variable”

FX with each “domain variable” X ∈ V . The assumed ECI properties are conveniently

displayed by means of a DAG, D∗, which extends the Pearlian DAG D by adding extra

nodes for these regime indicators, and extra arrows, from FX to X for each X ∈ V [Spohn

1976; Spirtes et al. 2000; Pearl 2009; Dawid 2002; Dawid 2009]. If X is the set of values

for X , then that for FX is X ∪ {∅}: the intended interpretation is that FX = ∅ (the “idle”

regime) corresponds to the purely observational regime, while FX = x ∈ X corresponds

to “setting” X at x.

To be precise, we specify the distribution of X ∈ V given its parents (pa(X), FX) in

D∗ (where pa(X) denotes the “domain” parents of X , in D) as follows. When FX = ∅,

this is the same as the observational conditional distribution of X , given pa(X); and when

FX = x it is just a 1-point distribution on x, irrespective of the values of pa(X). The

extended DAG D∗, supplied with these parent-child specifications, is the intervention DAG

representation of the problem.

With this construction, for any settings of all the regime indicators, some to idle and

some to fixed values, the implied joint distribution of all the domain variables in that regime

is exactly as required for the Pearlian DAG interpretation. But a valuable added bonus of the

intervention DAG representation is that the Pearlian assumptions are explicitly represented.

For example, the standard d-separation semantics applied to D∗ allows us to read off the

ECI property X ⊥⊥{FY : Y 6= X} | (pa(X), FX), which asserts the modular property of

the conditional distribution of X given pa(X): when FX = ∅ (the only non-trivial case) the

319

Philip Dawid

conditional distribution of X given pa(X) is the same, no matter how the other variables

are set (or left idle).

4.2 More general causal models

It is implicit in the Pearlian conception that every variable in V should be manipulable (the

causal Markov property then follows). But there is no real reason to require this. We can

instead introduce intervention variables for just those variables that we genuinely wish to

consider as “settable”. The advantage of this is that fewer assumptions need be made and

justified, but useful conclusions can often still be drawn.

EXAMPLE 2. (Instrumental variable)

Suppose we are interested in the “causal effect” of a binary exposure variable X on some

response Y . However we can not directly manipulate X . Moreover the observational

relationship between X and Y may be distorted because of an unobserved “confounder”

variable, U , associated with both X and Y . In an attempt to evade this difficulty, we also

measure an “instrumental variable” Z.

To express our interest in the causal effect of X on Y , we introduce an intervention

variable FX associated with X , defined and interpreted exactly as in § 4.1 above. The

aim of our causal inference is to make some kind of comparison between the distributions

of the response Y in the interventional regimes, FX = 0 and FX = 1, corresponding

to manipulating the value of X . The available data, however, are values of (X, Y, Z)

generated under the observational regime, FX = ∅. We must make some assumptions if

we are to be able to use features of that observational joint distribution to address our causal

question, and clearly these must involve some kind of transference of information across

regimes.

A useful (when valid!) set of assumptions about the relationships between all the vari-

ables in the problem is embodied in the following set of ECI properties (the “core condi-

tions”13 for basing causal inferences on an instrumental variable):

(U, Z) ⊥⊥ FX (3)

U ⊥⊥ Z | FX (4)

Y ⊥⊥ FX | (X, U) (5)

Y ⊥⊥ Z | (X,U ;FX) (6)

X 6⊥⊥ Z | FX = ∅ (7)

Property (3) is to be interpreted as saying that the joint distribution of (U, Z) is independent

of the regime FX : i.e., it is the same in all three regimes. That is to say, it is entirely

unaffected by whether, and if so how, we intervene to set the value of X . The identity of

this joint distribution across the two interventional regimes, FX = 0 and FX = 1, can be

interpreted as expressing a causal property: manipulating X has no (probabilistic) effect

13In addition to these core conditions, precise identification of a causal effect by means of an instrumental

variable requires further modelling assumptions, such as linear regressions [Didelez and Sheehan 2007].

320

Seeing and Doing

on the pair of variables (U, Z). Moreover, since this common joint distribution is also

supposed the same in the idle regime, FX = ∅, we could in principle use observational

data to estimate it—thus opening up the possibility of causal inference.

Property (4) asserts that, in their (common) joint distribution in any regime, U and Z are

independent (this however is a purely probabilistic, not a causal, property).

Property (5) says that the conditional distribution of Y given (X, U) is the same in both

interventional regimes, as well as in the observational regime, and can thus be considered

as a modular component, fully transferable between the three regimes—again, I regard this

as expressing a causal property.

Property (6) asserts that this common conditional distribution is unaffected by further

conditioning on Z (not in itself a causal property).

Finally, property (7) requires that Z be genuinely associated with X in the observational

regime.

Of course, these ECI properties should not simply be assumed without some attempt at

justification: for example, Mendelian randomisation attempts this in the case that Z is an

inherited gene. But because we have no need to consider interventions at any node other

than X , less by way of justification is required than if we were to do so.

Once expressed in terms of ECI, these core conditions can be manipulated algebraically

using the general theory of conditional independence [Dawid 1979]. Depending on what

further modelling assumptions are made, it may then be possible to identify, or to bound,

the desired causal effect in terms of properties of the observational joint distribution of

(X, Y, Z) [Dawid 2007b, Chapter 11].

In this particular case, although the required ECI conditions are expressed without ref-

erence to any graphical representation, it is possible (though not obligatory!) to give them

one. This is shown in Figure 1. Properties (3)–(6) can be read off this DAG directly using

the standard d-separation semantics. (Property (7) is only represented under a further as-

sumption that the graphical representation is faithful.) We term such a DAG an augmented

DAG: it differs from a Pearlian DAG in that some, but not necessarily all, variables have

associated intervention indicators.

Figure 1. Instrumental variable: Augmented DAG representation

Just as for regular CI, it is possible for a collection of ECI properties, constituting a

321

Philip Dawid

Figure 2. Two Markov-equivalent augmented DAGs

decision-theoretic causal model, to have no (augmented) DAG representation, or more than

one. This latter is the case for Figure 2, where the direction of the arrow between U and

V is not determined. This emphasises that, even when we do have an augmented DAG

representation, we can not necessarily interpret the direction of an arrow in it as directly re-

lated to the direction of causality. Even in Figure 1 (and in spite of the natural connotation

of the term “instrument”), the arrow pointing from Z to X is not be interpreted as neces-

sarily causal, since the dependence between Z and X could be due to a “common cause”

U∗ without affecting the ECI properties (3)–(6) [Dawid 2009], and Figure 1 is merely a

graphical representation of these properties, based on d-separation semantics. In particu-

lar, one should be cautious of using an augmented DAG, which is nothing but a way of

representing certain ECI statements, to introduce graphically motivated concepts such as

“causal pathway”. The general decision-theoretic description of causality via modularity,

expressed in terms of ECI properties, where there is no requirement that the assumptions

be representable by means of an augmented DAG at all, allows us to evade some of the

restrictions of graphical causality, while still retaining a useful “agency-cum-probabilistic”

causal theory.

The concept of an “interventional regime” can be made much more general, and in par-

ticular we need not require that it have the properties assumed above for an intervention

variable associated with a domain variable. We could, for example, incorporate “fat hand”

interventions that do not totally succeed in their aim of setting a variable to a fixed value, or

interventions (such as kicking the system) that simultaneously affect several domain vari-

ables [Duvenaud et al. 2009]. So long as we understand what such regimes refer to in

the real world, and can make and justify assumptions of modularity of appropriate con-

ditional distributions as we move across regimes, we can apply the decision-theoretic ECI

machinery. And at this very general level we can even apply a variant of “causal discovery”

algorithms—so long as we can make observations under all the regimes considered.14 For

example, if we can observe (X, Y) under the different regimes described by F , we can

readily investigate the validity of the ECI property X ⊥⊥F | Y using standard tests (e.g.

14Or we might make parametric modelling assumptions about the relationships across regimes, to fill in for

regimes we are not able to observe. This would be required for example when want to consider the effect of

setting the value of a continuous “dose” variable. At this very general level we can even dispense entirely with

the assumption of modular conditional distributions [Duvenaud et al. 2009].

322

Seeing and Doing

the χ2-test) for conditional independence. Such discovered ECI properties (whether or not

they can be expressed graphically) can then be used to model the “causal structure” of the

problem.

5 Conclusion

Over many years, Judea Pearl’s original and insightful approach to understanding uncer-

tainty and causality have had an enormous influence on these fields. They have certainly

had a major influence on my own research directions: I have often—as evidenced by this

paper—found myself following in his footsteps, picking up a few crumbs here and there

for further digestion.

Pearl’s ideas do not however exist in a vacuum, and I believe it is valuable both to relate

them to their precursors and to assess the ways in which they may develop. In attempting

this task I fully acknowledge the leadership of a peerless researcher, whom I feel honoured

to count as a friend.

References

Campaner, R. and M. C. Galavotti (2007). Plurality in causality. In P. K. Machamer

and G. Wolters (Eds.), Thinking About Causes: From Greek Philosophy to Modern

Physics, pp. 178–199. Pittsburgh: University of Pittsburgh Press.

Cartwright, N. (1994). Nature’s Capacities and Their Measurement. Oxford: Clarendon

Press.

Dawid, A. P. (1979). Conditional independence in statistical theory (with Discussion).

Journal of the Royal Statistical Society, Series B 41, 1–31.

Dawid, A. P. (2000). Causal inference without counterfactuals (with Discussion). Jour-

nal of the American Statistical Association 95, 407–448.

Dawid, A. P. (2002). Influence diagrams for causal modelling and inference. Interna-

tional Statistical Review 70, 161–189. Corrigenda, ibid., 437.

Dawid, A. P. (2007a). Counterfactuals, hypotheticals and potential responses: A philo-

sophical examination of statistical causality. In F. Russo and J. Williamson (Eds.),

Causality and Probability in the Sciences, Volume 5 of Texts in Philosophy, pp.

503–32. London: College Publications.

Dawid, A. P. (2007b). Fundamentals of statistical causality. Research Re-

port 279, Department of Statistical Science, University College London.

<http://www.ucl.ac.uk/Stats/research/reports/psfiles/rr279.pdf>

Dawid, A. P. (2010). Beware of the DAG! Journal of Machine Learning Research. To

appear.

Dawid, A. P. (2010). The rôle of scientific and statistical evidence in assessing causal-

ity. In R. Goldberg, J. Paterson, and G. Gordon (Eds.), Perspectives on Causation,

Oxford. Hart Publishing. To appear.

323

Philip Dawid

Didelez, V. and N. A. Sheehan (2007). Mendelian randomisation as an instrumental

variable approach to causal inference. Statistical Methods in Medical Research 16,

309–330.

Dowe, P. (2000). Physical Causation. Cambridge: Cambridge University Press.

Duvenaud, D., D. Eaton, K. Murphy, and M. Schmidt (2010). Causal learning without

DAGs. Journal of Machine Learning Research. To appear.

Galavotti, M. C. (2008). Causal pluralism and context. In M. C. Galavotti, R. Scazzieri,

and P. Suppes (Eds.), Reasoning, Rationality and Probability, Chapter 11, pp. 233–

252. Chicago: The University of Chicago Press.

Glymour, C. and G. F. Cooper (Eds.) (1999). Computation, Causation and Discovery.

Menlo Park, CA: AAAI Press.

Hall, N. (2000). Causation and the price of transitivity. Journal of Philosophy XCVII,

198–222.

Halpern, J. Y. and J. Pearl (2005). Causes and explanations: A structural-model ap-

proach. Part I: Causes. British Journal for the Philosophy of Science 56, 843–887.

Hausman, D. (1998). Causal Asymmetries. Cambridge: Cambridge University Press.

Hernán, M. A. and J. M. Robins (2006). Instruments for causal inference: An epidemi-

ologist’s dream? Epidemiology 17, 360–372.

Hitchcock, C. (2007). How to be a causal pluralist. In P. K. Machamer and G. Wolters

(Eds.), Thinking About Causes: From Greek Philosophy to Modern Physics, pp.

200–221. Pittsburgh: University of Pittsburgh Press.

Lauritzen, S. L., A. P. Dawid, B. N. Larsen, and H.-G. Leimer (1990). Independence

properties of directed Markov fields. Networks 20, 491–505.

Neapolitan, R. E. (2003). Learning Bayesian Networks. Upper Saddle River, New Jer-

sey: Prentice Hall.

Pearl, J. (1986). A constraint–propagation approach to probabilistic reasoning. In L. N.

Kanal and J. F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, Amsterdam,

pp. 357–370. North-Holland.

Pearl, J. (2009). Causality: Models, Reasoning and Inference (Second ed.). Cambridge:

Cambridge University Press.

Price, H. (1991). Agency and probabilistic causality. British Journal for the Philosophy

of Science 42, 157–176.

Reichenbach, H. (1956). The Direction of Time. Berkeley: University of Los Angeles

Press.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonran-

domized studies. Journal of Educational Psychology 66, 688–701.

Rubin, D. B. (1978). Bayesian inference for causal effects: the role of randomization.

Annals of Statistics 6, 34–68.

324

Seeing and Doing

Salmon, W. C. (1984). Scientific Explanation and the Causal Structure of the World.

Princeton: Princeton University Press.

Scheines, R. and P. Spirtes (2008). Causal structure search: Philosophical foundations

and future problems. Paper presented at NIPS 2008 Workshop “Causality: Objec-

tives and Assessment”, Whistler, Canada.

Spirtes, P., C. Glymour, and R. Scheines (2000). Causation, Prediction and Search (Sec-

ond ed.). New York: Springer-Verlag.

Spirtes, P. and R. Scheines (2004). Causal inference of ambiguous manipulations. Phi-

losophy of Science 71, 833–845.

Spohn, W. (1976). Grundlagen der Entscheidungstheorie. Ph.D. thesis, University of

Munich. (Published: Kronberg/Ts.: Scriptor, 1978).

Spohn, W. (2001). Bayesian nets are all there is to causal dependence. In M. C. Galavotti,

P. Suppes, and D. Costantini (Eds.), Stochastic Dependence and Causality, Chap-

ter 9, pp. 157–172. Chicago: University of Chicago Press.

Suppes, P. (1970). A Probabilistic Theory of Causality. Amsterdam: North Holland.

Trochim, W. M. K. (1984). Research Design for Program Evaluation: The Regression-

Discontinuity Approach. SAGE Publications.

Verma, T. and J. Pearl (1990). Causal networks: Semantics and expressiveness. In R. D.

Shachter, T. S. Levitt, L. N. Kanal, and J. F. Lemmer (Eds.), Uncertainty in Artificial

Intelligence 4, Amsterdam, pp. 69–76. North-Holland.

Woodward, J. (2003). Making Things Happen: A Theory of Causal Explanation. Ox-

ford: Oxford University Press.

325

19

Effect Heterogeneity and Bias in

Main-Effects-Only Regression Models

FELIX ELWERT AND CHRISTOPHER WINSHIP

1 Introduction

The overwhelming majority of OLS regression models estimated in the social sciences,

and in sociology in particular, enter all independent variables as main effects. Few re-

gression models contain many, if any, interaction terms. Most social scientists would

probably agree that the assumption of constant effects that is embedded in main-effects-

only regression models is theoretically implausible. Instead, they would maintain that

regression effects are historically and contextually contingent; that effects vary across

individuals, between groups, over time, and across space. In other words, social scien-

tists doubt constant effects and believe in effect heterogeneity.

But why, if social scientists believe in effect heterogeneity, are they willing to substan-

tively interpret main-effects-only regression models? The answer—not that it’s been

discussed explicitly—lies in the implicit assumption that the main-effects coefficients in

linear regression represent straightforward averages of heterogeneous individual-level

causal effects.

 The belief in the averaging property of linear regression has previously been chal-

lenged. Angrist [1998] investigated OLS regression models that were correctly specified

in all conventional respects except that effect heterogeneity in the main treatment of in-

terest remained unmodeled. Angrist showed that the regression coefficient for this

treatment variable gives a rather peculiar type of average—a conditional variance

weighted average of the heterogeneous individual-level treatment effects in the sample. If

the weights differ greatly across sample members, the coefficient on the treatment vari-

able in an otherwise well-specified model may differ considerably from the arithmetic

mean of the individual-level effects among sample members.

In this paper, we raise a new concern about main-effects-only regression models.

Instead of considering models in which heterogeneity remains unmodeled in only one

effect, we consider standard linear path models in which unmodeled heterogeneity is

potentially pervasive.

Using simple examples, we show that unmodeled effect heterogeneity in more than one

structural parameter may mask confounding and selection bias, and thus lead to biased

estimates. In our simulations, this heterogeneity is indexed by latent (unobserved) group

membership. We believe that this setup represents a fairly realistic scenario—one in

which the analyst has no choice but to resort to a main-effects-only regression model

because she cannot include the desired interaction terms since group-membership is un-

327

Kaoru
Text Box
Return to TOC

Felix Elwert and Christopher Winship

observed. Drawing on Judea Pearl’s theory of directed acyclic graphs (DAG) [1995,

2009] and VanderWeele and Robins [2007], we then show that the specific biases we

report can be predicted from an analysis of the appropriate DAG. This paper is intended

as a serious warning to applied regression modelers to beware of unmodeled effect het-

erogeneity, as it may lead to gross misinterpretation of conventional path models.

We start with a brief discussion of conventional attitudes toward effect heterogeneity in

the social sciences and in sociology in particular, formalize the notion of effect heteroge-

neity, and briefly review results of related work. In the core sections of the paper, we use

simulations to demonstrate the failure of main-effects-only regression models to recover

average causal effects in certain very basic three-variable path models where unmodeled

effect heterogeneity is present in more than one structural parameter. Using DAGs, we

explain which constellations of unmodeled effect heterogeneity will bias conventional

regression estimates. We conclude with a summary of findings.

2 A Presumed Averaging Property of Main-Effects-Only Regression

2.1 Social Science Practice

The great majority of empirical work in the social sciences relies on the assumption of

constant coefficients to estimate OLS regression models that contain nothing but main

effect terms for all variables considered.
1
 Of course, most researchers do not believe that

real-life social processes follow the constant-coefficient ideal of conventional regression.

For example, they aver that the effect of marital conflict on children’s self-esteem is

larger for boys than for girls [Amato and Booth 1997]; or that the death of a spouse in-

creases mortality more for white widows than for African American widows [Elwert and

Christakis 2006]. When pressed, social scientists would probably agree that the causal

effect of almost any treatment on almost any outcome likely varies from group to group,

and from person to person.

But if researchers are such firm believers in effect heterogeneity, why is the constant-

coefficients regression model so firmly entrenched in empirical practice? The answer lies

in the widespread belief that the coefficients of linear regression models estimate aver-

ages of heterogeneous parameters—average causal effects—representing the average of

the individual-level causal effects across sample members. This (presumed) averaging

property of standard regression models is important for empirical practice for at least

three reasons. First, sample sizes in the social sciences are often too small to investigate

effect heterogeneity by including interaction terms between the treatment and more than a

few common effect modifiers (such as sex, race, education, income, or place of resi-

dence); second, the variables needed to explicitly model heterogeneity may well not have

been measured; third, and most importantly, the complete list of effect modifiers along

which the causal effect of treatment on the outcome varies is typically unknown (indeed,

unknowable) to the analyst in any specific application. Analysts thus rely on faith that

1
Whether a model requires an interaction depends on the functional form of the dependent and/or

independent variables. For example, a model with no interactions in which the independent vari-

ables are entered in log form, would require a whole series of interactions in order to approximate

this function if the independent variables where entered in nonlog form.

328

Effect Heterogeneity and Bias in Regression

their failure to anticipate and incorporate all dimensions of effect heterogeneity into re-

gression analysis simply shifts the interpretation of regression coefficients from

individual-level causal effects to average causal effects, without imperiling the causal

nature of the estimate.

2.2 Defining Effect Heterogeneity

We start by developing our analysis of the consequences of causal heterogeneity within

the counterfactual (potential outcomes) model. For a continuous treatment T∈(-∞,∞), let

T = t denote some specific treatment value and T = 0 the control condition. Y(t)i is the

potential outcome of individual i for treatment T = t, and Y(0)i is the potential outcome of

individual i for the control condition. For a particular individual, generally only one

value of Y(t)i will be observed. The individual-level causal effect (ICE) of treatment

level T = t compared to T = 0 is then defined as: δi,t = Y(t)i –Y(0)i (or δi, for short, if T is

binary).

 Since δi,t is generally not directly estimable, researchers typically attempt estimating

the average causal effect (ACE) for some sample or population:

δ t = δ i, t

i=1

N

∑ / N

 We say that the effect of treatment T is heterogeneous if:

δ i, t ≠ δ t for at least one i.

In other words, effect heterogeneity exists if the causal effect of the treatment differs

across individuals. The basic question of this paper is whether a regression estimate for

the causal effect of the treatment can be interpreted as an average causal effect if effect

heterogeneity is present.

2.3 Regression Estimates as Conditional Variance Weighted Average Causal Effects

The ability of regression to recover average causal effects under effect heterogeneity has

previously been challenged by Angrist [1998].
2
 Here, we briefly sketch the main result.

For a binary treatment, T=0,1, Angrist assumed a model where treatment was ignorable

given covariates X and the effect of treatment varied across strata defined by the values

of X. He then analyzed the performance of an OLS regression model that properly

controlled for confounding in X but was misspecified to include only a main effect term

for T and no interactions between T and X. Angrist showed that the regression estimate

for the main effect of treatment can be expressed as a weighted average of stratum-

specific treatment effects, albeit one that is difficult to interpret. For each stratum defined

by fixed values of X, the numerator of the OLS estimator has the form δxWxP(X=x),
3

where δx is the stratum-specific causal effect and P(X=x) is the relative size of the stra-

tum in the sample. The weight, Wx, is a function of the propensity score, Px=P(T=1 | X),

associated with the stratum, Wx = Px (1- Px), which equals the stratum-specific variance of

treatment. This variance, and hence the weight, is largest if Px=.5 and smaller as Px goes

to 0 or 1.

2
This presentation follows Angrist [1998] and Angrist and Pischke [2009].

3
The denominator of the OLS estimator is just a normalizing constant that does not aid intuition.

329

Felix Elwert and Christopher Winship

If the treatment effect is constant across strata, these weights make good sense. OLS

gives the minimum variance linear unbiased estimator of the model parameters under

homoscedasticity assuming correct specification of the model. Thus in a model without

interactions between treatment and covariates X the OLS estimator gives the most weight

to strata with the smallest variance for the estimated within-stratum treatment effect,

which, not considering the size of the strata, are those strata with the largest treatment

variance, i.e. with the Px that are closest to .5. However, if effects are heterogeneous

across strata, this weighting scheme makes little substantive sense: in order to compute

the average causal effect, δ , as defined above, we would want to give the same weight to

every individual in the sample. As a variance-weighted estimator, however, regression

estimates under conditions of unmodeled effect heterogeneity do not give the same

weight to every individual in the sample and thus do not converge to the (unweighted)

average treatment effect.

3 Path Models with Pervasive Effect Heterogeneity

Whereas Angrist analyzed a misspecified regression equation that incorrectly assumed no

treatment-covariate interaction for a single treatment variable, we investigate the ability

of a main-effects-only regression model to recover unbiased average causal effects in

simple path models with unmodeled effect heterogeneity across multiple parameters.

Setup: To illustrate how misleading the belief in the averaging power of the constant-

coefficient model can be in practice, we present simulations of basic linear path models,

shown in summary in Figure 1 (where we have repressed the usual uncorrelated error

terms).

 α B β

 A C

 γ

Figure 1. A simple linear path model

To introduce effect heterogeneity, let G = 0, 1 index membership in a latent group and

permit the possibility that the three structural parameters α, β, and γ vary across (but not

within) levels of G. The above path model can then be represented by two linear equa-

tions: B = AαG + εB and C = AγG + BβG + εC. In our simulations, we assume that

A~N(0,1) and εB, and εC are iid N(0,1), and hence all variables are normally distributed.

From these equations, we next simulate populations of N=100,000 observations, with

P(G=1) = P(G=0) = 1/2. We start with a population in which all three parameters are

constant across the two subgroups defined by G, and then systematically introduce effect

heterogeneity by successively permitting the structural parameters to vary by group,

yielding one population for each of the 2
3

= 8 possible combinations of constant/varying

parameters. To fix ideas, we choose the group-specific parameter values shown in Table

330

Effect Heterogeneity and Bias in Regression

1. For simulations in which one or more parameters do not vary by group, we set the

constant parameter(s) to the average of the group specific parameters, e.g. α = (α0 + α1)/2.

Finally, we estimate a conventional linear regression model for the effects of A and B

on C using the conventional default specification, in which all variables enter as main

effects only, C = Aγ + Bβ + ε. (Note that G is latent and therefore cannot be included in

the model.) The parameter, γ refers to the direct effect of A on C holding B constant, and

β refers to the total effect of B on C.
4
 In much sociological and social science research,

this main-effects regression model is intended to recover average structural (causal)

effects, and is commonly believed to be well suited for the purpose.

Results: Table 2 shows the regression estimates for the main effect parameters across

the eight scenarios of effect heterogeneity. We see that the main effects regression model

correctly recovers the desired (average) parameters, γ=1 and β=1.5 if none of the pa-

rameters vary across groups (column 1), or if only one of the three parameters varies

(columns 2-4).

Other constellations of effect heterogeneity, however, produce biased estimates. If αG

and βG (column 5); or αG and γG (column 6); or αG, βG, and γG (column 8) vary across

groups, the main-effects-only regression model fails to recover the true (average) pa-

rameter values known to underlie the simulations. For our specific parameter values, the

estimated (average) effect of B on C in these troubled scenarios is always too high, and

the estimated average direct effect of A on C is either too high or too low. Indeed, if we

set γ=0 but let αG and βG vary across groups, the estimate for γ in the main-effects-only

regression model would suggest the presence of a direct effect of A on C even though it

is known by design that no such direct effect exists (not shown).

Failure of the regression model to recover the known path parameters is not merely a

function of the number of paths that vary. Although none of the scenarios in which fewer

than two parameters vary yield incorrect estimates, and the scenario in which all three

parameters vary is clearly biased, results differ for the three scenarios in which exactly

two parameters vary. In two of these scenarios (columns 5 and 6), regression fails to

recover the desired (average) parameters, while regression does recover the correct

average parameters in the third scenario (column 7).

4
The notion of direct and indirect effects is receiving deserved scrutiny in important recent work

by Robins and Greenland [1992]; Pearl [2001]; Robins [2003]; Frangakis and Rubin [2002]; Sobel

[2008]; and VanderWeele [2008].

331

Felix Elwert and Christopher Winship

In sum, the naïve main-effects-only linear regression model recovers the correct (aver-

age) parameter values only under certain conditions of limited effect heterogeneity, and it

fails to recover the true average effects in certain other scenarios, including the scenario

we consider most plausible in the majority of sociological applications, i.e., where all

three parameters vary across groups. If group membership is latent—because group

membership is unknown to or unmeasured by the analyst— and thus unmodeled, linear

regression generally will fail to recover the true average effects.

4 DAGs to the Rescue

These results spell trouble for empirical practice in sociology. Judea Pearl’s work on cau-

sality and directed acyclic graphs (DAGs) [1995, 2009] offers an elegant and powerful

approach to understanding the problem. Focusing on the appropriate DAGs conveys the

critical insight for the present discussion that effect heterogeneity, rather than being a

nuisance that is easily averaged away, encodes structural information that analysts ignore

at their peril.

Pearl’s DAGs are nonparametric path models that encode causal dependence between

variables: an arrow between two variables indicates that the second variable is causally

dependent on the first (for detailed formal expositions of DAGs, see Pearl [1995, 2009];

for less technical introductions see Robins [2001]; Greenland, Pearl and Robins [1999] in

epidemiology, and Morgan and Winship [2007] in sociology). For example, the DAG in

Figure 2 indicates that Z is a function of X and Y, Z= f(X,Y,εZ), where εZ is an unob-

served error term independent of (X,Y).

In a non-parametric DAG—as opposed to a conventional social science path model—

the term f() can be any function. Thus, the DAG in Figure 2 is consistent with a linear

structural equation in which X only modifies (i.e. introduces heterogeneity into) the effect

332

Effect Heterogeneity and Bias in Regression

of Y on Z, Z=Yξ + YXψ + εZ.
5
 In the language of VanderWeele and Robins [2007], who

provide the most extensive treatment of effect heterogeneity using DAGs to date, one

may call X a “direct effect modifier” of the effect of Y on Z. The point is that a variable

that modifies the effect of Y on Z is causally associated with Z, as represented by the

arrow from X to Z.

εZ

X

 Z

Y

Figure 2. DAG illustrating direct effect modification of the effect of Y on Z in X

Returning to our simulation, one realizes that the social science path model of Figure 1,

although a useful tool for informally illustrating the data generation process, does not,

generally, provide a sufficiently rigorous description of the causal structure underlying

the simulations. Figure 1, although truthfully representing the separate data generating

mechanism for each group and each individual in the simulated population, is not the

correct DAG for the pooled population containing groups G = 0 and G = 1 for all of the

heterogeneity scenarios considered above. Specifically, in order to turn the informal

social science path model of Figure 1 into a DAG, one would have to integrate the source

of heterogeneity, G, into the picture. How this is to be done depends on the structure of

heterogeneity. If only βG (the effect of B on C) and/or γG (the direct effect of A on C

holding B constant) varied with G, then one would add an arrow from G into C. If αG

(the effect of A on B) varied with G, then one would add an arrow from G into B. The

DAG in Figure 3 thus represents those scenarios in which αG as well as either βG or γG, or

both, vary with G (columns 5, 6, and 8). Interpreted in terms of a linear path model, this

DAG is consistent with the following two structural equations: B = Aα0 + AGα1 + εB and

C = Aγ0 + AGγ1 + Bβ0 + BGβ1 + εC (where the iid errors, ε, have been omitted from the

DAG and are assumed to be uncorrelated).
6

In our analysis, mimicking the reality of limited observational data with weak substan-

tive theory, we have assumed that A, B, and C are observed, but that G is not observed. It

is immediately apparent that the presence of G in Figure 3 means that, first, G is a

confounder for the effect of B on C; and, second, that B is a “collider” [Pearl 2009] on

5
It is also consistent with an equation that adds a main effect of X. For the purposes of this paper

it does not matter whether the main effect is present.
6
By construction of the example, we assume that A is randomized and thus marginally

independent of G. Note, however, that even though G is mean independent of B and C (no main

effect of G on either B or C), G is not marginally independent of B or C because

var(B|G=1)≠var(B|G=0) and var(C|G=1)≠var(C|G=0), which explains the arrows from G into B and

C. Adding main effects of G on B and C would not change the arguments presented here.

333

Felix Elwert and Christopher Winship

the path from A to C via B and G. Together, these two facts explain the failure of the

main-effects-only regression model to recover the true parameters in panels 5, 6, and 8:

First, in order to recover the effect of B on C, β, one would need to condition on the con-

founders A and G. But G is latent so it cannot be conditioned on. Second, conditioning on

the collider B in the regression opens a “backdoor path” from A to C via B and G (when

G is not conditioned on), i.e. it induces a non-causal association between A and C,

creating selection bias in the estimate for the direct effect of A on C, γ [Pearl 1995, 2009;

Hernán et al 2004]. Hence, both coefficients in the main-effects-only regression model

will be biased for the true (average) parameters.

 G

 B

A C

Figure 3. DAG consistent with effect modification of the effects of A on B, and B

on C and/or A on C, in G

By contrast, if G modifies neither β nor γ, then the DAG would not contain an arrow

from G into C; and if G does not modify α then the DAG would not contain an arrow

from G into B. Either way, if either one (or both) of the arrows emanating from G are

missing, then G is not a confounder for the effect of B on C, and conditioning on B will

not induce selection bias by opening a backdoor path from A to C. Only then would the

main effects regression model be unbiased and recover the true (average) parameters, as

seen in panels 1-4 and 7.

In sum, Pearl’s DAGs neatly display the structural information encoded in effect het-

erogeneity [VanderWeele and Robins 2007]. Consequently, Pearl’s DAGs immediately

draw attention to problems of confounding and selection bias that can occur when more

than one effect in a causal system varies across sample members. Analyzing the appro-

priate DAG, the failure of main-effects-only regression models to recover average struc-

tural parameters in certain constellations of effect heterogeneity becomes predictable.

5 Conclusion

This paper considered a conventional structural model of a kind commonly used in the

social sciences and explored its performance under various basic scenarios of effect het-

erogeneity. Simulations show that the standard social science strategy of dealing with

effect heterogeneity—by ignoring it—is prone to failure. In certain situations, the main-

effects-only regression model will recover the desired quantities, but in others it will not.

We believe that effect heterogeneity in all arrows of a path model is plausible in many, if

not most, substantive applications. Since the sources of heterogeneity are often not theo-

rized, known, or measured, social scientists continue routinely to estimate main-effects-

334

Effect Heterogeneity and Bias in Regression

only regression models in hopes of recovering average causal effects. Our examples

demonstrate that the belief in the averaging powers of main-effects-only regression mod-

els may be misplaced if heterogeneity is pervasive, as estimates can be mildly or wildly

off the mark. Judea Pearl’s DAGs provide a straightforward explanation for these diffi-

culties—DAGs remind analysts that effect heterogeneity may encode structural infor-

mation about confounding and selection bias that requires consideration when designing

statistical strategies for recovering the desired average causal effects.

Acknowledgments: We thank Jamie Robins for detailed comments on a draft version of

this paper, and Michael Sobel, Stephen Morgan, Hyun Sik Kim, and Elizabeth Wrigley-

Field for advice. Genevieve Butler provided editorial assistance.

References

Amato, Paul R., and Alan Booth. (1997). A Generation at Risk: Growing Up in an Era of

Family Upheaval. Cambridge, MA: Harvard University Press.

Angrist, Joshua D. (1998). “Estimating the Labor Market Impact on Voluntary Military

Service Using Social Security Date on Military Applicants.” Econometrica 66: 249-88.

Angrist, Joshua D. and Jörn-Steffen Pischke. (2009). Mostly Harmless Econometrics: An

Empiricist’s Companion. Princeton, NJ: Princeton University Press.

Elwert, Felix, and Nicholas A. Christakis. (2006). “Widowhood and Race.” American

Sociological Review 71: 16-41.

Frangakis, Constantine E., and Donald B. Rubin. (2002). “Principal Stratification in

Causal Inference.” Biometrics 58: 21–29.

Greenland, Sander, Judea Pearl, and James M. Robbins. (1999). “Causal Diagrams for

Epidemiologic Research.” Epidemiology 10: 37-48.

Hernán, Miguel A., Sonia Hernández-Diaz, and James M. Robins. (2004). “A Structural

Approach to Section Bias.” Epidemiology 155 (2): 174-184.

Morgan, Stephen L. and Christopher Winship. (2007). Counterfactuals and Causal Infer-

ence: Methods and Principles of Social Research. Cambridge: Cambridge University

Press.

Pearl, Judea. (1995). “Causal Diagrams for Empirical Research.” Biometrika 82 (4): 669-

710.

Pearl, Judea. (2001). "Direct and Indirect Effects." In Proceedings of the Seventeenth

Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan

Kaufmann, 411-420.

Pearl, Judea. (2009). Causality: Models, Reasoning, and Inference. Second Edition.

Cambridge: Cambridge University Press.

335

Felix Elwert and Christopher Winship

Robins, James M. (2001). “Data, Design, and Background Knowledge in Etiologic Infer-

ence,” Epidemiology 11 (3): 313-320.

Robins, James M. (2003). “Semantics of Causal DAG Models and the Identification of

Direct and Indirect Effects.” In: Highly Structured Stochastic Systems, P. Green, N.

Hjort and S. Richardson, Eds. Oxford: Oxford University Press.

Robins, James M, and Sander Greenland. (1992). “Identifiability and Exchangeability for

Direct and Indirect Effects.” Epidemiology 3:143-155.

Sobel, Michael. (2008). “Identification of Causal Parameters in Randomized Studies with

Mediating Variables,” Journal of Educational and Behavioral Statistics 33 (2): 230-

251.

VanderWeele, Tyler J. (2008). “Simple Relations Between Principal Stratification and

Direct and Indirect Effects.” Statistics and Probability Letters 78: 2957-2962.

VanderWeele, Tyler J. and James M. Robins. (2007). “Four Types of Effect Modifica-

tion: A Classification Based on Directed Acyclic Graphs.” Epidemiology 18 (5): 561-

568.

336

20

Causal and Probabilistic Reasoning

in P-log

Michael Gelfond and Nelson Rushton

1 Introduction

In this paper we give an overview of the knowledge representation (KR) language P-

log [Baral, Gelfond, and Rushton 2009] whose design was greatly influenced by work

of Judea Pearl. We introduce the syntax and semantics of P-log, give a number of

examples of its use for knowledge representation, and discuss the role Pearl’s ideas

played in the design of the language. Most of the technical material presented in

the paper is not new. There are however two novel technical contributions which

could be of interest. First we expand P-log semantics to allow domains with infinite

Herbrand bases. This allows us to represent infinite sequences of random variables

and (indirectly) continuous random variables. Second we generalize the logical base

of P-log which improves the degree of elaboration tolerance of the language.

The goal of the P-log designers was to create a KR-language allowing natural

and elaboration tolerant representation of commonsense knowledge involving logic

and probabilities. The logical framework of P-log is Answer Set Prolog (ASP) —

a language for knowledge representation and reasoning based on the answer set se-

mantics (aka stable model semantics) of logic programs [Gelfond and Lifschitz 1988;

Gelfond and Lifschitz 1991]. ASP has roots in declarative programing, the syntax

and semantics of standard Prolog, disjunctive databases, and non-monotonic logic.

The semantics of ASP captures the notion of possible beliefs of a reasoner who

adheres to the rationality principle which says that “One shall not believe anything

one is not forced to believe”. The entailment relation of ASP is non-monotonic1,

which facilitates a high degree of elaboration tolerance in ASP theories. ASP allows

natural representation of defaults and their exceptions, causal relations (including

effects of actions), agents’ intentions and obligations, and other constructs of natural

language. ASP has a number of efficient reasoning systems, a well developed math-

ematical theory, and a well tested methodology of representing and using knowledge

for computational tasks (see, for instance, [Baral 2003]). This, together with the

fact that some of the designers of P-log came from the ASP community made the

choice of a logical foundation for P-log comparatively easy.

1Roughly speaking, a language L is monotonic if whenever Π1 and Π2 are collections of state-

ments of L with Π1 ⊂ Π2, and W is a model of Π2, then W is a model of Π1. A language which

is not monotonic is said to be nonmonotonic.

337

Kaoru
Text Box
Return to TOC

Michael Gelfond and Nelson Rushton

The choice of a probabilistic framework was more problematic and that is where

Judea’s ideas played a major role. Our first problem was to choose from among

various conceptualizations of probability: classical, frequentist, subjective, etc. Un-

derstanding the intuitive readings of basic language constructs is crucial for a soft-

ware/knowledge engineer — probably more so than for a mathematician who may

be primarily interested in their mathematical properties. Judea Pearl in [Pearl 1988]

introduced the authors to the subjective view of probability — i.e. understanding

of probabilities as degrees of belief of a rational agent — and to the use of subjective

probability in AI. This matched well with the ASP-based logic side of the language.

The ASP part of a P-log program can be used for describing possible beliefs, while

the probabilistic part would allow knowledge engineers to quantify the degrees of

these beliefs.

After deciding on an intuitive reading of probabilities, the next question was

which sorts of probabilistic statements to allow. Fortunately, the question of concise

and transparent representation of probability distributions was already addressed by

Judea in [Pearl 1988], where he showed how Bayesian nets can be successfully used

for this purpose. The concept was extended in [Pearl 2000] where Pearl introduced

the notion of Causal Bayesian Nets (CBN’s). Pearl’s definition of CBN’s is pioneer-

ing in three respects. First, he gives a framework where nondeterministic causal

relations are the primitive relations among random variables. Second, he shows how

relationships of correlation and (classical) independence emerge from these causal

relationships in a natural way; and third he shows how this emergence is faithful to

our intuitions about the difference between causality and (mere) correlation.

As we mentioned above, one of the primary desired features in the design of P-log

was elaboration tolerance — defined as the ability of a representation to incorpo-

rate new knowledge with minimal revision [McCarthy 1999]. P-log inherited from

ASP the ability to naturally incorporate many forms of new logical knowledge. An

extension of ASP, called CR-Prolog, further improved this ability [Balduccini and

Gelfond 2003]. The term “elaboration tolerance” is less well known in the field of

probabilistic reasoning, but one of the primary strengths of Bayes nets as a repre-

sentation is the ability to systematically and smoothly incorporate new knowledge

through conditioning, using Bayes Theorem as well as algorithms given by Pearl

[Pearl 1988] and others. Causal Bayesian Nets carry this a step further, by allowing

us to formalize interventions in addition to (and as distinct from) observations, and

smoothly incorporate either kind of new knowledge in the form of updates. Thus

from the standpoint of elaboration tolerance, CBN’s were a natural choice as a

probabilistic foundation for P-log.

Another reason for choosing CBN’s is that we simply believe Pearl’s distinction

between observations and interventions to be central to commonsense probabilistic

reasoning. It gives a precise mathematical basis for distinguishing between the

following questions: (1) what can I expect to happen given that I observe X = x,

and (2) what can I expect to happen if I intervene in the normal operation of

338

Reasoning in P-log

a probabilistic system by fixing value of variable X to x? These questions could

in theory be answered using classical methods, but only by creating a separate

probabilistic model for each question. In a CBN these two questions may be treated

as conditional probabilities (one conditioned on an observation and the other on an

action) of a single probabilistic model.

P-log carries things another step. There are many actions one could take to

manipulate a system besides fixing the values of (otherwise random) variables —

and the effects of such actions are well studied under headings associated with

ASP. Moreover, besides actions, there are many sorts of information one might

gain besides those which simply eliminate possible worlds: one may gain knowledge

which introduces new possible worlds, alters the probabilities of possible worlds,

introduces new logical rules, etc. ASP has been shown to be a good candidate for

handling such updates in non-probabilistic settings, and our hypothesis was that it

would serve as well when combined with a probabilistic representation. Thus some of

the key advantages of Bayesian nets, which are amplified by CBN’s, show plausible

promise of being even further amplified by their combination with ASP. This is the

methodology of P-log: to combine a well studied method for elaboration tolerant

probabilistic representations (CBN’s) with a well studied method for elaboration

tolerant logical representations (ASP).

Finally let us say a few words about the current status of the language. It is com-

paratively new. The first publication on the subject appeared in [Baral, Gelfond,

and Rushton 2004], and the full journal paper describing the language appeared

only recently in [Baral, Gelfond, and Rushton 2009]. The use of P-log for knowl-

edge representation was also explored in [Baral and Hunsaker 2007] and [Gelfond,

Rushton, and Zhu 2006]. A prototype reasoning system based on ASP computa-

tion allowed the use of the language for a number of applications (see, for instance,

[Baral, Gelfond, and Rushton 2009; Pereira and Ramli 2009]). We are currently

working on the development and implementation of a more efficient system, and on

expanding it to allow rules of CR-Prolog. Finding ways for effectively combining

ASP-based computational methods of P-log with recent advanced algorithms for

Bayesian nets is probably one of the most interesting open questions in this area.

The paper is organized as follows. Section 2 contains short introduction to ASP

and CR-Prolog. Section 3 describes the syntax and informal semantics of P-log,

illustrating both through a nontrivial example. Section 4 gives another example,

similar in nature to Simpson’s Paradox. Section 5 states a new theorem which

extends the semantics of P-log from that given in [Baral, Gelfond, and Rushton

2009] to cover programs with infinitely many random variables. The basic idea of

Section 5 is accessible to a general audience, but its technical details require an

understanding of the material presented in [Baral, Gelfond, and Rushton 2009].

339

Michael Gelfond and Nelson Rushton

2 Preliminaries

This section contains a description of syntax and semantics of both ASP and CR-

Prolog. In what follows we use a standard notion of a sorted signature from classical

logic. Terms and atoms are defined as usual. An atom p(t) and its negation ¬p(t)

are referred to as literals. Literals of the form p(t) and ¬p(t) are called contrary.

ASP and CR-Prolog also contain connectives not and or which are called default

negation and epistemic disjunction respectively. Literals possibly preceded by de-

fault negation are called extended literals.

An ASP program is a pair consisting of a signature σ and a collection of rules of

the form

l0 or . . . or lm ← lm+1, . . . , lk, not lk+1, . . . , not ln (1)

where l’s are literals. The right-hand side of of the rule is often referred to as the

rule’s body, the left-hand side as the rule’s head.

The answer set semantics of a logic program Π assigns to Π a collection of answer

sets – partial interpretations2 corresponding to possible sets of beliefs which can be

built by a rational reasoner on the basis of rules of Π. In the construction of such

a set S, the reasoner is assumed to be guided by the following informal principles:

• S must satisfy the rules of Π;

• the reasoner should adhere to the rationality principle, which says that one

shall not believe anything one is not forced to believe.

To understand the former let us consider a partial interpretation S viewed as a

possible set of beliefs of our reasoner. A ground atom p is satisfied by S if p ∈ S,

i.e., the reasoner believes p to be true. According to the semantics of our connectives

¬p means that p is false. Consequently, ¬p is satisfied by S iff ¬p ∈ S, i.e., the

reasoner believes p to be false. Unlike ¬p, not p has an epistemic character and is

read as there is no reason to believe that p is true. Accordingly, S satisfies not l if

l 6∈ S. (Note that it is possible for the reasoner to believe neither p nor ¬p). An

epistemic disjunction l1 or l2 is satisfied by S if l1 ∈ S or l2 ∈ S, i.e., the reasoner

believes at least one of the disjuncts to be true. Finally, S satisfies the body (resp.,

head) of rule (1) if S satisfies all of the extended literals occurring in its body (resp.,

head); and S satisfies rule (1) if S satisfies its head or does not satisfy its body.

What is left is to capture the intuition behind the rationality principle. This will

be done in two steps.

DEFINITION 1 (Answer Sets, Part I). Let program Π consist of rules of the form:

l0 or . . . or li ← li+1, . . . , lm.

An answer set of Π is a consistent set S of ground literals such that:

2By partial interpretation we mean a consistent set of ground literals of σ(Π).

340

Reasoning in P-log

• S satisfies the rules of Π.

• S is minimal; i.e., no proper subset of S satisfies the rules of Π.

The rationality principle here is captured by the minimality condition. For example,

it is easy to see that { } is the only answer set of program consisting of the single

rule p ← p, and hence the reasoner associated with it knows nothing about the

truth or falsity of p. The program consisting of rules

p(a).

q(a) or q(b)← p(a).

has two answer sets: {p(a), q(a)} and {p(a), q(b)}. Note that no rule requires the

reasoner to believe in both q(a) and q(b). Hence he believes that the two formulas

p(a) and (q(a) or q(b)) are true, and that ¬p(a) is false. He remains undecided,

however, about, say, the two formulas p(b) and (¬q(a) or ¬q(b)). Now let us consider

an arbitrary program:

DEFINITION 2 (Answer Sets, Part II). Let Π be an arbitrary collection of rules

(1) and S a set of literals. By ΠS we denote the program obtained from Π by

1. removing all rules containing not l such that l ∈ S;

2. removing all other premises containing not .

S is an answer set of Π iff S is an answer set of ΠS .

To illustrate the definition let us consider a program

p(a).

p(b).

¬p(X)← not p(X).

where p is a unary predicate whose domain is the set {a, b, c}. The last rule, which

says that if X is not believed to satisfy p then p(X) is false, is the ASP formalization

of a Closed World Assumption for a relation p [Reiter 1978]. It is easy to see that

{p(a), p(b),¬p(c)} is the only answer set of this program. If we later learn that

c satisfies p, this information can be simply added to the program as p(c). The

default for c will be defeated and the only answer set of the new program will be

{p(a), p(b), p(c)}.

The next example illustrates the ASP formalization of a more general default. Con-

sider a statement: “Normally, computer science courses are taught only by computer

science professors. The logic course is an exception to this rule. It may be taught by

faculty from the math department.” This is a typical default with a weak exception3

which can be represented in ASP by the rules:

3An exception to a default is called weak if it stops application of the default without defeating

its conclusion. Otherwise it is called strong.

341

Michael Gelfond and Nelson Rushton

¬may teach(P,C) ← ¬member(P, cs),

course(C, cs),

not ab(d1(P,C)),

not may teach(P,C).

ab(d1(P, logic)) ← not ¬member(P,math).

Here d1(P,C) is the name of the default rule and ab(d1(P,C)) says that default

d1(P,C) is not applicable to the pair 〈P,C〉. The second rule above stops the

application of the default in cases where the class is logic and P may be a math

professor. Used in conjunction with rules:

member(john, cs).

member(mary,math).

member(bob, ee).

¬member(P,D)← not member(P,D).

course(logic, cs).

course(data structures, cs).

the program will entail that Mary does not teach data structures while she may

teach logic; Bob teaches neither logic nor data structures, and John may teach both

classes.

The previous examples illustrate the representation of defaults and their strong and

weak exceptions. There is another type of possible exception to defaults, sometimes

referred to as an indirect exception. Intuitively, these are rare exceptions that

come into play only as a last resort, to restore the consistency of the agent’s world

view when all else fails. The representation of indirect exceptions seems to be

beyond the power of ASP. This observation led to the development of a simple but

powerful extension of ASP called CR-Prolog (or ASP with consistency-restoring

rules). To illustrate the problem let us consider the following example.

Consider an ASP representation of the default “elements of class c normally have

property p”:

p(X) ← c(X),

not ab(d(X)),

not ¬p(X).

together with the rule

q(X) ← p(X).

and the facts c(a) and ¬q(a). Let us denote this program by E, where E stands for

“exception”.

It is not difficult to check that E is inconsistent. No rules allow the reasoner to

prove that the default is not applicable to a (i.e. to prove ab(d(a))) or that a

does not have property p. Hence the default must conclude p(a). The second rule

implies q(a) which contradicts one of the facts. However, there seems to exists a

342

Reasoning in P-log

commonsense argument which may allow a reasoner to avoid inconsistency, and to

conclude that a is an indirect exception to the default. The argument is based on

the Contingency Axiom for default d(X) which says that any element of class

c can be an exception to the default d(X) above, but such a possibility is very rare,

and, whenever possible, should be ignored. One may informally argue that since the

application of the default to a leads to a contradiction, the possibility of a being an

exception to d(a) cannot be ignored and hence a must satisfy this rare property.

In what follows we give a brief description of CR-Prolog — an extension of ASP

capable of encoding and reasoning about such rare events.

A program of CR-Prolog is a four-tuple consisting of

1. A (possibly sorted) signature.

2. A collection of regular rules of ASP.

3. A collection of rules of the form

l0
+
← l1, . . . , lk, not lk+1, . . . , not ln (2)

where l’s are literals. Rules of this type are called consistency restoring rules

(CR-rules).

4. A partial order, ≤, defined on sets of CR-rules. This partial order is often

referred to as a preference relation.

Intuitively, rule (2) says that if the reasoner associated with the program believes the

body of the rule, then he “may possibly” believe its head. However, this possibility

may be used only if there is no way to obtain a consistent set of beliefs by using

only regular rules of the program. The partial order over sets of CR-rules will be

used to select preferred possible resolutions of the conflict. Currently the inference

engine of CR-Prolog [Balduccini 2007] supports two such relations, denoted ≤1 and

≤2. One is based on the set-theoretic inclusion (R1 ≤1 R2 holds iff R1 ⊆ R2).

The other is defined by the cardinality of the corresponding sets (R1 ≤2 R2 holds

iff |R1| ≤ |R2|). To give the precise semantics we will need some terminology and

notation.

The set of regular rules of a CR-Prolog program Π will be denoted by Πr, and the

set of CR-rules of Π will be denoted by Πcr. By α(r) we denote a regular rule

obtained from a consistency restoring rule r by replacing
+
← by ←. If R is a set of

CR-rules then α(R) = {α(r) : r ∈ R}. As in the case of ASP, the semantics of

CR-Prolog will be given for ground programs. A rule with variables will be viewed

as a shorthand for a set of ground rules.

DEFINITION 3. (Abductive Support)

A minimal (with respect to the preference relation of the program) collection R of

343

Michael Gelfond and Nelson Rushton

CR-rules of Π such that Πr ∪ α(R) is consistent (i.e. has an answer set) is called

an abductive support of Π.

DEFINITION 4. (Answer Sets of CR-Prolog)

A set A is called an answer set of Π if it is an answer set of a regular program

Πr ∪ α(R) for some abductive support R of Π.

Now let us show how CR-Prolog can be used to represent defaults and their indirect

exceptions. The CR-Prolog representation of the default d(X), which we attempted

to represent in ASP program E, may look as follows

p(X) ← c(X),

not ab(d(X)),

not ¬p(X).

¬p(X)
+
← c(X).

The first rule is the standard ASP representation of the default, while the second rule

expresses the Contingency Axiom for the default d(X)4. Consider now a program

obtained by combining these two rules with an atom c(a).

Assuming that a is the only constant in the signature of this program, the program’s

unique answer set will be {c(a), p(a)}. Of course this is also the answer set of the

regular part of our program. (Since the regular part is consistent, the Contingency

Axiom is ignored.) Let us now expand this program by the rules

q(X)← p(X).

¬q(a).

The regular part of the new program is inconsistent. To save the day we need to

use the Contingency Axiom for d(a) to form the abductive support of the program.

As a result the new program has the answer set {¬q(a), c(a),¬p(a))}. The new

information does not produce inconsistency, as it did in ASP program E. Instead the

program withdraws its previous conclusion and recognizes a as a (strong) exception

to default d(a).

3 The Language

A P-log program consists of its declarations, logical rules, random selection rules,

probability atoms, observations, and actions. We will begin this section with a

brief description of the syntax and informal readings of these components of the

programs, and then proceed to an illustrative example.

The declarations of a P-log program give the types of objects and functions in

the program. Logical rules are “ordinary” rules of the underlying logical language

4In this form of Contingency Axiom, we treat X as a strong exception to the default. Sometimes

it may be useful to also allow weak indirect exceptions; this can be achieved by adding the rule

ab(d(X))
+
← c(X).

344

Reasoning in P-log

written using light syntactic sugar. For purposes of this paper, the underlying

logical language is CR-Prolog.

P-log uses random selection rules to declare random attributes (essentially ran-

dom variables) of the form a(t), where a is the name of the attribute and t is a

vector of zero or more parameters. In this paper we consider random selection rules

of the form

[r] random(a(t))← B. (3)

where r is a term used to name the random causal process associated with the rule

and B is a conjunction of zero or more extended literals. The name [r] is optional

and can be omitted if the program contains exactly one random selection rule for

a(t). Statement (3) says that if B were to hold, the value of a(t) would be selected at

random from its range by process r, unless this value is fixed by a deliberate action.

More general forms of random selection rules, where the values may be selected from

a range which depends on context, are discussed in [Baral, Gelfond, and Rushton

2009].

Knowledge of the numeric probabilities of possible values of random attributes is

expressed through causal probability atoms, or pr-atoms. A pr-atom takes the form

prr(a(t) = y|c B) = v

where a(t) is a random attribute, B a conjunction of literals, r is a causal process,

v ∈ [0, 1], and y is a possible value of a(t). The statement says that if the value of

a(t) is fixed by process r, and B holds, then the probability that r causes a(t) = y is

v. If r is uniquely determined by the program then it can be omitted. The “causal

stroke” ‘|c’ and the “rule body” B may also be omitted in case B is empty.

Observations and actions of a P-log program are written, respectively, as

obs(l). do(a(t) = y)).

where l is a literal, a(t) a random attribute, and y a possible value of a(t). obs(l)

is read l is observed to be true. The action do(a(t) = y) is read the value of a(t),

instead of being random, is set to y by a deliberate action.

This completes a general introductory description of P-log. Next we give an example

to illustrate this description. The example shows how certain forms of knowledge

may be represented, including deterministic causal knowledge, probabilistic causal

knowledge, and strict and defeasible logical rules (a rule is defeasible if it states

an overridable presumption; otherwise it is strict). We will use this example to

illustrate the syntax of P-log, and, afterward, to provide an indication of the for-

mal semantics. Complete syntax and semantics are given in [Baral, Gelfond, and

Rushton 2009], and the reader is invited to refer there for more details.

345

Michael Gelfond and Nelson Rushton

EXAMPLE 5. [Circuit]

A circuit has a motor, a breaker, and a switch. The switch may be open or closed.

The breaker may be tripped or not; and the motor may be turning or not. The

operator may toggle the switch or reset the breaker. If the switch is closed and the

system is functioning normally, the motor turns. The motor never turns when the

switch is open, the breaker is tripped, or the motor is burned out. The system may

break and if so the break could consist of a tripped breaker, a burned out motor,

or both, with respective probabilities .9, .09, and .01. Breaking, however, is rare,

and should be considered only in the absence of other explanations.

Let us show how to represent this knowledge in P-log. First we give declarations of

sorts and functions relevant to the domain. As typical for representation of dynamic

domains we will have sorts for actions, fluents (properties of the domain which can

be changed by actions), and time steps. Fluents will be partitioned into inertial

fluents and defined fluents. The former are subject to the law of inertia [Hayes and

McCarthy 1969] (which says that things stay the same by default), while the latter

are specified by explicit definitions in terms of already defined fluents. We will also

have a sort for possible types of breaks which may occur in the system. In addition

to declared sorts P-log contains a number of predefined sorts, e.g. a sort boolean.

Here are the sorts of the domain for the circuit example:

action = {toggle, reset, break}.

inertial fluent = {closed, tripped, burned}.

defined fluent = {turning, faulty}.

f luent = inertial fluent ∪ defined fluent.

step = {0, 1}.

breaks = {trip, burn, both}.

In addition to sorts we need to declare functions (referred in P-log as attributes)

relevant to our domain.

holds : fluent× step→ boolean.

occurs : action× step→ boolean.

Here holds(f, T) says that fluent f is true at time step T and occurs(a, T) indicates

that action a was executed at T .

The last function we need to declare is a random attribute type of break(T) which

denotes the type of an occurrence of action break at step T .

type of break : step→ breaks.

The first two logical rules of the program define the direct effects of action toggle.

346

Reasoning in P-log

holds(closed, T + 1) ← occurs(toggle, T),

¬holds(closed, T).

¬holds(closed, T + 1) ← occurs(toggle, T),

holds(closed, T).

They simply say that toggling opens and closes the switch. The next rule says that

resetting the breaker untrips it.

¬holds(tripped, T + 1) ← occurs(reset, T).

The effects of action break are described by the rules

holds(tripped, T + 1) ← occurs(break, T),

type of break(T) = trip.

holds(burned, T + 1) ← occurs(break, T),

type of break(T) = burn.

holds(tripped, T + 1) ← occurs(break, T),

type of break(T) = both.

holds(burned, T + 1) ← occurs(break, T),

type of break(T) = both.

The next two rules express the inertia axiom which says that by default, things stay

as they are. They use default negation not — the main nonmonotonic connective

of ASP —, and can be viewed as typical representations of defaults in ASP and its

extensions.

holds(F, T + 1) ← inertial fluent(F),

holds(F, T),

not ¬holds(F, T + 1).

¬holds(F, T + 1) ← inertial fluent(F),

¬holds(F, T),

not holds(F, T + 1).

Next we explicitly define fluents faulty and turning.

holds(faulty, T) ← holds(tripped, T).

holds(faulty, T) ← holds(burned, T).

¬holds(faulty, T) ← not holds(faulty, T).

The rules above say that the system is functioning abnormally if and only if the

breaker is tripped or the motor is burned out. Similarly the next definition says

that the motor turns if and only if the switch is closed and the system is functioning

normally.

holds(turning, T) ← holds(closed, T),

¬holds(faulty, T).

¬holds(turning, T) ← not holds(turning, T).

The above rules are sufficient to define causal effects of actions. For instance if

we assume that at Step 0 the motor is turning and the breaker is tripped, i.e.

347

Michael Gelfond and Nelson Rushton

action break of the type trip occurred at 0, then in the resulting state we will have

holds(tripped, 1) as the direct effect of this action; while ¬holds(turning, 1) will be

its indirect effect5.

We will next have a default saying that for each action A and time step T , in the

absence of a reason to believe otherwise we assume A does not occur at T .

¬occurs(A, T)← action(A), not occurs(A, T).

We next state a CR-rule representing possible exceptions to this default. The rule

says that a break to the system may be considered if necessary (that is, necessary

in order to reach a consistent set of beliefs).

occurs(break, 0)
+
← .

The next collection of facts describes the initial situation of our story.

¬holds(closed, 0). ¬holds(burned, 0). ¬holds(tripped, 0). occurs(toggle, 0).

Next, we state a random selection rule which captures the non-determinism in the

description of our circuit.

random(type of break(T))← occurs(break, T).

The rule says that if action break occurs at step T then the type of break will be

selected at random from the range of possible types of breaks, unless this type is

fixed by a deliberate action. Intuitively, break can be viewed as a non-deterministic

action, with non-determinism coming from the lack of knowledge about the precise

type of break.

Let π0 be the circuit program given so far. Next we will give a sketch of the formal

semantics of P-log, using π0 as an illustrative example.

The logical part of a P-log program Π consists of its declarations, logical rules,

random selection rules, observations, and actions; while its probabilistic part consists

of its pr-atoms (though the above program does not have any). The semantics of

P-log describes a translation of the logical part of Π into an “ordinary” CR-Prolog

program τ(Π). The semantics of Π is then given by

5It is worth noticing that, though short, our formalization of the circuit is non-trivial. It is

obtained using the general methodology of representing dynamic systems modeled by transition

diagrams whose nodes correspond to physically possible states of the system and whose arcs are

labeled by actions. A transition 〈σ0, a, σ1〉 indicates that state σ1 may be a result of execution of

a in σ0. The problem of finding concise and mathematically accurate description of such diagrams

has been a subject of research for over 30 years. Its solution requires a good understanding of the

nature of causal effects of actions in the presence of complex interrelations between fluents. An

additional level of complexity is added by the need to specify what is not changed by actions. As

noticed by John McCarthy, the latter, known as the Frame Problem, can be reduced to finding

a representation of the Inertia Axiom which requires the ability to represent defaults and to do

non-monotonic reasoning. The representation of this axiom as well as that of the interrelations

between fluents we used in this example is a simple special case of general theory of action and

change based on logic programming under the answer set semantics.

348

Reasoning in P-log

1. a collection of answer sets of τ(Π) viewed as the set of possible worlds of a

rational agent associated with Π, along with

2. a probability measure over these possible worlds, determined by the collection

of the probability atoms of Π.

To obtain τ(π0) we represent sorts as collections of facts. For instance, sort step

would be represented in CR-Prolog as

step(0). step(1).

For a non-boolean function type of break the occurrences of atoms of the form

type of break(T) = trip in π0 are replaced by type of break(T, trip). Similarly for

burn and both. The translation also contains the axiom

¬type of break(T, V1) ← breaks(V1), breaks(V2), V1 6= V2,

type of break(T, V2).

to guarantee that type of break is a function. In general, the same transformation

is performed for all non-boolean functions.

Logical rules of π0 are simply inserted into τ(π0). Finally, the random selection rule

is transformed into

type of break(T, trip) or type of break(T, burn) or type of break(T, both)←

occurs(break, T),

not intervene(type of break(T)).

It is worth pointing out here that while CBN’s represent the notion of intervention in

terms of transformations on graphs, P-log axiomatizes the semantics of intervention

by including not intervene(. . .) in the body of the translation of each random

selection rule. This amounts to a default presumption of randomness, overridable

by intervention. We will see next how actions using do can defeat this presumption.

Observations and actions are translated as follows. For each literal l in π0, τ(π0)

contains the rule

← obs(l), not l.

For each atom a(t) = y, τ(π) contains the rules

a(t, y)← do(a(t, y)).

and

intervene(a(t))← do(a(t, Y)).

The first rule eliminates possible worlds of the program failing to satisfy l. The

second rule makes sure that interventions affect their intervened-upon variables in

the expected way. The third rule defines the relation intervene which, for each

action, cancels the randomness of the corresponding attribute.

349

Michael Gelfond and Nelson Rushton

It is not difficult to check that under the semantics of CR-Prolog, τ(π0) has a unique

possible world W containing holds(closed, 1) and holds(turning, 1), the direct and

indirect effects, respectively, of the action close. Note that the collection of regular

ASP rules of τ(π0) is consistent, i.e., has an answer set. This means that CR-rule

occurs(break, 0)
+
← is not activated, break does not occur, and the program contains

no randomness.

Now we will discuss how probabilities are computed in P-log. Let Π be a P-log

program containing the random selection rule [r] random(a(t)) ← B1 and the pr-

atom prr(a(t) = y |c B2) = v. Then if W is a possible world of Π satisfying B1 and

B2, the assigned probability of a(t) = y in W is defined 6 to be v. In case W satisfies

B1 and a(t) = y, but there is no pr-atom prr(a(t = y |c B2) = v of Π such that

W satisfies B2, then the default probability of a(t) = y in W is computed using the

“indifference principle”, which says that two possible values of a random selection

are equally likely if we have no reason to prefer one to the other (see [Baral, Gelfond,

and Rushton 2009] for details). The probability of each random atom a(t) = y

occurring in each possible world W of program Π, written PΠ(W,a(t) = y), is now

defined to be the assigned probability or the default probability, as appropriate.

Let W be a possible world of Π. The unnormalized probability, µ̂Π(W), of a

possible world W induced by Π is

µ̂Π(W) =def

∏

a(t,y)∈ W

PΠ(W,a(t) = y)

where the product is taken only over atoms for which P (W,a(t) = y) is defined.

Suppose Π is a P-log program having at least one possible world with nonzero

unnormalized probability, and let Ω be the set of possible worlds of Π. The measure,

µΠ(W), of a possible world W induced by Π is the unnormalized probability of W

divided by the sum of the unnormalized probabilities of all possible worlds of Π,

i.e.,

µΠ(W) =def

µ̂Π(W)
∑

Wi∈Ω µ̂Π(Wi)

When the program Π is clear from context we may simply write µ̂ and µ instead of

µ̂Π and µΠ respectively.

This completes the discussion of how probabilities of possible worlds are defined in

P-log. Now let us return to the circuit example. Let program π1 be the union of π0

with the single observation

obs(¬holds(turning, 1))

The observation contradicts our previous conclusion holds(turning, 1) reached by

using the effect axiom for toggle, the definitions of faulty and turning, and the

6For the sake of well definiteness, we consider only programs in which at most one v satisfies

this definition.

350

Reasoning in P-log

inertia axiom for tripped and burned. The program τ(π1) will resolve this contra-

diction by using the CR-rule occurs(break, 0)
+
← to conclude that the action break

occurred at Step 0. Now type of break randomly takes one of its possible values.

Accordingly, τ(π1) has three answer sets: W1, W2, and W3. All of them contain

occurs(break, 0), holds(faulty, 1), ¬holds(turning, 1). One, say W1 will contain

type of break(1, trip), holds(tripped, 1), ¬holds(burned, 1)

W2 and W3 will respectively contain

type of break(1, burn), ¬holds(tripped, 1), holds(burned, 1)

and

type of break(1, both), holds(tripped, 1), holds(burned, 1)

In accordance with our general definition, π1 will have three possible worlds, W1,

W2, and W3. The probabilities of each of these three possible worlds can be com-

puted as 1/3, using the indifference principle.

Now let us add some quantitative probabilities to our program. If π2 is the union

of π1 with the following three pr-atoms

pr(type of break(T) = trip |c break(T)) = 0.9

pr(type of break(T) = burned |c break(T)) = 0.09

pr(type of break(T) = both |c break(T)) = 0.01

then program π2 has the same possible worlds as Π1. Not surprisingly, Pπ2
(W1) =

0.9. Similarly Pπ2
(W2) = 0.09 and Pπ2

(W3) = 0.01. This demonstrates how a P-log

program may be written in stages, with quantitative probabilities added as they are

needed or become available.

Typically we are interested not just in the probabilities of individual possible worlds,

but in the probabilities of certain interesting sets of possible worlds described, e.g.,

those described by formulae. For current purposes a rather simple definition suffices.

Viz., recalling that possible worlds are sets of literals, for an arbitrary set C of literals

we define

Pπ(C) =def Pπ({W : C ⊆W}).

For example, Pπ1
(holds(turning, 1)) = 0, Pπ1

(holds(tripped, 1)) = 1/3,

and Pπ2
(holds(tripped, 1)) = 0.91.

Our example is in some respects rather simple. For instance, every possible world

of our program contains at most one atom of the form a(t) = y where a(t) is a

random attribute. We hope, however, that this example gives a reader some insight

in the syntax and semantics of P-log. It is worth noticing that the example shows

the ability of P-log to mix logical and probabilistic reasoning, including reasoning

about causal effects of actions and explanations of observations. In addition it

351

Michael Gelfond and Nelson Rushton

demonstrates the non-monotonic character of P-log, i.e. its ability to react to new

knowledge by changing probabilistic models of the domain and creating new possible

worlds.

The ability to introduce new possible worlds as a result of conditioning is of

interest from two standpoints. First, it reflects the common sense semantics of

utterances such as “the motor might be burned out.” Such a sentence does not

eliminate existing possible beliefs, and so there is no classical (i.e., monotonic)

semantics in which the statement would be informative. If it is informative, as

common sense suggests, then its content seems to introduce new possibilities into

the listener’s thought process.

Second, nonmonotonicity can improve performance. Possible worlds tend to pro-

liferate exponentially with the size of a program, quickly making computations in-

tractable. The ability to consider only those random selections which may explain

our abnormal observations may make computations tractable for larger programs.

Even though our current solver is in its early stages of development, it is based on

well researched answer set solvers which efficiently eliminate impossible worlds from

consideration based on logical reasoning. Thus even our early prototype has shown

promising performance on problems where logic may be used to exclude possible

worlds from consideration in the computation of probabilities [Gelfond, Rushton,

and Zhu 2006].

4 Spider Example

In this section, we consider a variant of Simpson’s paradox, to illustrate the for-

malization of interventions in P-log. The story we would like to formalize is as

follows:

In Stan’s home town there are two kinds of poisonous spider, the creeper and the

spinner. Bites from the two are equally common in Stan’s area — though spinner

bites are more common on a worldwide basis. An experimental anti-venom has

been developed to treat bites from either kind of spider, but its effectiveness is

questionable.

One morning Stan wakes to find he has a bite on his ankle, and drives to the

emergency room. A doctor examines the bite, and concludes it is a bite from either

a creeper or a spinner. In deciding whether to administer the anti-venom, the

doctor examines the data he has on bites from the two kinds of spiders: out of 416

people bitten by the creeper worldwide, 312 received the anti-venom and 104 did

not. Among those who received the anti-venom, 187 survived; while 73 survived

who did not receive anti-venom. The spinner is more deadly and tends to inhabit

areas where the treatment is less available. Of 924 people bitten by the spinner,

168 received the anti-venom, 34 of whom survived. Of the 756 spinner bite victims

who did not receive the experimental treatment, only 227 survived.

For a random individual bitten by a creeper or spinner, let s, a, and c denote the

352

Reasoning in P-log

events of survival, administering anti-venom, and creeper bite. Based on the fact

that the two sorts of bites are equally common in Stan’s region, the doctor assigns a

0.5 probability to either kind of bite. He also computes a probability of survival, with

and without treatment, from each kind of bite, based on the sampling distribution

of the available data. He similarly computes the probabilities that victims of each

kind of bite received the anti-venom. We may now imagine the doctor uses Bayes’

Theorem to compute P (s | a) = 0.522 and P (s | ¬a) = 0.394.

Thus we see that if we choose a historical victim, in such a way that he has a

50/50 chance of either kind of bite, those who received anti-venom would have a

substantially higher chance of survival. Stan is in the situation of having a 50/50

chance of either sort of bite; however, he is not a historical victim. Since we are

intervening in the decision of whether he receives anti-venom, the computation

above is not germane (as readers of [Pearl 2000] already know) — though we can

easily imagine the doctor making such a mistake. A correct solution is as follows.

Formalizing the relevant parts of the story in a P-log program Π gives

survive, antivenom : boolean.

spider : {creeper, spinner}.

random(spider).

random(survive).

random(antivenom).

pr(spider = creeper) = 0.5.

pr(survive |c spider = creeper, antivenom) = 0.6.

pr(survive |c spider = creeper,¬antivenom) = 0.7.

pr(survive |c spider = spinner, antivenom) = 0.2.

pr(survive |c spider = spinner,¬antivenom) = 0.3.

and so, according to our semantics,

PΠ∪{do(antivenom}(survive) = 0.4

PΠ∪{do(¬antivenom}(survive) = 0.5

Thus, the correct decision, assuming we want to intervene to maximize Stan’s chance

of survival, is to not administer antivenom.

In order to reach this conclusion by classical probability, we would need to consider

separate probability measures P1 and P2, on the sets of patients who received or did

not receive antivenom, respectively. If this is done correctly, we obtain P1(s) = 0.4

and P2(s) = 0.5, as in the P-log program.

Thus we can get a correct classical solution using separate probability measures.

Note however, that we could also get an incorrect classical solution using separate

measures, since there exist probability measures P̂1 and P̂2 on the sets of histor-

ical bite victims which capture classical conditional probabilities given a and ¬a

respectively. We may define

353

Michael Gelfond and Nelson Rushton

P̂1(E) =def
P (E∩a)
0.3582

P̂2(E) =def
P (E∩¬a)

0.6418

It is well known that each of these is a probability measure. They are seldom seen

only because classical conditional probability gives us simple notations for them in

terms of a single measure capturing common background knowledge. This allows us

to refer to probabilities conditioned on observations without defining a new measure

for each such observation. What we do not have, classically, is a similar mechanism

for probabilities conditioned on intervention — which is sometimes of interest as

the example shows. The ability to condition on interventions in this way has been a

fundamental contribution of Pearl; and the inclusion in P-log of such conditioning-

on-intervention is a direct result of the authors’ reading of his book.

5 Infinite Programs

The definitions given so far for P-log apply only to programs with finite numbers

of random selection rules. In this section we state a theorem which allows us to

extend these semantics to programs which may contain infinitely many random

selection rules. No changes are required from the syntax given in [Baral, Gelfond,

and Rushton 2009], and the probability measure described here agrees with the one

in [Baral, Gelfond, and Rushton 2009] whenever the former is defined.

We begin by defining the class of programs for which the new semantics are

applicable. The reader is referred to [Baral, Gelfond, and Rushton 2009] for the

definitions of causally ordered, unitary, and strict probabilistic levelling.

DEFINITION 6. [Admissible Program]

A P-log program is admissible if it is causally ordered and unitary, and if there

exists a strict probabilistic levelling || on Π such that no ground literal occurs in

the heads of rules in infinitely many Πi with respect to ||.

The condition of admissibility, and the definitions it relies on, are all rather

involved to state precisely, but the intuition is as follows. Basically, a program is

unitary if the probabilities assigned to the possible outcomes of each selection rule

are either all assigned and sum to 1, or are not all assigned and their sum does not

exceed 1. The program is causally ordered if its causal dependencies are acyclic

and if the only nondeterminism in it is a result of random selection rules. A strict

probabilistic levelling is a well ordering of the selection rules of a program which

witnesses the fact that it is causally ordered. Finally, a program which meets these

conditions is admissible if every ground literal in the program logically depends on

only finitely many random experiments. For example, the following program is not

unitary:

354

Reasoning in P-log

random(a) : boolean.

pr(a) = 1/2.

pr(¬a) = 2/3.

The following program is not causally ordered:

random(a) : boolean.

random(b) : boolean.

prr(a|c b) = 1/3.

prr(a|c ¬b) = 2/3.

prr(b|c a) = 1/5.

and neither is the following:

p ← not q.

q ← not p.

since it has two answer sets which arise from circularity of defaults, rather than

random selections. The following program is both unitary and causally ordered, but

not admissible, because atLeastOneTail depends on infinitely many coin tosses.

coin toss : positive integer → {head, tail}.

atLeastOneTail : boolean.

random(coin toss(N)).

atLeastOneTail← coin toss(N) = tail.

We need one more definition before stating the main theorem:

DEFINITION 7. [Cylinder algebra of Π]

Let Π be a countably infinite P-log program with random attributes ai(t), i > 0,

and let C be the collection of sets of the form {ω : ai(t) = y ∈ ω} for arbitrary t,

i, and y. The sigma algebra generated by C will be called the cylinder algebra of

program Π.

Intuitively, the cylinder algebra of a program Π is the collection of sets which

can be formed by performing countably many set operations (union, intersection,

and complement) upon sets whose probabilities are defined by finite subprograms.

We are now ready to state the main proposition of this section.

PROPOSITION 8. [Admissible programs]

Let Π be an admissible P-log program with at most countably infinitely many ground

rules, and let A be the cylinder algebra of Π. Then there exists a unique probability

measure PΠ defined on A such that whenever [r] random(a(t))← B1 and prr(a(t) =

y | B2) = v occur in Π, and PΠ(B1 ∧B2) > 0, we have PΠ(a(t) = y | B1 ∧B2) = v.

Recall that the semantic value of a P-log program Π consists of (1) a set of possible

worlds of Π and (2) a probability measure on those possible worlds. The proposition

now puts us in position to give semantics for programs with infinitely many random

355

Michael Gelfond and Nelson Rushton

selection rules. The possible worlds of the program are the answer sets of the

associated (infinite) CR-Prolog program, as determined by the usual definition —

while the probability measure is PΠ, as defined in Proposition 8.

We next give an example which exercises the proposition, in a form of a novel

paradox. Imagine a casino which offers an infinite sequence of games, of which our

agent may decide to play as many or as few as he wishes. For the nth game, a fair

coin is tossed n times. If the agent chooses to play the nth game, then the agent

wins 2n+1 + 1 dollars if all tosses made in the nth game are heads and otherwise

loses one dollar.

We can formalize this game as an infinite P-log program Π. First, we declare

a countable sequence of games and an integer valued variable, representing the

player’s net winnings after each game.

game : positive integer.

winnings : game→ integer.

play : game→ boolean.

coin : {〈M,N〉 | 1 ≤M ≤ N} → {head, tail}.

Note that the declaration for coin is not written in the current syntax of P-log; but

to save space we use set-builder notation here as a shorthand for the more lengthy

formal declaration. Similarly, the notation 〈M,N〉 is also a shorthand. From this

point on we will write coin(M,N) instead of coin(〈M,N〉).

Π also contains a declaration to say that the throws are random and the coin is

known to be fair:

random(coin(M,N)).

pr(coin(M,N) = head) = 1/2.

The conditions of winning the N th game are described as follows:

lose(N)← play(N), coin(N,M) = tail.

win(N)← play(N), not lose(N).

The amount the agent wins or loses on each game is given by

winnings(0) = 0.

winnings(N + 1) = winnings(N) + 1 + 2N+1 ← win(N).

winnings(N + 1) = winnings(N)− 1 ← lose(N).

winnings(N + 1) = winnings(N) ← ¬play(N).

Finally the program contains rules which describe the agent’s strategy in choosing

which games to play. Note that the agent’s expected winnings in the N th game are

given by (1/2N)(1+2N+1)− (1−1/2N) = 1, so each game has positive expectation

for the player. Thus a reasonable strategy might be to play every game, represented

as

356

Reasoning in P-log

play(N).

This completes program Π. It can be shown to be admissible, and hence there is

a unique probability measure PΠ satisfying the conclusion of Proposition 1. Thus,

for example, PΠ(coin(3, 2) = head) = 1/2, and PΠ(win(10)) = 1/210. Each of

these probabilities can be computed from finite sub-programs. As more interesting

example, let S be the set of possible worlds in which the agent wins infinitely many

games. The probability of this event cannot be computed from any finite sub-

program of Π. However, S is a countable intersection of countable unions of sets

whose probabilities are defined by finite subprograms. In particular,

S =
∞
⋂

N=1

∞
⋃

J=N

{W | win(J) ∈W}

and therefore, S is in the cylinder algebra of Π and so its probability is given by

the measure defined in Proposition 1.

So where is the Paradox? To see this, let us compute the probability of S. Since

PΠ is a probability measure, it is monotonic in the sense that no set has greater

probability than any of its subsets. PΠ must also be countably subadditive, meaning

that the probability of a countable union of sets cannot exceed the sum of their

probabilities. Thus, from the above we get for every N ,

PΠ(S) < PΠ(
∞
⋃

J=N

{W | win(J) ∈W}

≤
∞
∑

J=N

PΠ({W | win(J) ∈W})

=

∞
∑

J=N

1/2J

= 1/2N

Now since right hand side can be made arbitrarily small by choosing a sufficiently

large N , it follows that PΠ(S) = 0. Consequently, with probability 1, our agent

will lose all but finitely many of the games he plays. Since he loses one dollar per

play indefinitely after his final win, his winnings converge to −∞ with probability

1, even though each of his wagers has positive expectation!

Acknowledgement

The first author was partially supported in this research by iARPA.

References

Balduccini, M. (2007). CR-MODELS: An inference engine for CR-Prolog. In

C. Baral, G. Brewka, and J. Schlipf (Eds.), Proceedings of the 9th Inter-

357

Michael Gelfond and Nelson Rushton

national Conference on Logic Programming and Non-Monotonic Reasoning

(LPNMR’07), Volume 3662 of Lecture Notes in Artificial Intelligence, pp.

18–30. Springer.

Balduccini, M. and M. Gelfond (2003, Mar). Logic Programs with Consistency-

Restoring Rules. In P. Doherty, J. McCarthy, and M.-A. Williams (Eds.),

International Symposium on Logical Formalization of Commonsense Reason-

ing, AAAI 2003 Spring Symposium Series, pp. 9–18.

Baral, C. (2003). Knowledge representation, reasoning and declarative problem

solving with answer sets. Cambridge University Press.

Baral, C., M. Gelfond, and N. Rushton (2004, Jan). Probabilistic Reasoning with

Answer Sets. In Proceedings of LPNMR-7.

Baral, C., M. Gelfond, and N. Rushton (2009). Probabilistic reasoning with an-

swer sets. Journal of Theory and Practice of Logic Programming (TPLP) 9 (1),

57–144.

Baral, C. and M. Hunsaker (2007). Using the probabilistic logic programming

language p-log for causal and counterfactual reasoning and non-naive condi-

tioning. In Proceedings of IJCAI-2007, pp. 243–249.

Gelfond, M. and V. Lifschitz (1988). The stable model semantics for logic pro-

gramming. In Proceedings of ICLP-88, pp. 1070–1080.

Gelfond, M. and V. Lifschitz (1991). Classical negation in logic programs and

disjunctive databases. New Generation Computing 9 (3/4), 365–386.

Gelfond, M., N. Rushton, and W. Zhu (2006). Combining logical and probabilistic

reasoning. AAAI 2006 Spring Symposium Series, pp. 50–55.

Hayes, P. J. and J. McCarthy (1969). Some Philosophical Problems from the

Standpoint of Artificial Intelligence. In B. Meltzer and D. Michie (Eds.), Ma-

chine Intelligence 4, pp. 463–502. Edinburgh University Press.

McCarthy, J. (1999). Elaboration tolerance. In progress.

Pearl, J. (1988). Probabistic reasoning in intelligent systems: networks of plaus-

able inference. Morgan Kaufmann.

Pearl, J. (2000). Causality. Cambridge University Press.

Pereira, L. M. and C. Ramli (2009). Modelling decision making with probabilistic

causation. Intelligent Decision Technologies (IDT). to appear.

Reiter, R. (1978). On Closed World Data Bases, pp. 119–140. Logic and Data

Bases. Plenum Press.

358

21

On Computers Diagnosing Computers

Moises Goldszmidt

1 Introduction

I came to UCLA in the fall of 1987 and immediately enrolled in the course titled

“Probabilistic Reasoning in Intelligent Systems” where we, as a class, went over the

draft of Judea’s book of the same title [Pearl 1988]. The class meetings were fun

and intense. Everybody came prepared, having read the draft of the appropriate

chapter and having struggled through the list of homework exercises that were due

that day. There was a high degree of discussion and participation, and I was very

impressed by Judea’s attentiveness and interest in our suggestions. He was fully

engaged in these discussions and was ready to incorporate our comments and change

the text accordingly. The following year, I was a teaching assistant (TA) for that

class. The tasks involved with being a TA gave me a chance to rethink and really

digest the contents of the course. It dawned on me then what a terrific insight

Judea had to focus on formalizing the notion of conditional independence: All the

“juice” he got in terms of making “reasoning under uncertainty” computationally

effective came from that formalization. Shortly thereafter, I had a chance to chat

with Judea about these and related thoughts. I was in need of formalizing a notion

of “relevance” for my own research and thought that I could adapt some ideas from

the graphoid models [Pearl 1988]. In that opportunity Judea shared another of his

great insights with me. After hearing me out, Judea said one word: “causality”.

I don’t remember the exact words he used to elaborate, but the gist of what he

said to me was: “we as humans perform extraordinarily complex reasoning tasks,

being able to select the relevant variables, circumscribe the appropriate context,

and reduce the number of factors that we should manipulate. I believe that our

intuitive notions of causality enable us to do so. Causality is the holly grail [for

Artificial Intelligence]”.

In this short note, I would like to pay tribute to Judea’s scientific work by specu-

lating on the very realistic possibility of computers using his formalization of causal-

ity for automatically performing a nontrivial reasoning task commonly reserved for

humans. Namely designing, generating, and executing experiments in order to con-

duct a proper diagnosis and identify the causes of performance problems on code

being executed in large clusters of computers. What follows in the next two sections

is not a philosophical exposition on the meaning of “causality” or on the reasoning

powers of automatons. It is rather a brief description of the current state of the art

359

Kaoru
Text Box
Return to TOC

Moises Goldszmidt

in programming large clusters of computers and then, a brief account argumenting

that the conditions are ripe for embarking on this research path.

2 Programming large clusters of computers made easy

There has been a recent research surge in systems directed at providing program-

mers with the ability to write efficient parallel and distributed applications [Hadoop

2008; Dean and Ghemawat 2004; Isard et al. 2007]. Programs written in these envi-

ronments are automatically parallelized and executed on large clusters of commodity

machines. The tasks of enabling programmers to effectively write and deploy par-

allel and distributed application has of course been a long-standing problem. Yet,

the relatively recent emergence of large-scale internet services, which depend on

clusters of hundreds of thousands of general purpose servers, have given the area

a forceful push. Indeed, this is not merely an academic exercise; code written in

these environments has been deployed and is very much in everyday use at com-

panies such as Google, Microsoft, and Yahoo (and many others). These programs

process web pages in order to feed the appropriate data to the search and news

summarization engines; render maps for route planning services; and update usage

and other statistics from these services. Year old figures estimate that Dryad, the

specific such environment created at Microsoft [Isard et al. 2007], is used to crunch

on the order of a petabyte a day at Microsoft. In addition, in our lab at Microsoft

Research, a cluster of 256 machines controlled by Dryad runs daily at a 100% uti-

lization. This cluster mostly runs tests and experiments on research algorithms in

machine learning, privacy, and security that process very large amounts of data.

The intended model in Dryad is for the programmer to build code as if she were

programming one computer. The system then takes care of a) distributing the code

to the actual cluster and b) managing the execution of the code in the cluster. All

aspects of execution, including data partition, communications, and fault tolerance,

are the responsibility of Dryad.

With these new capabilities comes the need for new tools for debugging code,

profiling execution performance, and diagnosing system faults. By the mere fact

that clusters of large numbers of computers are being employed, rare bugs will

manifest themselves more often, and devices will fail in more runs (due to both

software and hardware problems). In addition, as the code will be executed in a

networked environment and the data will be partitioned (usually according to some

hash function), communication bandwidth, data location, contention for shared

disks, and data skewness will impact the performance of the programs. Most of

the times the impact of these factors will be hard to reproduce in a single machine,

making it an imperative that the diagnosis, profiling, and debugging be performed

in the same environment and conditions as those in which the code is running.

360

On Computers Diagnosing Computers

3 Computers diagnosing computers

The good news is that the same infrastructure that enables the programming and

control of these clusters can be used for debugging and diagnosis. Normally the

computation proceeds in stages where the different nodes in the cluster perform

the same computation in parallel on different portions of the data. For purposes

of fault tolerance, there are mechanisms in Dryad to monitor the execution time

of each node at any computation stage. It is therefore possible to gather robust

statistics about the expected execution time of any particular node at a given stage

and identify especially slow nodes. Currently, this information is used to restart

those nodes or to migrate the computation to other nodes.

We can take this further and collect the copious amount of data that is generated

by the various built-in monitors looking at things such as cpu utilization, memory

utilization, garbage collection, disk utilization, and statistics on I/O.1 The statis-

tical analysis of these signals may provide clues pointing at the probable causes

of poor performance and even of failures. Indeed we have built a system called

Artemis [Creţu-Ciocârlie et al. 2008], that takes advantage of the Dryad infras-

tructure to collect and preprocess the data from these signals in a distributed and

opportunistic fashion. Once the data is gathered, Artemis will run a set of statis-

tical and machine learning algorithms ranging from summarizations to regression

and pattern classification. In this paper we propose one more step. We can imagine

a system that guided with the information from these analyses, performs active ex-

periments on the execution of the code. The objective will be to causally diagnose

problems, and properly profile dependencies between the various factors affecting

the performance of the computations.

Let us ground this idea in a realistic example. Suppose that through the analy-

sis of the execution logs of some large task we identify that, on a computationally

intensive stage, a small number of machines performed significantly worse that the

average/median (in terms of overall processing speed). Through further analysis,

for example logistic regression with L1 regularization, we are able to identify the

factors that differentiate the slower machines. Thus, we narrow down the possi-

bilities and determine that the main difference between these machines and the

machines that performed well is the speed at which the data is read by the slower

machines.2 Further factors influencing this speed are whether the data resides on

a local disk and whether there are other computational nodes that share that disk

(and introduce contention), and on the speed of the network. Figure 1 shows a

(simplified) causal model of this scenario depicting two processing nodes. The dark

nodes represent factors/variables that can be controlled or where intervention is

possible. Conducting controlled experiments guided by this graph would enable the

1The number of counters and other signals that these monitors yield can easily reach on the

order of hundreds per machine.
2This particular case was encountered by the author while running a benchmark based on

Terasort on a cluster with hundreds of machines [Creţu-Ciocârlie et al. 2008].

361

362

On Computers Diagnosing Computers

trolling the “variables” of interest and setting up experiments in these clusters.

Systems such as Artemis [Creţu-Ciocârlie et al. 2008] enable efficient collection and

processing of extensive monitoring data, including the recording of the system state

for recreating particular troublesome scenarios. The final ingredient for having ma-

chines automatically set up and conduct experiments is a language to describe these

experiments and an algebra to reason about them in order to guarantee that the

right variables are being controlled, and that we are intervening in the right spots

in order to get to the correct conclusions. Through his seminal work in [Pearl 2000]

and follow up papers, Judea Pearl has already given us that ingredient.

Acknowledgments: The author wishes to thank Mihai Budiu for numerous tech-

nical discussions on the topics of this paper, Joe Halpern for his help with the

presentation, and very especially Judea Pearl for his continuous inspiration in the

relentless and honest search for scientific truth.

References

Blake, R. and J. Breese (1995). Automatic bottleneck detection. In UAI’95: Pro-

ceedings of the Conference on Uncertainty in Artificial Intelligence.

Breese, J. and D. Heckerman (1996). Decision theoretic troubleshooting. In

UAI’96: Proceedings of the Conference on Uncertainty in Artificial Intelli-

gence.

Cohen, I., M. Goldszmidt, T. Kelly, J. Symons, and J. Chase (2004). Correlating

instrumentation data to systems states: A building block for automated diag-

nosis and control. In OSDI’04: Proceedings of the 6th conference on Sympo-

sium on Opearting Systems Design & Implementation. USENIX Association.

Creţu-Ciocârlie, G. F., M. Budiu, and M. Goldszmidt (2008). Hunting for prob-

lems with Artemis. In USENIX Workshop on the Analysis of System Logs

(WASL).

Dean, J. and S. Ghemawat (2004). Mapreduce: simplified data processing on

large clusters. In OSDI’04: Proceedings of the 6th conference on Symposium

on Opearting Systems Design & Implementation. USENIX Association.

Hadoop (2008). The hadoop project. http://hadoop.apache.org.

Isard, M., M. Budiu, Y. Yu, A. Birrell, and D. Fetterly (2007). Dryad: dis-

tributed data-parallel programs from sequential building blocks. In EuroSys

’07: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on

Computer Systems 2007. ACM.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge

Univ. Press.

363

22

Overthrowing the Tyranny of Null Hypotheses

Hidden in Causal Diagrams

SANDER GREENLAND

1 Introduction

Graphical models have a long history before and outside of causal modeling.

Mathematical graph theory extends back to the 1700s and was used for circuit analysis in

the 19
th

 century. Its application in probability and computer science dates back at least to

the 1960s (Biggs et al., 1986), and by the 1980s graphical models had become fully

developed tools for these fields (e.g., Pearl, 1988; Hajek et al., 1992; Lauritzen, 1996).

As Bayesian networks, graphical models are carriers of direct conditional independence

judgments, and thus represent a collection of assumptions that confine prior support to a

lower dimensional manifold of the space of prior distributions over the nodes. Such

dimensionality reduction was recognized as essential in formulating explicit and

computable algorithms for digital-machine inference, an essential task of artificial-

intelligence (AI) research. By the 1990s, these models had been merged with causal path

diagrams long used in observational health and social science (OHSS) (Wright, 1934;

Duncan, 1975), resulting in a formal theory of causal diagrams (Spirtes et al., 1993;

Pearl, 1995, 2000).

It should be no surprise that some of the most valuable and profound contributions to

these developments were from Judea Pearl, a renowned AI theorist. He motivated causal

diagrams as causal Bayesian networks (Pearl, 2000), in which the basis for the

dimensionality reduction is grounded in judgments of causal independence (and

especially, autonomy) rather than mere probabilistic independence. Beyond his extensive

technical and philosophical contributions, Pearl fought steadfastly to roll back prejudice

against causal modeling and causal graphs in statistics. Today, only a few statisticians

still regard causality as a metaphysical notion to be banned from formal modeling (Lad,

1999). While a larger minority still reject some aspects of causal-diagram or potential-

outcome theory (e.g., Dawid, 2000, 2008; Shafer, 2002), the spreading wake of

applications display the practical value of these theories, and formal causal diagrams

have advanced into applied journals and books (e.g., Greenland et al., 1999; Cole and

Hernán, 2002; Hernán et al., 2002; Jewell, 2004; Morgan and Winship, 2007; Glymour

and Greenland, 2008) – although their rapid acceptance in OHSS may well have been

facilitated by the longstanding informal use of path diagrams to represent qualities of

causal systems (e.g., Susser, 1973; Duncan, 1975).

Graphs are unsurpassed tools for illustrating certain mathematical results that hold in

functional systems (whether stochastic or not, or causal or not). Nonetheless, it is

essential to recognize that many if not most causal judgments in OHSS are based on

365

Kaoru
Text Box
Return to TOC

Overthrowing the Tyranny of Null Hypotheses!

observational (purely associational) data, with little or nothing in the way of manipulative

(or “surgical”) experiment to test these judgments. Time order is usually known, which

insures that the chosen arrow directions are correct; but rarely is there a sound basis for

deleting an arrow, leaving autonomy in question. When all empirical constraints encoded

by the causal network come from passive frequency observations rather than

experiments, the primacy of causal independence judgments has to be questioned. In

these situations (which characterize observational research), we should not neglect

associational models (including graphs) that encode frequency-based judgments, for these

models may be all that are identified by available data. Indeed, a deep philosophical

commitment to statistically identified quantities seems to drive the arguments of certain

critics of potential outcomes and causal diagrams (Dawid, 2000, 2008). Even if we reject

this philosophy, however, we should retain the distinction between levels of identification

provided by our data, for even experimental data will not identify everything we would

like to know.

I will argue that, in some ways, the distinction of nonidentification from identification

is as fundamental to modeling and statistical inference about causal effects as is the

distinction of causation from association (Gustafson, 2005; Greenland, 2005a, 2009a,

2009b). Indeed, I believe that some of the controversy and confusion over causation

versus association stems from the inability of statistical observations to point identify

(consistently estimate) many of the causal parameters that astute scientists legitimately

ask about. Furthermore, if we consider strategies that force identification from available

data (such as node or arrow deletions from graphical models) we will find that

identification may arise only by declaring some types of joint frequencies as justifying

the corresponding conditional independence assumptions. This leads directly into the

complex topic of pruning algorithms, including the choice of target or loss function.

I will outline these problems in their most basic forms, for I think that in the rush to

adopt causal diagrams some realism has been lost by neglecting problems of

nonidentification and pruning. My exposition will take the form of a series of vignettes

that illustrate some basic points of concern. I will not address equally important concerns

that many of the nodes offered as “treatments” may be ill-defined or nonmanipulable, or

may correspond poorly to the treatments they ostensibly represent (Greenland, 2005b;

Hernán, 2005; Cole and Frangakis, 2009; VanderWeele, 2009).

2 Nonidentification from Unfaithfulness in a Randomized Trial

Nonidentification can be seen and has caused controversy in the simplest causal-

inference settings. Consider an experiment that randomizes a node R. Inferences on

causal effects of R from subsequent associations of R with later events would then be

justified, since R would be an exogenous node. R would also be an instrumental variable

for certain descendants under further conditional-independence assumptions.

A key problem is how one could justify removing arrows along the line of descent

from R to another node Y, even if R is exogenous. The overwhelmingly dominant

approach licenses such removal if the observed R-Y association fails to meet some

criterion for departure from pure randomness. This schematic for a causal-graph pruning

366

Overthrowing the Tyranny of Null Hypotheses!

algorithm was employed by Spirtes et al. (1993), unfortunately with a very naïve

Neyman-Pearsonian criterion (basically, allowing removal of arrows when a P-value

exceeds an α level). These and related graphical algorithms (Pearl and Verma, 1991)

produce what appear to be results in conflict with practical intuitions, namely causal

“discovery” algorithms for single observational data sets, with no need for experimental

evidence. These algorithms have been criticized philosophically on grounds related to the

identification problem (Freedman and Humphreys, 1999; Robins and Wasserman,

1999ab), and there are also objections based on statistical theory (Robins et al., 2003).

One controversial assumption in these algorithms is faithfulness (or stability) that all

connected nodes are associated. Although arguments have been put forward in its favor

(e.g., Spirtes et al., 1993; Pearl, 2000, p. 63), this assumption coheres poorly with prior

beliefs of some experienced researchers. Without faithfulness, two nodes may be

independent even if there is an arrow linking them directly, if that arrow represents the

presence of causal effects among units in a target population. A classic example of such

unfaithfulness appeared in the debates between Fisher and Neyman in the 1930s, in

which they disagreed on how to formulate the causal null hypothesis (Senn, 2004). The

framework of their debate would be recognized today as the potential-outcome or

counterfactual model, although in that era the model (when named) was called the

randomization model. This model illustrates the benefit of randomization as a means of

detecting a signal by injecting white noise into a system to drown out uncontrolled

influences.

To describe the model, suppose we are to study the effect of a treatment X on an

outcome Yobs observable on units in a specific target population. Suppose further we can

fully randomize X, so X will equal the randomized node R. In the potential-outcome

formulation, the outcome becomes a vector Y indexed by X. Specifically, X determines

which component Yx of Y is observable conditional on X=x: Yobs = Yx given X=x. To say

X can causally affect a unit makes no reference to observation, however; it merely means

that some components of Y are unequal. With a binary treatment and outcome, there are

four types of units in the target population about a binary treatment X which indexes a

binary potential-outcome vector Y (Copas, 1973):

1) Noncausal units with outcomes Y=(1,1) under X=1,0 (“doomed’ to Yobs=1);

2) Causal units with outcomes Y=(1,0) under X=1,0 (X=1 causes Yobs=1);

3) Causal units with outcomes Y=(0,1) under X=1,0 (X=1 prevents Yobs=1); and

4) Noncausal units with outcomes Y=(0,0) under X=1,0 (“immune” to Yobs=1).

Suppose the proportion of type i in the trial population is pi. There are now two null

hypotheses:

Hs: There are no causal units: p2=p3=0 (sharp or strong null),

Hw: There is no net effect of treatment on the distribution of Yobs: p2=p3 (weak null).

Under the randomization distribution we have

E(Yobs|X=1) = Pr(Yobs=1|do[X=1]) = Pr(Y1=1) = p1+p2 and

E(Yobs|X=0) = Pr(Yobs=1|do[X=0]) = Pr(Y0=1) = p1+p3;

hence Hw: p2=p3 is equivalent to the hypothesis that the expected outcome is the same for

both treatment groups, and that the proportions with Yobs=1 under the extreme population

367

Overthrowing the Tyranny of Null Hypotheses!

intervention do[X=1] to every unit and do[X=0] to every unit are equal. Note however

that only Hs entails that the proportion with Yobs=1 would be the same under every

possible allocation of treatment X among the units; this property implies that the Y

margin is fixed under Hs, and thus provides a direct causal rationale for Fisher’s exact test

of Hs (Greenland, 1991).

Hs also entails Hw (or, in terms of parameter subspaces, Hs Hw). The converse is

false; but, under any of the “optimal” statistical tests that can be formulated from data on

X and Yobs only, power is identical to the test size on all alternatives to the sharp null with

p2=p3, i.e., Hs is not identifiable within Hw, so within Hw the power of any valid test of Hs

will not exceed its nominal alpha level. Thus, following Neyman, it is only relevant to

think in terms of Hw, because Hw could be rejected whenever Hs could be rejected.

Furthermore, some later authors would disallow Hw – Hs: p2 = p3 ≠ 0 because it violates

faithfulness (Spirtes et al., 2001) or because it represents an extreme treatment-by-unit

interaction with no main effect (Senn, 2004).

There is also a Bayesian argument for focusing exclusively on Hw. Hw is of Lebesgue

measure zero, so under the randomization model, distinctions within Hw can be ignored

by inferences based on an absolutely continuous prior on p = (p1,p2,p3) (Spirtes et al.,

1993). More generally, any distinction that remains a posteriori can be traced to the prior.

A more radical stance would dismiss both Hs and the model defined by 1-4 above as

“metaphysical,” because it invokes constraints on the joint distribution of the components

Y1 and Y0, and that joint distribution is not identified by randomization of X if only X

and Yobs are observed (Dawid, 2000).

On the other hand, following Fisher one can argue that the null of key scientific and

practical interest is Hs, and that Hw − Hs: p2 = p3 ≠ 0 is a scientifically important and

distinct hypothesis. For instance, p2>0, p3>0 entails the existence of units who should be

treated quite differently, and provides an imperative to seek covariates that discriminate

between the two causal types, even if p2=p3. Furthermore, rejection of the stronger Hs is a

weaker inference than rejection of the weaker Hw, and thus rejecting only Hs would be a

conservative interpretation of a “significant” test statistic. Thus, focusing on Hs is

compatible with a strictly falsificationist view of testing in which acceptance of the null is

disallowed. Finally, there are real examples in which X=1 causes Y=1 in some units and

causes Y=0 in others; in some of these cases there may be near-perfect balance of

causation and prevention, as predicted by certain physical explanations for the

observations (e.g., as in Neutra et al., 1980).

To summarize, identification problems arose in the earliest days of formal causal

modeling, even when considering only the simplest of trials. Those problems pivoted not

on whether one should attempt formal modeling of causation as distinct from association,

but rather on what could be identified by standard experimental designs. In the face of

limited (and limiting) design strategies, these problems initiated a long history of

attempts to banish identification problems based on idealized inference systems and

absolute philosophical assertions. But a counter-tradition of arguments, both practical and

philosophical, has regarded identification problems as carriers of valuable scientific

information: They are signs of study limitations which need to be recognized and can

368

369

370

Overthrowing the Tyranny of Null Hypotheses!

p(u,c,x,y,c*,x*,y*,s) =

p(u)p(c|u)p(x|u,c)p(y|u,c,x)p(c*|u,c,x,y)p(x*|u,c,x,y)p(y*|u,c,x,y)p(s|u,c,x,y,c*,x*,y*),

which involves both S=0 events (not selected) and S=1 events (selected), i.e., the

lowercase “s” is used when S can be either 0 or 1.

The marginal (total-population) potential-outcome distribution for Y after intervention

on X, p(yx), equals p(y|do[X=x]), which under fig. 2 equals the standardized (mixing)

distribution of Y given X standardized to (weighted by or mixed over) p(c,u) =

p(c|u)p(u):

p(yx) = p(y|do[x]) = Σu,c p(y|u,c,x)p(c|u)p(u).

This estimand involves only three factors in the decomposition, but none of them are

identified if U is unobserved and no further assumptions are made. Analysis of the causal

estimand p(yx) must somehow relate it to the observed distribution p(c*,x*,y*|S=1) using

known or estimable quantities, or else remain purely speculative (i.e., a sensitivity

analysis).

It is a long, hard road from p(c*,x*,y*|S=1) to p(yx), much longer than the current

“causal inference” literature often makes it look. To appreciate the distance, rewrite the

summand of the standardization formula for p(yx) as an inverse-probability-weighted

(IPW) term derived from an observation (c*,x*,y*|S=1): From fig. 2,

p(y|u,c,x)p(c|u)p(u) =

p(c*,x*,y*|S=1)p(S=1)p(u,c,x,y|c*,x*,y*,S=1)/

 p(x|u,c)p(c*|u,c,x,y)p(x*|u,c,x,y)p(y*|u,c,x,y)p(S=1|u,c,x,y,c*,x*,y*).

The latter expression includes

1) the exposure dependence on its parents, p(x|u,c);

2) the measurement distributions p(c*|u,c,x,y), p(x*|u,c,x,y), p(y*|u,c,x,y); and

3) the fully conditioned selection probability p(S=1|u,c,x,y,c*,x*,y*).

The absence of effects corresponding to 1−3 from graphs offered as “causal” suggests

that “causal inference” from observational data using formal causal models remains a

theoretical and largely speculative exercise (albeit often presented without explicit

acknowledgement of that fact).

When adjustments for these effects are attempted, we are usually forced to use crude

empirical counterparts of terms like those in 1−3, with each substitution demanding

nonidentified assumptions. Consider that, for valid inference under figure 2,

1) Propensity scoring and IPW for treatment need p(x|u,c), but all we get from data

is p(x*|c*). Absence of u and c is usually glossed over by assuming “no

unmeasured confounders” or “no residual confounding.” These are not credible

assumptions in OHSS.

2) IPW for selection and censoring needs p(S=1|u,c,x,y,c*,x*,y*), but usually the

most we get from a cohort study or nested study is p(S=1|c*,x*). We do not even

get that much in a case-control study.

3) Measurement-error correction needs conditional distributions from

p(c*,x*,y*,u,c,x,y|S=1), but even when a “validation” study is done, we obtain

only alternative measurements c
†
,x

†
,y

†
 (which are rarely error-free) on a tiny and

371

Overthrowing the Tyranny of Null Hypotheses!

biased subset. So we end up with observations from

p(c
†
,x

†
,y

†
,c*,x*,y*|S=1,V=1) where V is the validation indicator.

4) Consistency between the observed X and the intervention variable, in the sense t

hat P(Y|X=x) = P(Y|do[X=x],X=x). This can be hard to believe for common

variables such as smoking, body-mass index, and blood pressure, even if

do[X=x] is well-defined (which is not usually the case).

In the face of these realities, standard practice seems to be: Present wildly hypothetical

analyses that pretend the observed distribution p(c*,x*,y*|S=1), perhaps along with

p(c
†
,x

†
,y

†
,c*,x*,y*|S=1,V=1) or p(S=1|c*,x*), is sufficient for causal inference. The

massive gaps are filled in with models or assumptions, which are priors that reduce

dimensionality of the problem to something within computing bounds. For example, use

of IPW with p(S=1|c*,x*) to adjust for selection bias (as when 1−S is a censoring

indicator) depends crucially on a nonidentified ignorability assumption that

S╨(U,C,X,Y)|(C*,X*), i.e., that selection S is independent of the latent variables U,C,X,Y

given the observed variables C*,X*. We should expect this condition to be violated

whenever a latent variable affects selection directly or shares unobserved causes with

selection. If such effects are exist but are missing from the analysis graph, then by some

definitions the graph (and hence the resulting analysis) isn’t causal, no matter how much

propensity scoring (PS), marginal structural modeling (MSM), inverse-probability

weighting (IPW), or other causal-modeling procedures we apply to the observations

(c*,x*,y*|S=1).

Of course, the overwhelming dimensionality of typical OHSS problems virtually

guarantees that arbitrary constraints will enter at some point, and forces even the best

scientists to rely on a tiny subset of all the models or explanations consistent with

available facts. Personal bias in determining this subset may be unavoidable due to strong

cultural influences (such as adherence to received theories, as well as moral strictures and

financial incentives), which can also lead to biased censoring of observations (Greenland,

2009c). One means of coping with such bias is by being aware of it, then trying to test it

against the facts one can muster (which are often few).

The remaining sections sketch some alternatives to pretending we can identify

unbiased or assuredly valid estimators of causal effects in observational data, as opposed

to within hypothetical models for data generation (Greenland, 1990; Robins, 2001). In

these approaches, both frequentist and Bayesian analyses are viewed as hypotheticals

conditioned on a data-generation model of unknown validity. Frequentist analysis

provides only inferences of the form “if the data-generation process behaves like this,

here is how the proposed decision rule would perform,” while Bayesian analysis provides

only inferences of the form “if I knew that its data-generation process behaves like this,

here is how this study would alter my bets.”
1
 If we aren’t sure how the data-generation

!!!
"
This statement describes Bayes factors (Good, 1983) conditioned on the model. That model may

include an unknown parameter that indexes a finite number of submodels scattered over some high-

dimensional subspace, in which case the Bayesian analysis is called “model averaging,” usually

with an implicit uniform prior over the models. Model averaging may also operate over continuous

parameters via priors on those parameters.!

372

Overthrowing the Tyranny of Null Hypotheses!

process behaves, no statistical analysis can provide more, no matter how much causal

modeling is done.

5 Predictive Analysis

If current models for observed-data generators (whether logistic, structural, or propensity

models) can’t be taken seriously as “causal”, what can we make of their outputs? It is

hard to believe the usual excuses offered for regression outputs (e.g., that they are

“descriptive”) when the fitted model is asserted to be causal or “structural.” Are we to

consider the outputs of (say) and IPW-fitted MSM to be some sort of data summary? Or

will it function as some kind of optimal predictor of outcomes in a purely predictive

context? No serious case has been made for causal models in either role, and it seems that

some important technical improvements are needed before causal modeling methods

become credible predictive tools.

Nonetheless, graphical models remain useful (and might be less misleading) even when

they are not “causal,” serving instead as mere carriers of conditional independence

assumptions within a time-ordered framework. In this usage, one may still employ

presumed causal independencies as prior judgments for specification. In particular, for

predictive purposes, some or all of the arrows in the graph may retain informal causal

interpretations; but they may be causally wrong, and yet the graph can still be correct for

predictive purposes.

In this regard, most of the graphical modeling literature in statistics imposes little in the

way of causal burden on the graph, as when graphs are used as influence diagrams, belief

and information networks, and so on without formal causal interpretation (that is, without

representing a formal causal model, e.g., Pearl, 1988; Hajek et al., 1992; Cox and

Wermuth, 1996; Lauritzen, 1996). DAG rules remain valid for prediction if the absence

of an open path from X to Y is interpreted as entailing X╨Y, or equivalently if the

absence of a directed path from X to Y (in causal terms, X is not a cause of Y;

equivalently, Y is not affected by X) is interpreted as entailing X╨Y|paX, the noncausal

Markov condition (where paX is the set of parents of X). In that case, X→Y can be used

in the graph even if X has no effect on Y, or vice-versa.

As an example, suppose X and Y are never observed without them affecting selection

S, as when X is affects miscarriage S and Y is congenital malformation. If the target

population is births, X predicts malformations Y among births (which have S=1). As

another example, suppose X and Y are never observed without an uncontrolled,

ungraphed confounder U, as when X is diet and Y is health status. If one wishes to target

those at high risk for screening or actuarial purposes it does not matter if X→Y

represents a causally confounded relation. Lack of a directed path from X to Y now

corresponds to lack of additional predictive value for Y from X given paX. Arrow

directions in temporal (time-ordered) predictive graphs correspond to point priors about

time order, just as they do in causal graphs.

Of course, if misinterpreted as causal, predictive inferences from graphs (or any

predictive modeling) may be potentially disastrous for judging interventions on X. But, in

OHSS, the causality represented by a directed path in a so-called causal diagram rarely

373

374

Overthrowing the Tyranny of Null Hypotheses!

where much background information is available) are not well represented by the

dimensions constrained by the model, considerably efficiency can be lost for estimating

parameters of interest. A striking example given by Whittemore and Keller (1986)

displayed the poor small-sample performance for estimating a survival curve when using

an unsmoothed nonparametric hazard estimator (Kaplan-Meier or Nelson-Altschuler

estimation), relative to spline smoothing of the hazard.

6 Pruning the Identified Portion of the Model

Over recent decades, great strides have been made in creating predictive algorithms; the

question remains however, what role should these algorithms play in causal inference? It

would seem that these algorithms can be beneficially applied to fitting the marginal

distribution identified by the observations. Nonetheless, the targets of causal inference in

observational studies lie beyond the identified margin, and thus beyond the reach of these

algorithms. At best, then, the algorithms can provide the identified foundation for

building into unobserved dimensions of the phenomena under study.

Even if we focus only on the identified margin, however, there may be far more nodes

and edges than seem practical to allow in the final model. A prominent feature of modern

predictive algorithms is that they start with an impractically large number of terms and

then aggressively prune the model, and may re-grow and re-prune repeatedly (Hastie et

al., 2009). These strategies coincide with the intuition that omitting a term is justified

when its contribution is too small to stand out against bias and background noise; e.g., we

do not include variables like patient identification number because we know that are

usually pure noise.

Nonetheless, automated algorithms often delete variables or connections that prior

information instead suggests are relevant or related; thus shields from pruning are often

warranted. Furthermore, a deleted node or arrow may indeed be important from a

contextual perspective even if does not meet algorithmic retention criteria. Thus, model

simplification strategies such as pruning may be justified by a need for dimensionality

reduction, but should be recognized as part of algorithmic compression or computational

prediction, not as a mode of inference about structural models.

Apart from these vague cautions, it has long been recognized that if our goal is to

evaluate causal effects, different loss functions are needed from those in the pruning

algorithms commonly applied by researchers. Specifically, the loss or benefit entailed by

pruning needs to be evaluated in reference to the target effect under study, and not simply

successful prediction of identified quantities. Operationalizing this imperative requires

building out into the nonidentified (latent) realm of the target effects, which is the focus

of bias modeling.

7 Modeling Latent Causal Structures (Bias Modeling)

The target effects in causal inference are functions of unobserved dimensions of the data-

generating process, which consist primarily of bias sources (Greenland, 2005a). Once we

recognize the nonidentification this structure entails, the major analysis task shifts away

375

Overthrowing the Tyranny of Null Hypotheses!

from mathematical statistics to prior specification, because with nonidentification only

proper priors on nonidentified parameters can lead to proper posteriors.

Even the simplest point-exposure case can involve complexities that transform simple

and precise-looking conventional results into complex and utterly ambiguous posteriors

(Greenland, 2009a, 2009b). In a model complex enough to reflect Figure 2, there are far

too many elements of specification to contextually justify them all in detail. For example,

one could only rarely justify fewer than two free structural parameters per arrow, and the

distributional form for each parameter prior would call for at least two hyperparameters

per parameter (e.g., a mean and a variance), leading to at least 50 parameters and 100

hyperparameters in a graph with 25 arrows. Allowing but one prior association parameter

(e.g., a correlation) per parameter pair adds over 1,000 (50 choose 2) more

hyperparameters.

As a consequence of the exponential complexity of realistic models, prior specification

is difficult, ugly, ad hoc, highly subjective, and tentative in the extreme. In addition, the

hard-won model will lack generalizability and elegance, making it distasteful to both the

applied scientist and the theoretical statistician. Nor will it please the applied statistician

concerned with “data analysis,” for the analysis will instead revolve around numerous

contextual judgments that enlist diverse external sources of information. In contrast to the

experimental setting (in which the data-generation model may be dictated entirely by the

design), the usually sharp distinction between prior and data information will be blurred

by the dependence of the data-generation model on external information.

These facts raise another challenge to the current “causal modeling” literature: If we

know our observations are just a dim and distant projection of the causal structure and we

can only identify predictive links among observed quantities, how can we incorporate

simultaneously all error sources (systematic as well as random) known to be important

into a complex longitudinal framework involving mismeasurement of entire sequences of

exposures and confounders? Some progress on this front has been made, but primarily in

contexts with validation data available (Cole et al., 2010), which is not the usual case.

8 The Descriptive Alternative

In the face of the extraordinary complexity of realistic models for OHSS, it should be an

option of each study to focus on describing the study and its data thoroughly, sparing us

attempts at inference about nonidentified quantities such as “causal effects.” This option

will likely never be popular, but should be allowed and even encouraged (Greenland et

al., 2004). After all, why should I care about your causal inferences, especially if they are

based on or grossly over-weighted by the one or few studies that you happened to be

involved in? If I am interested in forming my own inferences, I do want to see your data

and get an accurate narrative of the physical processes that produced them. In this regard,

statistics may supply data summaries. Nonetheless, it must be made clear exactly how the

statistics offered reflect the data as opposed to some hypothesis about the population

from which they came; P-values do not satisfy this requirement (Greenland, 1993; Poole,

2001).

376

Overthrowing the Tyranny of Null Hypotheses!

Here then is a final challenge to the “causal modeling” literature: If we know our

observations are just a dim and distant projection of the causal structure and we can only

identify associations among observed quantities, how can we interpret the outputs of

“structural modeling” (such as confidence limits for ostensibly causal estimands which

are not in fact identified) as data summaries? We should want to see answers that are

sensible when the targets are effects in a context at least as complex as in fig. 2.

9 What is a Causal Diagram?

The above considerations call into question some epidemiological accounts of causal

diagrams. Pearl (2000) describes a causal model M as a formal functional system giving

relations among a set of variables. M defines a joint probability distribution p() and an

intervention operator do[] on the variables. A causal diagram is then a directed graph G

that implies the usual Markov decomposition for p() and displays additional properties

relating p() and do[]. In particular, each child-parent family {X, paX} in G satisfies

1) p(x|do[paX=a]) = p(x|paX=a), and

2) if Z is not in {X, paX}, p(x|do[Z=z],paX=a) = p(x|paX=a).

(e.g., see Pearl, 2000, p. 24). These properties stake out G as an illustration (mapping)

of structure within M.

Condition 1 is often described as stating that the association of each node X with its

parent vector paX is unconfounded given M. Condition 2 says that, given M, the only

variables in G that affect a node X are its parents, and is often called the causal Markov

condition (CMC). Nonetheless, as seems to happen often as time passes and methods

become widely adopted, details have gotten lost. In the more applied literature, causal

diagrams have come to be described as “unconfounded graphs” without reference to an

underlying causal model (e.g., Hernán et al., 2004; VanderWeele and Robins, 2007;

Glymour and Greenland, 2008). This description not only misses the CMC (2) but, taken

literally, means that all shared causes are in the graph.

Condition 1 is a property relating two mathematical objects, G and M. To claim a

diagram is unconfounded is to instead make a claim about the relation of G the real

world, thus inviting confusion between a model for causal processes and the actual

processes. For many experts in OHSS, the claim of unconfoundedness has zero

probability of being correct because of its highly restrictive empirical content (e.g., see

Robins and Wasserman, 1999ab). At best, we can only hope that the diagram provides a

useful computing aid for predicting the outcomes of intervention strategies.

As with regression models, causal models in OHSS are always false. Because we can

never know we have a correct model (and in fact in OHSS we can’t even know if we are

very close), to say G is causal if unconfounded is a scientifically vacuous definition: It is

saying the graph is causal if the causal model it represents is correct. This is akin to

saying a monotone increasing function from the range of X to [0,1] is not a probability

distribution if it is not in fact how X is distributed; thus a normal(µ,σ2
) cumulative

function wouldn’t be a probability distribution unless it is the actual probability

distribution for X (whether that distribution is an objective event generator or a subjective

betting schedule).

377

Overthrowing the Tyranny of Null Hypotheses!

So, to repeat: To describe a causal diagram as an “unconfounded graph” blurs the

distinction between models and reality. Model-based deductions are logical conditionals

of the form “model M deductively yields these conclusions,” and have complete certainty

given the model M. But the model, and hence reality, is never known with certainty, and

in OHSS cannot be claimed as known except in the most crude fashion. The point is

brought home above by appreciating just how unrealistic all causal models and diagrams

in OHSS must be. Thus I would encourage the description of causal diagrams as

graphical causal models (or more precisely, graphical representations of certain

equivalence classes of causal models), rather than as “unconfounded graphs” (or similar

phrases). This usage might even be acceptable to some critics of the current causal-

modeling literature (Dawid, 2008).

10 Summary and Conclusions

I would be among the last to deny the utility of causal diagrams; but I argue that their

practical utility in OHSS is limited to (i) compact and visually immediate representation

of assumptions, and (ii) illustration of sources of nonidentification and bias given realistic

assumptions. Converse claims about their utility for identification seem only the latest in

a long line of promises to “solve” the problem of causal inference. These promises are

akin to claims of preventing and curing all cancers; while progress is possible, the

enormous complexity of real systems should leave us skeptical about claims of

“solutions” to the real problem.

Many authors have recognized that the problem of effect identification is unsolvable in

principle. Although this logical impossibility led some to deny the scientific merit of

causal thinking, it has not prevented development of useful tools that have causal-

modeling components. Nonetheless, the most precision we can realistically hope for

estimating effects in OHSS is about one-digit accuracy, and in many problems even that

seems too optimistic. Thus some practical sense is needed to determine what is and isn’t

important to include as model components. Yet, despite the crudeness of OHSS, good

sense seems to lead almost inevitably to including more components than can be

identified by available data.

My main point is that effect identification (in the frequentist sense of identification by

the observed data) should be abandoned as a primary goal in causal modeling in OHSS.

My reasons are practical: Identification will often demand dropping too much of

importance from the model, thus imposing null hypotheses that have no justification in

either past frequency observations or in priors about mechanisms generating the

observations, thus leading to overconfident and biased inferences. In particular, defining

a graph as “causal” if it is unconfounded assumes a possibly large set of causal null

hypotheses (at least two for every pair of nodes in the graph: no shared causes or

conditioned descendants not in the graph). In OHSS, the only graphs that satisfy such a

definition will need many latent nodes to be “causal” in this sense, and as a consequence

will reveal the nonidentified nature of target effects. Inference may then proceed by

imposing contextually defensible priors or penalties (Greenland, 2005a, 2009a, 2009b,

2010).

378

Overthrowing the Tyranny of Null Hypotheses!

Despite my view and similar ones (e.g., Gustafson, 2005), I suspect the bulk of causal-

inference statistics will trundle on relying exclusively on artificially identified models. It

will thus be particularly important to remember that just because a method is labeled a

“causal modeling” method does not mean it gives us estimates and tests of actual causal

effects. For those who find identification too hard to abandon in formal analysis, the only

honest recourse is to separate identified and nonidentified components of the model,

focus technique on the identified portion, and leave the latent residual as a topic for

sensitivity analysis, speculative modeling, and further study. In this task, graphs can be

used without the burden of causality if we allow them a role as pure prediction tools, and

they can also be used as causal diagrams of the largely latent structure that generates the

data.

Acknowledgments: I am most grateful to Tyler VanderWeele, Jay Kaufman, and

Onyebuchi Arah for their extensive and useful comments on this chapter.

References!

Biggs, N., Lloyd, E. and Wilson, R. (1986). Graph Theory, 1736-1936. Oxford

University Press.!

Box, G.E.P. (1980). Sampling and Bayes inference in scientific modeling and robustness.

Journal of the Royal Statistical Society, Series A 143, 383–430.!

Cole S.R. and M.A. Hernán (2002). Fallibility in estimating direct effects. International

Journal of Epidemiology 31, 163–165.

Cole, S.R. and C.E. Frangakis (2009). The consistency assumption in causal inference: a

definition or an assumption? Epidemiology 20, 3–5.!

Cole, S.R., L.P. Jacobson, P.C. Tien, L. Kingsley, J.S. Chmiel and K. Anastos (2010).

Using marginal structural measurement-error models to estimate the long-term effect

of antiretroviral therapy on incident AIDS or death. American Journal of Epidemiology

171, 113-122.!

Copas, J.G. (1973). Randomization models for matched and unmatched 2x2 tables.

Biometrika 60, 267-276.!

Cox, D.R. and N. Wermuth. (1996). Multivariate Dependencies: Models, Analysis and

Interpretation. Boca Raton, FL: CRC/Chapman and Hall.!

Dawid, A.P. (2000). Causal inference without counterfactuals (with discussion). Journal

of the American Statistical Association 95, 407-448.!

Dawid, A.P. (2008). Beware of the DAG! In: NIPS 2008 Workshop Causality: Objectives

and Assessment. JMLR Workshop and Conference Proceedings. !

Duncan, O.D. (1975). Introduction to Structural Equation Models. New York: Academic

Press.!

Fisher, R.A. (1943; reprinted 2003). Note on Dr. Berkson’s criticism of tests of

significance. Journal of the American Statistical Association 38, 103–104. Reprinted in

the International Journal of Epidemiology 32, 692.!

379

Overthrowing the Tyranny of Null Hypotheses!

Freedman, D.A. and Humphreys, P. (1999). Are there algorithms that discover causal

structure? Synthese 121, 29–54.

Glymour, M.M. and S. Greenland (2008). Causal diagrams. Ch. 12 in: Rothman, K.J., S.

Greenland and T.L. Lash, eds. Modern Epidemiology, 3rd ed. Philadelphia: Lippincott.

Good, I.J. (1983). Good thinking. Minneapolis: U. Minnesota Press.

Greenland, S. (1990). Randomization, statistics, and causal inference. Epidemiology 1,

421-429.

Greenland, S. (1991). On the logical justification of conditional tests for two-by-two-

contingency tables. The American Statistician 45, 248-251.

Greenland, S. (1993). Summarization, smoothing, and inference. Scandinavian Journal of

Social Medicine 21, 227-232.

Greenland, S. (1998). The sensitivity of a sensitivity analysis. In: 1997 Proceedings of the

Biometrics Section. Alexandria, VA: American Statistical Association, 19-21.

Greenland, S. (2005a). Epidemiologic measures and policy formulation: Lessons from

potential outcomes (with discussion). Emerging Themes in Epidemiology (online

journal) 2:1–4. (Originally published as “Causality theory for policy uses of

epidemiologic measures,” Chapter 6.2 in: Murray, C.J.L., J.A. Salomon, C.D. Mathers

and A.D. Lopez, eds. (2002) Summary Measures of Population Health. Cambridge,

MA: Harvard University Press/WHO, 291-302.)

Greenland, S. (2005b). Multiple-bias modeling for analysis of observational data (with

discussion). Journal of the Royal Statistical Society, Series A 168, 267–308.

Greenland, S. (2009a). Bayesian perspectives for epidemiologic research. III. Bias

analysis via missing-data methods. International Journal of Epidemiology 38, 1662–

1673.

Greenland, S. (2009b). Relaxation penalties and priors for plausible modeling of

nonidentified bias sources. Statistical Science 24, 195-210.

Greenland, S. (2009c). Dealing with uncertainty about investigator bias: disclosure is

informative. Journal of Epidemiology and Community Health 63, 593-598.

Greenland, S. (2010). The need for syncretism in applied statistics (comment on “The

future of indirect evidence” by Bradley Efron). Statistical Science 25, in press.

Greenland, S., J. Pearl, and J.M. Robins (1999). Causal diagrams for epidemiologic

research. Epidemiology 10, 37-48.

Greenland, S., M. Gago-Dominguez, and J.E. Castellao (2004). The value of risk-factor

("black-box") epidemiology (with discussion). Epidemiology 15, 519-535.

Gustafson, P. (2005). On model expansion, model contraction, identifiability, and prior

information: two illustrative scenarios involving mismeasured variables (with

discussion). Statistical Science 20, 111-140.

Hajek, P., T. Havranek and R. Jirousek (1992). Uncertain Information Processing in

Expert Systems. Boca Raton, FL: CRC Press.

Hastie, T., R. Tibshirani and J. Friedman (2009). The elements of statistical learning:

Data mining, inference, and prediction, 2
nd

 ed. New York: Springer.

380

Overthrowing the Tyranny of Null Hypotheses!

Hernán, M.A. (2005). Hypothetical interventions to define causal effects—afterthought

or prerequisite? American Journal of Epidemiology 162, 618–620.

Hernán M.A., S. Hernandez-Diaz, M.M. Werler and A.A. Mitchell. (2002). Causal

knowledge as a prerequisite for confounding evaluation: An application to birth defects

epidemiology. American Journal of Epidemiology 155, 176–184.

Hernán M.A., S. Hernandez-Diaz and J.M. Robins (2004). A structural approach to

selection bias. Epidemiology 15, 615-625.

Jewell, N. (2004). Statistics for Epidemiology. Boca Raton, FL: Chapman and Hall/CRC.

Lad, F. (1999). Assessing the foundations of Bayesian networks: A challenge to the

principles and the practice. Soft Computing 3, 174-180.

Lauritzen, S. (1996). Graphical Models. Oxford: Clarendon Press.

Leamer, E.E. (1978). Specification Searches: Ad Hoc Inference with Nonexperimental

Data. New York: Wiley.

Morgan, S.L. and C. Winship. (2007). Counterfactuals and Causal Inference: Methods

and Principles for Social Research. New York: Cambridge University Press.

Neutra, R.R., S. Greenland, and E.A. Friedman (1980). The effect of fetal monitoring on

cesarean section rates. Obstetrics and Gynecology 55, 175-180.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San

Mateo, CA.

Pearl, J. (1995). Causal diagrams for empirical research (with discussion). Biometrika 82,

669-710.

Pearl, J. (2000; 2
nd

 ed. 2009). Causality. New York: Cambridge University Press.

Pearl, J. and P. Verma (1991). A theory of inferred causation. In: Principles of

Knowledge Representation and Reasoning: Proceedings of the Second International

Conference, Ed. J.A. Allen, R. Filkes and E. Sandewall. San Francisco: Morgan

Kaufmann, 441-452.

Poole, C. (2001). Poole C. Low P-values or narrow confidence intervals: Which are more

durable? Epidemiology 12, 291–294.

Robins, J.M. (2001). Data, design, and background knowledge in etiologic inference.

Epidemiology 12, 313–320.

Robins, J.M. and L. Wasserman (1999a). On the impossibility of inferring causation from

association without background knowledge. In: Computation, Causation, and

Discovery. Glymour, C. and Cooper, G., eds. Menlo Park, CA, Cambridge, MA: AAAI

Press/The MIT Press, pp. 305-321.

Robins, J.M. and L. Wasserman (1999b). Rejoinder to Glymour and Spirtes. In:

Computation, Causation, and Discovery. Glymour, C. and Cooper, G., eds. Menlo

Park, CA, Cambridge, MA: AAAI Press/The MIT Press, pp. 333-342.

Robins, J.M., R. Scheines, P. Spirtes and L. Wasserman (2003). Uniform consistency in

causal inference. Biometrika 90, 491-515.

Senn, S. (2004). Controversies concerning randomization and additivity in clinical trials.

Statistics in Medicine 23, 3729–3753.

381

Overthrowing the Tyranny of Null Hypotheses!

Shafer, G. (2002). Comment on "Estimating causal effects," by George Maldonado and

Sander Greenland. International Journal of Epidemiology 31, 434-435.

Spirtes, P., C. Glymour and R. Scheines (1993; 2
nd

 ed. 2001). Causation, Prediction, and

Search. Cambridge, MA: MIT Press.

Susser, M. (1973). Causal Thinking in the Health Sciences. New York: Oxford

University Press.

VanderWeele, T.J. (2009). Concerning the consistency assumption in causal inference.

Epidemiology 20, 880-883.

VanderWeele, T.J. and J.M. Robins (2007). Directed acyclic graphs, sufficient causes and

the properties of conditioning on a common effect. American Journal of Epidemiology

166, 1096-1104.

Whittemore, A.S. and J.B. Keller (1986). Survival estimation using splines. Biometrics

42, 495-506.

Wright, S., (1934). The method of path coefficients. Annals of Mathematical Statistics

5,161-215.

!

382

23

Actual Causation and the Art of Modeling

Joseph Y. Halpern and Christopher Hitchcock

1 Introduction

In The Graduate, Benjamin Braddock (Dustin Hoffman) is told that the future can
be summed up in one word: “Plastics”. One of us (Halpern) recalls that in roughly
1990, Judea Pearl told him that the future was in causality. Pearl’s own research
was largely focused on causality in the years after that; his seminal contributions
are widely known. We were among the many influenced by his work. We discuss one
aspect of it, actual causation, in this article, although a number of our comments
apply to causal modeling more generally.

Pearl introduced a novel account of actual causation in Chapter 10 of Causality,
which was later revised in collaboration with one of us [Halpern and Pearl 2005].
In some ways, Pearl’s approach to actual causation can be seen as a contribution to
the philosophical project of trying to analyze actual causation in terms of counter-
factuals, a project associated most strongly with David Lewis [1973a]. But Pearl’s
account was novel in at least two important ways. The first was his use of struc-
tural equations as a tool for modeling causality. In the philosophical literature,
causal structures were often represented using so-called neuron diagrams, but these
are not (and were never intended to be) all-purpose representational tools. (See
[Hitchcock 2007b] for a detailed discussion of the limitations of neuron diagrams.)
We believe that the lack of a more adequate representational tool had been a se-
rious obstacle to progress. Second, while the philosophical literature on causality
has focused almost exclusively on actual causality, for Pearl, actual causation was
a rather specialized topic within the study of causation, peripheral to many issues
involving causal reasoning and inference. Thus, Pearl’s work placed the study of
actual causation within a much broader context.

The use of structural equations as a model for causal relationships was well
known long before Pearl came on the scene; it seems to go back to the work of
Sewall Wright in the 1920s (see [Goldberger 1972] for a discussion). However, the
details of the framework that have proved so influential are due to Pearl. Besides
the Halpern-Pearl approach mentioned above, there have been a number of other
closely-related approaches for using structural equations to model actual causation;
see, for example, [Glymour and Wimberly 2007; Hall 2007; Hitchcock 2001; Hitch-
cock 2007a; Woodward 2003]. The goal of this paper is to look more carefully at
the modeling of causality using structural equations. For definiteness, we use the

383

Kaoru
Text Box
Return to TOC

Joseph Y. Halpern and Christopher Hitchcock

Halpern-Pearl (HP) version [Halpern and Pearl 2005] here, but our comments apply
equally well to the other variants.

It is clear that the structural equations can have a major impact on the conclu-
sions we draw about causality—it is the equations that allow us to conclude that
lower air pressure is the cause of the lower barometer reading, and not the other
way around; increasing the barometer reading will not result in higher air pressure.
The structural equations express the effects of interventions: what happens to the
bottle if it is hit with a hammer; what happens to a patient if she is treated with
a high dose of the drug, and so on. These effects are, in principle, objective; the
structural equations can be viewed as describing objective features of the world.
However, as pointed out by Halpern and Pearl [2005] and reiterated by others [Hall
2007; Hitchcock 2001; Hitchcock 2007a], the choice of variables and their values can
also have a significant impact on causality. Moreover, these choices are, to some
extent, subjective. This, in turn, means that judgments of actual causation are
subjective.

Our view of actual causation being at least partly subjective stands in contrast to
the prevailing view in the philosophy literature, where the assumption is that the job
of the philosopher is to analyze the (objective) notion of causation, rather like that
of a chemist analyzing the structure of a molecule. This may stem, at least in part,
from failing to appreciate one of Pearl’s lessons: actual causality is only part of the
bigger picture of causality. There can be an element of subjectivity in ascriptions
of actual causality without causation itself being completely subjective. In any
case, the experimental evidence certainly suggests that people’s views of causality
are subjective, even when there is no disagreement about the relevant structural
equations. For example, a number of experiments show that broadly normative
considerations, including the subject’s own moral beliefs, affect causal judgment.
(See, for example, [Alicke 1992; Cushman 2009; Cushman, Knobe, and Sinnott-
Armstrong 2008; Hitchcock and Knobe 2009; Knobe and Fraser 2008].) Even in
relatively non-controversial cases, people may want to focus on different aspects
of a problem, and thus give different answers to questions about causality. For
example, suppose that we ask for the cause of a serious traffic accident. A traffic
engineer might say that the bad road design was the cause; an educator might
focus on poor driver’s education; a sociologist might point to the pub near the
highway where the driver got drunk; a psychologist might say that the cause is the
driver’s recent breakup with his girlfriend.1 Each of these answers is reasonable.
By appropriately choosing the variables, the structural equations framework can
accommodate them all.

Note that we said above “by appropriately choosing the variables”. An obvious
question is “What counts as an appropriate choice?”. More generally, what makes
a model an appropriate model? While we do want to allow for subjectivity, we need

1This is a variant of an example originally due to Hanson [1958].

384

Actual Causation and the Art of Modeling

to be able to justify the modeling choices made. A lawyer in court trying to argue
that faulty brakes were the cause of the accident needs to be able to justify his
model; similarly, his opponent will need to understand what counts as a legitimate
attack on the model. In this paper we discuss what we believe are reasonable bases
for such justifications. Issues such as model stability and interactions between the
events corresponding to variables turn out to be important.

Another focus of the paper is the use of defaults in causal reasoning. As we hinted
above, the basic structural equations model does not seem to suffice to completely
capture all aspects of causal reasoning. To explain why, we need to briefly outline
how actual causality is defined in the structural equations framework. Like many
other definitions of causality (see, for example, [Hume 1739; Lewis 1973b]), the HP
definition is based on counterfactual dependence. Roughly speaking, A is a cause of
B if, had A not happened (this is the counterfactual condition, since A did in fact
happen) then B would not have happened. As is well known, this naive definition
does not capture all the subtleties involved with causality. Consider the following
example (due to Hall [2004]): Suzy and Billy both pick up rocks and throw them at
a bottle. Suzy’s rock gets there first, shattering the bottle. Since both throws are
perfectly accurate, Billy’s would have shattered the bottle had Suzy not thrown.
Thus, according to the naive counterfactual definition, Suzy’s throw is not a cause
of the bottle shattering. This certainly seems counterintuitive.

The HP definition deals with this problem by taking A to be a cause of B if B
counterfactually depends on A under some contingency. For example, Suzy’s throw
is the cause of the bottle shattering because the bottle shattering counterfactually
depends on Suzy’s throw, under the contingency that Billy doesn’t throw. (As we
will see below, there are further subtleties in the definition that guarantee that, if
things are modeled appropriately, Billy’s throw is not also a cause.)

While the definition of actual causation in terms of structural equations has been
successful at dealing with many of the problems of causality, examples of Hall [2007],
Hiddleston [2005], and Hitchcock [2007a] show that it gives inappropriate answers in
cases that have structural equations isomorphic to ones where it arguably gives the
appropriate answer. This means that, no matter how we define actual causality in
the structural-equations framework, the definition must involve more than just the
structural equations. Recently, Hall [2007], Halpern [2008], and Hitchcock [2007a]
have suggested that using defaults might be a way of dealing with the problem.
As the psychologists Kahneman and Miller [1986, p. 143] observe, “an event is
more likely to be undone by altering exceptional than routine aspects of the causal
chain that led to it”. This intuition is also present in the legal literature. Hart and
Honoré [1985] observe that the statement “It was the presence of oxygen that caused
the fire” makes sense only if there were reasons to view the presence of oxygen as
abnormal.

As shown by Halpern [2008], we can model this intuition formally by combining a
well-known approach to modeling defaults and normality, due to Kraus, Lehmann,

385

Joseph Y. Halpern and Christopher Hitchcock

and Magidor [1990] with the structural-equation model. Moreover, doing this leads
to a straightforward solution to the problem above. The idea is that, when showing
that if A hadn’t happened then B would not have happened, we consider only
contingencies that are at least as normal as the actual world. For example, if
someone typically leaves work at 5:30 PM and arrives home at 6, but, due to
unusually bad traffic, arrives home at 6:10, the bad traffic is typically viewed as the
cause of his being late, not the fact that he left at 5:30 (rather than 5:20).

But once we add defaults to the model, the problem of justifying the model be-
comes even more acute. We not only have to justify the structural equations and the
choice of variables, but also the default theory. The problem is exacerbated by the
fact that default and “normality” have a number of interpretations. Among other
things, they can represent moral obligations, societal conventions, prototypicality
information, and statistical information. All of these interpretations are relevant to
understanding causality; this makes justifying default choices somewhat subtle.

The rest of this paper is organized as follows. In Sections 2 and 3, we review the
notion of causal model and the HP definition of actual cause; most of this material is
taken from [Halpern and Pearl 2005]. In Section 4, we discuss some issues involved
in the choice of variables in a model. In Section 5, we review the approach of
[Halpern 2008] for adding considerations of normality to the HP framework, and
discuss some modeling issues that arise when we do so. We conclude in Section 6.

2 Causal Models

In this section, we briefly review the HP definition of causality. The description of
causal models given here is taken from [Halpern 2008], which in turn is based on
that of [Halpern and Pearl 2005].

The HP approach assumes that the world is described in terms of random vari-
ables and their values. For example, if we are trying to determine whether a forest
fire was caused by lightning or an arsonist, we can take the world to be described
by three random variables:

• F for forest fire, where F = 1 if there is a forest fire and F = 0 otherwise;

• L for lightning, where L = 1 if lightning occurred and L = 0 otherwise;

• ML for match (dropped by arsonist), where ML = 1 if the arsonist drops a lit
match, and ML = 0 otherwise.

Some random variables may have a causal influence on others. This influence
is modeled by a set of structural equations. For example, to model the fact that
if either a match is lit or lightning strikes, then a fire starts, we could use the
random variables ML, F , and L as above, with the equation F = max(L,ML).
(Alternately, if a fire requires both causes to be present, the equation for F becomes
F = min(L,ML).) The equality sign in this equation should be thought of more like
an assignment statement in programming languages; once we set the values of F

386

Actual Causation and the Art of Modeling

and L, then the value of F is set to their maximum. However, despite the equality,
if a forest fire starts some other way, that does not force the value of either ML or
L to be 1.

It is conceptually useful to split the random variables into two sets: the exoge-
nous variables, whose values are determined by factors outside the model, and the
endogenous variables, whose values are ultimately determined by the exogenous
variables. For example, in the forest-fire example, the variables ML, L, and F are
endogenous. However, we want to take as given that there is enough oxygen for
the fire and that the wood is sufficiently dry to burn. In addition, we do not want
to concern ourselves with the factors that make the arsonist drop the match or the
factors that cause lightning. These factors are all determined by the exogenous
variables.

Formally, a causal model M is a pair (S,F), where S is a signature, which explic-
itly lists the endogenous and exogenous variables and characterizes their possible
values, and F defines a set of modifiable structural equations, relating the values
of the variables. A signature S is a tuple (U ,V,R), where U is a set of exogenous
variables, V is a set of endogenous variables, and R associates with every variable
Y ∈ U ∪ V a nonempty set R(Y) of possible values for Y (that is, the set of values
over which Y ranges). F associates with each endogenous variable X ∈ V a func-
tion denoted FX such that FX : (×U∈UR(U))× (×Y ∈V−{X}R(Y)) → R(X). This
mathematical notation just makes precise the fact that FX determines the value
of X, given the values of all the other variables in U ∪ V. If there is one exoge-
nous variable U and three endogenous variables, X, Y , and Z, then FX defines the
values of X in terms of the values of Y , Z, and U . For example, we might have
FX(u, y, z) = u + y, which is usually written as X ← U + Y .2 Thus, if Y = 3 and
U = 2, then X = 5, regardless of how Z is set.

In the running forest-fire example, suppose that we have an exogenous random
variable U that determines the values of L and ML. Thus, U has four possible values
of the form (i, j), where both of i and j are either 0 or 1. The i value determines
the value of L and the j value determines the value of ML. Although FL gets as
arguments the vale of U , ML, and F , in fact, it depends only on the (first component
of) the value of U ; that is, FL((i, j),m, f) = i. Similarly, FML((i, j), l, f) = j. The
value of F depends only on the value of L and ML. How it depends on them depends
on whether either cause by itself is sufficient for the forest fire or whether both are
necessary. If either one suffices, then FF ((i, j), l,m) = max(l,m), or, perhaps more
comprehensibly, F = max(L,ML); if both are needed, then F = min(L,ML). For
future reference, call the former model the disjunctive model, and the latter the
conjunctive model.

The key role of the structural equations is to define what happens in the presence
of external interventions. For example, we can explain what happens if the arsonist

2The fact that X is assigned U + Y (i.e., the value of X is the sum of the values of U and Y)

does not imply that Y is assigned X −U ; that is, FY (U, X, Z) = X −U does not necessarily hold.

387

Joseph Y. Halpern and Christopher Hitchcock

does not drop the match. In the disjunctive model, there is a forest fire exactly
if there is lightning; in the conjunctive model, there is definitely no fire. Setting
the value of some variable X to x in a causal model M = (S,F) results in a new
causal model denoted MX←x. In the new causal model, the equation for X is very
simple: X is just set to x; the remaining equations are unchanged. More formally,
MX←x = (S,FX←x), where FX←x is the result of replacing the equation for X in
F by X = x.

The structural equations describe objective information about the results of in-
terventions, that can, in principle, be checked. Once the modeler has selected a set
of variables to include in the model, the world determines which equations among
those variables correctly represent the effects of interventions.3 By contrast, the
choice of variables is subjective; in general, there need be no objectively “right” set
of exogenous and endogenous variables to use in modeling a problem. We return to
this issue in Section 4.

It may seem somewhat circular to use causal models, which clearly already encode
causal information, to define actual causation. Nevertheless, as we shall see, there
is no circularity. The equations of a causal model do not represent relations of
actual causation, the very concept that we are using them to define. Rather, the
equations characterize the results of all possible interventions (or at any rate, all
of the interventions that can be represented in the model) without regard to what
actually happened. Specifically, the equations do not depend upon the actual values
realized by the variables. For example, the equation F = max(L,ML), by itself,
does not say anything about whether the forest fire was actually caused by lightning
or by an arsonist, or, for that matter, whether a fire even occurred. By contrast,
relations of actual causation depend crucially on how things actually play out.

A sequence of endogenous X1, . . . , Xn of is a directed path from X1 to Xn if the
value of Xi+1 (as given by FXi+1) depends on the value of Xi, for 1 = 1, . . . , n− 1.
In this paper, following HP, we restrict our discussion to acyclic causal models,
where causal influence can be represented by an acyclic Bayesian network. That is,
there is no cycle X1, . . . , Xn, X1 of endogenous variables that forms a directed path
from X1 to itself. If M is an acyclic causal model, then given a context, that is,
a setting ~u for the exogenous variables in U , there is a unique solution for all the
equations.

3In general, there may be uncertainty about the causal model, as well as about the true setting

of the exogenous variables in a causal model. Thus, we may be uncertain about whether smoking

causes cancer (this represents uncertainty about the causal model) and uncertain about whether

a particular patient actually smoked (this is uncertainty about the value of the exogenous variable

that determines whether the patient smokes). This uncertainty can be described by putting a

probability on causal models and on the values of the exogenous variables. We can then talk

about the probability that A is a cause of B.

388

Actual Causation and the Art of Modeling

3 The HP Definition of Actual Cause

3.1 A language for describing causes

Given a signature S = (U ,V,R), a primitive event is a formula of the form X =
x, for X ∈ V and x ∈ R(X). A causal formula (over S) is one of the form
[Y1 ← y1, . . . , Yk ← yk]φ, where φ is a Boolean combination of primitive events,
Y1, . . . , Yk are distinct variables in V, and yi ∈ R(Yi). Such a formula is abbreviated
as [~Y ← ~y]φ. The special case where k = 0 is abbreviated as φ. Intuitively,
[Y1 ← y1, . . . , Yk ← yk]φ says that φ would hold if Yi were set to yi, for i = 1, . . . , k.

A causal formula ψ is true or false in a causal model, given a context. As usual,
we write (M,~u) |= ψ if the causal formula ψ is true in causal model M given context
~u. The |= relation is defined inductively. (M,~u) |= X = x if the variable X has
value x in the unique (since we are dealing with acyclic models) solution to the
equations in M in context ~u (that is, the unique vector of values for the endogenous
variables that simultaneously satisfies all equations in M with the variables in U
set to ~u). The truth of conjunctions and negations is defined in the standard way.
Finally, (M,~u) |= [~Y ← ~y]φ if (M~Y←~y, ~u) |= φ. We write M |= φ if (M,~u) |= φ for
all contexts ~u.

For example, if M is the disjunctive causal model for the forest fire, and u is
the context where there is lightning and the arsonist drops the lit match, then
(M,u) |= [ML← 0](F = 1), since even if the arsonist is somehow prevented from
dropping the match, the forest burns (thanks to the lightning); similarly, (M,u) |=
[L ← 0](F = 1). However, (M,u) |= [L ← 0; ML ← 0](F = 0): if the arsonist does
not drop the lit match and the lightning does not strike, then the forest does not
burn.

3.2 A preliminary definition of causality

The HP definition of causality, like many others, is based on counterfactuals. The
idea is that if A and B both occur, then A is a cause of B if, if A hadn’t occurred,
then B would not have occurred. This idea goes back to at least Hume [1748,
Section VIII], who said:

We may define a cause to be an object followed by another, . . . , where,
if the first object had not been, the second never had existed.

This is essentially the but-for test, perhaps the most widely used test of actual
causation in tort adjudication. The but-for test states that an act is a cause of
injury if and only if, but for the act (i.e., had the the act not occurred), the injury
would not have occurred.

There are two well-known problems with this definition. The first can be seen
by considering the disjunctive causal model for the forest fire again. Suppose that
the arsonist drops a match and lightning strikes. Which is the cause? According
to a naive interpretation of the counterfactual definition, neither is. If the match
hadn’t dropped, then the lightning would still have struck, so there would have been

389

Joseph Y. Halpern and Christopher Hitchcock

a forest fire anyway. Similarly, if the lightning had not occurred, there still would
have been a forest fire. As we shall see, the HP definition declares both lightning
and the arsonist causes of the fire. (In general, there may be more than one actual
cause of an outcome.)

A more subtle problem is what philosophers have called preemption, which is
illustrated by the rock-throwing example from the introduction. As we observed,
according to a naive counterfactual definition of causality, Suzy’s throw would not
be a cause.

The HP definition deals with the first problem by defining causality as coun-
terfactual dependency under certain contingencies. In the forest-fire example, the
forest fire does counterfactually depend on the lightning under the contingency that
the arsonist does not drop the match; similarly, the forest fire depends counterfac-
tually on the dropping of the match under the contingency that the lightning does
not strike.

Unfortunately, we cannot use this simple solution to treat the case of preemp-
tion. We do not want to make Billy’s throw the cause of the bottle shattering by
considering the contingency that Suzy does not throw. So if our account is to yield
the correct verdict in this case, it will be necessary to limit the contingencies that
can be considered. The reason that we consider Suzy’s throw to be the cause and
Billy’s throw not to be the cause is that Suzy’s rock hit the bottle, while Billy’s did
not. Somehow the definition of actual cause must capture this obvious intuition.

With this background, we now give the preliminary version of the HP definition
of causality. Although the definition is labeled “preliminary”, it is quite close to
the final definition, which is given in Section 5. The definition is relative to a causal
model (and a context); A may be a cause of B in one causal model but not in
another. The definition consists of three clauses. The first and third are quite
simple; all the work is going on in the second clause.

The types of events that the HP definition allows as actual causes are ones of
the form X1 = x1 ∧ . . .∧Xk = xk—that is, conjunctions of primitive events; this is
often abbreviated as ~X = ~x. The events that can be caused are arbitrary Boolean
combinations of primitive events. The definition does not allow statements of the
form “A or A′ is a cause of B”, although this could be treated as being equivalent
to “either A is a cause of B or A′ is a cause of B”. On the other hand, statements
such as “A is a cause of B or B′” are allowed; this is not equivalent to “either A is
a cause of B or A is a cause of B′”.

DEFINITION 1. (Actual cause; preliminary version) [Halpern and Pearl 2005] ~X =
~x is an actual cause of φ in (M,~u) if the following three conditions hold:

AC1. (M,~u) |= (~X = ~x) and (M,~u) |= φ.

AC2. There is a partition of V (the set of endogenous variables) into two subsets
~Z and ~W with ~X ⊆ ~Z, and a setting ~x′ and ~w of the variables in ~X and ~W ,

390

Actual Causation and the Art of Modeling

respectively, such that if (M,~u) |= Z = z∗ for all Z ∈ ~Z, then both of the
following conditions hold:

(a) (M,~u) |= [~X ← ~x′, ~W ← ~w]¬φ.

(b) (M,~u) |= [~X ← ~x, ~W ′ ← ~w, ~Z ′ ← ~z∗]φ for all subsets ~W ′ of ~W and all
subsets ~Z ′ of ~Z, where we abuse notation and write ~W ′ ← ~w to denote
the assignment where the variables in ~W ′ get the same values as they
would in the assignment ~W ← ~w.

AC3. ~X is minimal; no subset of ~X satisfies conditions AC1 and AC2.

AC1 just says that ~X = ~x cannot be considered a cause of φ unless both ~X = ~x

and φ actually happen. AC3 is a minimality condition, which ensures that only
those elements of the conjunction ~X = ~x that are essential for changing φ in AC2(a)
are considered part of a cause; inessential elements are pruned. Without AC3, if
dropping a lit match qualified as a cause of the forest fire, then dropping a match
and sneezing would also pass the tests of AC1 and AC2. AC3 serves here to strip
“sneezing” and other irrelevant, over-specific details from the cause. Clearly, all the
“action” in the definition occurs in AC2. We can think of the variables in ~Z as
making up the “causal path” from ~X to φ, consisting of one or more directed paths
from variables in ~X to variables in φ. Intuitively, changing the value(s) of some
variable(s) in ~X results in changing the value(s) of some variable(s) in ~Z, which
results in the value(s) of some other variable(s) in ~Z being changed, which finally
results in the truth value of φ changing. The remaining endogenous variables, the
ones in ~W , are off to the side, so to speak, but may still have an indirect effect
on what happens. AC2(a) is essentially the standard counterfactual definition of
causality, but with a twist. If we want to show that ~X = ~x is a cause of φ, we
must show (in part) that if ~X had a different value, then φ would have been false.
However, this effect of the value of ~X on the truth value of φ may not hold in
the actual context; the value of ~W may have to be different to allow this effect
to manifest itself. For example, consider the context where both the lightning
strikes and the arsonist drops a match in the disjunctive model of the forest fire.
Stopping the arsonist from dropping the match will not prevent the forest fire.
The counterfactual effect of the arsonist on the forest fire manifests itself only in a
situation where the lightning does not strike (i.e., where L is set to 0). AC2(a) is
what allows us to call both the lightning and the arsonist causes of the forest fire.
Essentially, it ensures that ~X alone suffices to bring about the change from φ to ¬φ;
setting ~W to ~w merely eliminates possibly spurious side effects that may mask the
effect of changing the value of ~X. Moreover, when ~X = ~x, although the values of
variables on the causal path (i.e., the variables ~Z) may be perturbed by the change
to ~W , this perturbation has no impact on the value of φ. If (M,~u) |= ~Z = ~z∗, then
z∗ is the value of the variable Z in the context ~u. We capture the fact that the
perturbation has no impact on the value of φ by saying that if some variables Z on

391

Joseph Y. Halpern and Christopher Hitchcock

the causal path were set to their original values in the context ~u, φ would still be
true, as long as ~X = ~x.

EXAMPLE 2. For the forest-fire example, let M be the disjunctive model for the
forest fire sketched earlier, with endogenous variables L, ML, and F . We want to
show that L = 1 is an actual cause of F = 1. Clearly (M, (1, 1)) |= F = 1 and
(M, (1, 1)) |= L = 1; in the context (1,1), the lightning strikes and the forest burns
down. Thus, AC1 is satisfied. AC3 is trivially satisfied, since ~X consists of only one
element, L, so must be minimal. For AC2, take ~Z = {L,F} and take ~W = {ML},
let x′ = 0, and let w = 0. Clearly, (M, (1, 1)) |= [L ← 0,ML ← 0](F 6= 1); if the
lightning does not strike and the match is not dropped, the forest does not burn
down, so AC2(a) is satisfied. To see the effect of the lightning, we must consider the
contingency where the match is not dropped; the definition allows us to do that by
setting ML to 0. (Note that here setting L and ML to 0 overrides the effects of U ;
this is critical.) Moreover, (M, (1, 1)) |= [L ← 1,ML ← 0](F = 1); if the lightning
strikes, then the forest burns down even if the lit match is not dropped, so AC2(b)
is satisfied. (Note that since ~Z = {L,F}, the only subsets of ~Z − ~X are the empty
set and the singleton set consisting of just F .)

It is also straightforward to show that the lightning and the dropped match are
also causes of the forest fire in the context where U = (1, 1) in the conjunctive
model. Again, AC1 and AC3 are trivially satisfied and, again, to show that AC2
holds in the case of lightning we can take ~Z = {L,F}, ~W = {ML}, and x′ = 0, but
now we let w = 1. In the conjunctive scenario, if there is no lightning, there is no
forest fire, while if there is lightning (and the match is dropped) there is a forest
fire, so AC2(a) and AC2(b) are satisfied; similarly for the dropped match.

EXAMPLE 3. Now consider the Suzy-Billy example.4 We get the desired result—
that Suzy’s throw is a cause, but Billy’s is not—but only if we model the story
appropriately. Consider first a coarse causal model, with three endogenous variables:

• ST for “Suzy throws”, with values 0 (Suzy does not throw) and 1 (she does);

• BT for “Billy throws”, with values 0 (he doesn’t) and 1 (he does);

• BS for “bottle shatters”, with values 0 (it doesn’t shatter) and 1 (it does).

(We omit the exogenous variable here; it determines whether Billy and Suzy throw.)
Take the formula for BS to be such that the bottle shatters if either Billy or Suzy
throw; that is BS = max(BT ,ST). (We assume that Suzy and Billy will not
miss if they throw.) BT and ST play symmetric roles in this model; there is
nothing to distinguish them. Not surprisingly, both Billy’s throw and Suzy’s throw
are classified as causes of the bottle shattering in this model. The argument is
essentially identical to that in the disjunctive model of the forest-fire example in

4The discussion of this example is taken almost verbatim from HP.

392

Actual Causation and the Art of Modeling

the context U = (1, 1), where both the lightning and the dropped match are causes
of the fire.

The trouble with this model is that it cannot distinguish the case where both
rocks hit the bottle simultaneously (in which case it would be reasonable to say
that both ST = 1 and BT = 1 are causes of BS = 1) from the case where Suzy’s
rock hits first. To allow the model to express this distinction, we add two new
variables to the model:

• BH for “Billy’s rock hits the (intact) bottle”, with values 0 (it doesn’t) and
1 (it does); and

• SH for “Suzy’s rock hits the bottle”, again with values 0 and 1.

Now our equations will include:

• SH = ST ;

• BH = min(BT , 1− SH); and

• BS = max(SH ,BH).

Now it is the case that, in the context where both Billy and Suzy throw, ST = 1
is a cause of BS = 1, but BT = 1 is not. To see that ST = 1 is a cause, note
that, as usual, it is immediate that AC1 and AC3 hold. For AC2, choose ~Z =
{ST ,SH ,BH ,BS}, ~W = {BT}, and w = 0. When BT is set to 0, BS tracks ST :
if Suzy throws, the bottle shatters and if she doesn’t throw, the bottle does not
shatter. To see that BT = 1 is not a cause of BS = 1, we must check that there
is no partition ~Z ∪ ~W of the endogenous variables that satisfies AC2. Attempting
the symmetric choice with ~Z = {BT ,BH ,SH ,BS}, ~W = {ST}, and w = 0 violates
AC2(b). To see this, take ~Z ′ = {BH }. In the context where Suzy and Billy both
throw, BH = 0. If BH is set to 0, the bottle does not shatter if Billy throws
and Suzy does not. It is precisely because, in this context, Suzy’s throw hits the
bottle and Billy’s does not that we declare Suzy’s throw to be the cause of the
bottle shattering. AC2(b) captures that intuition by allowing us to consider the
contingency where BH = 0, despite the fact that Billy throws. We leave it to the
reader to check that no other partition of the endogenous variables satisfies AC2
either.

This example emphasizes an important moral. If we want to argue in a case of
preemption that X = x is the cause of φ rather than Y = y, then there must be
a random variable (BH in this case) that takes on different values depending on
whether X = x or Y = y is the actual cause. If the model does not contain such
a variable, then it will not be possible to determine which one is in fact the cause.
This is certainly consistent with intuition and the way we present evidence. If we
want to argue (say, in a court of law) that it was A’s shot that killed C rather than
B’s, then we present evidence such as the bullet entering C from the left side (rather

393

Joseph Y. Halpern and Christopher Hitchcock

than the right side, which is how it would have entered had B’s shot been the lethal
one). The side from which the shot entered is the relevant random variable in this
case. Note that the random variable may involve temporal evidence (if Y ’s shot
had been the lethal one, the death would have occurred a few seconds later), but it
certainly does not have to.

4 The Choice of Variables

A modeler has considerable leeway in choosing which variables to include in a model.
Nature does not provide a uniquely correct set of variables. Nonetheless, there are a
number of considerations that guide variable selection. While these will not usually
suffice to single out one choice of variables, they can provide a framework for the
rational evaluation of models, including resources for motivating and defending
certain choices of variables, and criticizing others.

The problem of choosing a set of variables for inclusion in a model has many
dimensions. One set of issues concerns the question of how many variables to
include in a model. If the modeler begins with a set of variables, how can she know
whether she should add additional variables to the model? Given that it is always
possible to add additional variables, is there a point at which the model contains
“enough” variables? Is it ever possible for a model to have “too many” variables?
Can the addition of further variables ever do positive harm to a model?

Another set of issues concerns the values of variables. Say that variable X ′ is a
refinement of X if, for each value x in the range of X, there is some subset S of
the range of X ′ such that X = x just in case X ′ is in S. When is it appropriate or
desirable to replace a variable with a refinement? Can it ever lead to problems if a
variable is too fine-grained? Similarly, are there considerations that would lead us
to prefer a model that replaced X with a new variable X ′′, whose range is a proper
subset or superset of the range of X?

Finally, are there constraints on the set of variables in a model over and above
those we might impose on individual variables? For instance, can the choice to
include a particular variable X within a model require us to include another variable
Y , or to exclude a particular variable Z?

While we cannot provide complete answers to all of these questions, we believe
a good deal can be said to reduce the arbitrariness of the choice of variables. The
most plausible way to motivate guidelines for the selection of variables is to show
how inappropriate choices give rise to systems of equations that are inaccurate, mis-
leading, or incomplete in their predictions of observations and interventions. In the
next three subsections, we present several examples to show how such considerations
can be brought to bear on the problem of variable choice.

4.1 The Number of Variables

We already saw in Example 3 that it is important to choose the variables correctly.
Adding more variables can clearly affect whether A is a cause of B. When is it

394

Actual Causation and the Art of Modeling

appropriate or necessary to add further variables to a model?5 Suppose that we
have an infinite sequence of models M1,M2, . . . such that the variables in M i are
X0, . . . , Xi+1, Y , and M i+1

Xi+1←1 = Mi (so that M i+1 can be viewed as an extension
of M i). Is it possible that whether X0 = 1 is a cause of Y = 1 can alternate as we go
through this sequence? This would indicate a certain “instability” in the causality.
In this circumstance, a lawyer should certainly be able to argue against using, say,
M7 as a model to show that X0 = 1 is cause of Y = 1. On the other hand, if the
sequence stabilizes, that is, if there is some k such that for all i ≥ k,M i delivers the
same verdict on some causal claim of interest, that would provide a strong reason
to accept Mk as sufficient.

Compare Example 2 with Example 3. In Example 2, we were able to adequately
model the scenario using only three endogenous variables: L, ML, and F . By
contrast, in Example 3, the model containing only three endogenous variables, BT ,
ST , and BS , was inadequate. What is the difference between the two scenarios?
One difference we have already mentioned is that there seems to be an important
feature of the second scenario that cannot be captured in the three-variable model:
Suzy’s rock hit the bottle before Billy’s did. There is also a significant “topological”
difference between the two scenarios. In the forest-fire example, there are two
directed paths into the variable F . We could interpolate additional variables along
these two paths. We could, for instance, interpolate a variable representing the
occurrence of a small brush fire. But doing so would not fundamentally change
the causal structure: there would still be just two directed paths into F . In the
case of preemption, however, adding the additional variables SH and BH created
an additional directed path that was not there before. The three-variable model
contained just two directed paths: one from ST to BS , and one from BT to BS .
However, once the variables SH and BH were added, there were three directed
paths: {ST ,SH ,BS}, {BT ,BH ,BS}, and {ST ,SH ,BH ,BS}. The intuition, then,
is that adding additional variables to a model will not affect the relations of actual
causation that hold in the model unless the addition of those variables changes the
“topology” of the model. A more complete mathematical characterization of
the conditions under which the verdicts of actual causality remain stable under the
addition of further variables strikes us as a worthwhile research project that has not
yet been undertaken.

4.2 The Ranges of Variables

Not surprisingly, the set of possible values of a variable must also be chosen ap-
propriately. Consider, for example, a case of “trumping”, introduced by Schaffer
[2000]. Suppose that a group of soldiers is very well trained, so that they will obey
any order given by a superior officer; in the case of conflicting orders, they obey the

5Although his model of causality is quite different from ours, Spohn [2003] also considers the

effect of adding or removing variables, and discusses how a model with fewer variables should be

related to one with more variables.

395

Joseph Y. Halpern and Christopher Hitchcock

highest-ranking officer. Both a sergeant and a major issue the order to march, and
the soldiers march. Let us put aside the morals that Schaffer attempts to draw from
this example (with which we disagree; see [Halpern and Pearl 2005] and [Hitchcock
2010]), and consider only the modeling problem. We will presumably want variables
S, M , and A, corresponding to the sergeant’s order, the major’s order, and the sol-
diers’ action. We might let S = 1 represent the sergeant’s giving the order to march
and S = 0 represent the sergeant’s giving no order; likewise for M and A. But this
would not be adequate. If the only possible order is the order to march, then there
is no way to capture the principle that in the case of conflicting orders, the soldiers
obey the major. One way to do this is to replace the variables M , S, and A by
variables M ′, S′ and A′ that take on three possible values. Like M , M ′ = 0 if the
major gives no order and M ′ = 1 if the major gives the order to march. But now
we allow M ′ = 2, which corresponds to the major giving some other order. S′ and
A′ are defined similarly. We can now write an equation to capture the fact that if
M ′ = 1 and S′ = 2, then the soldiers march, while if M ′ = 2 and S′ = 1, then the
soldiers do not march.

The appropriate set of values of a variable will depend on the other variables
in the picture, and the relationship between them. Suppose, for example, that a
hapless homeowner comes home from a trip to find that his front door is stuck. If
he pushes on it with a normal force then the door will not open. However, if he
leans his shoulder against it and gives a solid push, then the door will open. To
model this, it suffices to have a variable O with values either 0 or 1, depending on
whether the door opens, and a variable P , with values 0 or 1 depending on whether
or not the homeowner gives a solid push.

On the other hand, suppose that the homeowner also forgot to disarm the security
system, and that the system is very sensitive, so that it will be tripped by any push
on the door, regardless of whether the door opens. Let A = 1 if the alarm goes off,
A = 0 otherwise. Now if we try to model the situation with the same variable P , we
will not be able to express the dependence of the alarm on the homeowner’s push.
To deal with both O and A, we need to extend P to a 3-valued variable P ′, with
values 0 if the homeowner does not push the door, 1 if he pushes it with normal
force, and 2 if he gives it a solid push.

These considerations parallel issues that arise in philosophical discussions about
the metaphysics of “events”.6 Suppose that our homeowner pushed on the door with
enough force to open it. Is there just one event, the push, that can be described
at various levels of detail, such as a “push” or a “hard push”? This is the view of
Davidson [1967]. Or are there rather many different events corresponding to these
different descriptions, as argued by Kim [1973] and Lewis [1986b]? And if we take
the latter view, which of the many events that occur should be counted as causes of
the door’s opening? These strike us as pseudoproblems. We believe that questions

6This philosophical usage of the word “event” is different from the typical usage of the word in

computer science and probability, where an event is just a subset of the state space.

396

Actual Causation and the Art of Modeling

about causality are best addressed by dealing with the methodological problem of
constructing a model that correctly describes the effects of interventions in a way
that is not misleading or ambiguous.

A slightly different way in which one variable may constrain the values that
another may take is by its implicit presuppositions. For example, a counterfactual
theory of causation seems to have the somewhat counterintuitive consequence that
one’s birth is a cause of one’s death. This sounds a little odd. If Jones dies suddenly
one night, shortly before his 80th birthday, the coroner’s inquest is unlikely to list
“birth” as among the causes of his death. Typically, when we investigate the causes
of death, we are interested in what makes the difference between a person’s dying
and his surviving. So our model might include a variable D such D = 1 holds if
Jones dies shortly before his 80th birthday, and D = 0 holds if he continues to
live. If our model also includes a variable B, taking the value 1 if Jones is born, 0
otherwise, then there simply is no value that D would take if B = 0. Both D = 0
and D = 1 implicitly presuppose that Jones was born (i.e., B = 1). Our conclusion
is that if we have chosen to include a variable such as D in our model, then we
cannot conclude that Jones’ birth is a cause of his death!

4.3 Dependence and Independence

Lewis [1986a] added a constraint to his counterfactual theory of causation. In order
for event c to be a cause of event e, the two events cannot be logically related.
Suppose for instance, that Martha says “hello” loudly. If she had not said “hello”,
then she certainly could not have said “hello” loudly. But her saying “hello” is not
a cause of her saying “hello” loudly. The counterfactual dependence results from a
logical, rather than a causal, relationship between the two events.

We must impose a similar constraint upon causal models. Values of different
variables should not correspond to events that are logically related. But now, rather
than being an ad hoc restriction, it has a clear rationale. For suppose that we had
a model with variable H1 and H2, where H1 represents “Martha says ‘hello’ ” (i.e.,
H1 = 1 if Martha says “hello” and H1 = 0 otherwise), and H2 represents “Martha
says ‘hello’ loudly”. The intervention H1 = 0∧H2 = 1 is meaningless; it is logically
impossible for Martha not to say “hello” and to say ‘’hello” loudly.

We doubt that any careful modeler would choose variables that have logically
related values. However, the converse of this principle, that the different values
of any particular variable should be logically related (in fact, mutually exclusive),
is less obvious and equally important. Consider Example 3. While, in the actual
context, Billy’s rock will hit the bottle just in case Suzy’s doesn’t, this is not a
necessary relationship. Suppose that, instead of using two variables SH and BH ,
we try to model the scenario with a variable H that takes the value 1 if Suzy’s rock
hits, and and 0 if Billy’s rock hits. The reader can verify that, in this model, there
is no contingency such that the bottle’s shattering depends upon Suzy’s throw. The
problem, as we said, is that H = 0 and H = 1 are not mutually exclusive; there are

397

Joseph Y. Halpern and Christopher Hitchcock

possible situations in which both rocks hit or neither rock hits the bottle. In partic-
ular, this representation does not allow us to consider independent interventions on
the rocks hitting the bottle. As the discussion in Example 3 shows, it is precisely
such an intervention that is needed to establish that Suzy’s throw (and not Billy’s)
is the actual cause of the bottle shattering.

While these rules are simple in principle, their application is not always trans-
parent.

EXAMPLE 4. Consider cases of “switching”, which have been much discussed in
the philosophical literature. A train is heading toward the station. An engineer
throws a switch, directing the train down the left track, rather than the right track.
The tracks re-converge before the station, and the train arrives as scheduled. Was
throwing the switch a cause of the train’s arrival? HP consider two causal models
of this scenario. In the first, there is a random variable S which is 1 if the switch
is thrown (so the train goes down the left track) and 0 otherwise. In the second,
in addition to S, there are variables LT and RT , indicating whether or not the
train goes down the left track and right track, respectively. Note that with the first
representation, there is no way to model the train not making it to the arrival point.
With the second representation, we have the problem that LT = 1 and RT = 1
are arguably not independent; the train cannot be on both tracks at once. If we
want to model the possibility of one track or another being blocked, we should use,
instead of LT and RT , variables LB and RB , which indicate whether the left track
or right track, respectively, are blocked. This allows us to represent all the relevant
possibilities without running into independence problems. Note that if we have
only S as a random variable, then S = 1 cannot be a cause of the train arriving;
it would have arrived no matter what. With RB in the picture, the preliminary
HP definition of actual cause rules that S = 1 can be an actual cause of the train’s
arrival; for example, under the contingency that RB = 1, the train does not arrive
if S = 0. (However, once we extend the definition to include defaults, as we will in
the next section, it becomes possible once again to block this conclusion.)

These rules will have particular consequences for how we should represent events
that might occur at different times. Consider the following simplification of an
example introduced by Bennett [1987], and also considered in HP.

EXAMPLE 5. Suppose that the Careless Camper (CC for short) has plans to go
camping on the first weekend in June. He will go camping unless there is a fire in
the forest in May. If he goes camping, he will leave a campfire unattended, and
there will be a forest fire. Let the variable C take the value 1 if CC goes camping,
and 0 otherwise. How should we represent the state of the forest?

There appear to be at least three alternatives. The simplest proposal would be
to use a variable F that takes the value 1 if there is a forest fire at some time, and 0
otherwise.7 But now how are we to represent the dependency relations between F

7This is, in effect, how effects have been represented using “neuron diagrams” in late preemption

398

Actual Causation and the Art of Modeling

and C? Since CC will go camping only if there is no fire (in May), we would want to
have an equation such as C = 1−F . On the other hand, since there will be a fire (in
June) just in case CC goes camping, we will also need F = C. This representation is
clearly not rich enough, since it does not let us make the clearly relevant distinction
between whether the forest fire occurs in May or June. The problem is manifested
in the fact that the equations are cyclic, and have no consistent solution.8

A second alternative, adopted by Halpern and Pearl [2005, p. 860], would be to
use a variable F ′ that takes the value 0 if there is no fire, 1 if there is a fire in
May, and 2 if there is a fire in June. Now how should we write our equations?
Since CC will go camping unless there is a fire in May, the equation for C should
say that C = 0 iff F ′ = 1. And since there will be a fire in June if CC goes
camping, the equation for F ′ should say that F ′ = 2 if C = 1 and F ′ = 0 otherwise.
These equations are cyclic. Moreover, while they do have a consistent solution, they
are highly misleading in what they predict about the effects of interventions. For
example, the first equation tells us that intervening to create a forest fire in June
would cause CC to go camping in the beginning of June. But this seems to get the
causal order backwards!

The third way to model the scenario is to use two separate variables, F1 and F2,
to represent the state of the forest at separate times. F1 = 1 will represent a fire
in May, and F1 = 0 represents no fire in May; F2 = 1 represents a fire in June and
F2 = 0 represents no fire in June. Now we can write our equations as C = 1 − F1

and F2 = C × (1−F1). This representation is free from the defects that plague the
other two representations. We have no cycles, and hence there will be a consistent
solution for any value of the exogenous variables. Moreover, this model correctly
tells us that only an intervention on the state of the forest in May will affect CC’s
camping plans.

Once again, our discussion of the methodology of modeling parallels certain meta-
physical discussions in the philosophy literature. If heavy rains delay the onset of
a fire, is it the same fire that would have occurred without the rains, or a different
fire? It is hard to see how to gain traction on such an issue by direct metaphysical
speculation. By contrast, when we recast the issue as one about what kinds of
variables to include in causal models, it is possible to say exactly how the models
will mislead you if you make the wrong choice.

cases. See Hitchcock [2007b, pp. 85–88] for discussion.
8Careful readers will note the the preemption case of Example 3 is modeled in this way. In that

model, BH is a cause of BS , even though it is the earlier shattering of the bottle that prevents

Billy’s rock from hitting. Halpern and Pearl [2005] note this problem and offer a dynamic model

akin to the one recommended below. As it turns out, this does not affect the analysis of the

example offered above.

399

Joseph Y. Halpern and Christopher Hitchcock

5 Dealing with normality and typicality

While the definition of causality given in Definition 1 works well in many cases, it
does not always deliver answers that agree with (most people’s) intuition. Consider
the following example, taken from Hitchcock [2007a], based on an example due to
Hiddleston [2005].

EXAMPLE 6. Assassin is in possession of a lethal poison, but has a last-minute
change of heart and refrains from putting it in Victim’s coffee. Bodyguard puts
antidote in the coffee, which would have neutralized the poison had there been
any. Victim drinks the coffee and survives. Is Bodyguard’s putting in the antidote
a cause of Victim surviving? Most people would say no, but according to the
preliminary HP definition, it is. For in the contingency where Assassin puts in the
poison, Victim survives iff Bodyguard puts in the antidote.

Example 6 illustrates an even deeper problem with Definition 1. The struc-
tural equations for Example 6 are isomorphic to those in the forest-fire example,
provided that we interpret the variables appropriately. Specifically, take the en-
dogenous variables in Example 6 to be A (for “assassin does not put in poison”),
B (for “bodyguard puts in antidote”), and VS (for “victim survives”). Then A, B,
and VS satisfy exactly the same equations as L, ML, and F , respectively. In the
context where there is lightning and the arsonists drops a lit match, both the light-
ning and the match are causes of the forest fire, which seems reasonable. But here
it does not seem reasonable that Bodyguard’s putting in the antidote is a cause.
Nevertheless, any definition that just depends on the structural equations is bound
to give the same answers in these two examples. (An example illustrating the same
phenomenon is given by Hall [2007].) This suggests that there must be more to
causality than just the structural equations. And, indeed, the final HP definition
of causality allows certain contingencies to be labeled as “unreasonable” or “too
farfetched”; these contingencies are then not considered in AC2(a) or AC2(b). As
discussed by Halpern [2008], there are problems with the HP account; we present
here the approach used in [Halpern 2008] for dealing with these problems, which in-
volves assuming that an agent has, in addition to a theory of causality (as modeled
by the structural equations), a theory of “normality” or “typicality”. (The need
to consider normality was also stressed by Hitchcock [2007a] and Hall [2007], and
further explored by Hitchcock and Knobe [2009].) This theory would include state-
ments like “typically, people do not put poison in coffee” and “typically doctors do
not treat patients to whom they are not assigned”. There are many ways of giving
semantics to such typicality statements (e.g., [Adams 1975; Kraus, Lehmann, and
Magidor 1990; Spohn 2009]). For definiteness, we use ranking functions [Spohn
2009] here.

Take a world to be a complete description of the values of all the random variables.
we assume that each world has associated with it a rank, which is just a natural
number or ∞. Intuitively, the higher the rank, the less “normal” or “typical” the

400

Actual Causation and the Art of Modeling

world. A world with a rank of 0 is reasonably normal, one with a rank of 1 is
somewhat normal, one with a rank of 2 is quite abnormal, and so on. Given a
ranking on worlds, the statement “if p then typically q” is true if in all the worlds
of least rank where p is true, q is also true. Thus, in one model where people do not
typically put either poison or antidote in coffee, the worlds where neither poison
nor antidote is put in the coffee have rank 0, worlds where either poison or antidote
is put in the coffee have rank 1, and worlds where both poison and antidote are put
in the coffee have rank 2.

Take an extended causal model to be a tuple M = (S,F , κ), where (S,F) is a
causal model, and κ is a ranking function that associates with each world a rank.
In an acyclic extended causal model, a context ~u determines a world, denoted s~u.
~X = ~x is a cause of φ in an extended model M and context ~u if ~X = ~x is a cause of
φ according to Definition 1, except that in AC2(a), there must be a world s such
that κ(s) ≤ κ(s~u) and ~X = ~x′ ∧ ~W = ~w is true at s. This can be viewed as a
formalization of Kahneman and Miller’s [1986] observation that “an event is more
likely to be undone by altering exceptional than routine aspects of the causal chain
that led to it”.

This definition deals well with all the problematic examples in the literature.
Consider Example 6. Using the ranking described above, Bodyguard is not a cause
of Victim’s survival because the world that would need to be considered in AC2(a),
where Assassin poisons the coffee, is less normal than the actual world, where he
does not. We consider just one other example here (see [Halpern 2008] for further
discussion).

EXAMPLE 7. Consider the following story, taken from (an early version of) [Hall
2004]: Suppose that Billy is hospitalized with a mild illness on Monday; he is
treated and recovers. In the obvious causal model, the doctor’s treatment is a cause
of Billy’s recovery. Moreover, if the doctor does not treat Billy on Monday, then
the doctor’s omission to treat Billy is a cause of Billy’s being sick on Tuesday. But
now suppose that there are 100 doctors in the hospital. Although only doctor 1 is
assigned to Billy (and he forgot to give medication), in principle, any of the other
99 doctors could have given Billy his medication. Is the nontreatment by doctors
2–100 also a cause of Billy’s being sick on Tuesday?

Suppose that in fact the hospital has 100 doctors and there are variables
A1, . . . , A100 and T1, . . . ,T100 in the causal model, where Ai = 1 if doctor i is
assigned to treat Billy and Ai = 0 if he is not, and Ti = 1 if doctor i actually treats
Billy on Monday, and Ti = 0 if he does not. Doctor 1 is assigned to treat Billy;
the others are not. However, in fact, no doctor treats Billy. Further assume that,
typically, no doctor is assigned to a given patient; if doctor i is not assigned to
treat Billy, then typically doctor i does not treat Billy; and if doctor i is assigned
to Billy, then typically doctor i treats Billy. We can capture this in an extended
causal model where the world where no doctor is assigned to Billy and no doctor

401

Joseph Y. Halpern and Christopher Hitchcock

treats him has rank 0; the 100 worlds where exactly one doctor is assigned to Billy,
and that doctor treats him, have rank 1; the 100 worlds where exactly one doctor is
assigned to Billy and no one treats him have rank 2; and the 100× 99 worlds where
exactly one doctor is assigned to Billy but some other doctor treats him have rank
3. (The ranking given to other worlds is irrelevant.) In this extended model, in the
context where doctor i is assigned to Billy but no one treats him, i is the cause of
Billy’s sickness (the world where i treats Billy has lower rank than the world where
i is assigned to Billy but no one treats him), but no other doctor is a cause of Billy’s
sickness. Moreover, in the context where i is assigned to Billy and treats him, then
i is the cause of Billy’s recovery (for AC2(a), consider the world where no doctor is
assigned to Billy and none treat him).

Adding a normality theory to the model gives the HP account of actual causation
greater flexibility to deal with these kinds of cases. This raises the worry, however,
that this gives the modeler too much flexibility. After all, the modeler can now
render any claim that A is an actual cause of B false, simply by choosing a nor-
mality order that assigns the actual world s~u a lower rank than any world s needed
to satisfy AC2. Thus, the introduction of normality exacerbates the problem of
motivating and defending a particular choice of model. Fortunately, the literature
on the psychology of counterfactual reasoning and causal judgment goes some way
toward enumerating the sorts of factors that constitute normality. (See, for exam-
ple, [Alicke 1992; Cushman 2009; Cushman, Knobe, and Sinnott-Armstrong 2008;
Hitchcock and Knobe 2009; Kahneman and Miller 1986; Knobe and Fraser 2008;
Kahneman and Tversky 1982; Mandel, Hilton, and Catellani 1985; Roese 1997].)
These factors include the following:

• Statistical norms concern what happens most often, or with the greatest fre-
quency. Kahneman and Tversky [1982] gave subjects a story in which Mr.
Jones usually leaves work at 5:30, but occasionally leaves early to run errands.
Thus, a 5:30 departure is (statistically) “normal”, and an earlier departure
“abnormal”. This difference affected which alternate possibilities subjects
were willing to consider when reflecting on the causes of an accident in which
Mr. Jones was involved.

• Norms can involve moral judgments. Cushman, Knobe, and Sinnott-Armstrong
[2008] showed that people with different views about the morality of abortion
have different views about the abnormality of insufficient care for a fetus,
and this can lead them to make different judgments about the cause of a
miscarriage.

• Policies adopted by social institutions can also be norms. For instance, Knobe
and Fraser [2008] presented subjects with a hypothetical situation in which
a department had implemented a policy allowing administrative assistants
to take pens from the department office, but prohibiting faculty from doing

402

Actual Causation and the Art of Modeling

so. Subjects were more likely to attribute causality to a professor’s taking a
pen than to an assistant’s taking one, even when the situation was otherwise
similar.

• There can also be norms of “proper functioning” governing the operations of
biological organs or mechanical parts: there are certain ways that hearts and
spark plugs are “supposed” to operate. Hitchcock and Knobe [2009] show
that these kinds of norms can also affect causal judgments.

The law suggests a variety of principles for determining the norms that are used
in the evaluation of actual causation. In criminal law, norms are determined by
direct legislation. For example, if there are legal standards for the strength of seat
belts in an automobile, a seat belt that did not meet this standard could be judged
a cause of a traffic fatality. By contrast, if a seat belt complied with the legal
standard, but nonetheless broke because of the extreme forces it was subjected to
during a particular accident, the fatality would be blamed on the circumstances of
the accident, rather than the seat belt. In such a case, the manufacturers of the
seat belt would not be guilty of criminal negligence. In contract law, compliance
with the terms of a contract has the force of a norm. In tort law, actions are often
judged against the standard of “the reasonable person”. For instance, if a bystander
was harmed when a pedestrian who was legally crossing the street suddenly jumped
out of the way of an oncoming car, the pedestrian would not be held liable for
damages to the bystander, since he acted as the hypothetical “reasonable person”
would have done in similar circumstances. (See, for example, [Hart and Honoré
1985, pp. 142ff.] for discussion.) There are also a number of circumstances in
which deliberate malicious acts of third parties are considered to be “abnormal”
interventions, and affect the assessment of causation. (See, for example, [Hart and
Honoré 1985, pp. 68ff.].)

As with the choice of variables, we do not expect that these considerations will
always suffice to pick out a uniquely correct theory of normality for a causal model.
They do, however, provide resources for a rational critique of models.

6 Conclusion

As HP stress, causality is relative to a model. That makes it particularly important
to justify whatever model is chosen, and to enunciate principles for what makes a
reasonable causal model. We have taken some preliminary steps in investigating
this issue with regard to the choice of variables and the choice of defaults. However,
we hope that we have convinced the reader that far more needs to be done if causal
models are actually going to be used in applications.

Acknowledgments: We thank Wolfgang Spohn for useful comments. Joseph
Halpern was supported in part by NSF grants IIS-0534064 and IIS-0812045, and by
AFOSR grants FA9550-08-1-0438 and FA9550-05-1-0055.

403

Joseph Y. Halpern and Christopher Hitchcock

References

Adams, E. (1975). The Logic of Conditionals. Dordrecht, Netherlands: Reidel.

Alicke, M. (1992). Culpable causation. Journal of Personality and Social Psy-
chology 63, 368–378.

Bennett, J. (1987). Event causation: the counterfactual analysis. In Philosophical
Perspectives, Vol. 1, Metaphysics, pp. 367–386. Atascadero, CA: Ridgeview
Publishing Company.

Cushman, F. (2009). The role of moral judgment in causal and intentional attri-
bution: What we say or how we think?”. Unpublished manuscript.

Cushman, F., J. Knobe, and W. Sinnott-Armstrong (2008). Moral appraisals
affect doing/allowing judgments. Cognition 108 (1), 281–289.

Davidson, D. (1967). Causal relations. Journal of Philosophy LXIV (21), 691–703.

Glymour, C. and F. Wimberly (2007). Actual causes and thought experiments.
In J. Campbell, M. O’Rourke, and H. Silverstein (Eds.), Causation and Ex-
planation, pp. 43–67. Cambridge, MA: MIT Press.

Goldberger, A. S. (1972). Structural equation methods in the social sciences.
Econometrica 40 (6), 979–1001.

Hall, N. (2004). Two concepts of causation. In J. Collins, N. Hall, and L. A. Paul
(Eds.), Causation and Counterfactuals. Cambridge, Mass.: MIT Press.

Hall, N. (2007). Structural equations and causation. Philosophical Studies 132,
109–136.

Halpern, J. Y. (2008). Defaults and normality in causal structures. In Principles
of Knowledge Representation and Reasoning: Proc. Eleventh International
Conference (KR ’08), pp. 198–208.

Halpern, J. Y. and J. Pearl (2005). Causes and explanations: A structural-model
approach. Part I: Causes. British Journal for Philosophy of Science 56 (4),
843–887.

Hansson, R. N. (1958). Patterns of Discovery. Cambridge, U.K.: Cambridge Uni-
versity Press.

Hart, H. L. A. and T. Honoré (1985). Causation in the Law (second ed.). Oxford,
U.K.: Oxford University Press.

Hiddleston, E. (2005). Causal powers. British Journal for Philosophy of Sci-
ence 56, 27–59.

Hitchcock, C. (2001). The intransitivity of causation revealed in equations and
graphs. Journal of Philosophy XCVIII (6), 273–299.

Hitchcock, C. (2007a). Prevention, preemption, and the principle of sufficient
reason. Philosophical Review 116, 495–532.

404

Actual Causation and the Art of Modeling

Hitchcock, C. (2007b). What’s wrong with neuron diagrams? In J. Campbell,
M. O’Rourke, and H. Silverstein (Eds.), Causation and Explanation, pp. 69–
92. Cambridge, MA: MIT Press.

Hitchcock, C. (2010). Trumping and contrastive causation. Synthese. To appear.

Hitchcock, C. and J. Knobe (2009). Cause and norm. Journal of Philosophy . To
appear.

Hume, D. (1739). A Treatise of Human Nature. London: John Noon.

Hume, D. (1748). An Enquiry Concerning Human Understanding. Reprinted by
Open Court Press, LaSalle, IL, 1958.

Kahneman, D. and D. T. Miller (1986). Norm theory: comparing reality to its
alternatives. Psychological Review 94 (2), 136–153.

Kahneman, D. and A. Tversky (1982). The simulation heuristic. In D. Kahneman,
P. Slovic, and A. Tversky (Eds.), Judgment Under Incertainty: Heuristics and
Biases, pp. 201–210. Cambridge/New York: Cambridge University Press.

Kim, J. (1973). Causes, nomic subsumption, and the concept of event. Journal
of Philosophy LXX, 217–236.

Knobe, J. and B. Fraser (2008). Causal judgment and moral judgment: two
experiments. In W. Sinnott-Armstrong (Ed.), Moral Psychology, Volume 2:
The Cognitive Science of Morality, pp. 441–447. Cambridge, MA: MIT Press.

Kraus, S., D. Lehmann, and M. Magidor (1990). Nonmonotonic reasoning, pref-
erential models and cumulative logics. Artificial Intelligence 44, 167–207.

Lewis, D. (1973a). Causation. Journal of Philosophy 70, 113–126. Reprinted with
added “Postscripts” in D. Lewis, Philosophical Papers, Volume II, Oxford
University Press, 1986, pp. 159–213.

Lewis, D. (1986a). Causation. In Philosophical Papers, Volume II, pp. 159–213.
New York: Oxford University Press. The original version of this paper, with-
out numerous postscripts, appeared in the Journal of Philosophy 70, 1973,
pp. 113–126.

Lewis, D. (1986b). Events. In Philosophical Papers, Volume II, pp. 241–270. New
York: Oxford University Press.

Lewis, D. K. (1973b). Counterfactuals. Cambridge, Mass.: Harvard University
Press.

Mandel, D. R., D. J. Hilton, and P. Catellani (Eds.) (1985). The Psychology of
Counterfactual Thinking. New York: Routledge.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. New York: Cam-
bridge University Press.

Roese, N. (1997). Counterfactual thinking. Psychological Bulletin CXXI, 133–
148.

405

Joseph Y. Halpern and Christopher Hitchcock

Schaffer, J. (2000). Trumping preemption. Journal of Philosophy XCVII (4), 165–
181. Reprinted in J. Collins and N. Hall and L. A. Paul (eds.), Causation and
Counterfactuals, MIT Press, 2002.

Spohn, W. (2003). Dependency equilibria and the causal structure of decision
and game situations. In Homo Oeconomicus XX, pp. 195–255.

Spohn, W. (2009). A survey of ranking theory. In F. Huber and C. Schmidt-Petri
(Eds.), Degrees of Belief. An Anthology, pp. 185–228. Dordrecht, Netherlands:
Springer.

Woodward, J. (2003). Making Things Happen: A Theory of Causal Explanation.
Oxford, U.K.: Oxford University Press.

406

24

From C-Believed Propositions to the

Causal Calculator

Vladimir Lifschitz

1 Introduction

Default rules, unlike inference rules of classical logic, allow us to derive a new

conclusion only when it does not conflict with the other available information. The

best known example is the so-called commonsense law of inertia: in the absence

of information to the contrary, properties of the world can be presumed to be the

same as they were in the past. Making the idea of commonsense inertia precise is

known as the frame problem [Shanahan 1997]. Default reasoning is nonmonotonic,

in the sense that we may be forced to retract a conclusion derived using a default

when additional information becomes available.

The idea of a default first attracted the attention of AI researchers in the 1970s.

Developing a formal semantics of defaults turned out to be a difficult task. For

instance, the attempt to describe commonsense inertia in terms of circumscription

outlined in [McCarthy 1986] was unsatisfactory, as we learned from the Yale Shoot-

ing example [Hanks and McDermott 1987].

In this note, we trace the line of work on the semantics of defaults that started

with Judea Pearl’s 1988 paper on the difference between “E-believed” and “C-

believed” propositions. That paper has led other researchers first to the invention

of several theories of nonmonotonic causal reasoning, then to designing action lan-

guages C and C+, and then to the creation of the Causal Calculator—a software

system for automated reasoning about action and change.

2 Starting Point: Labels E and C

The paper Embracing Causality in Default Reasoning [Pearl 1988] begins with the

observation that

almost every default rule falls into one of two categories: expectation-

evoking or explanation-evoking. The former describes association among

events in the outside world (e.g., fire is typically accompanied by smoke);

the latter describes how we reason about the world (e.g., smoke normally

suggests fire).

Thus the rule fire ⇒ smoke is an expectation-evoking, or “causal” default; the rule

smoke ⇒ fire is explanation-evoking, or “evidential.” To take another example,

407

Kaoru
Text Box
Return to TOC

Vladimir Lifschitz

(1) rained ⇒ grass wet

is a causal default;

(2) grass wet ⇒ sprinkler on

is an evidential default.

To discuss the distinction between properties of causal and evidential defaults,

Pearl labels believed propositions by distinguishing symbols C and E. A proposi-

tion P is E-believed, written E(P), if it is a direct consequence of some evidential

rule. Otherwise, if P can be established as a direct consequence of only causal rules,

it is said to be C-believed, written C(P). The labels are used to prevent certain

types of inference chains; in particular, C-believed propositions are prevented in

Pearl’s paper from triggering evidential defaults. For example, both causal rule (1)

and evidential rule (2) are reasonable, but using them to infer sprinkler on from

rained is not.

We will see that the idea of using the distinguishing symbols C and E had

a significant effect on the study of commonsense reasoning over the next twenty

years.

3 “Explained” as a Modal Operator

The story continues with Hector Geffner’s proposal to turn the label C into a modal

operator and to treat Pearl’s causal rules as formulas of modal logic. A formula F

is considered “explained” if the formula CF holds.

A rule such as “rain causes the grass to be wet” may thus be expressed

as a sentence

rain → C grass wet,

which can then be read as saying that if rain is true, grass wet is

explained [Geffner 1990].

The paper defined, for a set of axioms of this kind, which propositions are “causally

entailed” by it.

Geffner showed how this modal language can be used to describe effects of actions.

We can express that e(x) is an effect of an action a(x) with precondition p(x) by

the axiom

(3) p(x)t ∧ a(x)t → Ce(x)t+1,

where p(x)t expresses that fluent p(x) holds at time t, and e(x)t+1 is understood in

a similar way; a(x)t expresses that action a(x) is executed between times t and t+1.

Such axioms explain the value of a fluent at some point in time (t + 1 in the

consequent of the implication) in terms of the past (t in the antecedent). Geffner

gives also an example of explaining the value of a fluent in terms of the values of

other fluents at the same point in time: if all ducts are blocked at time t, that causes

408

C-Believed Propositions

the room to be stuffy at time t. Such “static” causal dependencies are instrumental

when actions with indirect effects are involved. For instance, blocking a duct can

indirectly cause the room to become stuffy. We will see another example of this

kind in the next section.

4 Predicate “Caused”

Fangzhen Lin showed a few years later that the intuitions explored by Pearl and

Geffner can be made precise without introducing a new nonmonotonic semantics.

Circumscription [McCarthy 1986] will do if we employ, instead of the modal oper-

ator C, a new predicate.

Technically, we introduce a new ternary predicate Caused into the situa-

tion calculus: Caused(p, v, s) if the proposition p is caused (by something

unspecified) to have the truth value v in the state s [Lin 1995].

The counterpart of formula (3) in this language is

(4) p(x, s) → Caused(e(x), true, do(a(x), s)).

Lin acknowledges his intellectual debt to [Pearl 1988] by noting that his approach

echoes the theme of Pearl’s paper—the need for a primitive notion of causality in

default reasoning.

The proposal to circumscribe Caused was a major event in the history of research

on the use of circumscription for solving the frame problem. As we mentioned

before, the original method [McCarthy 1986] turned out to be unsatisfactory; the

improvement described in [Haugh 1987; Lifschitz 1987] is only applicable when

actions have no indirect effects. The method of [Lin 1995] is free of this limitation.

The main example of that paper is a suitcase with two locks and a spring loaded

mechanism that opens the suitcase instantaneously when both locks are in the

up position; opening the suitcase may thus become an indirect effect of toggling

a switch. The static causal relationship between the fluents up(l) and open is

expressed in Lin’s language by the axiom

(5) up(L1, s) ∧ up(L2, s) → Caused(open, true, s).

5 Principle of Universal Causation

Yet another important modification of Geffner’s theory was proposed in [McCain

and Turner 1997]. That approach was originally limited to formulas of the form

F → CG,

where F and G do not contain C. (Such formulas are particularly useful; for in-

stance, (3) has this form.) The authors wrote such a formula as

(6) F ⇒ G,

409

Vladimir Lifschitz

so that the thick arrow ⇒ represented in their paper a combination of material

implication → with the modal operator C. In [Turner 1999], that method was

extended to the full language of [Geffner 1990].

The key idea of this theory of causal knowledge is described in [McCain and

Turner 1997] as follows:

Intuitively, in a causally possible world history every fact that is caused

obtains. We assume in addition the principle of universal causation,

according to which—in a causally possible world history—every fact

that obtains is caused. In sum, we say that a world history is causally

possible if exactly the facts that obtain in it are caused in it.

The authors note that the principle of universal causation represents a strong philo-

sophical commitment that is rewarded by the mathematical simplicity of the non-

monotonic semantics that it leads to. The definition of their semantics is indeed

surprisingly simple, or at least short. They note also that in applications this strong

commitment can be easily relaxed.

The extension of [McCain and Turner 1997] described in [Giunchiglia, Lee, Lif-

schitz, McCain, and Turner 2004] allows F and G in (6) to be slightly more general

than propositional formulas, which is convenient when non-Boolean fluents are in-

volved. In the language of that paper we can write, for instance,

(7) at ⇒ ft+1 = v

to express that executing action a causes fluent f to take value v.

6 Action Descriptions

An action description is a formal expression representing a transition system—a

directed graph such that its vertices can be interpreted as states of the world,

with edges corresponding to the transitions caused by the execution of actions.

In [Giunchiglia and Lifschitz 1998], the nonmonotonic causal logic from [McCain

and Turner 1997] was used to define an action description language, called C. The

language C+ [Giunchiglia, Lee, Lifschitz, McCain, and Turner 2004] is an extension

of C that accomodates non-Boolean fluents and is also more expressive in some other

ways.

The distinguishing syntactic feature of action description languages is that they

do not involve symbols for time instants. For example, the counterpart of (7) in C+

is

a causes f = v.

The C+ keyword causes implicitly indicates a shift from the time instant t when the

execution of action a begins to the next time instant t+1 when fluent f is evaluated.

This keyword represents a combination of three elements: material implication, the

Pearl-Geffner causal operator, and time shift.

410

C-Believed Propositions

7 The Causal Calculator

Literal completion, defined in [McCain and Turner 1997], is a modification of the

completion process familiar from logic programming [Clark 1978]. It is applicable

to any finite set T of causal laws (6) whose heads G are literals, and produces a set

of propositional formulas such that its models in the sense of propositional logic are

identical to the models of T in the sense of the McCain-Turner causal logic. Literal

completion can be used to reduce some computational problems involving C action

descriptions to the propositional satisfiability problem.

This idea is used in the design of the Causal Calculator (CCalc)—a software

system that reasons about actions in domains described in a subset of C [McCain

1997]. CCalc performs search by invoking a SAT solver in the spirit of the “plan-

ning as satisfiability” method of [Kautz and Selman 1992]. Version 2 of CCalc

[Lee 2005] extends it to C+ action descriptions.

The Causal Calculator has been succesfully applied to several challenge problems

in the theory of commonsense reasoning [Lifschitz, McCain, Remolina, and Tac-

chella 2000], [Lifschitz 2000], [Akman, Erdoğan, Lee, Lifschitz, and Turner 2004].

More recently, it was used for the executable specification of norm-governed com-

putational societies [Artikis, Sergot, and Pitt 2009] and for the automatic analysis

of business processes under authorization constraints [Armando, Giunchiglia, and

Ponta 2009].

8 Conclusion

As we have seen, Judea Pearl’s idea of labeling the propositions that are derived

using causal rules has suggested to Geffner, Lin and others that the condition

G is caused (by something unspecified) if F holds

can be sometimes used as an approximation to

G is caused by F.

Eliminating the binary “is caused by” in favor of the unary “is caused” turned out

to be a remarkably useful technical device.

9 Acknowledgements

Thanks to Selim Erdoğan, Hector Geffner, and Joohyung Lee for comments on

a draft of this note. This work was partially supported by the National Science

Foundation under Grant IIS-0712113.

References

Akman, V., S. Erdoğan, J. Lee, V. Lifschitz, and H. Turner (2004). Representing

the Zoo World and the Traffic World in the language of the Causal Calculator.

Artificial Intelligence 153(1–2), 105–140.

411

Vladimir Lifschitz

Armando, A., E. Giunchiglia, and S. E. Ponta (2009). Formal specification and

automatic analysis of business processes under authorization constraints: an

action-based approach. In Proceedings of the 6th International Conference on

Trust, Privacy and Security in Digital Business (TrustBus’09).

Artikis, A., M. Sergot, and J. Pitt (2009). Specifying norm-governed computa-

tional societies. ACM Transactions on Computational Logic 9 (1).

Clark, K. (1978). Negation as failure. In H. Gallaire and J. Minker (Eds.), Logic

and Data Bases, pp. 293–322. New York: Plenum Press.

Geffner, H. (1990). Causal theories for nonmonotonic reasoning. In Proceedings

of National Conference on Artificial Intelligence (AAAI), pp. 524–530. AAAI

Press.

Giunchiglia, E., J. Lee, V. Lifschitz, N. McCain, and H. Turner (2004). Non-

monotonic causal theories. Artificial Intelligence 153(1–2), 49–104.

Giunchiglia, E. and V. Lifschitz (1998). An action language based on causal

explanation: Preliminary report. In Proceedings of National Conference on

Artificial Intelligence (AAAI), pp. 623–630. AAAI Press.

Hanks, S. and D. McDermott (1987). Nonmonotonic logic and temporal projec-

tion. Artificial Intelligence 33 (3), 379–412.

Haugh, B. (1987). Simple causal minimizations for temporal persistence and

projection. In Proceedings of National Conference on Artificial Intelligence

(AAAI), pp. 218–223.

Kautz, H. and B. Selman (1992). Planning as satisfiability. In Proceedings of

European Conference on Artificial Intelligence (ECAI), pp. 359–363.

Lee, J. (2005). Automated Reasoning about Actions.1 Ph.D. thesis, University of

Texas at Austin.

Lifschitz, V. (1987). Formal theories of action (preliminary report). In Proceedings

of International Joint Conference on Artificial Intelligence (IJCAI), pp. 966–

972.

Lifschitz, V. (2000). Missionaries and cannibals in the Causal Calculator. In Pro-

ceedings of International Conference on Principles of Knowledge Representa-

tion and Reasoning (KR), pp. 85–96.

Lifschitz, V., N. McCain, E. Remolina, and A. Tacchella (2000). Getting to the

airport: The oldest planning problem in AI. In J. Minker (Ed.), Logic-Based

Artificial Intelligence, pp. 147–165. Kluwer.

Lin, F. (1995). Embracing causality in specifying the indirect effects of actions. In

Proceedings of International Joint Conference on Artificial Intelligence (IJ-

CAI), pp. 1985–1991.

1http://peace.eas.asu.edu/joolee/papers/dissertation.pdf .

412

C-Believed Propositions

McCain, N. (1997). Causality in Commonsense Reasoning about Actions.2 Ph.D.

thesis, University of Texas at Austin.

McCain, N. and H. Turner (1997). Causal theories of action and change. In Pro-

ceedings of National Conference on Artificial Intelligence (AAAI), pp. 460–

465.

McCarthy, J. (1986). Applications of circumscription to formalizing common

sense knowledge. Artificial Intelligence 26 (3), 89–116.

Pearl, J. (1988). Embracing causality in default reasoning (research note). Arti-

ficial Intelligence 35(2), 259–271.

Shanahan, M. (1997). Solving the Frame Problem: A Mathematical Investigation

of the Common Sense Law of Inertia. MIT Press.

Turner, H. (1999). A logic of universal causation. Artificial Intelligence 113, 87–

123.

2ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.gz .

413

25

Analysis of the Binary Instrumental

Variable Model

Thomas S. Richardson and James M. Robins

1 Introduction

Pearl’s seminal work on instrumental variables [Chickering and Pearl 1996; Balke

and Pearl 1997] for discrete data represented a leap forwards in terms of under-

standing: Pearl showed that, contrary to what many had supposed based on linear

models, in the discrete case the assumption that a variable was an instrument

could be subjected to empirical test. In addition, Pearl improved on earlier bounds

[Robins 1989] for the average causal effect (ACE) in the absence of any monotonic-

ity assumptions. Pearl’s approach was also innovative insofar as he employed a

computer algebra system to derive analytic expressions for the upper and lower

bounds.

In this paper we build on and extend Pearl’s work in two ways. First we show

the geometry underlying Pearl’s bounds. As a consequence we are able to derive

bounds on the average causal effect for all four compliance types. Our analysis

also makes it possible to perform a sensitivity analysis using the distribution over

compliance types. Second our analysis provides a clear geometric picture of the

instrumental inequalities, and allows us to isolate the counterfactual assumptions

necessary for deriving these tests. This may be seen as analogous to the geometric

study of models for two-way tables [Fienberg and Gilbert 1970; Erosheva 2005].

Among other things this allows us to clarify which are the alternative hypotheses

against which Pearl’s test has power. We also relate these tests to recent work of

Pearl’s on bounding direct effects [Cai, Kuroki, Pearl, and Tian 2008].

2 Background

We consider three binary variables, X , Y and Z. Where:

Z is the instrument, presumed to be randomized e.g. the assigned treatment;

X is the treatment received;

Y is the response.

For X and Z, we will use 0 to indicate placebo, and 1 to indicate drug. For Y

we take 1 to indicate a desirable outcome, such as survival. Xz is the treatment a

415

Kaoru
Text Box
Return to TOC

Thomas S. Richardson and James M. Robins

tX , tY

Z X Y

Figure 1. Graphical representation of the IV model given by assumptions (1) and

(2).The shaded nodes are observed.

patient would receive if assigned to Z = z. We follow convention by referring to the

four compliance types:

Xz=0 Xz=1 Compliance Type

0 0 Never Taker NT

0 1 Complier CO

1 0 Defier DE

1 1 Always Taker AT

Since we suppose the counterfactuals are well-defined, if Z = z then X = Xz.

Similarly we consider counterfactuals Yxz for Y . Except where explicitly noted we

will make the exclusion restrictions:

Yx=0,z=0 = Yx=0,z=1 Yx=1,z=0 = Yx=1,z=1 (1)

for each patient, so that a patient’s outcome only depends on treatment assigned

via the treatment received. One consequence of the analysis below is that these

equations may be tested separately. We may thus similarly enumerate four types

of patient in terms of their response to received treatment:

Yx=0 Yx=1 Response Type

0 0 Never Recover NR

0 1 Helped HE

1 0 Hurt HU

1 1 Always Recover AR

As before, it is implicit in our notation that if X = x, then Yx = Y ; this is referred

to as the ‘consistency assumption’ (or axiom) by Pearl among others. In what

follows we will use tX to denote a generic compliance type in the set DX , and tY to

denote a generic response type in the set DY . We thus have 16 patient types:

〈tX , tY 〉 ∈ {NT, CO, DE, AT} × {NR, HE, HU, AR} ≡ DX × DY ≡ D.

(Here and elsewhere we use angle brackets 〈tX , tY 〉 to indicate an ordered pair.) Let

πtX
≡ p(tX) denote the marginal probability of a given compliance type tX ∈ DX ,

416

Binary Instrumental Variable Model

and let

πX ≡ {πtX
| tX ∈ DX}

denote a marginal distribution on DX . Similarly we use πtY |tX
≡ p(tY | tX) to

denote the probability of a given response type within the sub-population of in-

dividuals of compliance type tX , and πY |X to indicate a specification of all these

conditional probabilities:

πY |X ≡ {πtY |tX
| tX ∈ DX , tY ∈ DY }.

We will use π to indicate a joint distribution p(tX , tY) on D.

Except where explicitly noted we will make the randomization assumption that

the distribution of types 〈tX , tY 〉 is the same in both arms:

Z ⊥⊥ {Xz=0, Xz=1, Yx=0, Yx=1}. (2)

A graph corresponding to the model given by (1) and (2) is shown in Figure 1.

Notation

In places we will make use of the following compact notation for probability distri-

butions:

pyk|xjzi
≡ p(Y = k | X = j, Z = i),

pxj |zi
≡ p(X = j | Z = i),

pykxj |zi
≡ p(Y = k, X = j | Z = i).

There are several simple geometric constructions that we will use repeatedly. In

consequence we introduce these in a generic setting.

2.1 Joints compatible with fixed margins

Consider a bivariate random variable U = 〈U1, U2〉 ∈ {0, 1} × {0, 1}. Now for fixed

c1, c2 ∈ [0, 1] consider the set

Pc1,c2
=

{

p

∣

∣

∣

∣

∣

∑

u2

p(1, u2) = c1 ;
∑

u1

p(u1, 1) = c2

}

in other words, Pc1,c2
is the set of joint distributions on U compatible with fixed

margins p(Ui = 1) = ci, i = 1, 2.

It is not hard to see that Pc1,c2
is a one-dimensional subset (line segment) of

the 3-dimensional simplex of distributions for U . We may describe it explicitly as

follows:

p(1, 1) = t

p(1, 0) = c1 − t

p(0, 1) = c2 − t

p(0, 0) = 1 − c1 − c2 + t

t ∈
[

max {0, (c1 + c2) − 1} , min {c1, c2}
]

. (3)

417

Thomas S. Richardson and James M. Robins

c1

c2

0 1

1

(iii)

(i)

(ii)

(iv)

Figure 2. The four regions corresponding to different supports for t in (3); see Table

1.

See also [Pearl 2000] Theorem 9.2.10. The range of t, or equivalently the support

for p(1, 1), is one of four intervals, as shown in Table 1. These cases correspond to

c1 ≤ 1 − c2 c1 ≥ 1 − c2

c1 ≤ c2 (i) t ∈ [0, c1] (ii) t ∈ [c1 + c2 − 1, c1]

c1 ≥ c2 (iii) t ∈ [0, c2] (iv) t ∈ [c1 + c2 − 1, c2]

Table 1. The support for t in (3) in each of the four cases relating c1 and c2.

the four regions show in Figure 2.

Finally, we note that since for c1, c2 ∈ [0, 1], max {0, (c1 + c2) − 1} ≤ min {c1, c2},

it follows that {〈c1, c2〉 | Pc1,c2
6= ∅} = [0, 1]2. Thus for every pair of values 〈c1, c2〉

there exists a joint distribution p(U1, U2) for which p(Ui = 1) = ci, i = 1, 2.

2.2 Two quantities with a specified average

We now consider the set:

Qc,α = {〈u, v〉 | αu + (1 − α)v = c, u, v ∈ [0, 1]}

where c, α ∈ [0, 1]. In words, Qc,α is the set of pairs of values 〈u, v〉 in [0, 1] which

are such that the weighted average αu + (1 − α)v is c.

It is simple to see that this describes a line segment in the unit square. Further

consideration shows that for any value of α ∈ [0, 1], the segment will pass through

the point 〈c, c〉 and will be contained within the union of two rectangles:

([c, 1] × [0, c]) ∪ ([0, c] × [1, c]).

The slope of the line is negative for α ∈ (0, 1). For α ∈ (0, 1) the line segment may

418

Binary Instrumental Variable Model

u

v

0 1

1

c

c

Figure 3. Illustration of Qc,α.

be parametrized as follows:
{

u = (c − t(1 − α))/α,

v = t,
t ∈

[

max

(

0,
c − α

1 − α

)

, min

(

c

1 − α
, 1

)]

}

.

The left and right endpoints of the line segment are:

〈u, v〉 =

〈

max
(

0, 1 + (c − 1)/α
)

, min
(

c/(1 − α), 1
)

〉

and

〈u, v〉 =

〈

min
(

c/α, 1
)

, max
(

0, (c − α)/(1 − α)
)

〉

respectively. See Figure 3.

2.3 Three quantities with two averages specified

We now extend the discussion in the previous section to consider the set:

Q(c1,α1)(c2,α2) = {〈u, v, w〉 | α1u + (1 − α1)w = c1,

α2v + (1 − α2)w = c2, u, v, w ∈ [0, 1]} .

In words, this consists of the set of triples 〈u, v, w〉 ∈ [0, 1]3 for which pre-specified

averages of u and w (via α1), and v and w (via α2) are equal to c1 and c2 respectively.

If this set is not empty, it is a line segment in [0, 1]3 obtained by the intersection

of two rectangles:
(

{〈u, w〉 ∈ Qc1,α1
} × {v ∈ [0, 1]}

)

∩

(

{〈v, w〉 ∈ Qc2,α2
} × {u ∈ [0, 1]}

)

; (4)

see Figures 4 and 5. For α1, α2 ∈ (0, 1) we may parametrize the line segment (4) as

follows:

u = (c1 − t(1 − α1))/α1,

v = (c2 − t(1 − α2))/α2,

w = t,

t ∈ [tl, tu]

,

419

Thomas S. Richardson and James M. Robins

u

v

w

c1

c1

(a)

u

w

v

c2

c2

(b)

Figure 4. (a) The plane without stripes is α1u + (1 − α1)w = c1. (b) The plane

without checks is α2v + (1 − α2)w = c2.

where

tl ≡ max

{

0,
c1 − α1

1 − α1
,
c2 − α2

1 − α2

}

, tu ≡ min

{

1,
c1

1 − α1
,

c2

1 − α2

}

.

Thus Q(c1,α1)(c2,α2) 6= ∅ if and only if tl ≤ tu. It follows directly that for fixed

c1, c2 the set of pairs 〈α1, α2〉 ∈ [0, 1]2 for which Q(c1,α1)(c2,α2) is not empty may

be characterized thus:

Rc1,c2
≡

{

〈α1, α2〉
∣

∣Q(c1,α1)(c2,α2) 6= ∅
}

= [0, 1]2 ∩
⋂

i∈{1,2}

i∗=3−i

{〈α1, α2〉 | (αi − ci)(αi∗ − (1 − ci∗)) ≤ c∗i (1 − ci)}. (5)

In fact, as shown in Figure 6 at most one constraint is active, so simplification is

possible: let k = arg maxj cj , and k∗ = 3 − k, then

Rc1,c2
= [0, 1]2 ∩ {〈α1, α2〉 | (αk − ck)(αk∗ − (1 − ck∗)) ≤ c∗k(1 − ck)}.

(If c1 = c2 then Rc1,c2
= [0, 1]2.)

In the two dimensional analysis in §2.2 we observed that for fixed c, as α varied,

the line segment would always remain inside two rectangles, as shown in Figure 3.

In the three dimensional situation, the line segment (4) will stay within three boxes:

(i) If c1 < c2 then the line segment (4) is within:

([0, c1]× [0, c2]× [c2, 1])∪ ([0, c1]× [c2, 1]× [c1, c2]) ∪ ([c1, 1]× [c2, 1]× [0, c1]).

420

Binary Instrumental Variable Model

c1

c1

c2

c2

v

w

u

(a)

c2

w

v
c2

c1

c1

(b)

Figure 5. Q(c1,α1)(c2,α2) corresponds to the section of the line between the two

marked points; (a) view towards u-w plane; (b) view from v-w plane. (Here c1 < c2.)

This may be seen as a ‘staircase’ with a ‘corner’ consisting of three blocks,

descending clockwise from 〈0, 0, 1〉 to 〈1, 1, 0〉; see Figure 7(a). The first and

second boxes intersect in the line segment joining the points 〈0, c2, c2〉 and

〈c1, c2, c2〉; the second and third intersect in the line segment joining 〈c1, c2, c1〉

and 〈c1, 1, c1〉.

(ii) If c1 > c2 then the line segment is within:

([0, c1]× [0, c2]× [c1, 1])∪ ([c1, 1]× [0, c2]× [c2, c1]) ∪ ([c1, 1]× [c2, 1]× [0, c2]).

This is a ‘staircase’ of three blocks, descending counter-clockwise from 〈0, 0, 1〉

to 〈1, 1, 0〉; see Figure 7(b). The first and second boxes intersect in the line

segment joining the points 〈c1, 0, c1〉 and 〈c1, c2, c1〉; the second and third

intersect in the line segment joining 〈c1, c2, c2〉 and 〈1, c2, c2〉.

(iii) If c1 = c2 = c then the ‘middle’ box disappears and we are left with

([0, c] × [0, c] × [c, 1]) ∪ ([c, 1] × [c, 1] × [0, c]).

In this case the two boxes touch at the point 〈c, c, c〉.

Note however, that the number of ‘boxes’ within which the line segment (4) lies

may be 1, 2 or 3 (or 0 if Q(c1,α1)(c2,α2) = ∅). This is in contrast to the simpler

case considered in §2.2 where the line segment Qc,α always intersected exactly two

rectangles; see Figure 3.

3 Characterization of compatible distributions of type

Returning to the Instrumental Variable model introduced in §2, for a given patient

the values taken by Y and X are deterministic functions of Z, tX and tY . Conse-

421

Thomas S. Richardson and James M. Robins

!
!

!
"

Figure 6. Rc1,c2
corresponds to the shaded region. The hyperbola of which one

arm forms a boundary of this region corresponds to the active constraint; the other

hyperbola to the inactive constraint.

quently, under randomization (2), a distribution over D determines the conditional

distributions p(x, y | z) for z ∈ {0, 1}. However, since distributions on D form a 15

dimensional simplex, while p(x, y | z) is of dimension 6, it is clear that the reverse

does not hold; thus many different distributions over D give rise to the same distri-

butions p(x, y | z). In what follows we precisely characterize the set of distributions

over D corresponding to a given distribution p(x, y | z).

We will accomplish this in the following steps:

1. We first characterize the set of distributions πX on DX compatible with a

given distribution p(x | z).

2. Next we use the technique used for Step 1 to reduce the problem of character-

izing distributions πY |X compatible with p(x, y | z) to that of characterizing

the values of p(yx = 1 | tX) compatible with p(x, y | z).

3. For a fixed marginal distribution πX on DX we then describe the set of values

for p(yx = 1 | x, tX) compatible with the observed distribution p(y | x, z).

4. In general, some distributions πX on DX and observed distributions p(y | x, z)

may be incompatible in that there are no compatible values for p(yx = 1 |

tX). We use this to find the set of distributions πX on DX compatible with

p(y, x | z) (by restricting the set of distributions found at step 1).

5. Finally we describe the values for p(yx = 1 | tX) compatible with the distri-

butions π over DX found at the previous step.

We now proceed with the analysis.

422

Binary Instrumental Variable Model

v

u

c2

c1

c1

c2

w

(a) (b)

u

v

c1

c2

c1

c2

w

Figure 7. ‘Staircases’ of three boxes illustrating the possible support for

Q(c1,α1)(c2,α2); (a) c1 < c2; (b) c2 < c1. Sides of the boxes that are formed by

(subsets of) faces of the unit cube are not shown. The line segments shown are

illustrative; in general they may not intersect all 3 boxes.

3.1 Distributions πX on DX compatible with p(x | z)

Under random assignment we have

p(x = 1 | z = 0) = p(Xz=0 = 1, Xz=1 = 0) + p(Xz=0 = 1, Xz=1 = 1)

= p(DE) + p(AT),

p(x = 1 | z = 1) = p(Xz=0 = 0, Xz=1 = 1) + p(Xz=0 = 1, Xz=1 = 1)

= p(CO) + p(AT).

Letting Ui+1 = Xz=i, i = 0, 1 and cj+1 = p(x = 1 | z = j), j = 0, 1, it follows

directly from the analysis in §2.1 that the set of distributions πX on DX that are

compatible with p(x | z) are thus given by

Pc1,c2
= (6)

πAT = t,

πDE = c1 − t,

πCO = c2 − t,

πNT = 1 − c1 − c2 + t,

t ∈
[

max {0, (c1 + c2) − 1} , min {c1, c2}
]

.

3.2 Reduction step in characterizing distributions πY |X compatible

with p(x, y | z)

Suppose that we were able to ascertain the set of possible values for the eight

quantities:

γi
tX

≡ p(yx=i = 1 | tX), for i ∈ {0, 1} and tX ∈ DX ,

423

Thomas S. Richardson and James M. Robins

p(AR | tX)

p(HE | tX) p(HU | tX)

p(NR | tX)

γ1

tX
γ0

tX

1

Figure 8. A graph representing the functional dependencies used in the reduction

step in §3.2. The rectangular node indicates that the probabilities are required to

sum to 1.

that are compatible with p(x, y | z). Note that p(yx=i = 1 | tX) is written as

p(y = 1 | do(x= i), tX) using Pearl’s do(·) notation. It is then clear that the set of

possible distributions πY |X that are compatible with p(x, y | z) simply follows from

the analysis in §2.1, since

γ0
tX

= p(yx=0 = 1 | tX)

= p(HU | tX) + p(AR | tX),

γ1
tX

= p(yx=1 = 1 | tX)

= p(HE | tX) + p(AR | tX).

These relationships are also displayed graphically in Figure 8: in this particular

graph all children are simple sums of their parents; the boxed 1 represents the ‘sum

to 1’ constraint.

Thus, by §2.1, for given values of γi
tX

the set of distributions πY |X is given by:

p(AR | tX) ∈
[

max
{

0, (γ0
tX

+ γ1
tX

) − 1
}

, min
{

γ0
tX

, γ1
tX

}]

,

p(NR | tX) = 1 − γ0
tX

− γ1
tX

+ p(AR | tX),

p(HE | tX) = γ1
tX

− p(AR | tX),

p(HU | tX) = γ0
tX

− p(AR | tX)

. (7)

It follows from the discussion at the end of §2.1 that the values of γ0
tX

and γ1
tX

are

not restricted by the requirement that there exists a distribution p(· | tX) on DY .

Consequently we may proceed in two steps: first we derive the set of values for the

eight parameters {γi
tX

} and the distribution on πX (jointly) without consideration

of the parameters for πY |X ; second we then derive the parameters πY |X , as described

above.

Finally we note that many causal quantities of interest, such as the average causal

effect (ACE), and relative risk (RR) of X on Y , for a given response type tX , may

424

Binary Instrumental Variable Model

γ0

AT
γ0

NT
πX γ1

NT
γ1

AT

p(y|x=0, z=1) p(x|z=1) p(y|x=1, z=1)

p(y|x=0, z=0) p(x|z=0) p(y|x=1, z=0)

γ0

CO
γ1

DE

γ0

DE
γ1

CO

Figure 9. A graph representing the functional dependencies in the analysis of the

binary IV model. Rectangular nodes are observed; oval nodes are unknown param-

eters. See text for further explanation.

be expressed in terms of the γi
tX

parameters:

ACE(tX) = γ1
tX

− γ0
tX

, RR(tX) = γ1
tX

/γ0
tX

.

Consequently, for many purposes it may be unnecessary to consider the parameters

πY |X at all.

3.3 Values for {γi
tX

} compatible with πX and p(y | x, z)

We will call a specification of values for πX, feasible for the observed distribution if

(a) πX lies within the set described in §3.1 of distributions compatible with p(x | z)

and (b) there exists a set of values for γi
tX

which results in the distribution p(y | x, z).

In the next section we give an explicit characterization of the set of feasible

distributions πX ; in this section we characterize the set of values of γi
tX

compatible

with a fixed feasible distribution πX and p(y | x, z).

PROPOSITION 1. The following equations relate πX , γ0
CO, γ0

DE, γ0
NT to p(y | x=

0, z):

p(y=1 | x=0, z=0) = (γ0
COπCO + γ0

NTπNT)/(πCO + πNT), (8)

p(y=1 | x=0, z=1) = (γ0
DEπDE + γ0

NTπNT)/(πDE + πNT), (9)

Similarly, the following relate πX , γ1
CO, γ1

DE, γ1
AT to p(y | x=1, z):

p(y=1 | x=1, z=0) = (γ1
DEπDE + γ1

ATπAT)/(πDE + πAT), (10)

p(y=1 | x=1, z=1) = (γ1
COπCO + γ1

ATπAT)/(πCO + πAT). (11)

Equations (8)–(11) are represented in Figure 9. Note that the parameters γ0
AT and

γ1
NT are completely unconstrained by the observed distribution since they describe,

respectively, the effect of non-exposure (X = 0) on Always Takers, and exposure

(X = 1) on Never Takers, neither of which ever occur. Consequently, the set

425

Thomas S. Richardson and James M. Robins

Figure 10. Geometric picture illustrating the relation between the γi
tX

parameters

and p(y | x, z). See also Figure 9.

of possible values for each of these parameters is always [0, 1]. Graphically this

corresponds to the disconnection of γ0
AT and γ1

NT from the remainder of the graph.

As shown in Proposition 1 the remaining six parameters may be divided into two

groups, {γ0
NT, γ0

DE, γ0
CO} and {γ1

AT, γ1
DE, γ1

CO}, depending on whether they relate to

unexposed subjects, or exposed subjects. Furthermore, as the graph indicates, for

a fixed feasible value of πX , compatible with the observed distribution p(x, y | z)

(assuming such exists), these two sets are variation independent. Thus, for a fixed

feasible value of πX we may analyze each of these sets separately.

A geometric picture of equations (8)–(11) is given in Figure 10: there is one square

for each compliance type, with axes corresponding to γ0
tX

and γ1
tX

; the specific value

of 〈γ0
tX

, γ1
tX

〉 is given by a cross in the square. There are four lines corresponding

to the four observed quantities p(y = 1 | x, z). Each of these observed quantities,

which is denoted by a cross on the respective line, is a weighted average of two γi
tX

parameters, with weights given by πX (the weights are not depicted explicitly).

Proof of Proposition 1: We prove (8); the other proofs are similar. Subjects for

426

Binary Instrumental Variable Model

whom X = 0 and Z = 0 are either Never Takers or Compliers. Hence

p(y=1 | x=0, z=0) = p(y=1 | x=0, z=0, tX =NT)p(tX =NT | x=0, z=0)

+p(y=1 | x=0, z=0, tX =CO)p(tX =CO | x=0, z=0)

= p(yx=0 =1 | x=0, z=0, tX =NT)p(tX =NT | tX ∈ {CO, NT})

+p(yx=0 =1 | x=0, z=0, tX =CO)p(tX =CO | tX ∈ {CO, NT})

= p(yx=0 =1 | z=0, tX =NT) × πNT/(πNT + πCO)

+p(yx=0 =1 | z=0, tX =CO) × πCO/(πNT + πCO)

= p(yx=0 =1 | tX =NT) × πNT/(πNT + πCO)

+p(yx=0 =1 | tX =CO) × πCO/(πNT + πCO)

= (γ0
COπCO + γ0

NTπNT)/(πCO + πNT).

Here the first equality is by the chain rule of probability; the second follows by

consistency; the third follows since Compliers and Never Takers have X = 0 when

Z = 0; the fourth follows by randomization (2). 2

Values for γ0
CO, γ0

DE, γ0
NT compatible with a feasible πX

Since (8) and (9) correspond to three quantities with two averages specified, we may

apply the analysis in §2.3, taking α1 = πCO/(πCO + πNT), α2 = πDE/(πDE + πNT),

ci = p(y = 1 | x = 0, z = i − 1) for i = 1, 2, u = γ0
CO, v = γ0

DE and w = γ0
NT.

Under this substitution, the set of possible values for 〈γ0
CO, γ0

DE, γ0
NT〉 is then given

by Q(c1,α1)(c2,α2).

Values for γ1
CO, γ1

DE, γ1
AT compatible with a feasible πX

Likewise since (10) and (11) contain three quantities with two averages specified we

again apply the analysis from §2.3, taking α1 = πCO/(πCO+πAT), α2 = πDE/(πDE+

πAT), ci = p(y = 1 | x= 1, z =2 − i) for i = 1, 2, u = γ1
CO, v = γ1

DE and w = γ1
AT.

The set of possible values for 〈γ1
CO, γ1

DE, γ1
AT〉 is then given by Q(c1,α1)(c2,α2).

3.4 Values of πX compatible with p(x, y | z)

In §3.1 we characterized the distributions πX compatible with p(x | z) as a one

dimensional subspace of the three dimensional simplex, parameterized in terms of

t ≡ πAT; see (6). We now incorporate the additional constraints on πX that arise

from p(y | x, z). These occur because some distributions πX , though compatible

with p(x | z), lead to an empty set of values for 〈γ1
CO, γ1

DE, γ1
AT〉 or 〈γ0

CO, γ0
DE, γ0

NT〉

and thus are infeasible.

Constraints on πX arising from p(y | x = 0, z)

Building on the analysis in §3.3 the set of values for

〈α1, α2〉 = 〈πCO/(πCO + πNT), πDE/(πDE + πNT)〉

= 〈πCO/px0|z0
, πDE/px0|z0

〉 (12)

427

Thomas S. Richardson and James M. Robins

compatible with p(y | x = 0, z) (i.e. for which the corresponding set of values for

〈γ0
CO, γ0

DE, γ0
NT〉 is non-empty) is given by Rc∗

1
,c∗

2
, where c∗i = p(y = 1 | x = 0, z =

i − 1), i = 1, 2 (see §2.3). The inequalities defining Rc∗
1
,c∗

2
may be translated into

upper bounds on t ≡ πAT in (6), as follows:

t ≤ min

1 −
∑

j∈{0,1}

p(y=j, x=0 | z=j), 1 −
∑

k∈{0,1}

p(y=k, x=0 | z=1−k)

. (13)

Proof: The analysis in §3.3 implied that for Rc∗
1
,c∗

2
6= ∅ we require

c∗1 − α1

1 − α1
≤

c∗2
1 − α2

and
c∗2 − α2

1 − α2
≤

c∗1
1 − α1

. (14)

Taking the first of these and plugging in the definitions of c∗1, c∗2, α1 and α2 from

(12) gives:

py1|x0,z0
− (πCO/px0|z0

)

1 − (πCO/px0|z0
)

≤
py1|x0,z1

1 − (πDE/px0|z1
)

(⇔) (py1|x0,z0
− (πCO/px0|z0

))(1 − (πDE/px0|z1
)) ≤ py1|x0,z1

(1 − (πCO/px0|z0
))

(⇔) (py1,x0|z0
− πCO)(px0|z1

− πDE) ≤ py1,x0|z1
(px0|z0

− πCO).

But px0|z1
− πDE = px0|z0

− πCO = πNT, hence these terms may be cancelled to

give:

(py1,x0|z0
− πCO) ≤ py1,x0|z1

(⇔) πAT − px1|z1
≤ py1,x0|z1

− py1,x0|z0

(⇔) πAT ≤ 1 − py0,x0|z1
− py1,x0|z0

.

A similar argument applied to the second constraint in (14) to derive that

πAT ≤ 1 − py0,x0|z0
− py1,x0|z1

,

as required. 2

Constraints on πX arising from p(y | x = 1, z)

Similarly using the analysis in §3.3 the set of values for

〈α1, α2〉 = 〈πCO/(πCO + πAT), πDE/(πDE + πAT)〉

compatible with p(y | x=1, z) (i.e. that the corresponding set of values for 〈γ1
CO, γ1

DE, γ1
AT〉

is non-empty) is given by Rc∗∗
1

,c∗∗
2

, where c∗∗i = p(y = 1 | x = 1, z = 2 − i), i = 1, 2

(see §2.3). Again, we translate the inequalities which define Rc∗∗
1

,c∗∗
2

into further

upper bounds on t = πAT in (6):

t ≤ min

∑

j∈{0,1}

p(y=j, x=1 | z=j),
∑

k∈{0,1}

p(y=k, x=1 | z=1−k)

. (15)

428

Binary Instrumental Variable Model

The proof that these inequalities are implied, is very similar to the derivation of the

upper bounds on πAT arising from p(y | x = 0, z) considered above.

The distributions πX compatible with the observed distribution

It follows that the set of distributions on DX that are compatible with the observed

distribution, which we denote PX , may be given thus:

PX =

πAT ∈ [lπAT, uπAT],

πNT(πAT) = 1 − p(x = 1 | z = 0) − p(x = 1 | z = 1) + πAT,

πCO(πAT) = p(x = 1 | z = 1) − πAT,

πDE(πAT) = p(x = 1 | z = 0) − πAT

, (16)

where

lπAT = max {0, p(x = 1 | z = 0) + p(x = 1 | z = 1) − 1} ;

uπAT = min

p(x = 1 | z = 0), p(x = 1 | z = 1),

1 −
∑

j p(y=j, x=0 | z=j), 1 −
∑

k p(y=k, x=0 | z=1−k),
∑

j p(y=j, x=1 | z=j),
∑

k p(y=k, x=1 | z=1−k)

.

Observe that unlike the upper bound, the lower bound on πAT (and πNT) obtained

from p(x, y | z) is the same as the lower bound derived from p(x | z) alone.

We define πX(πAT) ≡ 〈πNT(πAT), πCO(πAT), πDE(πAT), πAT〉, for use below. Note

the following:

PROPOSITION 2. When πAT (equivalently πNT) is minimized then either πNT = 0

or πAT = 0.

Proof: This follows because, by the expression for lπAT, either lπAT = 0, or lπAT =

p(x = 1 | z = 0) + p(x = 1 | z = 1) − 1, in which case lπNT = 0 by (16). 2

4 Projections

The analysis in §3 provides a complete description of the set of distributions over

D compatible with a given observed distribution. In particular, equation (16) de-

scribes the one dimensional set of compatible distributions over DX ; in §3.3 we

first gave a description of the one dimensional set of values over 〈γ0
CO, γ0

DE, γ0
NT〉

compatible with the observed distribution and a specific feasible distribution πX

over DX ; we then described the one dimensional set of values for 〈γ1
CO, γ1

DE, γ1
AT〉.

Varying πX over the set PX of feasible distributions over DX , describes a set of

lines, forming two two-dimensional manifolds which represent the space of possible

values for 〈γ0
CO, γ0

DE, γ0
NT〉 and likewise for 〈γ1

CO, γ1
DE, γ1

AT〉. As noted previously,

the parameters γ0
AT and γ1

NT are unconstrained by the observed data. Finally, if

there is interest in distributions over response types, there is a one-dimensional set

429

Thomas S. Richardson and James M. Robins

of such distributions associated with each possible pair of values from γ0
tX

and γ1
tX

.

For the purposes of visualization it is useful to look at projections. There are

many such projections that could be considered, here we focus on projections that

display the relation between the possible values for πX and γx
tX

. See Figure 11.

We make the following definition:

αij

tX
(πX) ≡ p(tX | Xz=i = j),

where πX = 〈πNT, πCO, πDE, πAT〉 ∈ PX , as before. For example, α00
NT(πX) =

πNT/(πNT + πCO), α10
NT(πX) = πNT/(πNT + πDE).

4.1 Upper and Lower bounds on γx
tX

as a function of πX

We use the following notation to refer to the upper and lower bounds on γ0
NT and

γ1
AT that were derived earlier. If πX is such that πNT > 0, so α00

NT
, α10

NT
> 0 then we

define:

lγ0
NT(πX) ≡ max

{

0,
py1|x0z0

− α00
CO

(πX)

α00
NT

(πX)
,
py1|x0z1

− α10
DE

(πX)

α10
NT

(πX)

}

,

uγ0
NT(πX) ≡ min

{

py1|x0z0

α00
NT

(πX)
,

py1|x0z1

α10
NT

(πX)
, 1

}

,

while if πNT = 0 then we define lγ0
NT(πX) ≡ 0 and uγ0

NT(πX) ≡ 1. Similarly, if πX

is such that πAT > 0 then we define:

lγ1
AT(πX) ≡ max

{

0,
py1|x1z1

− α11
CO

(πX)

α11
AT

(πX)
,
py1|x1z0

− α01
DE

(πX)

α01
AT

(πX)

}

,

uγ1
AT(πX) ≡ min

{

py1|x1z1

α11
AT

(πX)
,

py1|x1z0

α01
AT

(πX)
, 1

}

,

while if πAT = 0 then let lγ1
AT(πX) ≡ 0 and uγ1

AT(πX) ≡ 1.

We note that Table 2 summarizes the upper and lower bounds, as a function of

πX ∈ PX , on each of the eight parameters γx
tX

that were derived earlier in §3.3.

These are shown by the thicker lines on each of the plots forming the upper and

lower boundaries in Figure 11 (γ0
AT and γ1

NT are not shown in the Figure).

The upper and lower bounds on γ0
NT and γ1

AT are relatively simple:

PROPOSITION 3. lγ0
NT(πX) and lγ1

AT(πX) are non-decreasing in πAT and πNT.

Likewise uγ0
NT(πX) and uγ1

AT(πX) are non-increasing in πAT and πNT.

Proof: We first consider lγ0
NT. By (16), πNT = 1 − p(x = 1 | z = 0) − p(x = 1 |

z = 1) + πAT, hence a function is non-increasing [non-decreasing] in πAT iff it is

non-increasing [non-decreasing] in πNT. Observe that for πNT > 0,

(py1|x0z0
− α00

CO
(πX))/α00

NT
(πX) =

(

py1|x0z0
(πNT + πCO) − πCO

)

/πNT

= py1|x0z0
− py0|x0z0

(πCO/πNT)

= py1|x0z0
+ py0|x0z0

(1 − (px0|z0
/πNT))

430

Binary Instrumental Variable Model

Lower Bound Upper Bound

γ0
NT lγ0

NT(πX) uγ0
NT(πX)

γ0
CO (py1|x0z0

− uγ0
NT(πX) · α00

NT
)/α00

CO
(py1|x0z0

− lγ0
NT(πX) · α00

NT
)/α00

CO

γ0
DE (py1|x0z1

− uγ0
NT(πX) · α10

NT
)/α10

DE
(py1|x0z1

− lγ0
NT(πX) · α10

NT
)/α10

DE

γ0
AT 0 1

γ1
NT 0 1

γ1
CO (py1|x1z1

− uγ1
AT(πX) · α11

AT
)/α11

CO
(py1|x1z1

− lγ1
AT(πX) · α11

AT
)/α11

CO

γ1
DE (py1|x1z0

− uγ1
AT(πX) · α01

AT
)/α01

DE
(py1|x1z0

− lγ1
AT(πX) · α01

AT
)/α01

DE

γ1
AT lγ1

AT(πX) uγ1
AT(πX)

Table 2. Upper and Lower bounds on γx
tX

, as a function of πX ∈ PX . If for some

πX an expression giving a lower bound for a quantity is undefined then the lower

bound is 0; conversely if an expression for an upper bound is undefined then the

upper bound is 1.

which is non-decreasing in πNT. Similarly,

(py1|x0z1
− α10

DE
(πX))/α10

NT
(πX) = py1|x0z1

+ py0|x0z1
(1 − (px0|z1

/πNT)).

The conclusion follows since the maximum of a set of non-decreasing functions is

non-decreasing.

The other arguments are similar. 2

We note that the bounds on γx
CO and γx

DE need not be monotonic in πAT.

PROPOSITION 4. Let πmin
X be the distribution in PX for which πAT and πNT are

minimized then either:

(1) πmin
NT = 0, hence lγ0

NT(πmin
X) = 0 and uγ0

NT(πmin
X) = 1; or

(2) πmin
AT = 0, hence lγ1

AT(πmin
X) = 0 and uγ1

AT(πmin
X) = 1.

Proof: This follows from Proposition 2, and the fact that if πtX
= 0 then γi

tX
is not

identified (for any i). 2

4.2 Upper and Lower bounds on p(AT) as a function of γ0
NT

The expressions given in Table 2 allow the range of values for each γi
tX

to be

determined as a function of πX , giving the upper and lower bounding curves in

Figure 11. However it follows directly from (8) and (9) that there is a bijection

between the three shapes shown for γ0
CO, γ0

DE and γ0
NT (top row of Figure 11).

431

Thomas S. Richardson and James M. Robins

In this section we describe this bijection by deriving curves corresponding to fixed

values of γ0
NT that are displayed in the plots for γ0

CO and γ0
DE. Similarly it follows

from (10) and (11) that there is a bijection between the three shapes shown for

γ1
CO, γ1

DE, γ1
AT (bottom row of Figure 11). Correspondingly we add curves to the

plots for γ1
CO and γ1

DE corresponding to fixed values of γ1
AT. (The expressions in

this section are used solely to add these curves and are not used elsewhere.)

As described earlier, for a given distribution πX ∈ PX the set of values for

〈γ0
CO, γ0

DE, γ0
NT〉 forms a one dimensional subspace. For a given πX if πCO > 0 then

γ0
CO is a deterministic function of γ0

NT, likewise for γ0
DE.

It follows from Proposition 3 that the range of values for γ0
NT when πX = πmin

X

contains the range of possible values for γ0
NT for any other πX ∈ PX . The same

holds for γ1
AT. Thus for any given possible value of γ0

NT, the minimum compatible

value of πAT = lπAT ≡ max
{

0, px1|z0
+ px1|z1

− 1
}

. This is reflected in the plots in

Figure 11 for γ0
NT and γ1

AT in that the left hand endpoints of the thinner lines (lying

between the upper and lower bounds) all lie on the same vertical line for which πAT

is minimized.

In contrast the upper bounds on πAT vary as a function of γ0
NT (also γ1

AT). The

upper bound for πAT as a function of γ0
NT occurs when one of the thinner horizontal

lines in the plot for γ0
NT in Figure 11 intersects either uγ0

NT(πX), lγ0
NT(πX), or the

vertical line given by the global upper bound, uπAT, on πAT:

uπAT(γ0
NT) ≡ max

{

πAT | γ0
NT ∈ [lγ0

NT(πX), uγ0
NT(πX)]

}

= min

{

px1|z1
− px0|z0

(

1 −
py1|x0z0

γ0
NT

)

, px1|z0
− px0|z1

(

1 −
py1|x0z1

γ0
NT

)

,

px1|z1
− px0|z0

(

1 −
py0|x0z0

1 − γ0
NT

)

, px1|z0
− px0|z1

(

1 −
py0|x0z1

1 − γ0
NT

)

, uπAT

}

;

similarly we have

uπAT(γ1
AT) ≡ max

{

πAT | γ1
AT ∈ [lγ0

AT(πX), uγ1
AT(πX)]

}

= min

{

uπAT,
px1|z1

py1|x1z1

γ1
AT

,
px1|z0

py1|x1z0

γ1
AT

,
px1|z1

py0|x1z1

1 − γ1
AT

,
px1|z0

py0|x1z0

1 − γ1
AT

}

.

The curves added to the unexposed plots for Compliers and Defiers in Figure 11

are as follows:

γ0
CO(πX , γ0

NT) ≡ (py1|x0z0
− γ0

NT · α00
NT

)/α00
CO

,

cγ0
CO(πAT, γ0

NT) ≡ {〈πAT, γ0
CO(πX(πAT), γ0

NT)〉}; (17)

γ0
DE(πX , γ0

NT) ≡ (py1|x0z1
− γ0

NT · α10
NT

)/α10
DE

,

cγ0
DE(πAT, γ0

NT) ≡ {〈πAT, γ0
DE(πX(πAT), γ0

NT)〉}; (18)

for γ0
NT ∈ [lγ0

NT(πmin
X), uγ0

NT(πmin
X)]; πAT ∈ [lπAT, uπAT(γ0

NT)]. The curves added

432

Binary Instrumental Variable Model

Table 3. Flu Vaccine Data from [McDonald, Hiu, and Tierney 1992].

Z X Y count

0 0 0 99

0 0 1 1027

0 1 0 30

0 1 1 233

1 0 0 84

1 0 1 935

1 1 0 31

1 1 1 422

2,861

to the exposed plots for Compliers and Defiers in Figure 11 are given by:

γ1
CO(πX , γ1

AT) ≡ (py1|x1z1
− γ1

AT · α11
AT

)/α11
CO

,

cγ1
DE(πAT, γ1

AT) ≡ {〈πAT, γ1
CO(πX(πAT), γ1

AT)〉}; (19)

γ1
DE(πX , γ1

AT) ≡ (py1|x1z0
− γ1

AT · α01
AT

)/α01
DE

,

cγ1
DE(πAT, γ1

AT) ≡ {〈πAT, γ1
DE(πX(πAT), γ1

AT)〉}; (20)

for γ1
AT ∈ [lγ1

AT(πmin
X), uγ1

AT(πmin
X)]; πAT ∈ [lπAT, uπAT(γ1

AT)].

4.3 Example: Flu Data

To illustrate some of the constructions described we consider the influenza vaccine

dataset [McDonald, Hiu, and Tierney 1992] previously analyzed by [Hirano, Imbens,

Rubin, and Zhou 2000]; see Table 3. Here the instrument Z was whether a patient’s

physician was sent a card asking him to remind patients to obtain flu shots, or not; X

is whether or not the patient did in fact get a flu shot. Finally Y = 1 indicates that

a patient was not hospitalized. Unlike the analysis of [Hirano, Imbens, Rubin, and

Zhou 2000] we ignore baseline covariates, and restrict attention to displaying the set

of parameters of the IV model that are compatible with the empirical distribution.

The set of values for πX vs. 〈γ0
CO, γ0

DE, γ0
NT〉 (upper row), and πX vs. 〈γ1

CO, γ1
DE, γ1

AT〉

corresponding to the empirical distribution for p(x, y | z) are shown in Figure 11.

The empirical distribution is not consistent with there being no Defiers (though the

scales in Figure 11 show 0 as one endpoint for the proportion πDE this is merely a

consequence of the significant digits displayed; in fact the true lower bound on this

proportion is 0.0005).

We emphasize that this analysis merely derives the logical consequences of the

empirical distribution under the IV model and ignores sampling variability.

433

Thomas S. Richardson and James M. Robins

Pr[Y=1|do(X=0),NT]
P

o
s

s
ib

le
 v

a
lu

e
s

 f
o

r
P

r(
Y

=
1

)
fo

r
n

e
v

e
r

ta
k

e
rs

 w
it

h
 X

=
0

0.00.10.20.30.40.50.60.70.80.91.0

0
0
.1

0
.1

9
A
T

0
.3

1
0
.2

2
0
.1

2
C

O

0
.1

9
0
.1

0
D

E

0
.5

0
.6

0
.6

9
N

T

C
o
m

p
lia

n
c
e

T
y
p
e

P
ro

p
o
rt

io
n
s
:

Pr[Y=1|do(X=0),CO]P
o

s
s

ib
le

 v
a

lu
e

s
 f

o
r

P
r(

Y
=

1
)

fo
r

c
o

m
p

li
e

rs
 w

it
h

 X
=

0

0.00.10.20.30.40.50.60.70.80.91.0

0
0
.1

0
.1

9
A
T

0
.3

1
0
.2

2
0
.1

2
C

O

0
.1

9
0
.1

0
D

E

0
.5

0
.6

0
.6

9
N

T

C
o
m

p
lia

n
c
e

T
y
p
e

P
ro

p
o
rt

io
n
s
:

Pr[Y=1|do(X=0),DE]P
o

s
s

ib
le

 v
a

lu
e

s
 f

o
r

P
r(

Y
=

1
)

fo
r

d
e

fi
e

rs
 w

it
h

 X
=

0

0.00.10.20.30.40.50.60.70.80.91.0

0
0
.1

0
.1

9
A
T

0
.3

1
0
.2

2
0
.1

2
C

O

0
.1

9
0
.1

0
D

E

0
.5

0
.6

0
.6

9
N

T

C
o
m

p
lia

n
c
e

T
y
p
e

P
ro

p
o
rt

io
n
s
:

Pr[Y=1|do(X=1),AT]

P
o

s
s

ib
le

 v
a

lu
e

s
 f

o
r

P
r(

Y
=

1
)

fo
r

a
lw

a
y

s
 t

a
k

e
rs

 w
it

h
 X

=
1

0.00.10.20.30.40.50.60.70.80.91.0

0
0
.1

0
.1

9
A
T

0
.3

1
0
.2

2
0
.1

2
C

O

0
.1

9
0
.1

0
D

E

0
.5

0
.6

0
.6

9
N

T

C
o
m

p
lia

n
c
e

T
y
p
e

P
ro

p
o
rt

io
n
s
:

Pr[Y=1|do(X=1),CO]
P

o
s

s
ib

le
 v

a
lu

e
s

 f
o

r
P

r(
Y

=
1

)
fo

r
 c

o
m

p
li

e
rs

 w
it

h
 X

=
1

0.00.10.20.30.40.50.60.70.80.91.0

0
0
.1

0
.1

9
A
T

0
.3

1
0
.2

2
0
.1

2
C

O

0
.1

9
0
.1

0
D

E

0
.5

0
.6

0
.6

9
N

T

C
o
m

p
lia

n
c
e

T
y
p
e

P
ro

p
o
rt

io
n
s
:

Pr[Y=1|do(X=1),DE]P
o

s
s

ib
le

 v
a

lu
e

s
 f

o
r

P
r(

Y
=

1
)

fo
r

d
e

fi
e

rs
 w

it
h

 X
=

1

0.00.10.20.30.40.50.60.70.80.91.0

0
0
.1

0
.1

9
A
T

0
.3

1
0
.2

2
0
.1

2
C

O

0
.1

9
0
.1

0
D

E

0
.5

0
.6

0
.6

9
N

T

C
o
m

p
lia

n
c
e

T
y
p
e

P
ro

p
o
rt

io
n
s
:

Figure 11. Depiction of the set of values for πX vs. 〈γ0
CO, γ0

DE, γ0
NT〉 (upper row),

and πX vs. 〈γ1
CO, γ1

DE, γ1
AT〉 for the flu data.

434

Binary Instrumental Variable Model

5 Bounding Average Causal Effects

We may use the results above to obtain bounds on average causal effects, for different

complier strata:

ACEtX
(πX , γ0

tX
, γ1

tX
) ≡ γ1

tX
(πX) − γ0

tX
(πX),

lACEtX
(πX) ≡ minγ0

tX

,γ1

tX

ACEtX
(πX , γ0

tX
, γ1

tX
),

uACEtX
(πX) ≡ maxγ0

tX

,γ1

tX

ACEtX
(πX , γ0

tX
, γ1

tX
),

as a function of a feasible distribution πX ; see Table 5. As shown in the table, the

values of γ0
NT and γ1

AT which maximize (minimize) ACECO and ACEDE are those

which minimize (maximize) ACENT and ACEAT; this is an immediate consequence

of the negative coefficients for γ0
NT and γ1

AT in the bounds for γx
CO and γx

DE in Table

2.

ACE bounds for the four compliance types are shown for the flu data in Figure 12.

The ACE bounds for Compliers indicate that, under the observed distribution, the

possibility of a zero ACE for Compliers is consistent with all feasible distributions

over compliance types, except those for which the proportion of Defiers in the

population is small.

Following [Pearl 2000; Robins 1989; Manski 1990; Robins and Rotnitzky 2004]

we also consider the average causal effect on the entire population:

ACEglobal(πX , {γx
tX

}) ≡
∑

tX∈DX

(γ1
tX

(πX) − γ0
tX

(πX))πtX
;

upper and lower bounds taken over {γx
tX

} are defined similarly. The bounds given

for ACEtX
in Table 5 are an immediate consequence of equations (8)–(11) which

relate p(y | x, z) to πX and {γx
tX

}. Before deriving the ACE bounds we need the

following observation:

LEMMA 5. For a given feasible πX and p(y, x | z),

ACEglobal(πX , {γx
tX

})

= py1,x1|z1
− py1,x0|z0

+ πDE(γ1
DE − γ0

DE) + πNTγ1
NT − πATγ0

AT (21)

= py1,x1|z0
− py1,x0|z1

+ πCO(γ1
CO − γ0

CO) + πNTγ1
NT − πATγ0

AT. (22)

Proof: (21) follows from the definition of ACEglobal and the observation that py1,x1|z1
=

πCOγ1
CO + πATγ1

AT and py1,x0|z0
= πCOγ0

CO + πNTγ0
NT. The proof of (22) is similar.

2

PROPOSITION 6. For a given feasible πX and p(y, x | z), the compatible distribu-

tion which minimizes [maximizes] ACEglobal has

435

Thomas S. Richardson and James M. Robins

Group ACE Lower Bound ACE Upper Bound

NT 0 − uγ0
NT(πX) 1 − lγ0

NT(πX)

CO lγ1
CO(πX) − uγ0

CO(πX) uγ1
CO(πX) − lγ0

CO(πX)

= γ1
CO(πX , uγ1

AT(πX)) = γ1
CO(πX , lγ1

AT(πX))

−γ0
CO(πX , lγ0

NT(πX)) −γ0
CO(πX , uγ0

NT(πX))

DE lγ1
DE(πX) − uγ0

DE(πX) uγ1
DE(πX) − lγ0

DE(πX)

= γ1
DE(πX , uγ1

AT(πX)) = γ1
DE(πX , lγ1

AT(πX))

−γ0
DE(πX , lγ0

NT(πX)) −γ0
DE(πX , uγ0

NT(πX))

AT lγ1
AT(πX) − 1 uγ1

AT(πX) − 0

global py1,x1|z1
− py1,x0|z0

py1,x1|z1
− py1,x0|z0

+ πDE · lACEDE(πX) − πAT + πDE · uACEDE(πX) + πNT

= py1,x1|z0
− py1,x0|z1

= py1,x1|z0
− py1,x0|z1

+ πCO · lACECO(πX) − πAT + πCO · uACECO(πX) + πNT

Table 4. Upper and Lower bounds on average causal effects for different groups, as

a function of a feasible πX . Here πc
NT ≡ 1 − πNT

〈γ0
NT, γ1

AT〉 = 〈lγ0
NT, uγ1

AT〉 [〈uγ0
NT, lγ1

AT〉]

〈γ1
NT, γ0

AT〉 = 〈0, 1〉 [〈1, 0〉]

thus also minimizes [maximizes] ACECO and ACEDE, and conversely maximizes

[minimizes] ACEAT and ACENT.

Proof: The claims follow from equations (21) and (22), together with the fact that

γ0
AT and γ1

NT are unconstrained, so ACEglobal is minimized by taking γ0
AT = 1 and

γ1
NT = 0, and maximized by taking γ0

AT = 0 and γ1
NT = 1. 2

It is of interest here that although the definition of ACEglobal treats the four

compliance types symmetrically, the compatible distribution which minimizes [max-

imizes] this quantity (for a given πX) does not: it always corresponds to the scenario

in which the treatment has the smallest [greatest] effect on Compliers and Defiers.

The bounds on the global ACE for the flu vaccine data of [Hirano, Imbens, Rubin,

and Zhou 2000] are shown are shown in Figure 13.

Finally we note that it would be simple to develop similar bounds for other

measures such as the Causal Relative Risk and Causal Odds Ratio.

436

Binary Instrumental Variable Model

Possible values for ACE for always takers

P
(Y

=
1
|d

o
(X

=
1
),

A
T

)
−

 P
(Y

=
1
|d

o
(X

=
0
),

A
T

)

−
1
.0

−
0
.7

−
0
.4

−
0
.1

0
.2

0
.5

0
.8

0 0.1 0.19
AT

0.31 0.22 0.12
CO

0.19 0.1 0
DE

0.5 0.6 0.69
NT

Possible values for ACE for compliers

P
(Y

=
1
|d

o
(X

=
1
),

C
O

)
−

 P
(Y

=
1
|d

o
(X

=
0
),

C
O

)

−
1
.0

−
0
.7

−
0
.4

−
0
.1

0
.2

0
.5

0
.8

0 0.1 0.19
AT

0.31 0.22 0.12
CO

0.19 0.1 0
DE

0.5 0.6 0.69
NT

Compliance

Type

Proportions:

Possible values for ACE for defiers

P
(Y

=
1
|d

o
(X

=
1
),

D
E

)
−

 P
(Y

=
1
|d

o
(X

=
0
),

D
E

)

−
1
.0

−
0
.7

−
0
.4

−
0
.1

0
.2

0
.5

0
.8

0 0.1 0.19
AT

0.31 0.22 0.12
CO

0.19 0.1 0
DE

0.5 0.6 0.69
NT

Possible values for ACE for never takers

P
(Y

=
1
|d

o
(X

=
1
),

N
T

)
−

 P
(Y

=
1
|d

o
(X

=
0
),

N
T

)

−
1
.0

−
0
.7

−
0
.4

−
0
.1

0
.2

0
.5

0
.8

0 0.1 0.19
AT

0.31 0.22 0.12
CO

0.19 0.1 0
DE

0.5 0.6 0.69
NT

Compliance

Type

Proportions:

Figure 12. Depiction of the set of values for πX vs. ACEtX
(πX) for tX ∈ DX for

the flu data.

6 Instrumental inequalities

The expressions involved in the upper bound on πAT in (16) appear similar to those

which occur in Pearl’s instrumental inequalities. Here we show that the requirement

that PX 6= ∅, or equivalently, lπAT ≤ uπAT is in fact equivalent to the instrumental

inequality. This also provides an interpretation as to what may be inferred from

the violation of a specific inequality.

THEOREM 7. The following conditions place equivalent restrictions on p(x | z)

and p(y | x=0, z):

(a1) max {0, p(x = 1 | z = 0) + p(x = 1 | z = 1) − 1} ≤

min
{

1 −
∑

j p(y=j, x=0 | z=j), 1 −
∑

k p(y=k, x=0 | z=1−k)
}

;

(a2) max
{

∑

j p(y=j, x=0 | z=j),
∑

k p(y=k, x=0 | z=1 − k)
}

≤ 1.

Similarly, the following place equivalent restrictions on p(x | z) and p(y | x=1, z):

(b1) max {0, p(x = 1 | z = 0) + p(x = 1 | z = 1) − 1} ≤

min
{

∑

j p(y=j, x=1 | z=j),
∑

k p(y=k, x=1 | z=1−k)
}

;

(b2) max
{

∑

j p(y=j, x=1 | z=j),
∑

k p(y=k, x=1 | z=1 − k)
}

≤ 1.

437

Thomas S. Richardson and James M. Robins

Possible values for ACE for population

P
(Y

=
1
|d

o
(X

=
1
))

 −
 P

(Y
=

1
|
d
o
(X

=
0
))

−
1
.0

−
0
.8

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 0.1 0.19
AT

0.31 0.22 0.12
CO

0.19 0.1 0
DE

0.5 0.6 0.69
NT

Figure 13. Depiction of the set of values for πX vs. the global ACE for the flu data.

The horizontal lines represent the overall bounds on the global ACE due to Pearl.

Thus the instrumental inequality (a2) corresponds to the requirement that the

upper bounds on p(AT) resulting from p(x | z) and p(y = 1 | x = 0, z) be greater

than the lower bound on p(AT) (derived solely from p(x | z)). Similarly for (b2)

and the upper bounds on p(AT) resulting from p(y=1 | x=1, z).

Proof: [(a1) ⇔ (a2)] We first note that:

1 −
∑

jp(y=j, x=0 | z=j) ≥
(

∑

jp(x=1 | z=j)
)

− 1

⇔
∑

j (1 − p(y=j, x=0 | z=j)) ≥
∑

j p(x=1 | z=j)

⇔
∑

j (p(y=1 − j, x=0 | z=j) + p(x=1 | z=j)) ≥
∑

j p(x=1 | z=j)

⇔
∑

j p(y=j, x=0 | z=j) ≥ 0.

which always holds. By a symmetric argument we can show that it always holds

that:

1 −
∑

j p(y=j, x=0 | z=1 − j) ≥
(

∑

j p(x=1 | z=j)
)

− 1.

Thus if (a1) does not hold then max{0, p(x=1 | z =0) + p(x=1 | z =1) − 1} = 0.

It is then simple to see that (a1) does not hold iff (a2) does not hold.

[(b1) ⇔ (b2)] It is clear that neither of the sums on the RHS of (b1) are negative,

hence if (b1) does not hold then max{0, p(x = 1 | z = 0) + p(x = 1 | z = 1) − 1} =

438

Binary Instrumental Variable Model

(

∑

j p(x=1 | z=j)
)

− 1. Now

∑

j p(y=j, x=1 | z=j) <
(

∑

j p(x=1 | z=j)
)

− 1

⇔ 1 <
∑

j p(y=j, x=1 | z=1 − j).

Likewise

∑

j p(y=j, x=1 | z=1 − j) <
(

∑

j p(x=1 | z=j)
)

− 1

⇔ 1 <
∑

j p(y=j, x=1 | z=j).

Thus (b1) fails if and only if (b2) fails. 2

This equivalence should not be seen as surprising since [Bonet 2001] states that

the instrument inequalities (a2) and (b2) are sufficient for a distribution to be

compatible with the binary IV model. This is not the case if, for example, X takes

more than 2 states.

6.1 Which alternatives does a test of the instrument inequalities have

power against?

[Pearl 2000] proposed testing the instrument inequalities (a2) and (b2) as a means of

testing the IV model; [Ramsahai 2008] develops tests and analyzes their properties.

It is then natural to ask what should be inferred from the failure of a specific

instrumental inequality. It is, of course, always possible that randomization has

failed. If randomization is not in doubt, then the exclusion restriction (1) must

have failed in some way. The next result implies that tests of the inequalities (a2)

and (b2) have power, respectively, against failures of the exclusion restriction for

Never Takers (with X = 0) and Always Takers (with X = 1):

THEOREM 8. The conditions (RX), (RYX=0) and (EX=0) described below imply

(a2); similarly (RX), (RYX=1) and (EX=1) imply (b2).

(RX) Z ⊥⊥ tX equivalently Z ⊥⊥Xz=0, Xz=1 :

(RYX=0) Z ⊥⊥Yx=0,z=0 | tX = NT; Z ⊥⊥Yx=0,z=1 | tX = NT;

(RYX=1) Z ⊥⊥Yx=1,z=1 | tX = AT; Z ⊥⊥Yx=1,z=1 | tX = AT;

(EX=0) p(Yx=0,z=0 = Yx=0,z=1 | tX = NT) = 1;

(EX=1) p(Yx=1,z=0 = Yx=1,z=1 | tX = AT) = 1.

Conditions (RX) and (RYX=x) correspond to the assumption of randomization

with respect to compliance type and response type. For the purposes of technical

clarity we have stated condition (RYX=x) in the weakest form possible. However,

we know of no subject matter knowledge which would lead one to believe that (RX)

and (RYX=x) held, without also implying the stronger assumption (2). In contrast,

the exclusion restrictions (EX=x) are significantly weaker than (1), e.g. one could

conceive of situations where assignment had an effect on the outcome for Always

439

Thomas S. Richardson and James M. Robins

Takers, but not for Compliers. It should be noted that tests of the instrument

inequalities have no power to detect failures of the exclusion restriction for Compliers

or defier.

We first prove the following Lemma, which also provides another characterization

of the instrument inequalities:

LEMMA 9. Suppose (RX) holds and Y ⊥⊥Z | tX = NT then (a2) holds. Similarly,

if (RX) holds and Y ⊥⊥Z | tX = AT then (b2) holds.

Note that the conditions in the antecedent make no assumption regarding the exis-

tence of counterfactuals for Y .

Proof: We prove the result for Never Takers; the other proof is similar. By hypoth-

esis we have:

p(Y = 1 | Z = 0, tX = NT) = p(Y = 1 | Z = 1, tX = NT) ≡ γ0
NT. (23)

In addition,

p(Y = 1 | Z = 0, X = 0)

= p(Y = 1 | Z = 0, X = 0, Xz=0 = 0)

= p(Y = 1 | Z = 0, Xz=0 = 0)

= p(Y = 1 | Z = 0, tX = CO) p(tX = CO | Z = 0, Xz=0 = 0)

+ p(Y = 1 | Z = 0, tX = NT) p(tX = NT | Z = 0, Xz=0 = 0)

= p(Y = 1 | Z = 0, tX = CO) p(tX = CO | Xz=0 = 0)
(24)

+ γ0
NT p(tX = NT | Xz=0 = 0).

The first three equalities here follow from consistency, the definition of the compli-

ance types and the law of total probability. The final equality uses (RX). Similarly,

it may be shown that

p(Y = 1 | Z = 1, X = 0)

= p(Y = 1 | Z = 1, tX = DE)p(tX = DE | Xz=1 = 0)
(25)

+ γ0
NT p(tX = NT | Xz=1 = 0).

Equations (24) and (25) specify two averages of three quantities, thus taking

u = p(Y = 1 | Z = 0, tX = CO), v = p(Y = 1 | Z = 1, tX = DE) and w = γ0
NT, we

may apply the analysis of §2.3. This then leads to the upper bound on πAT given

by equation (15). (Note that the lower bounds on πAT are derived from p(x | z)

and hence are unaffected by dropping the exclusion restriction.) The requirement

that there exist some feasible distribution πX then implies equation (a2) which is

shown in Theorem 7 to be equivalent to (b2) as required. 2

440

Binary Instrumental Variable Model

tX , tY

Z X Y

Figure 14. Graphical representation of the model given by the randomization as-

sumption (2) alone. It is no longer assumed that Z does not have a direct effect on

Y .

Proof of Theorem 8: We establish that (RX), (RYX=0), (EX=0) ⇒ (a2). The proof

of the other implication is similar. By Lemma 9 it is sufficient to establish that

Y ⊥⊥Z | tX = NT.

p(Y = 1 | Z = 0, tX = NT)

= p(Y = 1 | Z = 0, X = 0, tX = NT) definition of NT;

= p(Yx=0,z=0 = 1 | Z = 0, X = 0, tX = NT) consistency;

= p(Yx=0,z=0 = 1 | Z = 0, tX = NT) definition of NT;

= p(Yx=0,z=0 = 1 | tX = NT) by (RYX=0);

= p(Yx=0,z=1 = 1 | tX = NT) by (EX=0);

= p(Yx=0,z=1 = 1 | Z = 1, tX = NT) by (RYX=0);

= p(Y = 1 | Z = 1, tX = NT) consistency, NT.

2

A similar result is given in [Cai, Kuroki, Pearl, and Tian 2008], who consider the

Average Controlled Direct Effect, given by:

ACDE(x) ≡ p(Yx,z=1 =1) − p(Yx,z=0 =1),

under the model given solely by the equation (2), which corresponds to the graph

in Figure 14. Cai et al. prove that under this model the following bounds obtain:

ACDE(x) ≥ p(y=0, x | z=0) + p(y=1, x | z=1)− 1, (26)

ACDE(x) ≤ 1 − p(y=0, x | z=1)− p(y=1, x | z=0). (27)

It is simple to see that ACDE(x) will be bounded away from 0 for some x iff one

of the instrumental inequalities is violated. This is as we would expect: the IV

model of Figure 1 is a sub-model of Figure 14, but if ACDE(x) is bounded away

from 0 then the Z → Y edge is present, and hence the exclusion restriction (1) is

incompatible with the observed distribution.

441

Thomas S. Richardson and James M. Robins

!"#$%&'$%()$*+

!"#$%&'$%()$%+
!"#$%&'$*()$%+

!"#$%&'$*()$*+

",+ "-+

Figure 15. Illustration of the possible values for p(y | x, z) compatible with the

instrument inequalities, for a given distribution p(x|z).The darker shaded region

satisfies the inequalities: (a) X = 0, inequalities (a2); (b) X = 1, inequalities

(b2). In this example p(x = 1 | z = 0) = 0.84, p(x = 1 | z = 1) = 0.32. Since

0.84/(1− 0.32) > 1, (a2) is trivially satisfied; see proof of Theorem 10.

6.2 How many instrument inequalities may be violated by a single

distribution?

THEOREM 10. For any distribution p(x, y | z), at most one of the four instrument

inequalities:

(a2.1)
∑

j p(y=j, x=0 | z=j) ≤ 1; (a2.2)
∑

j p(y=j, x=0 | z=1−j) ≤ 1;

(b2.1)
∑

j p(y=j, x=1 | z=j) ≤ 1; (b2.2)
∑

j p(y=j, x=1 | z=1−j) ≤ 1;

is violated.

Proof: We first show that at most one of (a2.1) and (a2.2) may be violated. Letting

θij = p(y = 1 | x = j, z = i) we may express these inequalities as:

θ10 · px0|z1
− θ00 · px0|z0

≤ px1|z0
, (a2.1)

θ10 · px0|z1
− θ00 · px0|z0

≥ −px1|z1
, (a2.2)

giving two half-planes in (θ00, θ10)-space (see Figure 15(a)). Since the lines defin-

ing the half-planes are parallel, it is sufficient to show that the half-planes always

intersect, and hence that the regions in which (a2.1) and (a2.2) are violated are

disjoint. However, this is immediate since the (non-empty) set of points for which

θ10 · px0|z1
− θ00 · px0|z0

= 0 always satisfy both inequalities.

The proof that at most one of (b2.1) and (b2.2) may be violated is symmetric.

We now show that the inequalities (a2.1) and (a2.2) place non-trivial restric-

tions on (θ00, θ10) iff (b2.1) and (b2.2) place trivial restrictions on (θ01, θ11). The

line corresponding to (a2.1) passes through (θ00, θ10) = (−px1|z0
/px0|z0

, 0) and

442

Binary Instrumental Variable Model

(0, px1|z0
/px0|z1

); since the slope of the line is non-negative, it has non-empty inter-

section with [0, 1]2 iff px1|z0
/px0|z1

≤ 1. Thus there are values of (θ01, θ11) ∈ [0, 1]2

which fail to satisfy (a2.1) iff px1|z0
/px0|z1

< 1. By a similar argument it may

be shown that (a2.2) is non-trivial iff px1|z1
/px0|z0

< 1, which is equivalent to

px1|z0
/px0|z1

< 1.

The proof is completed by showing that (b2.1) and (b2.2) are non-trivial if and

only if px1|z0
/px0|z1

> 1. 2

COROLLARY 11. Every distribution p(x, y | z) is consistent with randomization

(RX) and (2), and at least one of the exclusion restrictions EX=0 or EX=1.

Flu Data Revisited

For the data in Table 3, all of the instrument inequalities hold. Consequently there is

no evidence of a direct effect of Z on Y . (Again we emphasize that unlike [Hirano,

Imbens, Rubin, and Zhou 2000], we are not using any information on baseline

covariates in the analysis.) Finally we note that, since all of the instrumental

inequalities hold, maximum likelihood estimates for the distribution p(x, y | z) under

the IV model are given by the empirical distribution. However, if one of the IV

inequalities were to be violated then the MLE would not be equal to the empirical

distribution, since the latter would not be a law within the IV model. In such a

circumstance a fitting procedure would be required; see [Ramsahai 2008, Ch. 5].

7 Conclusion

We have built upon and extended the work of Pearl, displaying how the range of

possible distributions over types compatible with a given observed distribution may

be characterized and displayed geometrically. Pearl’s bounds on the global ACE

are sometimes objected to on the grounds that they are too extreme, since for

example, the upper bound presupposes a 100% success rate among Never Takers if

they were somehow to receive treatment, likewise a 100% failure rate among Always

Takers were they not to receive treatment. Our analysis provides a framework for

performing a sensitivity analysis. Lastly, our analysis relates the IV inequalities to

the bounds on direct effects.

Acknowledgements

This research was supported by the U.S. National Science Foundation (CRI 0855230)

and U.S. National Institutes of Health (R01 AI032475) and Jesus College, Oxford

where Thomas Richardson was a Visiting Senior Research Fellow in 2008. The

authors used Avitzur’s Graphing Calculator software (www.pacifict.com) to con-

struct two and three dimensional plots. We thank McDonald, Hiu and Tierney for

giving us permission to use their flu vaccine data.

443

Thomas S. Richardson and James M. Robins

References

Balke, A. and J. Pearl (1997). Bounds on treatment effects from studies with

imperfect compliance. Journal of the American Statistical Association 92,

1171–1176.

Bonet, B. (2001). Instrumentality tests revisited. In Proceedings of the 17th Con-

ference on Uncertainty in Artificial Intelligence, pp. 48–55.

Cai, Z., M. Kuroki, J. Pearl, and J. Tian (2008). Bounds on direct effects in the

presence of confounded intermediate variables. Biometrics 64, 695–701.

Chickering, D. and J. Pearl (1996). A clinician’s tool for analyzing non-

compliance. In AAAI-96 Proceedings, pp. 1269–1276.

Erosheva, E. A. (2005). Comparing latent structures of the Grade of Membership,

Rasch, and latent class models. Psychometrika 70, 619–628.

Fienberg, S. E. and J. P. Gilbert (1970). The geometry of a two by two contin-

gency table. Journal of the American Statistical Association 65, 694–701.

Hirano, K., G. W. Imbens, D. B. Rubin, and X.-H. Zhou (2000). Assessing the

effect of an influenza vaccine in an encouragement design. Biostatistics 1 (1),

69–88.

Manski, C. (1990). Non-parametric bounds on treatment effects. American Eco-

nomic Review 80, 351–374.

McDonald, C., S. Hiu, and W. Tierney (1992). Effects of computer reminders for

influenza vaccination on morbidity during influenza epidemics. MD Comput-

ing 9, 304–312.

Pearl, J. (2000). Causality. Cambridge, UK: Cambridge University Press.

Ramsahai, R. (2008). Causal Inference with Instruments and Other Supplemen-

tary Variables. Ph. D. thesis, University of Oxford, Oxford, UK.

Robins, J. (1989). The analysis of randomized and non-randomized AIDS treat-

ment trials using a new approach to causal inference in longitudinal studies.

In L. Sechrest, H. Freeman, and A. Mulley (Eds.), Health Service Research

Methodology: A focus on AIDS. Washington, D.C.: U.S. Public Health Ser-

vice.

Robins, J. and A. Rotnitzky (2004). Estimation of treatment effects in randomised

trials with non-compliance and a dichotomous outcome using structural mean

models. Biometrika 91 (4), 763–783.

444

26

Pearl Causality and the Value of Control

Ross Shachter and David Heckerman

1 Introduction

We welcome this opportunity to acknowledge the significance of Judea Pearl’s con-

tributions to uncertain reasoning and in particular to his work on causality. In

the decision analysis community causality had long been “taboo” even though it

provides a natural framework to communicate with decision makers and experts

[Shachter and Heckerman 1986]. Ironically, while many of the concepts and meth-

ods of causal reasoning are foundational to decision analysis, scholars went to great

lengths to avoid causal terminology in their work. Judea Pearl’s work is helping

to break this barrier, allowing the exploration of some fundamental principles. We

were inspired by his work to understand exactly what assumptions are being made

in his causal models, and we would like to think that our subsequent insights have

contributed to his and others’ work as well.

In this paper, we revisit our previous work on how a decision analytic perspective

helps to clarify some of Pearl’s notions, such as those of the do operator and atomic

intervention. In addition, we show how influence diagrams [Howard and Matheson

1984] provide a general graphical representation for cause. Decision analysis can be

viewed simply as determining what interventions we want to make in the world to

improve the prospects for us and those we care about, an inherently causal concept.

As we shall discuss, causal models are naturally represented within the framework

of decision analysis, although the causal aspects of issues about counterfactuals and

causal mechanisms that arise in computing the value of clairvoyance [Howard 1990],

were first presented by Heckerman and Shachter [1994, 1995]. We show how this

perspective helps clarify decision-analytic measures of sensitivity, such as the value

of control and the value of revelation [Matheson 1990; Matheson and Matheson

2005].

2 Decision-Theoretic Foundations

In this section we introduce the relevant concepts from [Heckerman and Shachter

1995], the framework for this paper, along with some extensions to those concepts.

Our approach rests on a simple but powerful primitive concept of unresponsive-

ness. An uncertain variable is unresponsive to a set of decisions if its value is

unaffected by our choice for the decisions. It is unresponsive to those decisions in

worlds limited by other variables if the decisions cannot affect the uncertain variable

without also changing one of the other variables.

445

Kaoru
Text Box
Return to TOC

Ross Shachter and David Heckerman

We can formalize this by introducing concepts based on Savage [1954]. We con-

sider three different kinds of distinctions, which he called acts, consequences, and

possible states of the world. We have complete control over the acts but no con-

trol over the uncertain state of the world. We might have some level of control

over consequences, which are logically determined, after we act, by the state of the

world. Therefore, a consequence can be represented as a deterministic function of

acts and the state of the world, inheriting uncertainty from the state of the world

while affected, more or less, by our choice of action.

In practice, it is convenient to represent acts and consequences with variables in

our model. We call a variable describing a set of mutually exclusive and collectively

exhaustive acts a decision, and we denote the set of decisions by D. We call a

variable describing a consequence uncertain, and we denote the set of uncertain

variables by U . At times we will distinguish between the uncertain variables that

serve as our objectives or value variables, V , and the other uncertain variables which

we call chance variables, C = U \V . Finally, in this section we will use the variables

S to represent the possible states of the world. As a convention we will refer to

single variables with lower-case (x or d), sets of variables with upper-case (D or V),

and particular instances of variables with bold (x or D). In this notation, the set of

uncertain variables X takes value X[S,D] deterministically when D is chosen and

S is the state of the world.

DEFINITION 1 (Unresponsiveness). Given a decision problem described by uncer-

tain variables U , decision variables D, and state of the world S, and variable sets

X ⊆ U and Y ⊆ D ∪ U , X is said to be unresponsive to D, denoted X 6←֓ D, if we

believe that

∀S ∈ S,D1 ∈ D,D2 ∈ D : X[S,D1] = X[S,D2]

and, if not, X is said to be responsive to D.

Furthermore, X is said to be unresponsive to D in worlds limited by Y , denoted

X 6←֓Y D, if we believe that

∀S ∈ S,D1 ∈ D,D2 ∈ D : Y [S,D1] = Y [S,D2] =⇒ X[S,D1] = X[S,D2]

and, if not, X is said to be responsive to D in worlds limited by Y .

The distinctions of unresponsiveness and limited unresponsiveness seem natural

for decision makers to consider. Unresponsiveness is related to independence, in that

any uncertain variables X that are unresponsive to decisions D are independent of

D. Although it is not necessarily the case that X independent of D is unresponsive

to D, that implication is often assumed [Spirtes, Glymour, and Scheines 1993]. In

contrast, there is no such general correspondence between limited unresponsiveness

and conditional independence.

To illustrate these concepts graphically, we introduce influence diagrams [Howard

and Matheson 1984]. An influence diagram is an acyclic directed graph G with

446

447

Ross Shachter and David Heckerman

that Cured is unresponsive to Treatment Assigned in worlds limited by Drug Taken.

Note that Treatnent Assigned is not independent of Genotype or Cured given Drug

Taken.

The concept of limited unresponsiveness allows us to define how one variable can

cause another in a way that is natural for decision makers to understand.

DEFINITION 3 (Cause with Respect to Decisions). Given a decision problem de-

scribed by uncertain variables U and decision variables D, and a variable x ∈ U ,

the set of variables Y ⊆ D ∪U \ {x} is said to be a cause for x with respect to D if

Y is a minimal set of variables such that x 6←֓Y D.

Defining cause with respect to a particular set of decisions adds clarity. Consider

again the causal influence diagram shown in Figure 1a. With respect to the decision

Treatment Assigned, the cause of Cured is either {Treament Assigned} or {Drug

Taken}, while the cause of Genotype is {}. Because we believe that Genotype is

unresponsive to Treatment Assigned it has no cause with respect to D. On the

other hand, we believe that Cured is responsive to Treatment Assigned but not in

worlds limited by Drug Taken, so {Drug Taken} is a cause of Cured with respect to

D.

Consider now the causal influence diagram shown in Figure 1b, in which we have

added the decision Gene Therapy. Because Genotype is now responsive to D, the

cause of Genotype is {Gene Therapy} with respect to D. If the gene therapy has

some side effect on whether the patient is cured, then {Gene Therapy, Drug Taken}

but not {Genotype, Drug Taken} would be a cause of Cured with respect to the

decisions, because Cured is unresponsive to D in worlds limited by the former but

not the latter.

The concept of limited unresponsiveness also allows us to formally define direct

and atomic interventions. A set of decision I is a direct intervention on a set of

uncertain variables X if the effects of I on all other uncertain variables are mediated

through their effects on X.

DEFINITION 4 (Direct Intervention). Given a decision problem described by un-

certain variables U and decision variables D, a set of decisions I ⊆ D is said to be

a direct intervention on X ⊆ U with respect to D if (1) x ←֓ I for all x ∈ X, and

(2) y 6←֓X I for all y ∈ U .

In a causal influence diagram every node in I has children only in X and there

is a directed path from I to every node in X. In the causal influence diagram

shown in Figure 1b, Treatment Assigned is a direct intervention on Drug Taken,

and the set of decisions is a direct intervention on all three uncertain variables.

Note that whether a decision is a direct intervention depends on the underlying

causal mechanism. If the gene therapy had no side effect then Gene Therapy would

be a direct intervention on Genotype, but regardless whether there is a side effect,

Gene Therapy is a direct intervention on {Genotype, Cured}.

448

449

450

The Value of Control

including any decisions that are direct interventions on it, and a mapping variable.

As an example, the influence diagram shown in Figure 3b is in canonical form.

In the next section we apply these concepts to define and contrast different mea-

sures for the value to a decision maker of manipulating (or observing) an uncertain

variable.

3 Value of Control

When assisting a decision maker developing a model, sensitivity analysis measures

help the decision maker to validate the model. One popular measure is the value

of clairvoyance, the most a decision maker should be willing to pay to observe a

set of uncertain variables before making particular decisions [Howard 1967]. Our

focus of attention is another measure, the value of control (or wizardry), the most a

decision maker should be willing to pay a hypothetical wizard to optimally control

the distribution of an uncertain variable [Matheson 1990], [Matheson and Matheson

2005]. We consider and contrast the value of control with two other measures, the

value of do, and the value of revelation, and we develop the conditions under which

the different measures are equal.

In formalizing the value of control, it is natural to consider the value of an atomic

intervention on uncertain variable x, in particular do(x∗), that would set it to x∗

the instance yielding the most valuable decision situation, rather than to idle. We

call the most the decision maker should be willing to pay for such an intervention

the value of do and compute it as the difference in the values of the diagrams.

DEFINITION 7 (Value of Do). Given a decision problem including an atomic in-

tervention on uncertain variable x ∈ U , the value of do for x, denoted by V oD(x∗),

is the most one should be willing to pay for an atomic intervention on uncertain

variable x to the best possible deterministic instance, do(x∗), instead of to idle.

Our goal in general is to value the optimal manipulation of the conditional distri-

bution of a target uncertain variable x in a causal influence diagram, P{x|Y }, and

the most we should be willing to pay for such an intervention is the value of control.

The simplest case is when {do(x)} is a cause of x with respect to D, Y = {}, so the

optimal distribution is equivalent to an atomic intervention on x to x∗, and control

and do are the same intervention. Otherwise, the do operation effectively severs the

arcs from Y to x and replaces the previous causal mechanism with the new atomic

one. By contrast, the control operation is an atomic intervention on the mapping

variable x(Y) to its optimal value do(x∗(Y)) rather than to idle.

DEFINITION 8 (Value of Control). Given a decision problem including variables

Y , a mapping variable x(Y) for uncertain variable x ∈ U , and atomic interventions

do(x) and do(x(Y)) such that Y ∪ {do(x), do(x(Y))} is a cause of x with respect

to D, the value of control for x, denoted by V oC(x∗(Y)), is the most one should

be willing to pay for an atomic intervention on the mapping variable for uncertain

variable x to the best possible deterministic function of Y , do(x∗(Y)), instead of

451

Ross Shachter and David Heckerman

to idle.

If Y = {}, then do(x) is the same atomic intervention as do(x(Y)), and the values

of do and control for x are equal, V oD(x∗) = V oC(x∗()).

In many cases, while it is tempting to assume atomic interventions, they can be

cumbersome or implausible. In an attempt to avoid such issues, Ronald A. Howard

has suggested an alternative passive measure, the value of revelation: how much

better off the decision maker should be by observing that the uncertain variable

in question obtained its most desirable value. This is only well-defined for vari-

ables unresponsive to D, except for those atomic interventions that are set to idle,

because otherwise the observation would be made before decisions it might be re-

sponsive to. Under our assumptions this can be computed as the difference in value

between two situations, but it is hard to describe it as a willingness to pay for this

difference as it is more passive than intentional. (The value of revelation is in fact

an intermediate term in the computation of the value of clairvoyance.)

DEFINITION 9 (Value of Revelation). Given a decision problem including uncer-

tain variable x ∈ U and a (possibly empty) set of atomic interventions, A, that is a

cause for x with respect to D, the value of revelation for uncertain variable x ∈ U ,

denoted by V oR(x∗), is the increase in the value of the situation with d = idle

for all d ∈ A, if one observed that uncertain variable x = x∗, the best possible

deterministic instance, instead of not observing x.

To illustrate these three measures we, consider a partial causal influence diagram

including x and its parents, Y , which we assume for this example are uncertain

and nonempty, as shown in Figure 4a. There are atomic interventions do(x) on

x, do(x(Y)) on mapping variable x(Y), and do(y) on each y ∈ Y represented as

do(Y). The variable x is a deterministic function of Y , do(x) and x(Y). In this

model, Y ∪ {do(x), do(x(Y))} is a cause of x with respect to D. The dashed line

from x to values V suggests that there might be some directed path from x to V .

If not, V would be unresponsive to do(x) and do(x(Y)) and the values of do and

control would be zero.

To obtain the reference diagram for our proposed changes, we set all of the atomic

interventions to idle as shown in Figure 4b1. We can compute the value of this

diagram by eliminating the idle decisions and absorbing the mapping variable into

x, yielding the simpler diagram shown in (b2). To compute the value of do for x,

we can compute the value of the diagram with do(x∗) by setting the other atomic

interventions to idle, as shown in (c1). But since that is making the optimal choice

for x with no interventions on Y or x(Y), we can now think of x as a decision

variable as indicated in the diagram shown in (c2). We shall use this shorthand

in many of the examples that we consider. To compute the value of control for

x, we can compute the value of the diagram with do(x∗(Y)) by setting the other

atomic interventions to idle, as shown in (d1). But since that is making the optimal

choice for x(Y) with none of the other interventions, we can compute its value with

452

453

454

455

456

457

Ross Shachter and David Heckerman

in that

P{V |Y,x∗} = P{V |Y,do(x∗)} = P{V |Y,do(x∗(Y))}.

However, in valuing the decision situation we do not get to observe Y and thus

P{V |x∗} might not be equal to P{V |do(x∗)}. Consider the diagrams shown in

Figure 9. Because Income satisfies the back door criterion relative to Income Tax,

the values of do, control and revelation on Income Tax would all be the same if we

observed Income. But we do not know what our Income will be and the values of

do, control, and revelation can all be different.

Nonetheless, if we make a stronger assumption, that Y is d-separated from V by

x, the three measures will be equal. The atomic intervention on x or its mapping

variable only affects the value V through the descendants of x in a causal model,

and all other variables are unresponsive to the intervention in worlds limited by x.

However, the atomic interventions might not be independent of V given x unless Y

is d-separated from V by x. Otherwise, observing x or an atomic intervention on

the mapping variable for x can lead to a different value for the diagram than an

atomic intervention on x.

We establish this result in two steps for both general situations and for Pearl

causal models. By assuming that do(x) is independent of V given x, we first show

that the values of do and revelation are equal. If we then assume that Y is d-

separated from V by x, we show that the values of do and control are equal. The

conditions under which these two different comparisons can be made are not iden-

tical either. To be able to compute the value of revelation for x we must set to idle

all interventions that x is responsive to, while to compute the value of control for

x we need to be ensure that we have an atomic intervention on a mapping variable

for x.

THEOREM 10 (Equal Values of Do and Revelation). Given a decision problem

including uncertain variable x ∈ U , if there is a set of atomic interventions A,

including do(x), that is a cause of x with respect to D, and do(x) is independent of V

given x, then the values of do and revelation for x are equal, V oD(x∗) = V oR(x∗).

If {do(x)} is a cause of x with respect to D, then they are also equal to the value

of control for x, V oC(x∗()) = V oD(x∗) = V oR(x∗).

Proof. Consider the probability of V after the intervention do(x∗) with all other

interventions in A set to idle. Because x is determined by do(x∗), and do(x) is

independent of V given x,

P{V |do(x∗)} = P{V |x∗,do(x∗)} = P{V |x∗} = P{V |x∗, do(x) = idle}.

If {do(x)} is is a cause of x with respect to D then the values of do and control for

x are equal. ⊓⊔

COROLLARY 11. Given a decision problem described by a Pearl causal model in-

cluding uncertain variable x ∈ U , if Pa(x) is d-separated from V by x, then the

458

The Value of Control

values of do and revelation for x are equal, V oD(x∗) = V oR(x∗). If x has no

parents, then the the values of do, control, and revelation for x are equal,

V oD(x∗) = V oC(x∗()) = V oR(x∗).

THEOREM 12 (Equal Values of Do and Control). Given a decision problem de-

scribed by an influence diagram including uncertain variable x ∈ U , and nonempty

set of variables Y . If there are atomic interventions do(x) for x, do(y) for every

y ∈ Y ∩U , and do(x(Y))) for the mapping variable x(Y), Y ∪ {do(x), do(x(Y))} is

a cause of x with respect to D, and Y is d-separated from V by x, then the values

of do and control are equal,

V oD(x∗) = V oC(x∗(Y)).

Proof. We know that Y ∪ {do(x), do(x(Y))} is independent of V given x, be-

cause otherwise Y would not be d-separated from V by x. Because do(x) is an

atomic intervention on x and do(x) is independent of V given x, as in Theorem 10,

P{V |do(x∗)} = P{V |x∗,do(x∗)} = P{V |x∗}. Now consider the probability of V

after the intervention do(x∗(Y)). Because x = x∗(Y) is determined by do(x∗(Y))

and Y, and Y ∪ {do(x(Y))} is independent of V given x,

P{V |do(x∗(Y)),Y} = P{V |x = x∗(Y),do(x∗(Y)),Y}

= P{V |x = x∗(Y)},

The optimal choice of x(Y) does not depend on Y , x∗(Y) = x∗, yielding

P{V |do(x∗(Y)),Y} = P{V |x∗}.

As a result,

P{V |do(x∗(Y))} =
∑

Y

P{V,Y|do(x∗(Y))}

=
∑

Y

P{V |do(x∗(Y)),Y}P{Y|do(x∗(Y))}

=
∑

Y

P{V |x∗}P{Y|do(x∗(Y))}

= P{V |x∗}
∑

Y

P{Y|do(x∗(Y))}

= P{V |x∗}

⊓⊔

COROLLARY 13. Given an uncertain variable x ∈ U with parents in a decision

problem described by a Pearl causal model with an atomic intervention for mapping

459

460

The Value of Control

In R. Lopez de Mantaras and D. Poole (Eds.), Uncertainty in Artificial Intel-

ligence: Proceedings of the Tenth Conference, pp. 302–310. San Mateo, CA:

Morgan Kaufmann.

Howard, R. (1967). Value of information lotteries. IEEE Transa. Systems Sci.

Cybernetics SSC-3 (1), 54–60.

Howard, R. A. (1990). From influence to relevance to knowledge. In R. M. Oliver

and J. Q. Smith (Eds.), Influence Diagrams, Belief Nets, and Decision Anal-

ysis, pp. 3–23. Chichester: Wiley.

Howard, R. A. and J. E. Matheson (1984). Influence diagrams. In R. A. Howard

and J. E. Matheson (Eds.), The Principles and Applications of Decision Anal-

ysis, Volume II. Menlo Park, CA: Strategic Decisions Group.

Jacobs, W. W. (1902, September). The monkey’s paw. Harper’s Monthly 105,

634–639.

Matheson, D. and J. Matheson (2005). Describing and valuing interventions that

observe or control decision situations. Decision Analysis 2 (3), 165–181.

Matheson, J. E. (1990). Using influence diagrams to value information and con-

trol. In R. M. Oliver and J. Q. Smith (Eds.), Influence Diagrams, Belief Nets,

and Decision Analysis, pp. 25–48. Chichester: Wiley.

Pearl, J. (1993). Comment: Graphical models, causality, and intervention. Sta-

tistical Science 8, 266–269.

Robins, J. (1986). A new approach to causal inference in mortality studies with

sustained exposure results. Mathematical Modeling 7, 1393–1512.

Savage, L. (1954). The Foundations o Statistics. New York: Wiley.

Shachter, R. D. (1986). Evaluating influence diagrams. Operations Re-

search 34 (November-December), 871–882.

Shachter, R. D. (1999). Efficient value of information computation. In Uncertainty

in Artificial Intelligence: Proceedings of the Fifteenth Conference, pp. 594–

601. San Francisco, CA: Morgan Kaufmann.

Shachter, R. D. and D. E. Heckerman (1986). A backwards view for assessment.

In Workshop on Uncertainty in Artificial Intelligence, University of Pennsyl-

vania, Philadelphia, pp. 237–242.

Spirtes, P., C. Glymour, and R. Scheines (1993). Causation, Prediction, and

Search. New York: Springer-Verlag.

461

27

Cause for Celebration, Cause for Concern

Yoav Shoham

It is truly a pleasure to contribute to this collection, celebrating Judea Pearl’s

scientific contributions. My focus, as well as that of several other contributors, is on

his work in the area of causation and causal reasoning. Any student of these topics

who ignores Judea’s evolving contributions, culminating in the seminal [Pearl 2009],

does so at his or her peril. In addition to the objective content of these contributions,

Judea’s unique energy and personality have led to his having unparalleled impact

on the subject, in a diverse set of disciplines far transcending AI, his home turf.

This body of work is truly a cause for celebration, and accounts for the first half of

the title of this piece.

The second half of the title refers to a concern I have about the literature in

AI regarding causation. As an early contributor to this literature I wade back

into this area gingerly, aware of many of the complexities involved and difficulties

encountered by earlier attempts to capture the notion formally. I am also aware

of the fact that many developments have taken place in the past decade, indeed

many associated with Judea himself, and only some of which I am familiar with.

Still, it seems to me that the concern merits attention. The concern is not specific

to Judea’s work, and certainly applies to my own work in the area. It has to do

with the yardsticks by which we judge this or that theory of causal representation

or reasoning.

A number of years ago, the conference on Uncertainty in AI (UAI) held a panel

on causation, chaired by Judea, in which I participated. In my remarks I listed a

few requirements for a theory of causation in AI. One of the other panelists, whom I

greatly respect, responded that he couldn’t care less about such requirements; if the

theory was useful that was good enough for him. In hindsight that was a discussion

worth developing further then, and I believe it still is now.

Let us look at a specific publication, [Halpern and Pearl 2001]. This selection

is arbitrary and I might as well have selected any number of other publications to

illustrate my point, but it is useful to examine a concrete example. In this paper

Halpern and Pearl present an account of “actual cause” (as opposed to “generic

cause”; “the lighting last night caused the fire” versus “lightnings cause fire”). This

account is also the basis for Chapter 10 of [Pearl 2009]. Without going into their

specific (and worthwhile) account, let me focus on how they argue in its favor. In

the third paragraph they say

While it is hard to argue that our definition (or any other definition, for

463

Kaoru
Text Box
Return to TOC

Yoav Shoham

that matter) is the “right definition”, we show that it deals well with

the difficulties that have plagued other approaches in the past, especially

those exemplified by the rather extensive compendium of [Hall 2004]1.

The reference is to a paper by a philosopher, and indeed of the thirteen references

in the paper to work other than by the authors themselves, eight are to work by

philosophers.

This orientation towards philosophy is evident throughout the paper, in par-

ticular in their relying strongly on particularly instructive examples that serve as

test cases. This is an established philosophical tradition. The “morning star –

evening star” example [Kripke 1980] catalyzed discussion of cross-world identity in

first-order modal logic (you may have different beliefs regarding the star seen in

the morning from those regarding the star seen in the evening, even though, unbe-

knownst to you, they are in fact the same star – Venus). Similarly, the example of

believing that you will win the lottery and coincidentally later actually winning it

served to disqualify the definition of knowledge as true belief, and a similar example

argues against defining knowledge as justified true belief [Gettier 1963].

Such “intuition pumps” clearly guide the theory in [Halpern and Pearl 2001], as

evidenced by the reference to [Hall 2004] mentioned earlier, and the fact that over

four out of the paper’s ten pages are devoted to examples. These examples can be

highly instructive, but the question is what role they play. In philosophy they tend

to serve as necessary but insufficient conditions for a theory. They are necessary in

the sense that each of them is considered sufficient grounds for disqualifying a theory

(namely, a theory which does not treat the example in an intuitively satisfactory

manner). And they are insufficient since new examples can always be conjured up,

subjecting the theory to ever-increasing demands.

This is understandable from the standpoint of philosophy, to the extent that it

attempts to capture a complex, natural notion (be it knowledge or causation) it its

full glory. But is this also the goal for such theories in AI? If not, what is the role

of these test cases?

If taken seriously, the necessary-but-insufficient interpretation of the examples

presents an impossible challenge to formal theory; a theoretician would never win

in this game, in which new requirements may surface at any moment. Indeed,

most of the philosophical literature is much less formal than the literature in AI, in

particular [Halpern and Pearl 2001]. So where does this leave us?

This is not the first time computer scientists have faced this dilemma. Consider

knowledge, for example. The S5 logic of knowledge [Fagin, Halpern, Moses, and

Vardi 1994] captures well certain aspects of knowledge in idealized form, but the

terms “certain” and “idealized” are important here. The logic has nothing to say

about belief (as opposed to knowledge), nor about the dynamic aspects of knowledge

(how it changes over time). Furthermore, even with regard to the static aspects of

1They actually refer to an earlier, unpublished version of Hall’s paper from 1998.

464

Cause for Celebration, Cause for Concern

knowledge, it is not hard to come up with everyday counterexamples to each of its

axioms.

And yet, the logic proves useful to reason about certain aspects of distributed

systems, and the mismatch between the properties of the modal operator K and

the everyday word “know” does not get in the way, within these confines. All

this changes as one switches the context. For example, if one wishes to consider

cryptographic protocols, the K axiom (Kp ∧ K(p ⊃ q) ⊃ Kq, valid in any normal

modal logic, and here representing logical omniscience) is blatantly inappropriate.

Similarly, when one considers knowledge and belief together, axiom 5 of the logic

(¬Kp ⊃ K¬Kp, representing negative introspection ability) seems impossible to

reconcile with any reasonable notion of belief, and hence one is forced to retreat

back from the S5 system to something weaker.

The upshot of all this is the following criterion for a formal theory of natural

concepts: One should be explicit about the intended use of the theory, and within

the scope of this intended use one should require that everyday intuition about the

natural concepts be a useful guide in thinking about their formal counterparts.

A concrete interpretation of the above principle is what in [Shoham 2009] I called

the artifactual perspective.2 Artifactual theories attempt to shed light on the op-

eration of a specific artifact, and use the natural notion almost as a mere visual

aid. In such theories there is a precise interpretation of the natural notion, which

presents a precise requirement for the formal theory. One example is indeed the use

of “knowledge” to reason about protocols governing distributed systems. Another,

discussed in [Shoham 2009], is the use of “intention” to reason about a database

serving an AI planner.

Is there a way to instantiate the general criterion above, or more specifically the

artifactual perspective, in the context of causation? I don’t know the answer, but

it seems to me worthy of investigation. If the answer is “yes” then we will be in a

position to devise provably correct theories, and the various illustrative examples

will be relegated to the secondary role of showing greater or lesser match with the

everyday concept.

Acknowledgments: This work was supported by NSF grant IIS-0205633-001.

References

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1994). Reasoning about

Knowledge. MIT Press.

Gettier, E. L. (1963). Is justified true belief knowledge? Analysis 23, 121–123.

Hall, N. (2004). Two concepts of causation. In J. Collins, N. Hall, and L. A. Paul

(Eds.), Causation and Counterfactuals. MIT Press.

2The discussion there is done in the context of formal models of intention, but the considerations

apply here just as well.

465

Yoav Shoham

Halpern, J. Y. and J. Pearl (2001). Causes and explanations: A structural-model

approach. part I: Causes. In Proceedings of the 17th Annual Conference on

Uncertainty in Artificial Intelligence (UAI-01), San Francisco, CA, pp. 194–

202. Morgan Kaufmann.

Kripke, S. A. (1980). Naming and necessity (Revised and enlarged ed.). Blackwell,

Oxford.

Pearl, J. (2009). Causality. Cambridge University Press. Second edition.

Shoham, Y. (2009). Logics of intention and the database perspective. Journal of

Philosophical Logic 38 (6), 633–648.

466

28

Automated Search for Causal Relations –

Theory and Practice

PETER SPIRTES, CLARK GLYMOUR, RICHARD SCHEINES, AND ROBERT TILLMAN

1 Introduction

The rapid spread of interest in the last two decades in principled methods of search or

estimation of causal relations has been driven in part by technological developments,

especially the changing nature of modern data collection and storage techniques, and the

increases in the speed and storage capacities of computers. Statistics books from 30 years

ago often presented examples with fewer than 10 variables, in domains where some

background knowledge was plausible. In contrast, in new domains, such as climate

research where satellite data now provide daily quantities of data unthinkable a few

decades ago, fMRI brain imaging, and microarray measurements of gene expression, the

number of variables can range into the tens of thousands, and there is often limited

background knowledge to reduce the space of alternative causal hypotheses. In such

domains, non-automated causal discovery techniques appear to be hopeless, while the

availability of faster computers with larger memories and disc space allow for the

practical implementation of computationally intensive automated search algorithms over

large search spaces. Contemporary science is not your grandfather’s science, or Karl

Popper’s.

Causal inference without experimental controls has long seemed as if it must

somehow be capable of being cast as a kind of statistical inference involving estimators

with some kind of convergence and accuracy properties under some kind of assumptions.

Until recently, the statistical literature said not. While parameter estimation and

experimental design for the effective use of data developed throughout the 20
th

 century,

as recently as 20 years ago the methodology of causal inference without experimental

controls remained relatively primitive. Besides a cessation of hostilities from the

majority of the statistical and philosophical communities (which has still only partially

happened), several things were needed for theories of causal estimation to appear and to

flower: well defined mathematical objects to represent causal relations; well defined

connections between aspects of these objects and sample data; and a way to compute

those connections. A sequence of studies beginning with Dempster’s work on the

factorization of probability distributions [Dempster 1972] and culminating with Kiiveri

and Speed’s [Kiiveri & Speed 1982] study of linear structural equation models, provided

the first, in the form of directed acyclic graphs, and the second, in the form of the “local”

Markov condition. Pearl and his students [Pearl 1988], and independently, Stefan

467

Kaoru
Text Box
Return to TOC

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

Lauritzen and his collaborators [Lauritzen, Dawid, Larsen, & Leimer 1990], provided the

third, in the form of the “global” Markov condition, or d-separation in Pearl’s

formulation, and the assumption of its converse, which came to be known as “stability”

or “faithfulness.” Further fundamental conceptual and computational tools were needed,

many of them provided by Pearl and his associates; for example, the characterization and

representation of Markov equivalence classes and the idea of “inducing paths,” essential

to understanding the properties of models with unrecorded variables. Initially, most of

these authors, including Pearl, did not connect directed graphical models with a causal

interpretation (in the sense of representing outcomes of interventions). This connection

between graphs and interventions was drawn from an earlier tradition in econometrics

[Strotz & Wold 1960], and in our work [Spirtes, Glymour, & Scheines 1993]. With this

connection, and the pieces Speed, Lauritzen, Pearl and others had established, a

principled theory of causal estimation could, and did, begin around 1990, and Pearl and

his students have made important contributions to it. Pearl has become the foremost

advocate in the universe for reconceiving the relations between causality and statistics.

Once begun for special cases, the understanding of search methods for causal relations

has expanded to a variety of scientific and statistical settings, and in many scientific

enterprises—neuroimaging for example—causal representations and search are treated as

almost routine.

The theory of interventions also provided a coherent normative theory of inference

using causal premises. That effort can also be traced back to Strotz and Wold [Strotz &

Wold 1960], then to our own work [Spirtes, Glymour, & Scheines 1993] on prediction

from classes of causal graphs, and then to the full development of a non-parametric

theory of prediction for graphical models by Pearl and his collaborators [Shpitser & Pearl

2008]. Pearl brilliantly turned philosopher and developed the theory of interventions into

a general account of counterfactual reasoning. Although we will not discuss it further, we

think there remain interesting open problems about prediction algorithms for various

parametric classes of graphical causal models.

The following paper surveys a broad range of causal estimation problems and

algorithms, concentrating especially on those that can be illustrated with empirical

examples that we and our students and collaborators have analyzed. This has naturally led

to a concentration on the algorithms and tools that we have developed. The kinds of

causal estimation problems and algorithms discussed are broadly representative of the

most important developments in methods for estimating causal structure since 1990, but

it is not a comprehensive survey. There have been so many improvements to the basic

algorithms that we describe here there is not room to discuss them all. A good resource

for a description of further research in this area is the Proceedings of the Conferences on

Uncertainty in Artificial Intelligence, at http://uai.sis.pitt.edu.

 The dimensions of the problems, as we have long understood them, are these:

1. Finding computationally and statistically feasible methods for discovering

causal information for large numbers of variables, provably correct under

standard sampling assumptions, assuming no confounding by unrecorded

variables.

468

Automated Search for Causal Relations

2. The same when the “no confounding” assumption is abandoned.

3. Finding methods for obtaining causal information when there is systematic

sample selection bias — when values of some of the variables of interest are

associated with sample membership.

4. Finding methods for establishing the existence of unobserved causes and

estimating their causal relations with one another.

5. Finding methods for discovering causal relations in data produced by

feedback systems.

6. Finding methods for discovering causal relations in time series data.

7. Finding methods for discovering causal relations in linear and in non-linear

non-Gaussian systems with continuous variables.

8. Finding methods for discovering causal relations using distributed, multiple

data sets.

9. Finding methods for merging the above with experimental design.

2 Assumptions

We assume the reader’s familiarity with the standard notions used in discussions of

graphical causal model search: conditional independence, Markov properties, d-

separation, Markov equivalence, patterns, distribution equivalence, causal sufficiency,

etc. The appendix gives a brief review of the essential definitions, assumptions and

theorems required for known proofs of correctness of the algorithms we will discuss.

3 Model Search Assuming Causal Sufficiency

The assumption of causal sufficiency (roughly no unrecorded confounders) is often

unrealistic, but it is useful in explicating search because the concepts and methods used in

search algorithms that make more realistic assumptions are more complex versions of

ideas that are used in searches that assume causal sufficiency.

3.1 The PC Algorithm

The PC algorithm is a constraint-based search that attempts to find the pattern that most

closely entails all and only the conditional independence constraints judged to hold in the

population. The SGS algorithm [Spirtes & Glymour 1991] and the IC algorithm

[Verma & Pearl 1990] were early versions of this algorithm that were statistically and

computationally feasible only on data sets with few variables because they required

conditioning on all possible subsets of variables.) The PC algorithm solved both

difficulties in typical cases.

The PC algorithm has an adjacency phase in which the adjacencies are determined,

and an orientation phase in which as many edges as possible are oriented. The adjacency

phase is stated below, and illustrated in Figure 1. Let Adjacencies(G,A) be the set of

vertices adjacent to A in undirected graph G. (In the algorithm, the graph G is continually

updated, so Adjacencies(G,A) may change as the algorithm progresses.)

469

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

Figure 1: Constraint based search, where correct pattern is P1

Adjacency Phase of PC Algorithm:

Form an undirected graph G in which every pair of vertices in V is adjacent.

n := 0.

repeat

repeat

Select an ordered pair of variables X and Y that are

adjacent in G such that Adjacencies(G,X)\{Y} has

cardinality greater than or equal to n, and a subset S of

Adjacencies(G,X)\{Y} of cardinality n, and if X and Y are

independent conditional on S delete edge X ! Y from C

and record S in Sepset(X,Y) and Sepset(Y,X);

until all ordered pairs of adjacent variables X and Y such that

Adjacencies(G,X)\{Y} has cardinality greater than or equal to n

and all subsets S of Adjacencies(G,X)\{Y} of cardinality n have

been tested for conditional independence;

 n := n + 1;

 until for each ordered pair of adjacent vertices X, Y, Adjacencies(G,X)\{Y}

 is of cardinality less than n.

After the adjacency phase of the algorithm, the orientation phase of the algorithm is

performed. The orientation phase of the algorithm is illustrated in Figure 2.

A B

E D

 C

 (i)

A B

E D

 C

 (i)

 Sepset

I(A,D|") "

I(B,D|") "

A B

E D

 C

 (i)

 Sepset

I(A,C|{B}) {B}

I(A,E|{B}) {B}

I(B,E|{C}) {C}

I(D,E|{C}) {C}

 A B C D

 E

True Causal Pattern P1

A B C D

 E

 True Causal Graph G1

470

Automated Search for Causal Relations

Figure 2: Orientation phase of PC algorithm, assuming true pattern is P1

The orientation phase of the PC algorithm is stated more formally below. The last

two orientation rules (Away from Cycles, and Double Triangle) are not used in the

example, but are sound because if the edges were oriented in ways that violated the rules,

there would be a directed cycle in the pattern, which would imply a directed cycle in the

graph (which in this section is assumed to be impossible). The orientation rules are

complete [Meek 1995], i.e. every edge that has the same orientation in every member of a

DAG conditional independence equivalence class is oriented by these rules.

Orientation Phase of PC Algorithm

For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are each

adjacent in graph G but the pair X, Z are not adjacent in G, orient X ! Y ! Z as

X # Y $ Z if and only if Y is not in Sepset(X,Z).

repeat

Away from colliders: If A # B ! C, and A and C are not adjacent, then

orient as B # C.

Away from cycles: If A # B # C and A ! C, then orient as A # C.

Double Triangle: If A # B $ C, A and C are not adjacent, A ! D ! C, and

there is an edge B ! D, orient B ! D as D # B.

 until no more edges can be oriented.

The tests of conditional independence can be performed in the usual way.

Conditional independence among discrete variables can be tested using the G
2
 statistic;

conditional independence among multivariate Gaussian variables can be tested using

Fisher’s Z-transformation of the partial correlations [Spirtes, Glymour, & Scheines

2001]. Section 3.4 describes more general tests of conditional independence. Such tests

require specifying a significance level for the test, which is a user-specified parameter of

the algorithm. Because the PC algorithm performs a sequence of tests without

adjustment, the significance level does not represent any (easily calculable) statistical

feature of the output, but should only be understood as a parameter used to guide the

search.

 A B C D

 (ii) E

 Away From Colliders

 A B C D

 (i) E

C % Sepset(B,D)

B & Sepset(A,C)

C & Sepset(B,E)

C & Sepset(D,E)

Colliders

471

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

Assuming that the causal relations can be represented by a directed acyclic graph, the

Causal Markov Assumption, the Causal Faithfulness Assumption, and consistent tests of

conditional independence, in the large sample (i.i.d.) limit for a causally sufficient set of

variables, the PC algorithm outputs a pattern that represents the true causal graph.

The PC algorithm has been shown to apply to very high dimensional data sets (under

a stronger version of the Causal Faithfulness Assumption), both for finding causal

structure [Kalisch & Buhlmann 2007] and for classification [Aliferis, Tsamardinos, &

Statnikov 2003]. A version of the algorithm controlling the false discovery rate is

available [Junning & Wang 2009].

3.1.1 Example - Foreign Investment

This example illustrates how the PC algorithm can find plausible alternatives to a model

built from domain knowledge. Timberlake and Williams used regression to claim foreign

investment in third-world countries promotes dictatorship [Timberlake & Williams

1984]. They measured political exclusion (PO) (i.e., dictatorship), foreign investment

penetration in 1973 (FI), energy development in 1975 (EN), and civil liberties (CV) for

72 countries. CV was measured on an ordered scale from 1 to 7, with lower values

indicating greater civil liberties.

Their inference is unwarranted. Their model (with the relations between the

regressors omitted) and the pattern obtained from the PC algorithm using a 0.12

significance level to test for vanishing partial correlations) are shown in Figure 3.1 We

typically run the algorithms at a variety of different significance levels, and compare the

results to see if any of the features of the output are constant.

Figure 3: Two Models of Foreign Investment

The PC Algorithm will not orient the FI – EN and EN – PO edges, and assumes that

the edges are not due to an unmeasured common cause. Maximum likelihood estimates of

any linear, Gaussian parameterization of any DAG represented by the pattern output by

the PC algorithm requires that the influence of FI on PO (if any) be negative, and the

models easily pass a likelihood ratio test. If any of these SEMs is correct, Timberlake and

William's regression model appears to be a case in which an effect of the outcome

variable is taken as a regressor.

Given the small sample size, and the uncertainty about the distributional

assumptions, we do not present the alternative models suggested by the PC algorithm as

particularly well supported by the evidence. However, we do think that they are at least

1Searches at lower significance levels remove the adjacency between FI and EN.

 FI

EN PO FI EN PO CV

CV

(a) Timberlake-Williams Model (b) Output of PC Algorithm

.762
–.478

1.061

+ –

472

Automated Search for Causal Relations

as well supported as the regression model, and hence serve to cast doubt upon

conclusions drawn from that model.

3.1.2 Example - Spartina Biomass

This example illustrates a case where the PC algorithm output received some

experimental confirmation. A textbook on regression [Rawlings 1988] skillfully

illustrates regression principles and techniques for a biological study from a dissertation

[Linthurst 1979] in which it is reasonable to think there is a causal process at work

relating the variables. The question at issue is plainly causal: among a set of 14 variables,

which have the most influence on an outcome variable, the biomass of Spartina grass?

Since the example is the principle application given for an entire textbook on regression,

the reader who reaches the 13
th

 chapter may be surprised to find that the methods yield

almost no useful information about that question.

According to Rawlings, Linthurst obtained five samples of Spartina grass and soil

from each of nine sites on the Cape Fear Estuary of North Carolina. Besides the mass of

Spartina (BIO), fourteen variables were measured for each sample:

• Free Sulfide (H2S)

• Salinity (SAL)

• Redox potentials at pH 7 (EH7)

• Soil pH in water (PH)

• Buffer acidity at pH 6.6 (BUF)

• Phosphorus concentration (P)

• Potassium concentration (K)

• Calcium concentration (CA)

• Magnesium concentration (MG)

• Sodium concentration (NA)

• Manganese concentration (MN)

• Zinc concentration (ZN)

• Copper concentration (CU)

• Ammonium concentration (NH4)

The aim of the data analysis was to determine for a later experimental study which of

these variables most influenced the biomass of Spartina in the wild. Greenhouse

experiments would then try to estimate causal dependencies out in the wild. In the best

case one might hope that the statistical analyses of the observational study would

correctly select variables that influence the growth of Spartina in the greenhouse. In the

worst case, one supposes, the observational study would find the wrong causal structure,

or would find variables that influence growth in the wild (e.g., by inhibiting or promoting

growth of a competing species) but have no influence in the greenhouse.

Using the SAS statistical package, Rawlings analyzed the variable set with a multiple

regression and then with two stepwise regression procedures from the SAS package. A

search through all possible subsets of regressors was not carried out, presumably because

the candidate set of regressors is too large. The results were as follows:

473

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

 (i) a multiple regression of BIO on all other variables gives only K and CU

significant regression coefficients;

(ii) two stepwise regression procedures2 both yield a model with PH, MG, CA

and CU as the only regressors, and multiple regression on these variables alone gives

them all significant coefficients;

(iii) simple regressions one variable at a time give significant coefficients to PH,

BUF, CA, ZN and NH4.

What is one to think? Rawling's reports that "None of the results was satisfying to

the biologist; the inconsistencies of the results were confusing and variables expected to

be biologically important were not showing significant effects." (p. 361).

This analysis is supplemented by a ridge regression, which increases the stability of

the estimates of coefficients, but the results for the point at issue--identifying the

important variables--are much the same as with least squares. Rawlings also provides a

principal components factor analysis and various geometrical plots of the components.

These calculations provide no information about which of the measured variables

influence Spartina growth.

Noting that PH, for example, is highly correlated with BUF, and using BUF instead

of PH along with MG, CA and CU would also result in significant coefficients, Rawlings

effectively gives up on this use of the procedures his book is about:

Ordinary least squares regression tends either to indicate that none of the

variables in a correlated complex is important when all variables are in the

model, or to arbitrarily choose one of the variables to represent the complex

when an automated variable selection technique is used. A truly important

variable may appear unimportant because its contribution is being usurped

by variables with which it is correlated. Conversely, unimportant variables

may appear important because of their associations with the real causal

factors. It is particularly dangerous in the presence of collinearity to use the

regression results to impart a "relative importance," whether in a causal

sense or not, to the independent variables. (p. 362)

Rawling's conclusion is correct in spirit, but misleading and even wrong in detail. If

we apply the PC algorithm to the Linthurst data then there is one robust conclusion: the

only variable that may directly influence biomass in this population3 is PH; PH is

distinguished from all other variables by the fact that the correlation of every other

variable (except MG) with BIO vanishes or vanishes when PH is conditioned on.4 The

relation is not symmetric; the correlation of PH and BIO, for example, does not vanish

when BUF is controlled. The algorithm finds PH to be the only variable adjacent to BIO

2The "maximum R-square" and "stepwise" options in PROC REG in the SAS program.
3Although the definition of the population in this case is unclear, and must in any case be

drawn quite narrowly.
4More exactly, at .05, with the exception of MG the partial correlation of every regressor

with BIO vanishes when some set containing PH is controlled for; the correlation of MG

with BIO vanishes when CA is controlled for.

474

Automated Search for Causal Relations

no matter whether we use a significance level of .05 to test for vanishing partial

correlations, or a level of 0.1, or a level of 0.2. In all of these cases, the PC algorithm

(and the FCI algorithm, which allows for the possibility of latent variables in section 4.2)

yields the result that PH and only PH can be directly connected with BIO. If the system is

linear normal and the Causal Markov Assumption obtains, then in this population any

influence of the other regressors on BIO would be blocked if PH were held constant. Of

course, over a larger range of values of the variables there is little reason to think that

BIO depends linearly on the regressors, or that factors that have no influence in

producing variation within this sample would continue to have no influence.

Although the analysis cannot conclusively rule out possibility that PH and BIO are

confounded by one or more unmeasured common causes, in this case the principles of the

theory and the data argue against it. If PH and BIO have a common unmeasured cause T,

say, and any other variable, Zi, among the 13 others either causes PH or has a common

unmeasured cause with PH (Figure 4, in which we do not show connections among the Z

variables), then Zi and BIO should be correlated conditional on PH, which is statistically

not the case.

`

Figure 4 : PH and BIO Confounding?

The program and theory lead us to expect that if PH is forced to have values like

those in the sample--which are almost all either below PH 5 or above PH 7-- then

manipulations of other variables within the ranges evidenced in the sample will have no

effect on the growth of Spartina. The inference is a little risky, since growing plants in a

greenhouse under controlled conditions may not be a direct manipulation of the variables

relevant to growth in the wild. If, for example, in the wild variations in PH affect

Spartina growth chiefly through their influence on the growth of competing species not

present in the greenhouse, a greenhouse experiment will not be a direct manipulation of

PH for the system.

The fourth chapter of Linthurst's thesis partly confirms the PC algorithm's analysis.

In the experiment Linthurst describes, samples of Spartina were collected from a salt

marsh creek bank (presumably at a different site than those used in the observational

study). Using a 3 x 4 x 2 (PH x SAL x AERATION) randomized complete block design

with four blocks, after transplantation to a greenhouse the plants were given a common

nutrient solution with varying values PH and SAL and AERATION. The AERATION

variable turned out not to matter in this experiment. Acidity values were PH 4, 6 and 8.

SAL for the nutrient solutions was adjusted to 15, 25, 35 and 45 %o.

Linthurst found that growth varied with SAL at PH 6 but not at the other PH values,

4 and 8, while growth varied with PH at all values of SAL (p. 104). Each variable was

Z1 o Z2 o Z3 o PH

 T

 BIO

475

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

correlated with plant mineral levels. Linthurst considered a variety of mechanisms by

which extreme PH values might control plant growth:

At pH 4 and 8, salinity had little effect on the performance of the species. The

pH appeared to be more dominant in determining the growth response.

However, there appears to be no evidence for any causal effects of high or low

tissue concentrations on plant performance unless the effects of pH and salinity

are also accounted for. (p.108)

The overall effect of pH at the two extremes is suggestive of damage to the

root, thereby modifying its membrane permeability and subsequently its

capacity for selective uptake. (p. 109).

A comparison of the observational and experimental data suggests that the PC

Algorithm result was essentially correct and can be extrapolated through the variation in

the populations sampled in the two procedures, but cannot be extrapolated through PH

values that approach neutrality. The result of the PC search was that in the non-

experimental sample, observed variations in aerial biomass were perhaps caused by

variations in PH, but were not caused (at least not directly, relative to PH) by variations

in other variables. In the observational data Rawlings reports (p. 358) almost all SAL

measurements are around 30--the extremes are 24 and 38. Compared to the experimental

study rather restricted variation was observed in the wild sample. The observed values of

PH in the wild, however, are clustered at the two extremes; only four observations are

within half a PH unit of 6, and no observations at all occurred at PH values between 5.6

and 7.1. For the observed values of PH and SAL, the experimental results appear to be in

very good agreement with our results from the observational study: small variations in

SAL have no effect on Spartina growth if the PH value is extreme.

3.1.3 College Plans

Sewell and Shah [Sewell & Shah 1968] studied five variables from a sample of 10,318

Wisconsin high school seniors.5 The variables and their values are:

• SEX male = 0, female = 1

• IQ = Intelligence Quotient, lowest = 0, highest = 3

• CP = college plans yes = 0, no = 1

• PE = parental encouragement low = 0, high = 1

• SES = socioeconomic status lowest = 0, highest = 3

The question of interest is what the causes of college plans are. This data set is of

interest because it has been used by a variety of different search algorithms that make

different assumption. The different results illustrate the role that the different assumptions

make in the output and are discussed in subsequent sections.

5Examples of the analysis of the Sewell and Shah data using Bayesian networks are given

in Spirtes et al. (2001), and Heckerman (1998).

476

Automated Search for Causal Relations

Figure 5: Model of Causes of College Plans

The pattern produced as the output of the PC algorithm is shown in Figure 5. The model

predicts that SEX affects CP only indirectly via PE.

It is possible to predict the effects of some manipulations from the pattern, but not

others. For example, because the pattern is compatible both with SES # IQ and with SES

$ IQ, it is not possible to determine if SES is a cause or an effect of IQ, and hence it is

not possible to predict the effect of manipulating SES on IQ from the pattern. On the

other hand, it can be shown that all of the models in the conditional independence

equivalence class represented by the pattern entail the same predictions about the

quantitative effects of manipulating PE on CP. When PE is manipulated, in the

manipulated distribution: P(CP=0|PE=0) = .095; P(CP=1|PE=0) = .905; P(CP=0|PE=1)

= .484; P(CP=1PE=1) = .516 [Spirtes, Scheines, Glymour, & Meek 2004].

3.2 Greedy Equivalence Search Algorithm

Algorithms that maximize a score have certain advantages over constraint-based

algorithms such as PC. When the data are not Gaussian, but the system is linear,

extensive unpublished simulations find that at least one such algorithm, the Greedy

Equivalence Search (GES) algorithm [Meek 1997] outperforms PC. GES can be used

with a number of different scores for patterns, including posterior probabilities (for some

parametric families and under some priors), and the Bayesian Information Criterion

(BIC), which is an approximation of a class of posterior distributions in the large sample

limit. The BIC score [Schwarz 1978] is: -2 ln(ML) + k ln(n), where ML is the likelihood

of the data at the maximum likelihood estimate of the parameters, k is the dimension of

the model and n is the sample size. For uniform priors on models and smooth priors on

the parameters, the posterior probability conditional on the data is a monotonic function

of BIC in the large sample limit. In the forward stage of the search, starting with an

initial (possibly empty) pattern, at each stage GES selects the pattern that is the one-edge

addition compatible with the current pattern and has the highest score. The forward stage

continues until no further additions improve the score. Then a reverse procedure is

followed that removes edges according to the same criterion, until no improvement is

found. The computational and convergence advantages of the algorithm depend on the

fact that it searches over Markov equivalence classes of DAGs rather than individual

DAGs, and that only one forward stage and one backward stage are required for an

asymptotically correct search. In the large sample limit, GES identifies the Markov

equivalence class of the true graph if the assumptions above are met [Chickering 2002].

SES

SEX PE CP

IQ

477

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

GES has proved especially valuable in searches for latent structure (GESMIMBuild)

and in searches with multiple data sets (IMaGES). Examples are discussed in sections 4.4

and 5.3 .

3.3 LiNGAM

Standard implementations of the constraint-based and score-based algorithms above

usually assume that continuous variables have multivariate Gaussian distributions. This

assumption is inappropriate in many contexts such as EEG analysis where variables are

known to deviate from Gaussianity.

The LiNGAM (Linear Non-Gaussian Acyclic Model) algorithm [Shimizu, Hoyer,

Hyvärinen, & Kerminen 2006] is appropriate specifically for cases where each variable in

a set of measured variables can be written as a linear function of other measured variables

plus an independent noise component, where at most one of the measured variables’

noise components may be Gaussian. For example, consider the system with the causal

graph shown in Figure 6 and assume X, Y, and Z are determined as follows, where a, b,

and c are real-valued coefficients and !x , !y, and !z are independent noise components of

which at least two are non-Gaussian.

(1) X = !x

(2) Y = aX + !y

(3) Z = bX + cY + !z

Figure 6: Causal Graph and Reduced Form

The equations can be rewritten in what economists called reduced form, also shown in

Figure 6:

(4) X = !X

(5) Y = a!X + !Y

(6) Z = b!X + ac!X + c!Y + !Z

The standard Independent Components Analysis (ICA) procedure [Hyvärinen & Oja,

2000] can be used to recover a matrix containing the real-valued coefficients a, b, and c

from an i.i.d. sample of data generated from the above system of equations. The

LiNGAM algorithm finds the correct matching of coefficients in this ICA matrix to

variables and prunes away any insignificant coefficients using statistical criteria.

!X X Y !Y !X !Y !Z

 Z !Z X Y Z

 (i) Causal Graph (ii) Reduced Form

b c

478

Automated Search for Causal Relations

The procedure yields correct values even if the coefficients were to perfectly cancel,

and hence the variables such as X, Z above were to be uncorrelated. Since coefficients

are determined for each variable, we can always reconstruct the true unique DAG, instead

of its Markov equivalence class. The procedure converges (at least) pointwise to the true

DAG and coefficients assuming: (1) there are no unmeasured common causes; (2) the

dependencies among measured variables are linear; (3) none of the relations among

measured variables are deterministic; (4) i.i.d. sampling; (5) the Markov Condition; (6) at

most one error or disturbance term is Gaussian. We do not know its complexity

properties.

The LiNGAM procedure can be generalized to estimate causal relations among

observables when there are latent common causes [Hoyer, Shimizu, & Kerminen 2006],

although the result is not in general a unique DAG, and LiNGAM has been combined

[Shimizu, Hoyer, & Hyvarinen 2009] with Silva’s clustering procedure (section 4.4) for

locating latent variables to estimate a unique DAG among latent variables, and also with

search for cyclic graphs [Lacerda, Spirtes, Ramsey, & Hoyer 2008], and combined with

the PC and GES algorithms when more than one disturbance term is Gaussian [Hoyer et

al. 2008].

3.4 The kPC Algorithm

The kPC algorithm [Tillman, Gretton, & Spirtes, 2009] relaxes distributional assumptions

further, allowing not only non-Gaussian noise with continuous variables, but also

nonlinear dependencies. In many cases, kPC will return a unique DAG (even when there

is more than one DAG in the Markov equivalence class. However, unlike LiNGAM there

is no requirement that a certain number of variables be non-Gaussian.

kPC consists of two stages. In the first stage of kPC, the standard PC algorithm is

applied to the data using efficient implementations of the Hilbert-Schmidt Independence

Criteria [Gretton, Fukumizu, Teo, Song, Scholkopf, & Smola, 2008], a nonparametric

independence test and an extension of this test to the conditional cases based on the

dependence measure given in [Fukumizu, Gretton, Sun, & Scholkopf, 2008]. This

produces a pattern. Additional orientations are then possible if the true causal model, or a

submodel (after removing some variables) of the true causal model is an additive noise

model [Hoyer, Janzing, Mooij, Peters, & Scholkopf, 2009] that is noninvertible.

A set of variables is an additive noise model if (i) the function form of each variable

can be expressed as a (possible nonlinear) smooth function of its parents in the true

causal model plus an additive (Gaussian or non-Gaussian) noise component and (ii) the

additive noise components are mutually independent. An additive noise model is

noninvertible if we cannot reverse any edges in the model and still obtain smooth

functional forms for each variable and mutually independent additive noise components

that fit the data.

For example, consider the two variable case where X # Y is the true DAG and we

have the following function forms and additive noise components for X and Y:

X = !
X
, Y = sin("X) + !

X
, !

X
~ Uniform(#1,1), !

Y
~ Uniform(#1,1)

479

480

Automated Search for Causal Relations

equivalence class. In many cases, only a few variables need be nonlinear or non-Gaussian

to obtain a unique DAG using kPC.

kPC requires the following additional assumption:

Weak Additivity Assumption: If the relationship between X and Parents(G,X) in the

true DAG G cannot be expressed as a noninvertible additive noise model, there does not

exist a Y in Parents(G,X) and alternative DAG G’ such that Y and Parents(G’,Y) can be

expressed as a noninvertible additive noise model where X is included in Parents(G’,Y).

This assumption does rule out invertible additive noise models or many cases where

noise may not be additive, only the hypothetical case where we can fit an additive noise

model to the data, but only in the incorrect direction. Weak additivity can be considered

an extension of the simplicity intuitions underlying the causal faithfulness assumption,

i.e. a complicated true model will not generate data resembling a different simpler model.

Faithfulness can fail, but under a broad range of distributions, violations are Lebesgue

measure zero [Spirtes, Glymour, & Scheines 2000]. Whether a similar justification can

be given for the weak additivity assumption is an open question.

kPC is both correct and complete, i.e. it converges to the correct DAG or smallest

possible equivalence class of DAGs in the limit under weak additivity and the

assumptions of the PC algorithm.

3.4.1 Example - Auto MPG

Figure 9 shows the structures learned for the Auto MPG dataset, which records MPG fuel

consumption of 398 automobiles in 1983 with 8 characteristics from the UCI database

(Asuncion & Newman, 2007). The nominal variables Year and Origin were excluded.

Figure 9: Automobile Models

The PC result indicates MPG causes Weight and Horsepower, and Acceleration

causes Weight, Horsepower, and Displacement, which are clearly false. kPC finds the

more plausible chain Displacement # Horsepower # Acceleration and finds

Horsepower and Weight cause MPG.

3.4.2 Example - Forest Fires

The Forest Fires dataset contains 517 recordings of meteorological for forest fires

observed in northeast Portugal and the total area burned (Area) [Asuncion & Newman

2007]. We again exclude nominal variables Month and Year. Figure 10 shows the

Cylinders Weight MPG Acceleration

Displacement Weight

Horsepower Horsepower

Acceleration MPG Cylinders Displacement

481

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

structures learned by PC and kPC for this dataset. kPC finds every variable other than

Area is a cause of Area, which is sensible since each of these variables were included in

the dataset by domain experts as predictors which influence the total area burned by

forest fires.

The PC structure, however, indicates that Area is not associated with any of the

variables, which are all assumed to be predictors by experts.

Figure 10: kPC and PC Forest Fires

4 Search For Latent Variable Models

The assumption that the observed variables are causally sufficient is usually unwarranted.

In this section, we describe searches that do not make this assumption.

4.1 Distribution and Conditional Independence Equivalence

Let O be the set of observed variables, which may not be causally sufficient. If G1 is a

DAG over V1, G2 is a DAG over V2, O ' V1, and O ' V2, G1 and G2 are O-conditional

independence equivalent, if they both entail the same set of conditional independence

relations among the variables in O (i.e. they have the same d-separation relations among

the variables in O). <G1, 1> and <G2, 2> are O-distribution equivalent with respect to

the parametric families 1 and 2 if and only if they represent the same set of marginal

distributions over O.

It is possible that two directed graphs are conditional independence equivalent, or

even distributionally equivalent (relative to given parametric families) but are not O-

distributionally equivalent (relative to the same parametric families), as long as at least

one of them contains a latent variable. Although there are algebraic techniques that

determine when two Bayesian networks with latent variables are O-distributionally

equivalent for some parametric families, or find features common to an O-distributional

equivalence class, known algorithms to do so are not computationally feasible [Geiger &

Meek 1999] for models with more than a few variables. In addition, if an unlimited

number of latent variables are allowed, the number of DAGs that are O-distributionally

equivalent may be infinite. Hence, instead of searching for O-distribution equivalence

classes of models, we will describe how to search for O-conditional independence classes

X-axis X-axis DMC Area

Y-axis Y-axis FFMC

FFMC

DMC

DC DC ISI

ISI Area

Temp Wind

RH Temp Rain

Wind

Rain RH

(a) kPC output (b) PC output

482

Automated Search for Causal Relations

of models. This is not as informative as the computationally infeasible strategy of

searching for O-distribution equivalence classes, but is nevertheless correct.

It is often far from intuitive what constitutes a complete set of graphs O-conditional

independence equivalent to a given graph although algorithms for deciding this now exist

[Ali, Richardson, & Spirtes 2009].

4.2 The Fast Causal Inference Algorithm

The PC algorithm gives an asymptotically correct representation of the conditional

independence equivalence class of a DAG without latent variables by outputting a pattern

that represents all of the features that the DAGs in the equivalence class have in common.

The same basic strategy can be used without assuming causal sufficiency, but the rules

for detecting adjacencies and orientations are much more complicated, so we will not

describe them in detail. The FCI algorithm
6
 outputs an asymptotically correct

representation of the O-conditional independence equivalence class of the true causal

DAG (assuming the Causal Markov and Causal Faithfulness Principles), in the form of a

graphical structure called a partial ancestral graph (PAG) that represents some of the

features that the DAGs in the equivalence class have in common. The FCI algorithm

takes as input a sample, distributional assumptions, optional background knowledge (e.g.

time order), and a significance level, and outputs a partial ancestral graph. Because the

algorithm uses only tests of conditional independence among sets of observed variables,

it avoids the computational problems involved in calculating posterior probabilities or

scores for latent variable models.

Just as the pattern can be used to predict the effects of some manipulations, a partial

ancestral graph can also be used to predict the effects of some manipulations. Instead of

calculating the effects of manipulations for which every member of the O-distribution

equivalence class agree, we can calculate the effects only of those manipulations for

which every member of the O-conditional independence equivalence agree. This will

typically predict the effects of fewer manipulations than could be predicted given the O-

distributional equivalence class (because a larger set of graphs have to make the same

prediction), but the predictions made will still be correct.

Even though the set S of DAGs in an O-conditional independence equivalence class

is infinite, it is still possible to extract the features that the members of S have in

common. For example, every member of the conditional independence class over O that

contains the DAG in Figure 11 has a directed path from PE to CP and no latent common

cause of PE and CP. This is informative because even though the data do not help choose

between members of the equivalence class, insofar as the data are evidence for the

disjunction of the members in the equivalence class, they are evidence that PE is a cause

of CP.

6The FCI algorithm is similar to Pearl’s IC* algorithm [Pearl 2000] in many respects, and

uses concepts bases on IC*; however IC* is computationally and statistically feasible

only for a few variables.

483

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

A partial ancestral graph is analogous to a pattern, and represents the features

common to an O-conditional independence class. Figure 11 shows an example of a DAG

and the corresponding partial ancestral graph over O = {IQ, SES, PE, CP, SEX}. Two

variables A and B are adjacent in a partial ancestral graph that represents an O-

conditional independence class, when A and B are not entailed to be independent (i.e.

they are d-connected) conditional on any subset of the variables in O\{A,B} for each

DAG in the O-conditional independence class. The “–” endpoint of the PE # CP edge

means that PE is an ancestor of CP in every DAG in the O-conditional independence

class. The “>” endpoint of the PE # CP edges means that CP is not an ancestor of PE in

any member of the O-conditional independence class. The “o” endpoint of the SES o–o

IQ edge makes no claim about whether SES is an ancestor of IQ or not.

Applying the FCI algorithm to the Sewell and Shah data yields the PAG in Figure

11. The output predicts that when PE is manipulated, the following conditional

probabilities hold: P(CP=0|PE=0) = .063; P(CP=1|PE=0) = .937; P(CP=0|PE=1) = .572;

P(CP=1PE=1) = .428. These estimates are close to the estimates given by the output of

the PC algorithm, although unlike the PC algorithm the output of the FCI algorithm

posits the existence of latent variables. A bootstrap test of the output run at significance

level 0.001 yielded the same results on 8 out of 10 samples. In the other two samples, the

algorithm could not calculate the effect of the manipulation.

 Figure 11: DAG and Partial Ancestral Graph

4.2.1 Online Course

Data from an online course provides an example where there was some experimental

confirmation of the FCI causal model. Carnegie Mellon University offers a full semester

online course that serves as a tutor on the subject of causal reasoning.7 The course

contains a number of different modules that contain both text and interactive online

exercises that illustrate various concepts. Each module ends with a quiz that students

must take. The interactive exercises are purely voluntary and play no role in calculating

the student’s final grade. It is possible to print the text from the online modules, but a

student who studies from the printed text cannot use the online interactive exercises. The

following variables were measured for each student:

• Pre-test (%)

• Print-outs (% modules printed)

• Quiz Scores (avg. %)

7See http://oli.web.cmu.edu/openlearning/forstudents/freecourses/csr

SES

L1 SEX PE CP

IQ

o

o

o

o

o

SES

SEX PE CP

IQ

L2

L3

L4

L5

o

484

Automated Search for Causal Relations

• Voluntary Exercises (% completed)

• Final Exam (%)

• 9 other variables

Using data from 2002, and some background knowledge about causal order, the

output of the FCI algorithm was the PAG shown in Figure 12a. That model predicts that

interventions that stops students from printing out the text and encourages students to use

the online interactive exercises should raise the final grade in the class.

In 2003, students were advised that completing the voluntary exercises seemed to be

important in helping grades, but that printing out the modules seemed to prevent

completing the voluntary exercises. They were advised that, if they printed out the text

they should make extra effort to go online and complete the interactive online exercises.

Data on the same variables was gathered in 2003, and the output of the FCI algorithm is

shown Figure 12b. The interventions to discourage printing and encourage the use of the

online interactive exercises were largely successful, and the PAG output by the FCI

algorithm from the 2003 data is exactly the PAG one would expect after intervening on

the PAG output by the FCI algorithm from the 2002 data.

Figure 12: Online Course Printing

4.3 Errors in Variables: Combining Constraint Based Search and Bayesian

Reasoning

In some cases the parameters of the output of the FCI algorithm are not identifiable or it

is important to find not a particular latent variable model, but an equivalence class of

latent variable models. In some of those cases the FCI algorithm can be combined with

Bayesian methods.

4.3.1 Example - Lead and IQ

The next example shows how the FCI algorithm can be used to find a PAG, which can

then be used as a starting point for a search for a latent variable DAG model and

Bayesian estimation of parameters. It also illustrates how such a procedure produces

different results than simply applying regression or using regression to generate more

sophisticated models, such as errors-in-variables models.

By measuring the concentration of lead in a child’s baby teeth, Herbert Needleman

was the first epidemiologist to even approximate a reliable measure of cumulative lead

exposure. His work helped convince the United States to eliminate lead from gasoline

and most paint [Needleman 1979]. In their 1985 article in Science [Needleman, Geiger, &

Frank 1985], Needleman, Geiger and Frank gave results for a multivariate linear

regression of children’s IQ on lead exposure. Having started their analysis with almost 40

 print voluntary exercise print voluntary exercises

pre pre

 final quiz final

 (a) 2002 (b) 2003

o

o o

o

-.41** .302*

.323*

.353* .75**

 -.08 -.16

.41*
.25*

485

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

covariates, they were faced with a variable selection problem to which they applied

backwards-stepwise variable selection, arriving at a final regression model involving lead

and five of the original 40 covariates. The covariates were measures of genetic

contributions to the child’s IQ (the parent’s IQ), the amount of environmental stimulation

in the child’s early environment (the mother’s education), physical factors that might

compromise the child’s cognitive endowment (the number of previous live births), and

the parent’s age at the birth of the child, which might be a proxy for many factors. The

measured variables they used are as follows:

• ciq - child’s verbal IQ score piq - parent’s IQ scores

• lead - measured concentration in baby teeth mab - mother’s age at child’s birth

• med - mother’s level of education in years fab - father’s age at child’s birth

• nlb - number of live births previous to the sampled child

The standardized regression solution8 is as follows, with t-ratios in parentheses.

Except for fab, which is significant at 0.1, all coefficients are significant at 0.05, and R
2
 =

.271.

cîq =) .143 lead + .219 med + .247 piq + .237 mab) .204 fab) .159 nlb

 (2.32) (3.08) (3.87) (1.97) (1.79) (2.30)

This analysis prompted criticism from Steve Klepper and Mark Kamlet, economists

at Carnegie Mellon [Klepper, 1988/Klepper, Kamlet, & Frank 1993]. Klepper and

Kamlet correctly argued that Needleman’s statistical model (a linear regression)

neglected to account for measurement error in the regressors. That is, Needleman’s

measured regressors were in fact imperfect proxies for the actual but latent causes of

variations in IQ, and in these circumstances a regression analysis gives a biased estimate

of the desired causal coefficients and their standard errors. Klepper and Kamlet

constructed an errors-in-variables model to take into account the measurement error. See

Figure 13, where the latent variables are in boxes, and the relations between the

regressors are unconstrained.

Unfortunately, an errors-in-variables model that explicitly accounts for Needleman’s

measurement error is “underidentified,” and thus cannot be estimated by classical

techniques without making additional assumptions. Klepper, however, worked out an

ingenious technique to bound the estimates, provided one could reasonably bound the

amount of measurement error contaminating certain measured regressors [Klepper, 1988;

Klepper et al. 1993]. The required measurement error bounds vary with each problem,

however, and those required in order to bound the effect of actual lead exposure below 0

in Needleman’s model seemed wholly unreasonable. Klepper concluded that the

statistical evidence for Needleman’s hypothesis was indeed weak. A Bayesian analysis,

based on Gibbs sampling techniques, found that several posteriors corresponding to

different priors lead to similar results. Although the size of the Bayesian point estimate

8 The covariance data for this reanalysis was originally obtained from Needleman by

Steve Klepper, who generously forwarded it. In this, and all subsequent analyses

described, the correlation matrix was used.

486

Automated Search for Causal Relations

for lead’s influence on IQ moved up and down slightly, its sign and significance (the 95%

central region in the posterior over the lead-iq connection always included zero) were

robust.

Figure 13: Errors-in-Variables Models

Figure 14: Posterior for Klepper’s Model

A reanalysis using the FCI algorithm produced different results [Scheines 2000].

Scheines first used the FCI algorithm to generate a PAG, which was subsequently used as

the basis for constructing an errors-in-variables model. The FCI algorithm produced a

PAG that indicated that mab, fab, and nlb are not adjacent to ciq, contrary to

Needleman’s regression.9 If we construct an errors-in-variables model compatible with

the PAG produced by the FCI algorithm, the model does not contain mab, fab, or nlb. See

Figure 13. (We emphasize that there are other models compatible with the PAG, which

are not errors-in-variables models; the selection of an error-in-variables model from the

9 The fact that mab had a significant regression coefficient indicates that mab and ciq are

correlated conditional on the other variables; the FCI algorithm concluded that mab is not

a cause of ciq because mab and ciq are unconditionally uncorrelated.

 L1 L2 L3 L4 L5 L6 L1 L2 L3

 mab fab nlb med piq lead med piq lead

 ciq ciq

 Klepper’s errors-in-variables model FCI errors-in-variables model

487

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

set of models represented by the PAG is an assumption.) In fact the variables that the FCI

algorithm eliminated were precisely those, which required unreasonable measurement

error assumptions in Klepper's analysis. With the remaining regressors, Scheines

specified an errors-in-variables model to parameterize the effect of actual lead exposure

on children’s IQ. This model is still underidentified but under several priors, nearly all

the mass in the posterior was over negative values for the effect of actual lead exposure

(now a latent variable) on measured IQ. In addition, applying Klepper’s bounds analysis

to this model indicated that the effect of actual lead exposure on ciq was bounded below

zero given reasonable assumptions about the degree of measurement error.

Figure 15: Posterior for FCI model

4.4 BuildPureClusters and MIMBuild

Searches using conditional independence constraints are correct, but completely

uninformative for some common kinds of data sets. Consider the model S in Figure 16.

The data comes from a survey of test anxiety indicators administered to 335 grade 12

male students in British Columbia [Gierl & Todd 1996]. The survey contains 20

measures of symptoms of anxiety under test conditions. Each question is about a

symptom of anxiety. For example, question 8 is about how often one feels “jittery when

taking tests”. The answer is observed on a four-point approximately Likert scale (almost

never, sometimes, often, or almost always). As in many such analyses, we will assume

that the variables are approximately Gaussian.

Each X variable represents an answer to a question on the survey. For reasons to be

explained later, not all of the questions on the test have been included in the model. There

are three unobserved common causes in the model: Emotionality, Care about achieving

(which will henceforth be referred to as Care) and Self-defeating. The test questions are

of little interest in themselves; of more interest is what information they reveal about

some unobserved psychological traits. If S is correct, there are no conditional

0

50

100

150

200

250

-0
.5
6

-0
.4
8

-0
.4
0

-0
.3
2

-0
.2
4

-0
.1
6

-0
.0
8

0
.0
0

0
.0
9

0
.1
7 0

50

100

150

200

250

488

Automated Search for Causal Relations

independence relations among the X variables alone - the only entailed conditional

independencies require conditioning on an unobserved common cause. Hence the FCI

algorithm would return a completely unoriented PAG in which every pair of variables in

X is adjacent. Such a PAG makes no predictions at all about the effects of manipulations

of the observed variables.

Furthermore, in this case, the effects of manipulating the observed variables (answers

to test questions) are of no interest - the interesting questions are about the effects of

manipulating the unobserved variables and the qualitative causal relationships between

them.

Although PAGs can reveal the existence of latent common causes (as by the double-

headed arrows in Figure 11 for example), before one could make a prediction about the

effect of manipulating an unobserved variable(s), one would have to identify what the

variable (or variables) is, which is never possible from a PAG.

Figure 16: SEM S

Models such as S are multiple indicator models, and can be divided into two parts:

the measurement model, which contains the edges between the unobserved variables and

the observed variables (e.g. Emotionality # X2), and the structural model, which contains

the edges between the unobserved variables (e.g. Emotionality # Care).

The X variables in S ({X2, X3, X5, X6, X7, X8, X9, X10, X11, X14, X16, X18}) were chosen

with the idea that they indirectly measure some psychological trait that cannot be directly

observed. Ideally, the X variables can be broken into clusters, where each variable in the

cluster is caused by one unobserved cause common to the members of the cluster, and a

unique error term uncorrelated with the other error terms, and nothing else. From the

values of the variables in the cluster, it is then possible to make inferences about the

value of the unobserved common cause. Such a measurement model is called pure. In

psychometrics, pure measurement models satisfy the property of local independence:

each measured variable is independent of all other variables, conditional on the

unobserved variable it measures. In Figure 16, the measurement model of S is pure.

If the measurement model is impure (i.e. there are multiple common causes of a pair

of variables in X, or some of the X variables cause each other) then drawing inferences

about the values of the common causes is much more difficult. Consider the set X’ = X *

{X15}. If X15 indirectly measured (was a direct effect of) the unobserved variable Care,

but X10 directly caused X15, then the measurement model over the expanded set of

Self-defeating

 Emotionality

 Care

X2

X8

X9

X10

X11

X16

X18

X3

X5

X7

X6

X14

489

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

variables would not be pure. If a measurement model for a set X’ of variables is not pure,

it is nevertheless possible that some subset of X’ (such as X) has a pure measurement

model. If the only reason that the measurement model is impure is that X10 causes X15

then X = X’\{X15} does have a pure measurement model, because all the “impurities”

have been removed. S does not contain all of the questions on the survey precisely

because various tests described below indicated that they some of them needed to be

excluded in order to have a pure measurement model.

The task of searching for a multiple indicator model can then be broken into two

parts: first finding clusters of variables so that the measurement model is pure; second,

use the pure measurement model to make inferences about the structural model.

Factor analysis is often used to determine the number of unmeasured common causes

in a multiple indicator model, but there are important theoretical and practical problems

in using factor analysis in this way. Factor analysis constructs models with unobserved

common causes (factors) of the observed X variables. However, factor analysis models

typically connect each unobserved common cause (factor) to each X variable, so the

measurement model is not pure. A major difficulty with giving a causal interpretation to

factor analytic models is that the observed distribution does not determine the covariance

matrix among the unobserved factors. Hence, a number of different factor analytic

models are compatible with the same observed data [Harman 1976]. In order to reduce

the underdetermination of the factor analysis model by the data, it is often assumed that

the unobserved factors are independent of each other; however, this is clearly not an

appropriate assumption for unobserved factors that are supposed to represent actual

causes that may causally interact with each other. In addition, simulation studies indicate

that factor analysis is not a reliable tool for estimating the correct number of unobserved

common causes [Glymour 1998].

On this data set, factor analysis indicates that there are 2 unobserved direct common

causes, rather than 3 unobserved direct common causes [Bartholomew, Steele, Moustaki,

& Galbraith 2002]. If a pure measurement model is constructed from the factor analytic

model by associating each observed X variable only with the factor that it is most

strongly associated with, the resulting model fails a statistical test (has a p-value of zero)

[Silva, Scheines, Glymour, & Spirtes 2006]. A search for pure measurement models that

depends upon testing vanishing tetrad constraints is an alternative to factor analysis.

Conceptually, the task of building a pure measurement model from the observed

variables can be broken into 3 separate tasks:

1. Select a subset of the observed variables that form a pure measurement model.

2. Determine the number of clusters (i.e. the number of unobserved common

causes) that the observed variables measure.

3. Cluster the observed variables into the proper groups (so each group has exactly

one unobserved direct common cause.)

It is possible to construct pure measurement models using vanishing tetrad

constraints as a guide [Silva et al. 2006]. A vanishing tetrad constraint holds among X, Y,

490

Automated Search for Causal Relations

Z, W when cov(X,Y) + cov(Z,W) – cov(X,Z) + cov(Y,W) = 0. A pure measurement model

entails that each Xi variables is independent of every other Xj variable conditional on its

unobserved parent, e.g. S entails X2 is independent of Xj conditional on Emotionality.

These conditional independence relations cannot be directly tested, because Emotionality

is not observed. However, together with the other conditional independence relations

involving unobserved variables entailed by S, they imply vanishing tetrad constraints on

the observed variables that reveal information about the measurement model that does not

depend upon the structural model among the unobserved common causes. The basic idea

extends back to Spearman’s attempts to use vanishing tetrad constraints to show that

there was a single unobserved factor of intelligence that explained a variety of observed

competencies [Spearman 1904].

Because X2 and X8 have one unobserved direct common cause (Emotionality), and X3

and X5 have a different unobserved direct common cause (Care), S entails covS(X2, X3) +

covS(X5, X8) = covS(X2, X5) + covS(X3, X8) ! covS(X2, X8) + covS(X3, X5) for all values of the

model’s free parameters (here covS is the covariance matrix entailed by S).10 On the other

hand, because X2, X8, X9, and X10 all have one unobserved common cause (Emotionality)

as a direct common cause, the following vanishing tetrad constraints are entailed by S:

covS(X2, X8) + covS(X9, X10) = covS(X2, X9) + covS(X8, X10) = covS(X2, X10) + covS(X8, X9)

[Spirtes et al. 2001]. The BuildPureClusters algorithm uses the vanishing tetrad

constraints as a guide to the construction of pure measurement models, and in the large

sample limit reliably succeeds if there is a pure measurement model among a large

enough subset of the observed variables [Silva et al. 2006].

In this example, BuildPureClusters automatically constructed the measurement

model corresponding to the measurement model of S. The clustering on statistical

grounds makes substantive sense, as indicated by the fact that it is similar to a prior

theory-based clustering based on background knowledge about the content of the

questions; however BuildPureClusters removes some questions, and splits one of the

clusters of questions constructed from domain knowledge into two clusters.

Once a pure measurement model has been constructed, there are several algorithms

for finding the structural model. One way is to estimate the covariances among the

unobserved common causes, and then input the estimated covariances to the FCI

algorithm. The output is then a PAG among the unobserved common causes. Alternative

searches for the structural model include the MIMBuild and GESMIMBuild algorithms,

which output patterns [Silva et al. 2006].

In this particular analysis, the MIMBuild algorithm, which also employs vanishing

tetrad constraints, was used to construct a variety of output patterns corresponding to

different values of the search parameters. The best pattern returned contains an

undirected edge between every pair of unobserved common causes. (S is an example that

is compatible with the pattern, but any other orientation of the edges among the three

10 The inequality is based on an extension of the Causal Faithfulness Assumption that

states that vanishing tetrad constraints that are not entailed for all values of the free

parameters by the true causal graph are assumed not to hold.

491

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

unobserved common causes that does not create a cycle is also compatible with the

pattern.) The resulting model (or set of models) passes a statistical test with a p-value of

0.47.

4.4.1 Example - Religion and Depression

Data relating religion and depression provides an example that shows how an

automated causal search produces a model that is compatible with background

knowledge, but fits much better than a model that was built from theories about the

domain.

Bongjae Lee from the University of Pittsburgh organized a study to investigate

religious/spiritual coping and stress in graduate students [Silva & Scheines 2004]. In

December of 2003, 127 Masters in Social Works students answered a questionnaire

intended to measure three main factors:

• Stress, measured with 21 items, each using a 7-point scale (from “not all

stressful” to “extremely stressful”) according to situations such as: “fulfilling

responsibilities both at home and at school”; “meeting with faculty”; “writing

papers”; “paying monthly expenses”; “fear of failing”; “arranging childcare”;

• Depression, measured with 20 items, each using a 4-point scale (from “rarely or

none” to “most or all the time”) according to indicators as: “my appetite was

poor”; “I felt fearful”; “I enjoyed life” “I felt that people disliked me”; “my

sleep was restless”;

• Spiritual coping, measured with 20 items, each using a 4-point scale (from “not

at all” to “a great deal”) according to indicators such as: “I think about how my

life is part of a larger spiritual force”; “I look to God (high power) for strength in

crises”; “I wonder whether God (high power) really exists”; “I pray to get my

mind off of my problems”;

The goal of the original study was to use graphical models to quantify how Spiritual

coping moderates the association of Stress and Depression, and hypothesized that

Spiritual coping reduces the association of Stress and Depression. The theoretical model

(Figure 17) fails a chi-square test: p = 0. The measurement model produced by

BuildPureClusters is shown in Figure 18. Note that the variables selected automatically

are proper subsets of Lee’s substantive clustering. The full model automatically produced

with GESMIMBuild with the prior knowledge that Stress is not an effect of other latent

variables is given in Figure 19. This model passes a chi square test, p = 0.28, even though

the algorithm itself does not try to directly maximize the fit. Note that it supports the

hypothesis that Depression causes Spiritual Coping rather than the other way around.

Although this conclusion is not conclusive, the example does illustrate how the algorithm

can find a theoretically plausible alternative model that fits the data well.

492

Automated Search for Causal Relations

Figure 17: Model from Theory

Figure 18: Output of BuildPureClusters

Figure 19: Output of GESMIMBuild

St3 Dep9

St4 Dep13

St16 Stress Depression Dep19

St18 .

St20 Coping .

 Cop9 Cop12 Cop14 Cop15

+

+

St1 Dep1

St2 Dep2

. Stress Depression .

. .

. Coping.

St21 Dep21

 Cop1 Cop2 … Cop20

+

+

–

St3 Dep9

St4 Dep13

St16 Stress Depression Dep19

St18 .

S20 Coping .

 Cop9 Cop12 Cop14 Cop15

493

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

5 Time Series and Feedback

The models described so far are for “equilibrium.” That is, they assume that an

intervention fixes the values of a variable or variables, and that the causal process results

in stable values of effect variables, so that time can be ignored. When time cannot be

ignored, representation, interventions and search are all more complicated.

Time series models with a causal interpretation are naturally represented by directed

acyclic graphs in at least three different forms: A graph whose variables are indexed by

time, a “unit” graph giving a substructure that is repeated in the time indexed graph, and a

finite graph that may be cyclic. Models of the first kind have been described as

“Dynamical Causal Models” but the description does not address the difficulties of

search. Pursuing a strategy of the PC or FCI kind, for example, requires a method of

correctly estimating conditional independence relations.

5.1 Time series models

Chu and Glymour [2008] describe conditional independence tests for additive

models, and use these tests in a slight modification of the PC and FCI algorithms. The

series data is examined by standard methods to determine the requisite number of lags.

The data are then replicated a number of times equal to the lags, delaying the first

replicant by one time step, the second by two time steps, and so on, and conditional

independence tests applied to the resulting sets of data. They illustrate the algorithm with

climate data.

Climate teleconnections are associations of geospatially remote climate phenomena

produced by atmospheric and oceanic processes. The most famous, and first established

teleconnection, is the association of El Nino/Southern Oscillation (ENSO) with the failure

of monsoons in India. A variety of associations have been documented among sea surface

temperatures (SST), atmospheric pressure at sea level (SLP), land surface temperatures

(LST) and precipitation over land areas. Since the 1970s data from a sequence of satellites

have provided monthly (and now daily) measurements of such variables, at resolutions as

small as 1 square kilometer. Measurements in particular spatial regions have been

clustered into time-indexed indices for the regions, usually by principal components

analysis, but also by other methods. Climate research has established that some of these

phenomena are exogenous drivers of others, and has sought physical mechanisms for the

teleconnections.

Chu and Glymour (2008) consider data from the following 6 ocean climate indices,

recorded monthly from 1958 to 1999, each forming a time series of 504 time steps:

• QBO (Quasi Biennial Oscillation): Regular variation of zonal stratospheric

winds above the equator

• SOI (Southern Oscillation): Sea Level Pressure (SLP) anomalies between

Darwin and Tahiti

• WP (Western Pacific): Low frequency temporal function of the ‘zonal dipole’

SLP spatial pattern over the North Pacific.

• PDO (Pacific Decadal Oscillation): Leading principal component of monthly

Sea Surface Temperature (SST) anomalies in the North Pacific Ocean, poleward

of 20° N

494

495

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

it by methods described in [Glymour, Scheines, Spirtes, & Kelly 1987], some of the work

whose aims and methods Cartwright previously sought to demonstrate is impossible

[Cartwright 1994]. But a chain model of contemporaneous causes is far too special a

case. Hoover & Demiralp, and later, Moneta & Spirtes, proposed applying PC to the

residuals [Hoover & Demiralp 2003; Moneta & Spirtes 2006]. (Moneta also worked out

the statistical corrections to the correlations required by the fact that they are obtained as

residuals from regressions.) When that is done for model above, the result is the unit

structure of the time series: QBO SOI # WP , PDO , AO $ NA.

5.2 Cyclic Graphs

Since the 1950s, the engineering literature has developed methods for analyzing the

statistical properties of linear systems described by cyclic graphs. The literature on search

is more recent. Spirtes showed that linear systems with independent noises satisfy a

simple generalization of d-separation, and the idea of faithfulness is well-defined for such

systems [Spirtes 1995]; Pearl & Dechter extended these results to discrete variable

systems [Pearl & Dechter 1996]. Richardson proved some of the essential properties of

such graphs, and developed a pointwise consistent PC style algorithm for search

[Richardson 1996]. More recently, an extension of the LiNGAM algorithm for linear,

cyclic, non-Gaussian models has been developed [Lacerda et al. 2008].

5.3 Distributed Multiple Data Sets: ION and IMaGES

Data mining has focused on learning from a single database, but inferences from

multiple databases are often needed in social science, multiple subject time series in

physiological and psychological experiments, and to exploit archived data in many

subjects. Such data sets typically pose missing variable problems: some of what is

measured in one study or for one subject, may not be measured in another. In many cases

such multiple data sets cannot, for physical, sociological or statistical reasons, be merged

into a single data set with missing variables. There are two strategies for this kind of

problem: learn a structure or set of structures separately for each data set and then find

the set of structures consistent with the several “marginal” structures, or learn a single set

of structures by evaluating steps in a search procedure using all of the data sets. The first

strategy could be carried out using PC, kPC GES, FCI, LiNGAM or other procedure on

each data set, and then using an algorithm that returns a description of the set of all

graphs, or mixed graphs, consistent with the results from each database [Tillman, Danks,

& Glymour 2008]. Tillman, Danks and Glymour have used such a procedure in

combination with GES and FCI. The result in some (surprising) cases is a unique partial

ancestral graph, and in other cases a large set of alternatives collectively carrying little

information. The second strategy has been implemented in the IMaGES algorithm

[Ramsey et al. 2009]. The algorithm uses GES, but at each step in the evaluation of a

candidate edge addition or removal, the candidate is scored separately by BIC on each

data set and the average of the BIC scores is used by the algorithm in edge addition or

deletion choices. The IMaGES strategy is more limited—no consistency proof is

available when the samples are from mixed distributions, and a proof of convergence of

496

Automated Search for Causal Relations

averages of BIC scores to a function of posteriors is only available when the sample sizes

of several data sets are equal. Nonetheless, IMaGES has been applied to fMRI data from

multiple subjects with remarkably good results. For example, an fMRI study of

responses to visually presented rhyming and non-rhyming words and non-words should

produce a left hemisphere cascade leading to right hemisphere effects, which is exactly

what IMaGES finds, using only the prior knowledge that the input variable is not an

effect of other variables.

Figure 21: IMaGES Output for fMRI Data

6 Conclusion

The discovery of d-separation, and the development of several related notions, has

made possible principled search for causal relations from observational and quasi-

experimental data in a host of disciplines. New insights, algorithms and applications have

appeared almost every year since 1990, and they continue. We are seeing a revolution in

understanding of what is and is not possible to learn from data, but the insights and

methods have seeped into statistics and applied science only slowly. We hope that pace

will quicken.

7 Appendix

A directed graph (e.g. G1 of Figure 22) consists of a set of vertices and a set of

directed edges, where each edge is an ordered pair of vertices. In G1, the vertices are

{A,B,C,D,E}, and the edges are {B # A, B # C, D # C, C " E}. In G1, B is a parent of

A, A is a child of B, and A and B are adjacent because there is an edge A # B. A path in a

directed graph is a sequence of adjacent edges (i.e. edges that share a single common

endpoint). A directed path in a directed graph is a sequence of adjacent edges all pointing

in the same direction. For example, in G1, B # C # E is a directed path from B to E. In

contrast, B # C $ D is a path, but not a directed path in G1 because the two edges do not

point in the same direction; in addition, C is a collider on the path because both edges on

497

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

the path are directed into C. A triple of vertices <B,C,D> is a collider if there are edges B

C $ D in G1; <B,C,D> is an unshielded collider if in addition there is no edge

between B and D. E is a descendant of B (and B is an ancestor of E) because there is a

directed path from B to E; in addition, by convention, each vertex is a descendant (and

ancestor) of itself. A directed graph is acyclic when there is no directed path from any

vertex to itself: in that case the graph is a directed acyclic graph, or DAG for short.

Figure 22: G1, G2, and P1 (pattern for G1 and G2)

A probability distribution P(V) satisfies the local Markov condition for a DAG G1

with vertices V when each variable is independent of its non-parental non-descendants

conditional on its parents. A Bayesian network is an ordered pair of a directed acyclic

graph G and a set of probability distributions that satisfy the local Markov condition for

G.

The graphical relationship among sets of variables in a DAG G called “d-separation”

determines which conditional independence relations are entailed by satisfying the local

directed Markov property). Following [Pearl 1988], in a DAG G, for disjoint variable sets

X, Y, and Z, X and Y are d-separated conditional on Z in G if and only if there exists no

path U between an X & X and a Y & Y such that (i) every collider on U has a descendent

in Z and (ii) no other vertex on U is in Z. An important theorem in [Pearl 1988] is that a

DAG G entails that X is independent of Y conditional on Z if and only if X is d-separated

from Y conditional on Z in G.

A Bayesian network restricted to a parametric family <G,Q> where G is a DAG and

Q is some parameterization of the DAG, e.g. multivariate Gaussian, has two distinct

interpretations. First, it has a probabilistic interpretation as a distribution over the

variables in G, for distributions that satisfy the local Markov condition for G. Under this

interpretation, it is a useful tool for calculating conditional probabilities.

Second, it has a causal interpretation, and can be used to calculate the effects of

manipulations. Intuitively, a manipulation of a variable is an exogenous action that forces

a value (or a distribution over values) upon a variable in the system, e.g. as in a

randomized experiment - if no exogenous action is taken on variable X, X is said to have

undergone a null manipulation. An example of a manipulation is a randomized

experiment, in which a distribution for some variables (e.g. " of the subjects take a given

drug, and " of the subjects do not take the drug) is imposed from outside. The kinds of

manipulations that we will consider are ideal in the sense that a manipulation of X

directly affects only X.

A B C D

 E

 G1

 A B C D

 E

G2

A B C D

 E

 P1

A B C D

 E

 G2

498

Automated Search for Causal Relations

X is a direct cause of Y relative to a set of variables V if there is a pair of

manipulations (including possibly null manipulations, and including hypothetical

manipulations in the many circumstances where no actual manipulations are feasible) of

the values of the variables in V\{Y} that differ only in the value assigned to X, but that

have different distributions for Y. This is in accord with the idea that the gold standard for

determining causation is randomized experiments. (This is not a reduction of causality to

non-causal concepts, because manipulation is itself a causal concept that we have taken

as primitive.) Under the causal interpretation of DAGs, there is an edge X # Y when X is

a direct cause of Y relative to the set of variables in the DAG. A set of variables V is

causally sufficient if every direct cause (relative to V) of any pair of variables in V, is

also in V. We will assume that causally interpreted DAGs are causally sufficient,

although we will not generally all of the variables in a causally interpreted DAG are

measured.

In automated causal search, the goal is to discover as much as possible about the true

causal graph for a population from a sample from the joint probability distribution over

the population, together with background knowledge (e.g. parametric assumptions, time

order, etc.) This requires having some assumptions that link (samples from) probability

distributions on the one hand, and causal graphs on the other hand. Extensive discussions

of the following assumptions that we will make, including arguments for making the

assumptions as well as limitations of the assumptions can be found in Causation,

Prediction, & Search [Spirtes et al. 2001].

7.1 Causal Markov Assumption

The Causal Markov Assumption is a generalization of two commonly made

assumptions: the immediate past screens off the present from the more distant past; and if

X does not cause Y and Y does not cause X, then X and Y are independent conditional on

their common causes. It presupposes that while the random variables of a unit in the

population may causally interact, the units themselves are not causally interacting with

each other.

Causal Markov Assumption: Let G be a causal graph with causally sufficient

vertex set V and let P be a probability distribution over the vertices in V generated by the

causal structure represented by G. G and P satisfy the Causal Markov Assumption if and

only if for every W in V, W is independent of its non-parental non-descendants

conditional on its parents in G.

In graphical terms, the Causal Markov Assumption states that in the population

distribution over a causally sufficient set of variables, each variable is independent of its

non-descendants and non-parents, conditional on its parents in the true causal graph.

While the Causal Markov Assumption allows for some causal conclusions from

sample data, it only supports inferences that some causal connections exist - it does not

support inferences that some causal connections do not exist. The following assumption

does support the latter kind of inference.

499

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

7.2 Causal Faithfulness Assumption

Often the set of distributions that satisfy the local Markov condition for G is

restricted to some parametric family (e.g. Gaussian). In those cases, the set of

distributions belonging to the Bayesian network will be denoted as f(<G, >), and

f(<G,#>) will denote a member of f(<G, >) for the particular value # & (and f(<G,#>)

is represented by <G, >). Let $f(X,Y|Z) denote that X is independent of Y conditional

on Z in a distribution f.

If a DAG G does not entail that $ f(G,#)(X,Y|Z) for all # & , nevertheless there may

be some parameter values # such that $ f(G,#)(X,Y|Z). In that case say that f(<G,#>) is

unfaithful to G. In Pearl’s terminology the distribution is unstable [Pearl 1988]. This

would happen for example if taking birth control pills increased the probability of blood

clots directly, but decreased the probability of pregnancy which in turn increased the

probability of blood clots, and the two causal paths exactly cancelled each other. We will

assume that such unfaithful distributions do not happen - that is there may be such

canceling causal paths, but the causal paths do not exactly cancel each other.

Causal Faithfulness Assumption: For a true causal graph G over a causally

sufficient set of variables V, and probability distribution P(V) generated by the causal

structure represented by G, if G does not entail that X is independent of Y conditional on

Z then X is not independent of Y conditional on Z in P(V).

7.3 Conditional Independence Equivalence

Let I(<G, >) be the set of all conditional independence relations entailed by

satisfying the local Markov condition. For any distribution that satisfies the local directed

Markov property for G, all of the conditional independence relations in I(<G, >) hold.

Since these independence relations don’t depend upon the particular parameterization but

only on the graphical structure and the local directed Markov property, they will

henceforth be denoted by I(G).

G1 and G2 are conditional independence equivalent if and only if I(G1) = I(G2). This

occurs if and only if G1 and G2 have the same d-separation relations. A set of graphs that

are all conditional independence equivalent to each other is a conditional independence

equivalence class. If the graphs are all restricted to be DAGs, then they form a DAG

conditional independence equivalence class. Two DAGs are conditional independence

equivalent if and only if they have the same d-separation relations.

Theorem 1 (Pearl, 1988): Two directed acyclic graphs are conditional independence

equivalent if and only if they contain the same vertices, the same adjacencies, and the

same unshielded colliders.

For example, Theorem 1 entails that the set consisting of G1 and G2 in Figure 22 is a

DAG conditional independence equivalence class. The fact that G1 and G2 are conditional

independence equivalent, but are different causal models, indicates that in general any

algorithm that relies only on conditional independence relations to discover the causal

graph cannot (without stronger assumptions or more background knowledge) reliably

500

Automated Search for Causal Relations

output a single DAG. A reliable algorithm could at best output the DAG conditional

independence equivalence class, e.g. {G1, G2}.

Fortunately, Theorem 1 is also the basis of a simple representation called a pattern

[Verma & Pearl 1990] of a DAG conditional independence equivalence class. Patterns

can be used to determine which predicted effects of a manipulation are the same in every

member of a DAG conditional independence equivalence class and which are not.

The adjacency phase of the PC algorithm is based on the following two theorems,

where Parents(G,A) is the set of parents of A in G.

Theorem 2: If A and B are d-separated conditional on any subset Z in DAG G, then A

and B are not adjacent in G.

Theorem 3: A and B are not adjacent in DAG G if and only if A and B are d-separated

conditional on Parents(G,A) or Parents(G,B) in G.

The justification of the orientation phase of the PC algorithm is based on Theorem 4.

Theorem 4: If in a DAG G, A and B are adjacent, B and C are adjacent, but A and C are

not adjacent, either B is in every subset of variables Z such that A and C are d-separated

conditional on Z, in which case <A,B,C> is not a collider, or B is in no subset of variables

Z such A and C are d-separated conditional on Z, in which case <A,B,C> is a collider.

A pattern (also known as a PDAG) P represents a DAG conditional independence

equivalence class X if and only if:

1. P contains the same adjacencies as each of the DAGs in X;

2. each edge in P is oriented as X # Z if and only if the edge is oriented as X # Z

in every DAG in X, and as X ! Z otherwise.

There are simple algorithms for generating patterns from a DAG [Meek, 1995;

Andersson, Madigan, & Perlman 1997; Chickering 1995]. The pattern P1 for the DAG

conditional independence equivalence class containing G1 is shown in Figure 22. It

contains the same adjacencies as G1, and the edges are the same except that the edge

between A and B is undirected in the pattern, because it is oriented as A $ B in G1, and

oriented as A # B in G2.

7.4 Distributional Equivalence

For multi-variate Gaussian distributions and for multinomial distributions, every

distribution that satisfies the set of conditional independence relations in I(<G, >) is also

a member of f(<G, >). However, for other families of distributions, it is possible that

there are distributions that satisfy the conditional independence relations in I(<G, >),

but are not in f(<G, >), i.e. the parameterization imposes constraints that are not

conditional independence constraints [Lauritzen et al. 1990; Pearl 2000; Spirtes et al.

2001].

It can be shown that when restricted to multivariate Gaussian distributions, G1 and

G2 in Figure 22 represent exactly the same set of probability distributions, i.e. f(<G1,(1>)

501

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

= f(<G2,(2>). In that case say that <G1,(1> and <G2,(2> are distributionally equivalent

(relative to the parametric family). Whether two models are distributionally equivalent

depends not only on the graphs in the models, but also on the parameterization families of

the models. A set of models that are all distributionally equivalent to each other is a

distributional equivalence class. If the graphs are all restricted to be DAGs, then they

form a DAG distributional equivalence class.

In contrast to conditional independence equivalence, distribution equivalence

depends upon the parameterization families as well as the graphs. Conditional

independence equivalence of G1 and G2 is a necessary, but not always sufficient

condition for the distributional equivalence of <G1, A> and <G2, B>.

Algorithms that rely on constraints beyond conditional independence may be able to

output subsets of conditional independence equivalence classes, although without further

background knowledge or stronger assumptions they could at best reliably output a DAG

distribution equivalence class. In general, it would be preferable to take advantage of the

non conditional independence constraints to output a subset of the conditional

independence equivalence class, rather than simply outputting the conditional

independence equivalence class. For some parametric families it is known how to take

advantage of the non conditional independence constraints (sections 3.4 and 4.4);

however in other parametric families, either there are no non conditional independence

constraints, or it is not known how to take advantage of the non conditional independence

constraints.

Acknowledgements: Clark Glymour and Robert Tillman thanks the James S. McDonnell

Foundation for support of their research.

References

Ali, A. R., Richardson, T. S., & Spirtes, P. (2009). Markov Equivalence for Ancestral

Graphs. Annals of Statistics, 37(5B), 2808-2837.

Aliferis, C. F., Tsamardinos, I., & Statnikov, A. (2003). HITON: A Novel Markov

Blanket Algorithm for Optimal Variable Selection. Proceedings of the 2003

American Medical Informatics Association Annual Symposium, Washington, DC,

21-25.

Andersson, S. A., Madigan, D., & Perlman, M. D. (1997). A characterization of Markov

equivalence classes for acyclic digraphs. Ann Stat, 25(2), 505-541.

Asuncion, A. & Newman, D. J. (2007). UCI Machine Learning Repository.

Bartholomew, D. J., Steele, F., Moustaki, I., & Galbraith, J. I. (2002). The Analysis and

Interpretation of Multivariate Data for Social Scientists (Texts in Statistical

Science Series). Chapman & Hall/CRC.

Cartwright, N. (1994). Nature's Capacities and Their Measurements (Clarendon

Paperbacks). Oxford University Press, USA.

Chickering, D. M. (2002). Optimal Structure Identification with Greedy Search. Journal

of Machine Learning Research, 3, 507-554.

502

Automated Search for Causal Relations

Chickering, D. M. (1995). A transformational characterization of equivalent Bayesian

network structures. Proceedings of the Eleventh Conference on Uncertainty in

Artificial Intelligence, 87-98.

Chu, T., & Glymour, C. (2008). Search for Additive Nonlinear Time Series Causal

Models. Journal of Machine Learning Research, 9(May):967-991.

Dempster, A. (1972). Covariance selection. Biometrics, 28, 157-175.

Fukumizu, K., Gretton, A., Sun, X., & Scholkopf, B. (2008). Kernel Measures of

Conditional Dependence. Advances in Neural Information Processing Systems 20.

Geiger, D. & Meek, C. (1999). Quantifier Elimination for Statistical Problems.

Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence,

Stockholm, Sweden, 226-233.

Gierl, M. J. & Todd, R. W. (1996). A Confirmatory Factor Analysis of the Test Anxiety

Inventory Using Canadian High School Students. Educational and Psychological

Measurement, 56(2), 315-324.

Glymour, C. (1998). What Went Wrong? Reflections on Science by Observation and the

Bell Curve. Philosophy of Science, 65(1), 1-32.

Glymour, C., Scheines, R., Spirtes, P., & Kelly, K. (1987). Discovering Causal

Structure: Artificial Intelligence, Philosophy of Science, and Statistical Modeling.

Academic Press.

Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Scholkopf, B., & Smola, A. J. (2008) A

kernel statistical test of independence, In Advances in Neural Information

Processing Systems 20, 585-592.

Harman, H. H. (1976). Modern Factor Analysis. University Of Chicago Press.

Hoover, K. & Demiralp, S. (2003). Searching for the Causal Structure of a Vector

Autoregression. Oxford Bulletin of Economics and Statistics 65 (Supplement), 65,

745-767.

Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., & Scholkopf, B. (2009). Nonlinear

causal discovery with additive noise models. Advances in Neural Information

Processing Systems 21, 689-696.

Hoyer, P. O., Shimizu, S., & Kerminen, A. (2006). Estimation of linear, non-gaussian

causal models in the presence of confounding latent variables. Third European

Workshop on Probabilistic Graphical Models, 155-162.

Hoyer, P. O., Hyvärinen, A., Scheines, R., Spirtes, P., Ramsey, J., Lacerda, G. &Shimizu,

S. (2008). Causal discovery of linear acyclic models with arbitrary distributions.

Proceedings of the Twentyfourth Annual Conference on Uncertainty in Artificial

Intelligence, 282-289.

Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and

applications. Neural Networks, 13(4-5): 411 - 430.

Junning, L. & Wang, Z. (2009). Controlling the False Discovery Rate of the

Association/Causality Structure Learned with the PC Algorithm. Journal of

Machine Learning Research, 475 - 514.

Kalisch, M. & Buhlmann, P. (2007). Estimating high dimensional directed acyclic graphs

with the PC algorithm. Journal of Machine Learning Research, 8, 613-636.

503

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

Kiiveri, H. & Speed, T. (1982). Structural analysis of multivariate data: A review. In S.

Leinhardt (Ed.), Sociological Methodology 1982. San Francisco: Jossey-Bass.

Klepper, S. (1988). Regressor Diagnostics for the Classical Errors-in-Variables Model. J

Econometrics, 37(2), 225-250.

Klepper, S., Kamlet, M., & Frank, R. (1993). Regressor Diagnostics for the Errors-in-

Variables Model - An Application to the Health Effects of Pollution. J Environ

Econ Manag, 24(3), 190-211.

Lacerda, G., Spirtes, P., Ramsey, J., & Hoyer, P. O. (2008). Discovering Cyclic Causal

Models by Independent Component Analysis. Proceedings of the 24th Conference

on Uncertainty In Artificial Intelligence, 366-374.

Lauritzen, S. L., Dawid, A. P., Larsen, B. N., & Leimer, H. G. (1990). Independence

properties of directed Markov fields. Networks, 20, 491-505.

Linthurst, R. A. (1979). Aeration, nitrogen, pH and salinity as factors affecting Spartina

Alterniflora growth and dieback, Ph.D. dissertation, North Carolina State

University.

Meek, C. (1995). Causal inference and causal explanation with background knowledge.

Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,

403-411.

Meek, C. (1997). A Bayesian approach to learning Bayesian networks with local

structure. Proceedings of the Thirteenth Conference on Uncertainty in Artificial

Intelligence, 80-89.

Moneta, A. & Spirtes, P. (2006). Graphical Models for the Identification of Causal

Structures in Multivariate Time Series Model. Paper presented at the 2006 Joint

Conference on Information Sciences.

Needleman, H. L. (1979). Deficits in psychologic and classroom performance of children

with elevated dentine lead levels. N Engl J Med, 300(13), 689-695.

Needleman, H. L., Geiger, S. K., & Frank, R. (1985). Lead and IQ scores: a reanalysis.

Science, 227(4688)(4688), 701-2, 704.

Pearl, J. & Dechter, R. (1996). Identifying independencies in causal graphs with feedback.

Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence,

Portland, OR, 420-426.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University

Press.

Ramsey, J.D., Hanson, S.J., Hanson, C., Halchenko, Y.O., Poldrack, R.A., &

Glymour, C. (2010). Six problems for causal inference from fMRI. NeuroImage,

49, 1545–1558.

Rawlings, J. (1988). Applied Regression Analysis. Belmont, CA: Wadsworth.

Richardson, T. S. (1996). A discovery algorithm for directed cyclic graphs. Proceedings

of the Twelfth Conference on Uncertainty in Artificial Intelligence, Portland, OR.,

454-462.

504

Automated Search for Causal Relations

Scheines, R. (2000). Estimating Latent Causal Influences: TETRAD III Variable

Selection and Bayesian Parameter Estimation: the effect of Lead on IQ. In P.

Hayes (Ed.), Handbook of Data Mining. Oxford University Press.

Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2),

461-464.

Sewell, W. H. & Shah, V. P. (1968). Social Class, Parental Encouragement, and

Educational Aspirations. Am J Sociol, 73(5), 559-572.

Shimizu, S., Hoyer, P. O., & Hyvärinen, A. (2009). Estimation of linear non-Gaussian

acyclic models for latent factors. Neurocomputing, 72(7-9), 2024-2027.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., & Kerminen, A. (2006). A Linear Non-

Gaussian Acyclic Model for Causal Discovery. Journal of Machine Learning

Research, 7, 2003-2030.

Shpitser, I. & Pearl, J. (2008). Complete Identification Methods for the Causal Hierarchy.

Journal of Machine Learning Research, 9, 1941-1979.

Silva, R. & Scheines, R. (2004). Generalized Measurement Models. reports-

archive.adm.cs.cmu.edu.

Silva, R., Scheines, R., Glymour, C., & Spirtes, P. (2006). Learning the structure of linear

latent variable models. J Mach Learn Res, 7, 191-246.

Spearman, C. (1904). General Intelligence objectively determined and measured.

American Journal of Psychology, 15, 201-293.

Spirtes, P. (1995). Directed cyclic graphical representations of feedback models.

Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,

Montreal, Canada, 491-499.

Spirtes, P. & Glymour, C. (1991). An Algorithm for Fast Recovery of Sparse Causal

Graphs. Social Science Computer Review, 9(1), 67-72.

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, Prediction, and Search.

Spring-Verlag Lectures in Statistics.

Spirtes, P., Glymour, C., & Scheines, R. (2001). Causation, Prediction, and Search,

Second Edition (Adaptive Computation and Machine Learning). The MIT Press.

Spirtes, P., Scheines, R., Glymour, C., & Meek, C. (2004). Causal Inference. In D.

Kaplan (Ed.), SAGE Handbook of Quantitative Methodology. (pp. 447-477).

SAGE Publications.

Strotz, R. H. & Wold, H. O. A. (1960). Recursive VS Nonrecursive Systems- An Attempt

At Synthesis. Econometrica, 28(2), 417-427.

Sun, X. (2008). Causal inference from statistical data. MPI for Biological Cybernetics.

Swanson, N. R. & Granger, C. W. J. (1997). Impulse Response Function Based on a

Causal Approach to Residual Orthogonalization in Vector Autoregressions.

Journal of the American Statistical Association, 92(437), 357-367.

Tillman, R. E., Danks, D., & Glymour, C. (2009). Integrating Locally Learned Causal

Structures with Overlapping Variables. In Advances in Neural Information

Processing Systems 21, 1665-1672.

505

Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman

Tillman, R. E., Gretton, A., & Spirtes, P. (2009). Nonlinear directed acyclic structure

learning with weakly additive noise models. In Advances in Neural Information

Processing Systems 22.

Timberlake, M. & Williams, K. R. (1984). Dependence, Political Exclusion And

Government Repression - Some Cross-National Evidence. Am Sociol Rev, 49(1),

141-146.

Verma, T. S. & Pearl, J. (1990). Equivalence and Synthesis of Causal Models. In

Proceedings of the 6th Conference on Uncertainty in Artificial Intelligence, 220-

227.

Zhang, K. & Hyvarinen, A. (2009). On the Identifiability of the Post-Nonlinear Causal

Model. Proceedings of the 26th International Conference on Uncertainty in

Artificial Intelligence, 647-655.

506

29

––

The Structural Model and the Ranking Theoretic

Approach to Causation: A Comparison

WOLFGANG SPOHN

1 Introduction

Large parts of Judea Pearl’s very rich work lie outside philosophy; moreover, basically

being a computer scientist, his natural interest was in computational efficiency, which, as

such, is not a philosophical virtue. Still, the philosophical impact of Judea Pearl’s work is

tremendous and often immediate; for the philosopher of science and the formal episte-

mologist few writings are as relevant as his. Fully deservedly, this fact is reflected in

some philosophical contributions to this Festschrift; I am glad I can contribute as well.

For decades, Judea Pearl and I were pondering some of the same topics. We both re-

alized the importance of the Bayesian net structure and elaborated on it; his emphasis on

the graphical part was crucial, though. We both saw the huge potential of this structure

for causal theorizing, in particular for probabilistic causation. We both felt the need for

underpinning the probabilistic account by a theory of deterministic causation; this is, after

all, the primary notion. And we both came up with relevant proposals. Judea Pearl ap-

proached these topics from the Artificial Intelligence side, I from the philosophy side.

Given our different proveniences, overlap and congruity are surprisingly large.

Nevertheless, it slowly dawned upon me that the glaring similarities are deceptive,

and that we fill the same structure with quite different contents. It is odd how much di-

vergence can hide underneath so much similarity. I have identified no less than fifteen

different, though interrelated points of divergence, and, to be clear, I am referring here

only to our accounts of deterministic causation, the structural model approach so richly

developed by Judea Pearl and my (certainly idiosyncratic) ranking-theoretic approach. In

this brief paper I just want to list the points of divergence in a more or less descriptive

mood, without much argument. Still, the paper may serve as a succinct reference list of

the many crucial points that are at issue when dealing with causation and may thus help

future discussion.

At bottom, my comparison refers, on the one hand, to the momentous book of Pearl

(2000), the origins of which reach back to the other momentous book of Pearl (1988) and

many important papers in the 80’s and 90’s,s and, on the other hand, to the chapters 14

and 15 of Spohn (forthcoming) on causation, the origins of which reach back to Spohn

(1978, sections 3.2 - 3, and 1983) and a bunch of subsequent papers. For ease of access,

507

Kaoru
Text Box
Return to TOC

Wolfgang Spohn

though, I shall substantially refer to Halpern, Pearl (2005) and Spohn (2006) where the

relevant accounts are presented in a more compact way. Let me start with reproducing the

basic explications in section 2 and then proceed to my list of points of comparison in

section 3. Section 4 concludes with a brief moral.

2 The Accounts to be Compared

For all those taking philosophical talk of events not too seriously (the vast majority

among causal theorists) the starting point is a frame, a (non-empty, finite) set U of vari-

ables; X, Y, Z, W, etc. denote members of U,

!
X ,
!
Y ,
!
Z ,
!

W , etc. subsets of U. Each vari-

able X ! U has a range "X of values and is a function from some possibility space " into

its range "X. For simplicity, we may assume that " is the Cartesian product of all "X and

X the projection from " to "X. For x ! "X and A # "X, {X = x} = {$! " | X($) = x}

and {X ! A} = {$ | X($) ! A) are propositions (or events), and all those propositions

generate a propositional algebra A over ". For
!
X = {X1, …, Xn} and

!
x = %x1, …, xn& {

!
X

=
!
x } is short for {X1 = x1 and … and Xn = xn}. How a variable is to be precisely under-

stood may be exemplified in the usual ways; however, we shall see that it is one of the

issues still to be discussed.

The causal theorist may or may not presuppose a temporal order among variables; I

shall. So, let ! be a linear order on the frame U representing temporal precedence. Line-

arity excludes simultaneous variables. The issue of simultaneous causation is pressing,

but not one dividing us; therefore I put it to one side. Let, e.g., { ! Y} denote {Z ! U | Z

 ! Y}, that is, the set of variables preceding Y. So much for the algebraic groundwork.

A further ingredient is needed in order to explain causal relations. In the structural-

model approach it is a set of structural equations, in the ranking-theoretic approach it is a

ranking function.

A set F of structural equations is just a set of functions FY that specifies for each vari-

able Y in some subset
!

V of U how Y (essentially) functionally depends on some subset

!
X of U; thus FY maps

! !
X

 into "Y.
!

V is the set of endogenous variables,
!

U = U –
!

V

the set of exogenous variables. The only condition on F is that no Y in
!

V indirectly func-

tionally depends on itself via the equations in F. Thus, F induces a DAG on U such that,

if FY maps

! !
X

 into "Y,
!
X is the set of parents of Y. (In their appendix A.4 Halpern,

Pearl (2005) generalize their account by dropping the assumption of the acyclicity of the

structural equations.) The idea is that F provides a set of laws that govern the variables in

U, though, again, the precise interpretation of F will have to be discussed below. %U, F& is

then called a structural model (SM). Note that a SM does not fix the values of any vari-

ables. However, once we fix the values
!
u of all the exogenous variables in

!
U , the equa-

tions in F determine the values
!
v of all the endogenous variables in

!
V . Let us call %U, F,

!
u & a contextualized structural model (CSM). Thus, each CSM determines a specific

world or course of events $ = %
!
u ,
!
v & in ". Accordingly, each proposition A in A is true

or false in a CSM %U, F,
!
u &, depending on whether or not $! A for the $ thereby de-

termined.

508

The Structural Model and the Ranking Theoretic Approach to Causation

For the structural model approach, causation is essentially related to intervention.

Therefore we must first explain the latter notion. An intervention always intervenes on a

CSM %U , F ,
!
u &, more specifically, on a certain set

!
X #

!
V of endogenous variables,

thereby setting the values of
!
X to some fixed values

!
x ; that intervention or setting is

denoted by
!
X '

!
x . What such an intervention

!
X '

!
x does is to turn the CSM %U, F,

!
u &

into another CSM. The variables in
!
X are turned into exogenous variables; i.e., the set F

of structural equations is reduced to the set F
!
X

, as I denote it, that consists of all the

equations in F for the variables in
!

V –
!
X . Correspondingly, the context

!
u of the origi-

nal CSM is enriched by the chosen setting
!
x for the new exogenous variables in

!
X . In

short, the intervention
!
X '

!
x changes the CSM %U, F,

!
u & into the CSM %U, F

!
X

, %
!
u ,

!
x &&. Again, it will be an issue what this precisely means.

Now, we can proceed to Pearl’s explication of actual causation; this is definition 3.1

of Halpern, Pearl (2005, p. 853) slightly adapted to the notation introduced so far (see

also Halpern, Hitchcock (2010, Section 3)). Not every detail will be relevant to my fur-

ther discussion below; I reproduce it here only for reasons of accuracy:

SM DEFINITION: {

!
X =

!
x } is an actual cause of {Y = y} in the CSM %U, F,

!
u & iff the

following three conditions hold:

(1) {

!
X =

!
x } and {Y = y} are true in %U, F,

!
u &.

(2) There exists a partition

!
!
Z,!
!

W " of
!

V with
!
X #

!
Z and some setting

!
!
x ',
!
w '" of

the variables in
!
X and

!
W such that if

{
!
Z =
!
z} is true in %U, F,

!
u &, then both of

the following conditions hold:

(a) {Y = y} is false in the intervention

!
!
X ,!
!

W " '

!
!
x ',!
!
w '" on %U, F,

!
u &, i.e.,

in %U , F
!
X ,
!

W
, %
!
u ,

!
x ' ,

!
w ' &&. In other words, changing

!
!
X ,!
!

W " from

!
!
x,!
!
w" to

!
!
x ',
!
w '" changes {Y = y} from true to false.

(b) {Y = y} is true in %U, F
!
X ,
!

W ',
!
Z '

, %
!
u ,
!
x ,
!
w ' ,
!
z ' && for all subsets

!
W ' of

!
W

and all subsets
!
Z ' of

!
Z , where

!
z ' is the subsequence of

!
z pertaining to

!
Z ' .

(3)

!
X is minimal; i.e., no subset of

!
X satisfies conditions (1) and (2).

This is not as complicated as it may look. Condition (1) says that the cause and the ef-

fect actually occur in the relevant CSM %U , F,
!
u & and, indeed, had to occur given the

structural equations in F and the context
!
u . Condition (2a) says that if the cause vari-

ables in
!
X had been set differently, the effect {Y = y} would not have occurred. It is

indeed more liberal in allowing that also the variables in
!
W outside

!
X are set to differ-

ent values, the reason being that the effect of
!
X on Y may be hidden, as it were, by the

actual values of
!
W , and uncovered only by setting

!
W to different values. However, this

alone would be too liberal; perhaps the failure of the effect {Y = y} to occur is due only to

the change of
!
W rather than that of

!
X . Condition (2b) counteracts this permissiveness,

and ensures that basically the change in
!
X alone brings about the change of Y. Condition

(3), finally, is to guarantee that the cause {

!
X =

!
x } does not contain irrelevant parts; for

the change described in (2a) all the variables in
!
X are required. Note that

!
X is a set of

509

Wolfgang Spohn

variables so that {

!
X =

!
x } should be called a total cause of {Y = y}; its parts {Xi = xi}

for Xi !
!
X may then be called contributory causes.

The details of the SM definition are mainly motivated by an adequate treatment of

various troubling examples much discussed in the literature. It would take us too far to go

into all of them. I should also mention that the SM definition is only preliminary in

Halpern, Pearl (2005); but again, the details of their more refined definition presented on

p. 870 will not be relevant for the present discussion.

The basics of the ranking-theoretic account may be explained in an equally brief way:

A negative ranking function (for " is just a function (from " into N) {*} such that

(($) = 0 for at least one $! ". It is extended to propositions in A by defining ((A) =

min{(($) | $! A} and ((+) = *; and it is extended to conditional ranks by defining ((B

| A) = ((A , B) – ((A) for ((A) - *. Negative ranks express degrees of disbelief: ((A) >

0 says that A is disbelieved, so that ((A) > 0 expresses that A is believed in (; however,

we may well have ((A) = ((A) = 0. It is useful to have both belief and disbelief repre-

sented in one function. Hence, we define the two-sided rank .(A) = ((A) – ((A), so that

A is believed, disbelieved, or neither according to whether .(A) > 0, < 0, or = 0. Again,

we have conditional two-sided ranks: .(B | A) = ((B | A) – ((B | A). The positive rele-

vance of a proposition A to a proposition B is then defined by .(B | A) > .(B | A), i.e., by

the fact that B is more firmly believed or less firmly disbelieved given A than given A ;

we might also say in this case that A confirms or is a reason for B. Similarly for negative

relevance and irrelevance (= independence).

Like a set of structural equations, a ranking function (induces a DAG on the frame U

conforming with the given temporal order ! . The procedure is the same as with prob-

abilities: we simply define the set of parents of a variable Y as the unique minimal set
!
X

{ ! Y} such that Y is independent of { ! Y} –
!
X given

!
X relative to (, i.e., such that Y

is independent of all the other preceding variables given
!
X . If

!
X is empty, Y is exoge-

nous; if
!
X - +, Y is endogenous. The reading that Y directly causally depends on its

parents will be justified later on.

Now, for me, being a cause is just being a special kind of conditional reason, i.e., be-

ing a reason given the past. In order to express this, for a subset
!
X of U and a course of

events $! " let

!
[
!
X] denote the proposition that the variables in

!
X behave as they do

in $. (So far, we could denote such a proposition by {

!
X =
!
x }, if

!
X ($) =

!
x , but we

shall see in a moment that this notation is now impractical.) Then the basic definition of

the ranking-theoretic account is this:

RT DEFINITION 1: For A # WX and B # WY {X ! A} is a direct cause of {Y ! B} in $

! " relative to the ranking function ((or the associated .) iff

(a) X ! Y,

(b) X($) ! A and Y($) ! B, i.e., {X ! A} and {Y ! B} are facts in $,

(c) .({Y ! B} | {X ! A} , $[{ ! Y} – {X}]) > .({Y ! B} | {X ! A } , $[{ ! Y} –

{X}]); i.e., {X ! A} is a reason for {Y ! B} given the rest of the past of Y as it is in

$.

510

The Structural Model and the Ranking Theoretic Approach to Causation

It is obvious that the SM and the RT definition deal more or less with the same expli-

candum; both are after actual causes, where actuality is represented either by the context

!
u of a CSM %U, F,

!
u & in the SM definition or by the course of events $ in the RT defi-

nition. A noticeable difference is that in the RT definition the cause {X ! A} refers only

to a single variable X. Thus, the RT definition grasps what has been called a contributory

cause, a total cause of {Y ! B} then being something like the conjunction of its con-

tributory causes. As mentioned, the SM definition proceeds the other way around.

Of course, the major differences lie in the explicantia; this will be discussed in the

next section. A further noticeable difference in the definienda is that the RT definition 1

explains only direct causation; indeed, if {X ! A} would be an indirect cause of {Y ! B},

we could not expect {X ! A} to be positively relevant to {Y ! B} conditional on the rest

of the past of Y in $, since that condition would not keep open the causal path from X to

Y, but fix it to its actual state in $. Hence, the RT definition 1 is restricted accordingly.

As the required extension, I propose the following

RT DEFINITION 2: {X ! A} is a (direct or indirect) cause of {Y ! B} in $! " relative

to ((or .) iff there are Zi ! U and Ci !

!

Z
i
 (i = 1, …, n ! 2) such that X = Z1, A = C1, Y

= Zn, B = Cn, and {Zi ! Ci} is a direct cause of {Zi+1 ! Ci+1} in $ relative to (for all i = 1,

…, n – 1.

In other words, causation in $ is just the transitive closure of direct causation in $.

We may complete the ranking-theoretic account by explicating causal dependence

between variables:

RT DEFINITION 3: Y ! U (directly) causally depends on X ! U relative (iff there are A

WX, B # WY, and $! " such that {X ! A} is a (direct) cause of {Y ! B} in $ relative

to (.

One consequence of RT definition 3 is that the set of parents of Y in the DAG generated

by (and ! consists precisely of all the variables on which Y directly causally depends.

So much for the two accounts to be compared. There are all the differences that meet

the eye. As we shall see, there are even more. Still, let me conclude this section by

pointing out that there are also less differences than meet the eye. I have already men-

tioned that both accounts make use of the DAG structure of causal graphs. And when we

supplement the probabilistic versions of the two accounts, they further converge. In the

structural-model approach we would then replace the context
!
u of a CSM %U, F,

!
u & by a

probability distribution over the exogenous variables rendering them independent and

extending via the structural equations to a distribution for the whole of U, thus forming a

pseudo-indeterministic system, as Spirtes et al. (1993, pp. 38f.) call it, and hence a Baye-

sian net in which the probabilities agree with the causal graph. In the ranking-theoretic

approach, we would replace the ranking function by a probability measure for U (or over

A) that, together with the temporal order of the variables, would again induce a DAG or a

511

Wolfgang Spohn

causal graph so as to form a Bayesian net. In this way, the basic ingredient of both ac-

counts would become the same: a probability measure;the remaining differences appear

to be of a merely technical nature.

Indeed, as I see the recent history of the theory of causation, this large agreement ini-

tially dominated the picture of probabilistic causation. However, the need for underpin-

ning the probabilistic by a deterministic account was obvious; after all, the longer history

of the notion was an almost entirely deterministic one up to the recent counterfactual

accounts following Lewis (1973). And so the surprising ramification sketched above

came about, both branches of which well agree with their probabilistic origins. The rami-

fication is revealing since it makes explicit dividing lines that were hard to discern within

the probabilistic harmony. Indeed, the points of divergence between the structural-model

and the ranking-theoretic approach to be discussed in the next section apply to their prob-

abilistic sisters as well, a claim that is quite suggestive, though I shall not elaborate on it.

3 Fifteen Points of Comparison

All in all, I shall come up with fifteen clearly distinguishable, though multiply connected

points of comparison. The theorist of causation must take a stance towards all of them,

and even more; my list is pertinent to the present comparison and certainly not exhaus-

tive. Let us go through the list point for point:

(1) The most obvious instances provoking comparison and divergence are provided

by examples, about preemption and prevention, overdetermination and switches, etc. The

literature abounds in cases challenging all theories of causation and examples designed

for discriminating among them, a huge bulk still awaiting systematic classification

(though I attempted one in my (1983, ch. 3) as far as possible at that time). A theory of

causation must do well with these examples in order to be acceptable. No theory, though,

will reach a perfect score, all the more as many examples are contested by themselves,

and do not provide a clear-cut criterion of adequacy. And what a ‘good score’ would be

cannot be but vague. Therefore, I shall not even open this unending field of comparison

regarding the two theories at hand.

(2) The main reason why examples provide only a soft criterion is that it is ultimately

left to intuition to judge whether an example has been adequately treated. There are

strong intuitions and weak ones. They often agree and often diverge. And they are often

hard to compromise. Indeed, intuitions play an indispensable and important role in as-

sessing theories of causation; they seem to provide the ultimate unquestionable grounds

for that assessment.

Still, I have become cautious about the role of intuitions. Quite often I felt that the

intuitions authors claim to have are guided by their theory; their intuitions seem to be

what their theory suggests they should be. Indeed, the more I dig into theories of causa-

tion and develop my own, the harder it is for me to introspectively discern whether or not

I share certain intuitions independently of any theorizing. So, again, the appeal to intui-

512

The Structural Model and the Ranking Theoretic Approach to Causation

tions must be handled with care, and I shall not engage into a comparison of the relevant

theories on an intuitive level.

(3) Another large field of comparison is the proximity to and the applicability in sci-

entific practice. No doubt, the SM account fares much better in this respect than the RT

approach. Structural modeling is something many scientists really do, whereas ranking

theory is unknown in the sciences and it may be hard to say why it should be known

outside epistemology. The point applies to other accounts as well. The regularity theory

of causation seems close to the sciences, since they seem to state laws and regularities,

whereas counterfactual analyses seem remote, since counterfactual claims are not an

official part of scientific theories, even though, unofficially, counterfactual talk is ubiq-

uitous. And probabilistic theories maintain their scientific appearance by ecumenically

hiding disputes about the interpretation of probability.

Again, the importance of this criterion is undeniable; the causal theorist is well ad-

vised to appreciate the great expertise of the sciences, in general and specifically con-

cerning causation. Still, I tend to downplay this criterion, not only in order to keep the RT

account as a running candidate. The point is rather that the issue of causation is of a kind

for which the sciences are not so well prepared. The counterfactual analysis is a case in

point. If it should be basically correct, then the counterfactual idiom can no longer be

treated as a second-rate vernacular (to use Quine’s term), as the sciences do, but must be

squarely faced in a systematic way, as, e.g., Pearl (2000, ch. 7) does, but qua philosopher,

not qua scientist. Probabilities are a similar case. Mathematicians and statisticians by far

know best how to deal with them. However, when it comes to say what probabilities

mean, they are not in a privileged position.

The point of these three remarks is to claim primacy for theoretical issues about cau-

sation as such. External considerations are relevant and helpful, but they cannot release

us from the task of taking some stance or other towards these theoretical issues. So, let us

turn to them.

(4) Both, the SM and the RT account, are based on a frame providing a framework of

variables and appertaining facts. I am not sure, however, whether we interpret it in the

same way. A (random) variable is a function from some state space into some range of

values, usually the reals; this is mathematical standard. That a variable takes a certain

value is a proposition, and if the value is the true one (in some model), the proposition is

a fact (in that model); so much is clear. However, the notion of a variable is ambiguous,

and it is so since its statistic origins. A variable may vary over a given population as its

state space and take on a certain value for each item in the population. E.g., size varies

among Germans and takes (presently) the value 6' 0'' for me. This is what I call a generic

variable. Or a variable may vary over a set of possibilities as its state space and take

values accordingly. For example, my (present) size is a variable in this sense and actually

takes the value 6' 0'', though it takes other values in other possibilities; I might (presently)

have a different size. I call this a singular variable representing the possibility range of a

513

Wolfgang Spohn

given single case. For each German (and time), size is such a singular variable. The ge-

neric variable of size, then, is formed by the actual values of all these singular variables.

The above RT account exclusively speaks about singular variables and their realiza-

tions; generic variables simply are out of the picture. By contrast, the ambiguity seems to

afflict the SM account. I am sure everybody is fully clear about the ambiguity, but this

clarity seems insufficiently reflected in the terminology. For instance, the equations of a

SM represent laws or ceteris paribus laws or invariances in Woodward’s (2003) terms or

statistical laws, if supplemented by statistical ‘error’ terms, and thus state relations be-

tween generic variables. It is contextualization by which the model gets applied to a

given single case; then, the variables should rather be taken as singular ones; their taking

certain values then are specific facts. There is, however, no terminological distinction of

the two interpretations; somehow, the notion of a variable seems to be intended to play

both roles. In probabilistic extensions we find the same ambiguity, since probabilities

may be interpreted as statistical distributions over populations or as realization propensi-

ties of the single case.

(5) I would not belabor the point if it did not extend to the causal relations we try to

capture. We have causation among facts, as analyzed in the SM definition and the RT

definitions 1 - 2; they are bound to apply to the single case. And we have causal relations

among variables, i.e., causal dependence (though often and in my view confusingly the

term “cause” is used here as well), and we find here the same ambiguity. Causal depend-

ence between generic variables is a matter of causal laws or of general causation. How-

ever, there is also causal dependence between singular variables, something rarely made

explicit, and it is a matter of singular causation applying to the single case just as much

as causation between facts. Since its inception the discussion of probabilistic causality

was caught in this ambiguity between singular and general causation; and I am wonder-

ing whether we can still observe the aftermath of that situation.

In any case, structural equations are intended to capture causal order, and the order

among generic variables thus given pertains to general causation. Derivatively these

equations may be interpreted as stating causal dependencies also between singular vari-

ables. In the SM account, though, singular causation is explicitly treated only as pertain-

ing to facts. By contrast, the RT definition 3 explicates only causal dependence between

singular variables. The RT account is so far silent about general causation and can grasp

it only by generalizing over the causal relations in the single case. These remarks are not

just pedantry; I think it is important to observe these differences for an adequate compari-

son of the accounts.

(6) I see these differences related to the issue of the role of time in an analysis of cau-

sation. The point is simply that generic variables as such are not temporally ordered,

since their arguments, the items to which they apply, may have varying temporal posi-

tions; usually, statistical data do not come temporally ordered. By contrast, singular vari-

ables are temporally ordered, since their variable realizability across possibilities is tied

to a fixed time. As a consequence, the SM definition makes no explicit reference to time,

514

The Structural Model and the Ranking Theoretic Approach to Causation

whereas the RT definitions make free use of that reference. While I think that this point

has indeed disposed Judea Pearl and me to our diverging perspectives on the relation

between time and causation, it must be granted that the issue takes on much larger dimen-

sions that open enough room for indecisive defenses of both perspectives.

Many points are involved: (i) Issues of analytic adequacy: while Pearl (2000, pp.

249ff.) argues that reference to time does not sufficiently further the analytic project and

proposes ingenious alternatives (sections 2.3 - 4 + 8 - 9), I am much more optimistic

about the analytic prospects of referring to time (see my 1990, section 3, and forthcom-

ing, section 14.4). (ii) Issues of analytic policy (see also point 10 below): Is it legitimate

to refer to time in an analysis of causation? I was never convinced by the objections. Or

should the two notions be analytically decoupled? Or should the analytic order be even

reversed by constructing a causal theory of time? Pearl (2000, section 2.8) shows sym-

pathies for the latter project, although he suggests an evolutionary explanation, rather

than Reichenbach’s (1956) physical explanation for relating temporal direction with

causal directionality. (iii) The issue of causal asymmetry: Is the explanation of causal

asymmetry by temporal asymmetry illegitimate? Or incomplete? Or too uninformative, as

far as it goes? If any of these, what is the alternative?

(7) Causation always is causation within given circumstances. What do the accounts

say what the circumstances are? The RT definition 1 explicitly takes the entire past of the

effect except the cause as the circumstances of a direct causal relationship, something

apparently much too large and hence inadequate, but free of conceptual circularity, as I

have continuously emphasized. In contrast, Pearl (2000, pp. 250ff.) endorses the circular

explanation of Cartwright (1979) that those circumstances consist of the other causes of

the effect and hence, in the case of direct causation, of the realizations of the other par-

ents of the effect variable in the causal graph. Pearl thus accepts also Cartwright’s con-

clusion that the reference to the obtaining circumstances does not help explicating causa-

tion; he thinks that this reference at best provides a kind of consistency test. I argue that

the explicatory project is not doomed thereby, since Cartwright’s circular explanation

may be derived from my apparently inadequate definition (cf. Spohn 1990, section 4). As

for the circumstances of indirect causation, the RT definition 2 is entirely silent, since it

relies on transitivity; however, in Spohn (1990, Theorems 14 and 16) I explored how

much I can say about them. In contrast, the SM definition contains an implicit account of

the circumstances that applies to indirect causal relationships as well; it is hidden in the

partition

!
!
Z,
!

W " of the set
!

V of endogenous variables. However, it still accepts Cart-

wright’s circular explanation, since it presupposes the causal graph generated by the

structural equations. So, this is a further respect in which our accounts are diametrically

opposed.

(8) The preceding point contains two further issues. One concerns the distinction of

direct and indirect causation. The SM approach explicates causation without attending to

this distinction. Of course, it could account for it, but it does not acquire a basic impor-

tance. By contrast, the distinction receives analytic significance within the RT approach

515

Wolfgang Spohn

that first defines direct causation and then, only on that basis, indirect causation. The

reason is that, in this way, the RT approach hopes to reach a non-circular explication of

causation, whereas the SM approach has given up on this hope (see also point 10 below)

and thus sees no analytic rewards in this distinction.

(9) The other issue already alluded to in (7) is the issue of transitivity. This is a most

vexed topic, and the community seems unable to find a stable attitude. Transitivity had to

be given up, it seemed, within probabilistic causation (cf. Suppes 1970, p. 58), while it

was derivable from a regularity account and was still defended by Lewis (1973) for de-

terministic causation. In the meantime the situation has reversed; transitivity has become

more respectable within the probabilistic camp; e.g., Spirtes et al. (1993, p. 44) simply

assume it in their definition of “indirect cause”. By contrast, more and more tend to reject

it for deterministic causation (cf., e.g., McDermott 1995 and Hitchcock 2001).

This uncertainty is also reflected in the present comparison. Pearl (2000, p. 237) re-

jects transitivity of causal dependence among variables, but, as the argument shows, only

in the sense of what Woodward (2003, p. 51) calls “total cause”. Still, Woodward (2003,

p. 59), in his concluding explication M, accepts the transitivity of causal dependence

among variables in the sense of “contributory cause”, and I have not found any indication

in Pearl (2000) or Halpern, Pearl (2005) that they would reject Woodward’s account of

contributory causation. However, all of them deny the transitivity of actual causation

between facts.

I see it just the other way around. The RT definition 2 stipulates the transitivity of

causation (with arguments, though; cf. Spohn 1990, p. 138, and forthcoming, section

14.12), whereas the RT definition 3 entails the transitivity of causal dependence among

variables in the contributory sense only under (mild) additional assumptions. Another

diametrical opposition.

(10) A much grander issue is looming behind the previous points, the issue of analytic

policy. The RT approach starts defining direct causation between singular facts, proceeds

to indirect causation and then to causal dependence between singular variables, and fi-

nally only hopes to thereby grasp general causation as well. It thus claims to give a non-

circular explication or a reductive analysis of causation. The SM approach proceeds in

the opposite direction. It presupposes an account of general causation that is contained in

the structural equations, transfers this to causal dependence between singular variables (I

mentioned in points 4 and 5 that this step is not fully explicit), and finally arrives at actual

causation between facts. The claim is thereby to give an illuminating analysis of causa-

tion, but not a reductive one.

Now, one may have an argument about conceptual order: which causal notions to ex-

plicate on the basis of which? I admit I am bewildered by the SM order. The deeper issue,

though, or perhaps the deepest, is the feasibility of reductive analysis. Nobody doubts that

it would be most welcome to have one; therefore the history of the topic is full of at-

tempts at such an analysis. Perhaps, though, they are motivated by wishful thinking. How

to decide? One way of assessing the issue is by inspecting the proposals. The proponents

516

The Structural Model and the Ranking Theoretic Approach to Causation

are certainly confident of their analyses, but their inspection revealed so many problems

that doubts preponderate. However, this does not prove their failure. Also, one may ad-

vance principled arguments such as Cartwright’s (1979) that one cannot avoid being

entangled in conceptual circles. For such reasons, the majority, it seems, has acquiesced

in non-reductive analysis; cf., e.g., Woodward (2003, pp. 104ff.) for an apology of non-

reductivity or Glymour (2004) for a eulogy of the, as he calls it, Euclidean as opposed to

the Socratic ideal.

Another way of assessing the issue is more philosophical. Are there any more basic

features of reality to which causation may reduce? One may well say no, and thereby

justify the rejection of reductive analysis. Or one may say yes. Laws may be such a more

basic feature; this, however, threatens to result either in an inadequate regularity theory of

causation or in an inability to say what laws are beyond regularities. Objective probabili-

ties may be such a feature – if we only knew what they are. What else is there on offer?

On the other hand, it is not so easy to simply accept causation as a basic phenomenon;

after all, the point has deeply worried philosophers for centuries after Hume.

In any case, all these issue are involved in settling for a certain analytic policy. It will

become clearer in the subsequent points why I nevertheless maintain the possibility of

reductive analysis.

(11) The most conspicuous difference of the SM and the RT approach is a direct con-

sequence of their different policies. The SM account bases its analysis on structural mod-

els or equations, whereas the RT account explicates causation in terms of ranking func-

tions. These are entirely different things!

Prima facie, structural equations are easier to grasp. Despite its non-reductive proce-

dure the SM approach incurs the obligation, though, to somehow explain how the struc-

tural equations can establish causal order among generic variables. They can do this,

because Pearl (2000, pp. 157ff.) explicitly gives them an interventionistic interpretation

that, in turn, is basically a counterfactual one, as is entirely clear to Pearl; most interven-

tions are only counterfactual. Woodward (2003) repeatedly emphasizes the point that the

interventionistic account clarifies the counterfactual approach by forcing a specific inter-

pretation of the multiply ambiguous counterfactual idiom. Still, despite Woodward’s

(2003, pp. 121f.) claim to use counterfactuals only when they are clearly true of false,

and despite Pearl’s (2000, section 7.1) attempt to account for counterfactuals within

structural models, the issue how counterfactuals acquire truth conditions remains a mys-

tery in my view.

By contrast, it is quite bewildering to base an analysis of causation on ranking func-

tions that are avowedly to be understood only as doxastic states, i.e., in a purely episte-

mological way. One of my reasons for doing so is that the closer inspection envisaged in

(10) comes out, on the whole, more satisfactorily than for other accounts, that is, the

overall score in dealing with examples is better. The other reason why I find ranking

functions not so implausible a starting point lies in my profoundly Humean strategy in

dealing with causation. There is no more basic feature of reality to which causation might

reduce. The issue rather is how modal facts come into the world – where modal facts

517

Wolfgang Spohn

pertain to lawhood, causation, counterfactuals, probabilities, etc. We do not find ‘musts’

and ‘cans’ in the world as we find apples and pears; this was Hume’s crucial challenge.

And his answer was what is now called Hume’s projectivism (cf. Blackburn 1993, in

particular the essays in part I). Ranking functions are well suited for laying out this pro-

jectivist answer in detail. This fundamental difference between the SM and the RT ap-

proach further unfolds in the final four points.

(12) A basic idea in our notion of causation between facts is, very roughly, that the

cause does something for its effect, contributes to it, makes it possible or necessary or

more likely, in short: that the cause is somehow positively relevant to its effect. One fact

could also be negatively relevant to another, in which case the second obtains despite the

first. As for causal dependence between variables, it is only required that the one is rele-

vant for the other. What are the notions of relevance and positive relevance provided by

the SM and the RT approach?

Ranking theory has a rich notion of positive and negative relevance, analogous and

equivalent in formal behavior to the probabilistic notions. Its relevance notion is much

richer and, I find, more adequate to the needs of causal theorizing than those provided by

the key terms of other approaches to deterministic causation: laws, counterfactuals, inter-

ventions, structural equations, or whatever. This fact grounds my optimism that the RT

approach is, on the whole, better able to cope with all the examples and problem cases.

I just said that the relevance notion provided by the SM approach is poorer. What is

it? Clause (2b) of the SM definition says, in a way, that the effect {Y = y} had to occur

given the cause {

!
X =

!
x } occurs, and clause (2a) says that the effect might not have

occurred if the cause does not occur and, indeed, would not have occurred if the cause

variable(s)
!
X would have been realized in a suitable alternative way. In traditional

terms, we could say that the cause is a necessary and sufficient condition of the effect

provided the circumstances – where the subtleties of the SM approach lie in the proviso;

that’s the SM positive relevance notion. So, roughly, in SM terms, the only ‘action’ a

cause can do is making its effect necessary, whereas ranking theory allows many more

‘actions’. This is what I mean by the SM approach being poorer. For instance, it is not

clear how a fact could be negatively relevant to another fact in the SM approach, or how

one fact could be positively and another negatively relevant to a third one. And so forth.

(13) Let’s take a closer look at what “action” could mean in the previous paragraph.

In the RT approach it means comparing ranks conditional on the cause {X ! A} and on

its negation {X ! A }; the rank raising showing up in that comparison is what the cause

‘does’. In the SM approach we do not conditionalize on the cause {

!
X =

!
x } and some

alternative {

!
X =

!
x ' }; rather, in clauses (2a-b) of the SM definition we look at the con-

sequences of the interventions
!
X '

!
x and

!
X '

!
x ' , i.e., by replacing the structural

equation(s) for
!
X by the stipulation

!
X =

!
x or, respectively, =

!
x ' . The received view

by now is that intervention is quite different from conditionalization (cf., e.g.,

Goldszmidt, Pearl 1992, and Meek, Glymour 1994), the suggestion being that interven-

518

The Structural Model and the Ranking Theoretic Approach to Causation

tion is what causal theorizing requires, and that all approaches relying on conditionaliza-

tion such as the RT approach therefore are misguided (cf. also Pearl 2000, section 3.2).

The difference looks compelling: intervention is a real activity, whereas conditionali-

zation is only a mental, suppositional activity. But once we grant that intervention is

mostly counterfactual (i.e., also suppositional), the difference shrinks. Indeed, I tend to

say that there never is a real intervention in a given single case; after a real intervention

we deal with a different single case than before. Hence, I think the difference the received

view assumes is spurious; rather, interventions may be construed in terms of condition-

alization:

Of course, the intervention
!
X '

!
x differs from conditioning on {

!
X =

!
x }; in this,

the received view is correct. However, the RT and other conditioning approaches do not

simply conditionalize on the cause, but on much more. What the intervention X1'x1 on

the single variable X1 does is change the value of X1 to x1 while at the same time keeping

fixed the values of all temporally preceding variables as they are in the given context, or,

if only a causal graph and not temporal order is available, either of all ancestors of X1 or

of all non-descendants of X1 (which comes to the same thing in structural models, and

also in probabilistic terms given the common cause principle). Thus, the intervention is

equivalent to conditioning on {X1 = x1} and on the fixed values of those other variables.

Similarly for a double intervention %X1, X2& ' %x1, x2&. For assessing the behavior of

the variables temporally between X1 and X2 (or being descendants of X1, but not of X2)

under the double intervention, we have to look at the same conditionalization as in the

single intervention X1'x1, whereas for the variables later than X2 (or descending from

both X1 and X2) we have to condition on {X1 = x1}, {X2 = x2}, the past of X1 as it is in the

given context, and on those intermediate variables taking the values as they are after the

intervention X1'x1. And so forth for multiple interventions (that are so crucial for the

SM approach).

Given this translation, this kind of difference between the SM and the RT approach

vanishes, I think. Consider, e.g., the definition of direct causal dependence of Woodward

(2003, p. 55): Y directly causally depends on X iff an intervention on X can make a differ-

ence to Y, provided the values of all other variables in the given frame U are somehow

fixed by intervention. Translate this as proposed, and you arrive at the conditionalization

I use in the above RT definitions to characterize direct causation.

(14) The preceding argument has a gap that emerges when we attend to another topic

that I find crucial, but nowhere thoroughly discussed: the frame-relativity of causation.

Everybody agrees that the distinction between direct and indirect causation is frame-

relative; of course, a direct causal relationship relative to a coarse-grained frame may turn

indirect under refinements. What about causation itself, though? One may try some mod-

erate antirealism, e.g., general thoughts to the effect that science only produces models of

reality and never truly represents reality as it really is; then causation would be model-

relative, too.

However, this is not what I have in mind. The point is quite specific: The RT defini-

tion 1 refers, in a way I had explained in point 7, to the obtaining circumstances, however

519

Wolfgang Spohn

only insofar as they are represented in the given frame U. This entails a genuine frame-

relativity of causation as such; {X = x} may be a (direct) cause of {Y = y} within one

frame, but not within another or more refined frame. As Halpern, Hitchock (2010, Sec-

tion 4.1) argue, this phenomenon may also show up within the SM approach.

I do not think that this agrees with Pearl’s intention in pursuing the SM account; an

actual cause should not cease to be an actual cause simply by refining the frame. Perhaps,

the intention was to arrive at a frame-independent notion of causation by assuming a

frame-independent notion of intervention. My translation of the intervention X1'x1 into

conditionalization referred to the past (or the ancestors or the non-descendants) of X1 as

far as they are represented in the given frame U , and thus reproduced only a frame-

relative notion of intervention. However, the intention presumably is to refer to the entire

past of X1 absolutely, not leaving any hole for the supposition of {X1 = x1} to backtrack.

If so, there is another sharp difference between the SM and the RT approach with reper-

cussions on the previous point.

Of course, I admit that our intuitive notion of causation is not frame-relative; we aim

at an absolute notion. However, this aim bars us from having a reductive analysis of cau-

sation, since the analysis would have to refer then to the rest of the world, as it were, to

many things outside the frame that are thus prevented from entering the analysis. In fact,

any rigorous causal theorizing is thereby frustrated in my view. For, how can you theo-

retically deal with all those don’t-know-what’s? For this reason I always preferred to

work with a fixed frame, to pretend that this frame is all there is, and then to say every-

thing about causation that can be said within this frame. This procedure at least allows a

reductive analysis of a frame-relative notion.

How, then, can we get rid of the frame-relativity? I propose, by ever more fine-

graining and extending the frame, studying the frame-relative causal relations within all

these well-defined frames, and finding out what remains stable across all these refine-

ments; we may hope, then, that these stable features are preserved even in the maximally

refined, universal frame (cf. Spohn forthcoming, section 14.9; for Halpern, Hitchcock

(2010, Section 4.1) this stability is also crucial). I would not know how else to deal with

the challenge posed by frame-relativity, and I suspect that considerable problems in

causal theorizing result from not explicitly facing this challenge.

(15) The various points may be summarized in the final opposition: whether causation

is to be subjectivistically or objectivistically conceived. Common sense, Judea Pearl, and

many others are on the objectivistic side: “I now take causal relationships to be the fun-

damental building blocks both of physical reality and of human understanding of that

reality” (Pearl 2000, pp. xiiif.). And insofar as structural equations are objective, the SM

approach shares this objectivism. By contrast, frame-relativity is an element of subject-

relativity; frames are chosen by us. And the use of only epistemically interpretable rank-

ing functions involves a much deeper subjectivization of the topic of causation. (The

issue of relevance, point 12, is related, by the way, since in my view only epistemic rele-

vance is rich enough a concept.)

520

The Structural Model and the Ranking Theoretic Approach to Causation

The motive of the subjectivistic RT approach was, I said, Hume’s challenge. And the

gain, I claimed, is the feasibility of a reductive analysis. Any objectivistic approach has to

tell how else to cope with that challenge and how to make peace with non-reductivity.

Still, we cannot simply acquiesce in subjectivism, since it flies in the face of everyone

keeping some sense of reality. The general philosophical strategy to escape pure subjec-

tivism has been aptly described by Blackburn (1993, part I) as Humean projectivism

leading to so-called quasi-realism that is indistinguishable from ‘real’ realism.

This general strategy may be precisely explicated in the case of causation: I had indi-

cated in the previous point how I propose to get rid of frame-relativity. And in Spohn

(forthcoming, ch. 15) I develop an objectification theory for ranking functions, according

to which some ranking functions, the objectifiable ones, may be said, to truly (or falsely)

represent causal relations. No doubt, this objectification theory is disputable, but it shows

that the subjectivistic starting point need not preclude us from objectivistic aims. Maybe,

though, these aims are more convincingly served by approaching them in a more direct

and realistic way, as the SM account does.

4 Conclusion

On none of the fifteen differences above could I seriously start discussion; obviously

nothing below book length would do. Indeed, discussing these points was not my aim at

all, let alone treating anyone conclusively (though, of course, I could not hide where my

sympathies are). My first intention was simply to display the differences, not all of which

are clearly seen in the literature; already the sheer number is surprising. And I expressed

my second intention between point 3 and point 4: namely to show that there are many

internal theoretical issues in the theory of causation. On all of them one must take and

argue a stance, a most demanding requirement. My hunch is that those theoretical consid-

erations will eventually override issues of exemplification and application. All the more

important it is to take some stance; no less will do for reaching a considered judgment.

Judea Pearl has paradigmatically shown how to do this. His brilliant theoretical develop-

ments have not closed, but tremendously advanced our understanding of all these issues

pertaining to causation.

Acknowledgment: I am indebted to Joe Halpern for providing most useful comments

and correcting my English.

References

Blackburn, S. (1993). Essays in Quasi-Realism, Oxford: Oxford University Press.

Cartwright, N. (1979). Causal laws and effective strategies. Noûs 13, 419-437.

Glymour, C. (2004). Critical notice on: James Woodward, Making Things Happen,

British Journal for the Philosophy of Science 55, 779-790.

Goldszmidt, M., and J. Pearl (1992). Rank-based systems: A simple approach to be-

lief revision, belief update, and reasoning about evidence and actions. In B. Nebel,

521

Wolfgang Spohn

C. Rich, and W. Swartout (Eds.), Proceedings of the Third International Confer-

ence on Knowledge Representation and Reasoning, San Mateo, CA: Morgan

Kaufmann, pp. 661-672.

Halpern, J. Y., and C. Hitchcock (2010). Actual causation and the art of modeling.

This volume, chapter 22.

Halpern, J. Y., and J. Pearl (2005). Causes and explanations: A structural-model ap-

proach. Part I: Causes. British Journal for the Philosophy of Science 56, 843-887.

Hitchcock, C. (2001). The intransitivity of causation revealed in equations and graphs.

Journal of Philosophy 98, 273-299.

Lewis, D. (1973). Causation. Journal of Philosophy 70, 556-567.

McDermott, M. (1995). Redundant causation. British Journal for the Philosophy of

Science 46, 523-544.

Meek, C., and C. Glymour (1994). Conditioning and intervening. British Journal for

the Philosophy of Science 45, 1001-1021.

Reichenbach, H. (1956). The Direction of Time. Los Angeles: The University of Cali-

fornia Press.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Mateo, CA: Morgan Kaufmann.

Pearl, J. (2000). Causality. Models, Reasoning, and Inference. Cambridge: Cambridge

University Press.

Spirtes, P., C. Glymour, and R. Scheines (1993). Causation, Prediction, and Search.

Berlin: Springer, 2nd ed. 2000.

Spohn, W. (1978). Grundlagen der Entscheidungstheorie, Kronberg/Ts.: Scriptor.

Out of print, pdf-version at: http://www.uni-konstanz.de/FuF/Philo/Philosophie/

philosophie/files/ge.buch.gesamt.pdf.

Spohn, W. (1983). Eine Theorie der Kausalität. Unpublished Habilitationsschrift,

University of München, pdf-version at: http://www.uni-konstanz.de/FuF/Philo/

Philosophie/philosophie/files/habilitation.pdf.

Spohn, W. (1990). Direct and indirect causes. Topoi 9, 125-145.

Spohn, W. (2006). Causation: An alternative. British Journal for the Philosophy of

Science 57, 93-119.

Spohn, W. (forthcoming). Ranking Theory. A Tool for Epistemology.

Suppes, P. (1970). A Probabilistic Theory of Causality. Amsterdam: North-Holland.

Woodward, J. (2003). Making Things Happen. A Theory of Causal Explanation. Ox-

ford: Oxford University Press.

522

30

On Identifying Causal Effects

Jin Tian and Ilya Shpitser

1 Introduction

This paper deals with the problem of inferring cause-effect relationships from a

combination of data and theoretical assumptions. This problem arises in diverse

fields such as artificial intelligence, statistics, cognitive science, economics, and the

health and social sciences. For example, investigators in the health sciences are

often interested in the effects of treatments on diseases; policymakers are concerned

with the effects of policy decisions; AI research is concerned with effects of actions

in order to design intelligent agents that can make effective plans under uncertainty;

and so on.

To estimate causal effects, scientists normally perform randomized experiments

where a sample of units drawn from the population of interest is subjected to the

specified manipulation directly. In many cases, however, such a direct approach is

not possible due to expense or ethical considerations. Instead, investigators have

to rely on observational studies to infer effects. A fundamental question in causal

analysis is to determine when effects can be inferred from statistical information,

encoded as a joint probability distribution, obtained under normal, intervention-

free behavior. A key point here is that it is not possible to make causal conclusions

from purely probabilistic premises – it is necessary to make causal assumptions.

This is because without any assumptions it is possible to construct multiple “causal

stories” which can disagree wildly on what effect a given intervention can have, but

agree precisely on all observables. For instance, smoking may be highly correlated

with lung cancer either because it causes lung cancer, or because people who are

genetically predisposed to smoke may also have a gene responsible for a higher cancer

incidence rate. In the latter case there will be no effect of smoking on cancer.

In this paper, we assume that the causal assumptions will be represented by

directed acyclic causal graphs [Pearl, 2000; Spirtes et al., 2001] in which arrows

represent the potential existence of direct causal relationships between the corre-

sponding variables and some variables are presumed to be unobserved. Our task will

be to decide whether the qualitative causal assumptions represented in any given

graph are sufficient for assessing the strength of causal effects from nonexperimental

data.

This problem of identifying causal effects has received considerable attention

in the statistics, epidemiology, and causal inference communities [Robins, 1986;

523

Kaoru
Text Box
Return to TOC

Jin Tian and Ilya Shpitser

Robins, 1987; Pearl, 1993; Robins, 1997; Kuroki and Miyakawa, 1999; Glymour

and Cooper, 1999; Pearl, 2000; Spirtes et al., 2001]. In particular Judea Pearl and

his colleagues have made major contributions in solving the problem. In his seminal

paper Pearl (1995) established a calculus of interventions known as do-calculus –

three inference rules by which probabilistic sentences involving interventions and

observations can be transformed into other such sentences, thus providing a syntac-

tic method of deriving claims about interventions. Later, do-calculus was shown to

be complete for identifying causal effects, that is, every causal effects that can be

identified can be derived using the three do-calculus rules [Shpitser and Pearl, 2006a;

Huang and Valtorta, 2006b]. Pearl (1995) also established the popular “back-door”

and “front-door” criteria – sufficient graphical conditions for ensuring identifica-

tion of causal effects. Using do-calculus as a guide, Pearl and his collaborators

developed a number of sufficient graphical criteria: a criterion for identifying causal

effects between singletons that combines and expands the front-door and back-door

criteria [Galles and Pearl, 1995], a condition for evaluating the effects of plans in

the presence of unmeasured variables, each plan consisting of several concurrent

or sequential actions [Pearl and Robins, 1995]. More recently, an approach based

on c-component factorization has been developed in [Tian and Pearl, 2002a; Tian

and Pearl, 2003] and complete algorithms for identifying causal effects have been

established [Tian and Pearl, 2003; Shpitser and Pearl, 2006b; Huang and Valtorta,

2006a]. Finally, a general algorithm for identifying arbitrary counterfactuals has

been developed in [Shpitser and Pearl, 2007], while the special case of effects of

treatment on the treated has been considered in [Shpitser and Pearl, 2009].

In this paper, we summarize the state of the art in identification of causal effects.

The rest of the paper is organized as follows. Section 2 introduces causal models

and gives formal definition for the identifiability problem. Section 3 presents Pearl’s

do-calculus and a number of easy to use graphical criteria. Section 4 presents the

results on identifying (unconditional) causal effects. Section 5 shows how to iden-

tify conditional causal effects. Section 6 considers identification of counterfactual

quantities which arise when we consider effects of relative interventions. Section 7

concludes the paper.

2 Notation, Definitions, and Problem Formulation

In this section we review the graphical causal models framework and introduce the

problem of identifying causal effects.

2.1 Causal Bayesian Networks and Interventions

The use of graphical models for encoding distributional and causal assumptions is

now fairly standard [Heckerman and Shachter, 1995; Lauritzen, 2000; Pearl, 2000;

Spirtes et al., 2001]. A causal Bayesian network consists of a DAG G over a set

V = {V1, . . . , Vn} of variables, called a causal diagram. The interpretation of such a

graph has two components, probabilistic and causal. The probabilistic interpreta-

524

On Identifying Causal Effects

tion views G as representing conditional independence assertions: Each variable is

independent of all its non-descendants given its direct parents in the graph.1 These

assertions imply that the joint probability function P (v) = P (v1, . . . , vn) factorizes

according to the product [Pearl, 1988]

P (v) =
∏

i

P (vi|pai), (1)

where pai are (values of) the parents of variable Vi in the graph. Here we use

uppercase letters to represent variables or sets of variables, and use corresponding

lowercase letters to represent their values (instantiations).

The set of conditional independences implied by the causal Bayesian network

can be obtained from the causal diagram G according to the d-separation criterion

[Pearl, 1988].

DEFINITION 1 (d-separation). A path 2 p is said to be blocked by a set of nodes

Z if and only if

1. p contains a chain Vi → Vj → Vk or a fork Vi ← Vj → Vk such that the node

Vj is in Z, or

2. p contains an inverted fork Vi → Vj ← Vk such that Vj is not in Z and no

descendant of Vj is in Z.

A path not blocked by Z is called d-connecting or active. A set Z is said to d-

separate X from Y , denoted by (X⊥⊥Y |Z)G, if and only if Z blocks every path

from a node in X to a node in Y .

We have that if Z d-separates X from Y in the causal diagram G, then X is

conditionally independent of Y given Z in the distribution P (v) given in Eq. (1).

The causal interpretation views the arrows in G as representing causal influences

between the corresponding variables. In this interpretation, the factorization of

(1) still holds, but the factors are further assumed to represent autonomous data-

generation processes, that is, each parents-child relationship characterized by a con-

ditional probability P (vi|pai) represents a stochastic process by which the values of

Vi are assigned in response to the values pai (previously chosen for Vi’s parents),

and the stochastic variation of this assignment is assumed independent of the vari-

ations in all other assignments in the model. Moreover, each assignment process

remains invariant to possible changes in the assignment processes that govern other

variables in the system. This modularity assumption enables us to infer the effects

of interventions, such as policy decisions and actions, whenever interventions are

described as specific modifications of some factors in the product of (1). The sim-

plest such intervention, called atomic, involves fixing a set T of variables to some

1We use family relationships such as “parents,” “children,” and “ancestors” to describe the

obvious graphical relationships.
2A path is a sequence of consecutive edges (of any directionality).

525

Jin Tian and Ilya Shpitser

CancerSmoking Tar in

lungs

Z Y

U

X

Tar in

do(X=False)

P(U)

lungs

CancerSmoking

P(Z|X)
P(Y|Z,U)

Z Y

U

X

X Z Y

U

(a) G (b) Gdo(x) (c) G

Figure 1. A causal diagram illustrating the effect of smoking on lung cancer

constants T = t denoted by do(T = t) or do(t), which yields the post-intervention

distribution3

Pt(v) =

{

∏

{i|Vi 6∈T}
P (vi|pai) v consistent with t.

0 v inconsistent with t.
(2)

Eq. (2) represents a truncated factorization of (1), with factors corresponding to the

manipulated variables removed. This truncation follows immediately from (1) since,

assuming modularity, the post-intervention probabilities P (vi|pai) corresponding

to variables in T are either 1 or 0, while those corresponding to unmanipulated

variables remain unaltered. If T stands for a set of treatment variables and Y for

an outcome variable in V \ T , then Eq. (2) permits us to calculate the probability

Pt(y) that event Y = y would occur if treatment condition T = t were enforced

uniformly over the population. This quantity, often called the “causal effect” of T

on Y , is what we normally assess in a controlled experiment with T randomized, in

which the distribution of Y is estimated for each level t of T .

As an example, consider the model shown in Figure 1(a) from [Pearl, 2000] that

concerns the relation between smoking (X) and lung cancer (Y), mediated by the

amount of tar (Z) deposited in a person’s lungs. The model makes qualitative

causal assumptions that the amount of tar deposited in the lungs depends on the

level of smoking (and external factors) and that the production of lung cancer

depends on the amount of tar in the lungs but smoking has no effect on lung cancer

except as mediated through tar deposits. There might be (unobserved) factors (say

some unknown carcinogenic genotype) that affect both smoking and lung cancer,

but the genotype nevertheless has no effect on the amount of tar in the lungs

except indirectly (through smoking). Quantitatively, the model induces the joint

distribution factorized as

P (u, x, z, y) = P (u)P (x|u)P (z|x)P (y|z, u). (3)

3[Pearl, 1995; Pearl, 2000] used the notation P (v|set(t)), P (v|do(t)), or P (v|t̂) for the post-

intervention distribution, while [Lauritzen, 2000] used P (v||t).

526

On Identifying Causal Effects

Assume that we could perform an ideal intervention on variable X by banning

smoking4, then the effect of this action is given by

PX=False(u, z, y) = P (u)P (z|X = False)P (y|z, u), (4)

which is represented by the model in Figure 1(b).

2.2 The Identifiability Problem

We see that, whenever all variables in V are observed, given the causal diagram

G, all causal effects can be computed from the observed distribution P (v) as given

by Eq. (2). However, if some variables are not measured, or two or more variables

in V are affected by unobserved confounders, then the question of identifiability

arises. The presence of such confounders would not permit the decomposition of

the observed distribution P (v) in (1). For example, in the model shown in Figure

1(a), assume that the variable U (unknown genotype) is unobserved and we have

collected a large amount of data summarized in the form of (an estimated) join

distribution P over the observed variables (X, Y, Z). We wish to assess the causal

effect Px(y) of smoking on lung cancer.

Let V and U stand for the sets of observed and unobserved variables, respectively.

If each U variable is a root node with exactly two observed children, then the cor-

responding model is called a semi-Markovian model. In this paper, we will present

results on semi-Markovian models as they allow for simpler treatment. However the

results are general as it has been shown that causal effects in a model with arbitrary

sets of unobserved variables can be identified by first projecting the model into a

semi-Markovian model [Tian and Pearl, 2002b; Huang and Valtorta, 2006a].

In a semi-Markovian model, the observed probability distribution P (v) becomes

a mixture of products:

P (v) =
∑

u

∏

i

P (vi|pai, u
i)P (u) (5)

where Pai and U i stand for the sets of the observed and unobserved parents of

Vi respectively, and the summation ranges over all the U variables. The post-

intervention distribution, likewise, will be given as a mixture of truncated products

Pt(v) =

∑

u

∏

{i|Vi 6∈T}

P (vi|pai, u
i)P (u) v consistent with t.

0 v inconsistent with t.

(6)

And, the question of identifiability arises, i.e., whether it is possible to express some

causal effect Pt(s) as a function of the observed distribution P (v), independent of

the unknown quantities, P (u) and P (vi|pai, u
i).

4Whether or not any actual action is an ideal manipulation of a variable (or is feasible at all)

is not part of the theory - it is input to the theory.

527

Jin Tian and Ilya Shpitser

It is convenient to represent a semi-Markovian model with a graph G that does

not show the elements of U explicitly but, instead, represents the confounding effects

of U variables using (dashed) bidirected edges. A bidirected edge between nodes Vi

and Vj represents the presence of unobserved confounders that may influence both

Vi and Vj . For example the model in Figure 1(a) will be represented by the graph

in Figure 1(c).

In general we may be interested in identifying conditional causal effects Pt(s|c),

the causal effects of T on S conditioned on another set C of variables. This problem

is important for evaluating conditional plans and stochastic plans [Pearl and Robins,

1995], where action T is taken to respond in a specified way to a set C of other

variables – say, through a functional relationship t = g(c). The effects of such

actions may be evaluated through identifying conditional causal effects in the form

of Pt(s|c) [Pearl, 2000, chapter 4].

DEFINITION 2 (Causal-Effect Identifiability). The causal effect of a set of vari-

ables T on a disjoint set of variables S conditioned on another set C is said to be

identifiable in a causal diagram G if the quantity Pt(s|c) can be computed uniquely

from any positive probability P (v) of the observed variables—that is, if PM1

t (s|c) =

PM2

t (s|c) for every pair of models M1 and M2 with PM1(v) = PM2(v) > 0.

3 Do-calculus and Graphical Criteria

In general the identifiability of causal effects can be decided using Pearl’s do-calculus

– a set of inference rules by which probabilistic sentences involving interventions

and observations can be transformed into other such sentences. A finite sequence

of syntactic transformations, each applying one of the inference rules, may reduce

expressions of the type Pt(s) to subscript-free expressions involving observed quan-

tities.

Let X, Y , and Z be arbitrary disjoint sets of nodes in G. We denote by GX the

graph obtained by deleting from G all arrows pointing to nodes in X. We denote

by GX the graph obtained by deleting from G all arrows emerging from nodes in X.

Similarly, GXZ will represent the deletion of both incoming and outgoing arrows.

THEOREM 3 (Rules of do-Calculus). [Pearl, 1995] For any disjoint sets of vari-

ables X, Y, Z, and W we have the following rules.

Rule 1 (Insertion/deletion of observations) :

Px(y|z, w) = Px(y|w) if (Y⊥⊥Z|X, W)GX
. (7)

Rule 2 (Action/observation exchange) :

Px,z(y|w) = Px(y|z, w) if (Y⊥⊥Z|X, W)GXZ
. (8)

Rule 3 (Insertion/deletion of actions) :

Px,z(y|w) = Px(y|w) if (Y⊥⊥Z|X, W)G
X,Z(W)

, (9)

528

On Identifying Causal Effects

where Z(W) is the set of Z-nodes that are not ancestors of any W -node in

GX .

A key result about do-calculus is that any interventional distribution that is

identifiable can be expressed in terms of the observational distribution by means of

applying a sequence of do-calculus rules.

THEOREM 4. [Shpitser and Pearl, 2006a] Do-calculus is complete for identifying

causal effects of the form Px(y|z).

In practice, do-calculus may be difficult to apply manually in complex causal

diagrams, since, as stated, the rules give little guidance for chaining them together

into a valid derivation.

Fortunately, a number of graphical criteria have been developed for quickly judg-

ing the identifiability by looking at the causal diagram G, of which the most influ-

ential are Pearl’s back-door and front-door criteria. A path from X to Y is called

back-door (relative to X) if it starts with an arrow pointing at X.

DEFINITION 5 (Back-Door). A set of variables Z satisfies the back-door criterion

relative to an ordered pair of variables (Xi, Xj) in a DAG G if:

(i) no node in Z is a descendant of Xi; and

(ii) Z blocks every back-door path from Xi to Xj .

Similarly, if X and Y are two disjoint sets of nodes in G, then Z is said to satisfy

the back-door criterion relative to (X, Y) if it satisfies the criterion relative to any

pair (Xi, Xj) such that Xi ∈ X and Xj ∈ Y .

THEOREM 6 (Back-Door Criterion). [Pearl, 1995] If a set of variables Z satis-

fies the back-door criterion relative to (X, Y), then the causal effect of X on Y is

identifiable and is given by the formula

Px(y) =
∑

z

P (y|x, z)P (z). (10)

For example, in Figure 1(c) X satisfies the back-door criterion relative to (Z, Y)

and we have

Pz(y) =
∑

x

P (y|x, z)P (x). (11)

DEFINITION 7 (Front-Door). A set of variables Z is said to satisfy the front-door

criterion relative to an ordered pair of variables (X, Y) if:

(i) Z intercepts all directed paths from X to Y ;

(ii) all back-door paths from X to Z are blocked (by empty set); and

(iii) all back-door paths from Z to Y are blocked by X.

529

Jin Tian and Ilya Shpitser

THEOREM 8 (Front-Door Criterion). [Pearl, 1995] If Z satisfies the front-door

criterion relative to an ordered pair of variables (X, Y), then the causal effect of X

on Y is identifiable and is given by the formula

Px(y) =
∑

z

P (z|x)
∑

x′

P (y|x′, z)P (x′). (12)

For example, in Figure 1(c) Z satisfies the front-door criterion relative to (X, Y)

and the causal effect Px(y) is given by Eq. (12).

There is a simple yet powerful graphical criterion for identifying the causal effects

of a singleton. For any set S, let An(S) denote the union of S and the set of ancestors

of the variables in S. For any set C, let GC denote the subgraph of G composed

only of variables in C. Let a path composed entirely of bidirected edges be called a

bidirected path.

THEOREM 9. [Tian and Pearl, 2002a] The causal effect Px(s) of a variable X on

a set of variables S is identifiable if there is no bidirected path connecting X to any

of its children in GAn(S).

In fact, for X and S being singletons, this criterion covers both back-door and

front-door criteria, and also the criterion in [Galles and Pearl, 1995].

These criteria are simple to use but are not necessary for identification. In the

next sections we present complete systematic procedures for identification.

4 Identification of Causal Effects

In this section, we present a systematic procedure for identifying causal effects using

so-called c-component decomposition.

4.1 C-component decomposition

The set of variables V in G can be partitioned into disjoint groups by assigning

two variables to the same group if and only if they are connected by a bidirected

path. Assuming that V is thus partitioned into k groups S1, . . . , Sk, each set Sj is

called a c-component of V in G or a c-component of G. For example, the graph in

Figure 1(c) consists of two c-components {X, Y } and {Z}.

For any set C ⊆ V , define the quantity Q[C](v) to denote the post-intervention

distribution of C under an intervention to all other variables:5

Q[C](v) = Pv\c(c) =
X

u

Y

{i|Vi∈C}

P (vi|pai, u
i
)P (u). (13)

In particular, we have Q[V](v) = P (v). If there is no bidirected edges connected

with a variable Vi, then U i = ∅ and Q[{Vi}](v) = P (vi|pai). For convenience, we

will often write Q[C](v) as Q[C].

The importance of the c-component steps from the following lemma.

5Set Q[∅](v) = 1 since
P

u
P (u) = 1.

530

On Identifying Causal Effects

LEMMA 10 (C-component Decomposition). [Tian and Pearl, 2002a] Assuming

that V is partitioned into c-components S1, . . . , Sk, we have

(i) P (v) =
∏

i Q[Si].

(ii) Each Q[Si] is computable from P (v). Let a topological order over V be

V1 < . . . < Vn, and let V (i) = {V1, . . . , Vi}, i = 1, . . . , n, and V (0) = ∅. Then each

Q[Sj], j = 1, . . . , k, is given by

Q[Sj] =
∏

{i|Vi∈Sj}

P (vi|v
(i−1)) (14)

The lemma says that for each c-component Si the causal effect Q[Si] = Pv\si
(si)

is identifiable. For example, in Figure 1(c), we have Px,y(z) = Q[{Z}] = P (z|x)

and Pz(x, y) = Q[{X, Y }] = P (y|x, z)P (x).

Lemma 10 can be generalized to the subgraphs of G as given in the following

lemma.

LEMMA 11 (Generalized C-component Decomposition). [Tian and Pearl, 2003]

Let H ⊆ V , and assume that H is partitioned into c-components H1, . . . ,Hl in the

subgraph GH . Then we have

(i) Q[H] decomposes as

Q[H] =
∏

i

Q[Hi]. (15)

(ii) Each Q[Hi] is computable from Q[H]. Let k be the number of variables in

H, and let a topological order of the variables in H be Vm1
< · · · < Vmk

in GH . Let

H(i) = {Vm1
, . . . , Vmi

} be the set of variables in H ordered before Vmi
(including

Vmi
), i = 1, . . . , k, and H(0) = ∅. Then each Q[Hj], j = 1, . . . , l, is given by

Q[Hj] =
∏

{i|Vmi
∈Hj}

Q[H(i)]

Q[H(i−1)]
, (16)

where each Q[H(i)], i = 1, . . . , k, is given by

Q[H(i)] =
∑

h\h(i)

Q[H]. (17)

Lemma 11 says that if the causal effect Q[H] = Pv\h(h) is identifiable, then for

each c-component Hi of the subgraph GH , the causal effect Q[Hi] = Pv\hi
(hi) is

identifiable.

Next, we show how to use the c-component decomposition to identify causal

effects.

4.2 Computing causal effects

First we present a facility lemma. For W ⊆ C ⊆ V , the following lemma gives a

condition under which Q[W] can be computed from Q[C] by summing over C \W ,

like ordinary marginalization in probability theory.

531

Jin Tian and Ilya Shpitser

LEMMA 12. [Tian and Pearl, 2003] Let W ⊆ C ⊆ V , and W ′ = C \W . If W

contains its own ancestors in the subgraph GC (An(W)GC
= W), then

∑

w′

Q[C] = Q[W]. (18)

Note that we always have
∑

c Q[C] = 1.

Next, we show how to use Lemmas 10–12 to identify the causal effect Pt(s) where

S and T are arbitrary (disjoint) subsets of V . We have

Pt(s) =
∑

(v\t)\s

Pt(v \ t) =
∑

(v\t)\s

Q[V \ T]. (19)

Let D = An(S)GV \T
. Then by Lemma 12, variables in (V \ T) \D can be summed

out:

Pt(s) =
∑

d\s

∑

(v\t)\d

Q[V \ T] =
∑

d\s

Q[D]. (20)

Assume that the subgraph GD is partitioned into c-components D1, . . . , Dl. Then

by Lemma 11, Q[D] can be decomposed into products of Q[Di]’s, and Eq. (20) can

be rewritten as

Pt(s) =
∑

d\s

∏

i

Q[Di]. (21)

We obtain that Pt(s) is identifiable if all Q[Di]’s are identifiable.

Let G be partitioned into c-components S1, . . . , Sk. Then any Di is a subset

of certain Sj since if the variables in Di are connected by a bidirected path in a

subgraph of G then they must be connected by a bidirected path in G. Assuming

Di ⊆ Sj , Q[Di] is identifiable if it is computable from Q[Sj]. In general, for C ⊆

T ⊆ V , whether Q[C] is computable from Q[T] can be determined recursively by

repeated applications of Lemmas 12 and 11, as given in the recursive algorithm

shown in Figure 2. At each step of the algorithm, we either find an expression for

Q[C], find Q[C] unidentifiable, or reduce the problem to a simpler one.

In summary, an algorithm for computing Pt(s) is given in Figure 3, and the

algorithm has been shown to be complete, that is, if the algorithm outputs FAIL,

then Pt(s) is not identifiable.

THEOREM 13. [Shpitser and Pearl, 2006b; Huang and Valtorta, 2006a] The algo-

rithm ID in Figure 3 is complete.

5 Identification of Conditional Causal Effects

An important refinement to the problem of identifying causal effects Px(y) is con-

cerned with identifying conditional causal effects, in other words causal effects in

a particular subpopulation where variables Z are known to attain values z. These

532

On Identifying Causal Effects

Algorithm Identify(C, T,Q)

INPUT: C ⊆ T ⊆ V , Q = Q[T]. GT and GC are both composed of one single

c-component.

OUTPUT: Expression for Q[C] in terms of Q or FAIL.

Let A = An(C)GT
.

• IF A = C, output Q[C] =
∑

t\c Q.

• IF A = T , output FAIL.

• IF C ⊂ A ⊂ T

1. Assume that in GA, C is contained in a c-component T ′.

2. Compute Q[T ′] from Q[A] =
∑

t\a Q by Lemma 11.

3. Output Identify(C, T ′, Q[T ′]).

Figure 2. An algorithm for determining if Q[C] is computable from Q[T].

Algorithm ID(s, t)

INPUT: two disjoint sets S, T ⊂ V .

OUTPUT: the expression for Pt(s) or FAIL.

Phase-1:

1. Find the c-components of G: S1, . . . , Sk. Compute each Q[Si] by Lemma 10.

2. Let D = An(S)GV \T
and the c-components of GD be Di, i = 1, . . . , l.

Phase-2:

For each set Di such that Di ⊆ Sj :

Compute Q[Di] from Q[Sj] by calling Identify(Di, Sj , Q[Sj]) in Figure 2. If the

function returns FAIL, then stop and output FAIL.

Phase-3: Output Pt(s) =
∑

d\s

∏

i Q[Di].

Figure 3. A complete algorithm for computing Pt(s).

533

Jin Tian and Ilya Shpitser

conditional causal effects are written as Px(y|z), and defined just as regular condi-

tional distributions as

Px(y|z) =
Px(y, z)

Px(z)

Complete closed form algorithms for identifying effects of this type have been

developed. One approach [Tian, 2004] generalizes the algorithm for identifying

unconditional causal effects Px(y) found in Section 4. There is, however, an easier

approach which works.

The idea is to reduce the expression Px(y|z), which we don’t know how to handle

to something like Px′(y′), which we do know how to handle via the algorithm already

presented. This reduction would have to find a way to get rid of variables Z in the

conditional effect expression.

Ridding ourselves of some variables in Z can be accomplished via rule 2 of do-

calculus. Recall that applying rule 2 to an expression allows us to replace condi-

tioning on some variable set W ⊆ Z by fixing W instead. Rule 2 states that this

is possible in the expression Px(y|z) whenever W contains no back-door paths to

Y conditioned on the remaining variables in Z and X (that is X ∪ Z \W), in the

graph where all incoming arrows to X have been cut.

It’s not difficult to show the following uniqueness lemma.

LEMMA 14. [Shpitser and Pearl, 2006a] For every conditional effect Px(y|z) there

exists a unique maximal W ⊆ Z such that Px(y|z) is equal to Px,w(y|z\w) according

to rule 2 of do-calculus.

Lemma 14 states that we only need to apply rule 2 once to rid ourselves of as

many conditioned variables as possible in the effect of interest. However, even after

this is done, we may be left with some variables in Z \W past the conditioning

bar in our effect expression. If we insist on using unconditional effect identification,

we may try to identify the joint distribution Px,w(y, z \ w) to obtain an expression

α, and obtain the conditional distribution Px,w(y|z \w) by taking α
P

y α
. But what

if Px,w(y, z \ w) is not identifiable? Are there cases where Px,w(y, z \ w) is not

identifiable, but Px,w(y|z \ w) is? Fortunately, it turns out the answer is no.

LEMMA 15. [Shpitser and Pearl, 2006a] Let Px(y|z) be a conditional effect of inter-

est, and W ⊆ Z the unique maximal set such that Px(y|z) is equal to Px,w(y|z \w).

Then Px(y|z) is identifiable if and only if Px,w(y, z \ w) is identifiable.

Lemma 15 gives us a simple algorithm for identifying arbitrary conditional effects

by first reducing the problem into one of identifying an unconditional effect – and

then invoking the complete algorithm ID in Figure 3. This simple algorithm is

actually complete since the statement in Lemma 15 is if and only if. The algorithm

itself is shown in Fig. 4. The algorithm as shown picks elements of W one at a

time, although the set it picks as it iterates will equal the maximal set W due to

the following lemma.

534

On Identifying Causal Effects

Algorithm IDC(y, x, z)

INPUT: disjoint sets X, Y, Z ⊂ V .

OUTPUT: Expression for Px(y|z) in terms of P or FAIL.

1 if (∃W ∈ Z)(Y ⊥⊥W |X, Z \ {W})Gx,w
,

return IDC(y, x ∪ {w}, z \ {w}).

2 else let P ′ = ID(y ∪ z, x).

return P ′/
∑

y P ′.

Figure 4. A complete identification algorithm for conditional effects.

LEMMA 16. Let Px(y|z) be a conditional effect of interest in a causal model induc-

ing G, and W ⊆ Z the unique maximal set such that Px(y|z) is equal to Px,w(y|z\w).

Then W = {W ′|Px(y|z) = Px,w′(y|z \ {w′})}.

Completeness of the algorithm easily follows from the results we presented.

THEOREM 17. [Shpitser and Pearl, 2006a] The algorithm IDC is complete.

We note that the procedures ID and IDC served as a means to prove the com-

pleteness of do-calculus (Theorem 4). The proof [Shpitser and Pearl, 2006b] pro-

ceeds by reducing the steps in these procedures to sequences of do-calculus deriva-

tions.

6 Relative Interventions and the Effect of Treatment on the

Treated

Interventions considered in the previous sections are what we term “absolute,” since

the values x to which variables are set by do(x) bear no relationship to whatever

natural values were assumed by variables X prior to an intervention. Such absolute

interventions correspond to clamping a wire in a circuit to ground, or performing a

randomized clinical trial for a drug which does not naturally occur in the body.

By contrast, many interventions are relative, in other words, the precise level x

to which the variable X is set depends on the values X naturally attains. A typical

relative intervention is the addition of insulin to the bloodstream. Since insulin

is naturally synthesized by the human body, the effect of such an intervention

depends on the initial, pre-intervention concentration of insulin in the blood, even

if a constant amount is added for every patient. The insulin intervention can be

denoted by do(i + X), where i is the amount of insulin added, and X denotes the

random variable representing pre-intervention insulin concentration in the blood.

More generally, a relative intervention on a variable X takes the form of do(f(X))

for some function f .

How are we to make sense of a relative intervention do(f(X)) on X applied to a

given population where the values of X are not known? Can relative interventions

535

Jin Tian and Ilya Shpitser

be reduced to absolute interventions? It appears that in general the answer is “no.”

Consider: if we knew that X attained the value x for a given unit, then the effect

of an intervention in question on the outcome variable Y is really P (y|do(f(x)), x).

This expression is almost like the (absolute) conditional causal effect of do(f(x)) on

y, except the evidence that is being conditioned on is on the same variable that is

being intervened. Since x and f(x) are not in general the same, it appears that this

expression contains a kind of value conflict. Are these kinds of probabilities always

0? Are they even well defined?

In fact, expressions of this sort are a special case of a more general notion of

a counterfactual distribution, which can be derived from functional causal models

[Pearl, 2000, Chapter 7]. Such models consist of two sets of variables, the observable

set V representing the domain of interest, and the unobservable set U representing

the background to the model that we are ignorant of. Associated with each observ-

able variable Vi in V is a function fi which determines the value of Vi in terms of

values of other variables in V ∪ U . Finally, there is a joint probability distribution

P (u) over the unobservable variables, signifying our ignorance of the background

conditions of the model.

The causal relationships in functional causal models are represented, naturally,

by the functions fi; each function causally determines the corresponding Vi in terms

of its inputs. Causal relationships entailed by a given model have an intuitive visual

representation using a causal diagram. Causal diagrams contain two kinds of edges.

Directed edges are drawn from a variable X to a variable Vi if X appears as an input

of fi. Directed edges from the same unobservable Ui to two observables Vj , Vk can

be replaced by a bidirected edge between Vj to Vk. We will consider semi-Markovian

models which induce acyclic graphs where P (u) =
∏

i P (ui), and each Ui has at

most two observable children. A graph obtained in this way from a model is said

to be induced by said model.

Unlike causal Bayesian networks introduced in Section 2, functional causal mod-

els represent fundamentally deterministic causal relationships which only appear

stochastic due to our ignorance of background variables. This inherent determin-

ism allows us to define counterfactual distributions which span multiple worlds

under different interventions regimes. Formally, a joint counterfactual distribution

is a distribution over events of the form Yx where Y is a post-intervention random

variable in a causal model (the intervention in question being do(x)). A single joint

distribution can contain multiple such events, with different, possibly conflicting

interventions.

Such joint distributions are defined as follows:

P (Y 1
x1 = y1, ..., Y k

xk = yk) =
∑

{u|Y 1

x1
(u)=y1∧...∧Y k

xk
(u)=yk}

P (u), (22)

where U is the set of unobserved variables in the model. In other words, a joint

counterfactual probability is obtained by adding up the probabilities of every setting

536

On Identifying Causal Effects

of unobserved variables in the model that results in the observed values of each

counterfactual event Yx in the expression. The query with the conflict we considered

above can then be expressed as a conditional distribution derived from such a joint,

specifically P (Yf(x) = y|X = x) =
P (Yf(x)=y,X=x)

P (X=x) . Queries of this form are well

known in the epidemiology literature as the effect of treatment on the treated (ETT)

[Heckman, 1992; Robins et al., 2006].

In fact, relative interventions aren’t quite the same as ETT since we don’t actually

know the original levels of X. To obtain effects of relative interventions, we simply

average over possible values of X, weighted by the prior distribution P (x) of X.

In other words, the relative causal effect P (y|do(f(X))) is equal to
∑

x P (Yf(x) =

y|X = x)P (X = x).

Since relative interventions reduce to ETT, and because ETT questions are of in-

dependent interest, identification of ETT is an important problem. If interventions

are performed over multiple variables, it turns out that identifying ETT questions is

almost as intricate as general counterfactual identification [Shpitser and Pearl, 2009;

Shpitser and Pearl, 2007]. However, in the case of a singleton intervention, there is a

formulation which bypasses most of the complexity of counterfactual identification.

This formulation is the subject of this section.

We want to approach identification of ETT in the same way we approached iden-

tification of causal effects in the previous sections, namely by providing a graphical

representation of conditional independences in joint distributions of interest, and

then expressing the identification algorithm in terms of this graphical representa-

tion. In the case of causal effects, we were given as input the causal diagram rep-

resenting the original, pre-intervention world, and we were asking questions about

the post-intervention world where arrows pointing to intervened variables were cut.

In the case of counterfactuals we are interested in joint distributions that span mul-

tiple worlds each with its own intervention. We want to construct a graph for these

distributions.

The intuition is that each interventional world is represented by a copy of the

original causal diagram, with the appropriate incoming arrows cut to represent the

changes in the causal structure due to the intervention. All worlds are assumed to

share history up to the moment of divergence due to differing interventions. This

is represented by all worlds sharing unobserved variables U . In the special case of

two interventional worlds the resulting graph is known as the twin network graph

[Balke and Pearl, 1994b; Balke and Pearl, 1994a].

In the general case, a refinement of the resulting graph (to account for the possi-

bility of duplicate random variables) is known as the counterfactual graph [Shpitser

and Pearl, 2007]. The counterfactual graph represents conditional independences

in the corresponding counterfactual distribution via the d-separation criterion just

as the causal diagram represents conditional independences in the observed distri-

bution of the original world. The graph in Figure 5(b) is a counterfactual graph for

the query P (Yx = y|X = x′) obtained from the original causal diagram shown in

537

Jin Tian and Ilya Shpitser

X Z Y

U

X Z Y

U

Z
YX’

X Z Y

U

W

(a) (b) (c)

Figure 5. (a) A causal diagram G. (b) The counterfactual graph for P (Yx = y|x′)

in G. (c) The graph G′ from Theorem 18.

Figure 5(a).

There exists a rather complicated general algorithm for identifying arbitrary

counterfactual distributions from either interventional or observational data [Sh-

pitser and Pearl, 2007; Shpitser and Pearl, 2008], based on ideas from the causal

effect identification algorithms given in the previous sections, only applied to the

counterfactual graph, rather than the causal diagram. It turns out that while iden-

tifying ETT of a single variable X can be represented as an identification problem

of ordinary causal effects, ETT of multiple variables is significantly more complex

[Shpitser and Pearl, 2009]. In this paper, we will concentrate on single variable

ETT with multiple outcome variables Y .

What makes single variable ETT P (Yx = y|X = x′) particularly simple is the

form of its counterfactual graph. For the case of all ETTs, this graph will have

variables from two worlds – the “natural” world where X is observed to have taken

the value x′ and the interventional world, where X is fixed to assume the value x.

There are two key points that simplify matters. The first is that no descendant

of X (including variables in Y) is of interest in the “natural” world, since we are

only interested in the outcome Y in the interventional world. The second is that

all non-descendants of X behave the same in both worlds (since interventions do

not affect non-descendants). Thus, when constructing the counterfactual graph we

don’t need to make copies of non-descendants of X, and we can ignore descendants

of X in the “natural” world. But this means the only variable in the “natural”

world we will construct is a copy of X itself.

What this implies is that a problem of identifying the ETT P (Yx = y|X = x′)

can be rephrased as a problem of identifying a certain conditional causal effect.

THEOREM 18. [Shpitser and Pearl, 2009] For a singleton variable X, and a set

Y , P (Yx = y|X = x′) is identifiable in G if and only if Px(y|w) is identifiable in G′,

where G′ is obtained from G by adding a new node W with the same set of parents

(both observed and unobserved) as X, and no children. Moreover, the estimand for

538

On Identifying Causal Effects

P (Yx = y|X = x′) is equal to that of Px(y|w) with all occurrences of w replaced by

x′.

We illustrate the application of Theorem 18 by considering the graph G in

Fig. 5(a). The query P (Yx = y|X = x′) is identifiable by considering Px(y|w)

in the graph G′ shown in Fig. 5(c), while the counterfactual graph for P (Yx = y|x′)

is shown in Fig. 5(b). Identifying Px(y|w) in G′ using the algorithm IDC in the

previous section leads to
∑

z P (z|x)
∑

x P (y|z, w, x)P (w, x)/P (w). Replacing w by

x′ yields the expression
∑

z P (z|x)
∑

x′′ P (y|z, x′, x′′)P (x′, x′′)/P (x′).

Ordinarily, we know that P (y|z, x′, x′′) is undefined if x′ is not equal to x′′. How-

ever, in our case, we know that observing X = x′ in the natural world implies X = x′

in any other interventional world which shares ancestors of X with the natural

world. This implies the expression
∑

x′′ P (y|z, x′, x′′)P (x′, x′′)/P (x′) is equivalent

to P (y|z, x′), thus our query P (Yx = y|X = x′) is equal to
∑

z P (y|z, x′)P (z|x).

It is possible to use Theorem 18 to derive analogues of the back-door and front-

door criteria for ETT.

COROLLARY 19 (Back-door Criterion for ETT). If a set Z satisfies the back-door

criterion relative to (X, Y), where X is a singleton variable, then P (Yx = y|X = x′)

is identifiable and equal to
∑

z P (y|z, x)P (z|x′).

The intuition for the back-door criterion for ETT is that Z, by assumption,

screens X and Y from observed values of X in other counterfactual worlds. Thus,

the first term in the back-door expression does not change. The second term changes

in an obvious way since Z depends on observing X = x′.

COROLLARY 20 (Front-door Criterion for ETT). If a set Z satisfies the front-door

criterion relative to (X, Y), where X, Y are singleton variables, then P (Yx = y|X =

x′) is identifiable and equal to
∑

z P (y|z, x′)P (z|x).

Proof. We will be using a number of graphs in this proof. G is the original

graph. Gw is the graph obtained from G by adding a copy of X called W with the

same parents (including unobserved parents) as X and no children. G′ is a graph

representing independences in P (X, Y, Z). It is obtained from G by removing all

nodes other than X, Y, Z, by adding a directed arrow between any remaining A and

B in X, Y, Z if there is a d-connected path containing only nodes not in X, Y, Z

which starts with a directed arrow pointing away from A and ends with any arrow

pointing to B. Similarly, a bidirected arrow is added between any A and B in

X, Y, Z if there is a d-connected path containing only nodes not in X, Y, Z which

starts with any arrow pointing to A and ends with any arrow pointing to B. (This

graph is known as a latent projection [Pearl, 2000]). The graphs G′w, G′w
x are

defined similarly as above.

We want to identify Px(y, z, w) in G′w. First, we want to show that no node in Z

shares a c-component with W or any node in Y in G′w
x . This can only happen if a

node in Z and W or a node in Y share a bidirected arc in G′w
x . But this means that

539

Jin Tian and Ilya Shpitser

either there is a back-door d-connected path from Z to Y in Gx, or there is a back-

door d-connected path from X to Z in G. Both of these claims are contradicted by

our assumption that Z satisfies the front-door criterion for (X, Y).

This implies Px(y, z, w) = Pz,x(y, w)Px,w(z) in Gw.

By construction of Gw and the front-door criterion, Px,w(z) = Px(z) = P (z|x).

Furthermore, since no nodes in Z and Y share a c-component in G′w, no node in

Z has a bidirected path to Y in G′w. This implies, by Lemma 1 in [Shpitser et al.,

2009], that Pz(y, w, x) = P (y|z, w, x)P (w, x).

Since Z intercepts all directed paths from X to Y (by the front-door criterion),

Pz,x(y, w) = Pz(y, w) =
∑

x P (y|z, w, x)P (w, x).

We conclude that Px(y, w) is equal to
∑

z P (z|x)
∑

x P (y|z, w, x)P (w, x). Since

Px(w) = P (w) in G′w, Px(y|w) =
∑

z P (z|x)
∑

x P (y|z, w, x)P (x|w).

Finally, recall that W is just a copy of X, and X is observed to attain value x′ in

the “natural” world. This implies that our expression simplifies to
∑

z P (z|x)P (y|z, x′),

which proves our result. ⊓⊔

If neither the back-door nor the front-door criteria hold, we must invoke general

causal effect identification algorithms from the previous sections. However, in the

case of ETT of a single variable, there is a simple complete graphical criterion which

works.

THEOREM 21. [Shpitser and Pearl, 2009] For a singleton variable X, and a set

Y , P (Yx = y|X = x′) is identifiable in G if and only if there is no bidirected path

from X to a child of X in Gan(y). Moreover, if there is no such bidirected path,

the estimand for P (Yx = y|X = x′) is obtained by multiplying the estimand for
∑

an(y)\(y∪{x}) Px(an(y) \ x) (which exists by Theorem 9) by
Q[Sx]′

P (x′)
P

x Q[Sx] , where

Sx is the c-component in G containing X, and Q[Sx]′ is obtained from the expression

for Q[Sx] by replacing all occurrences of x with x′.

7 Conclusion

In this paper we described the state of the art in identification of causal effects and

related quantities in the framework of graphical causal models. We have shown

how this framework, developed over the period of two decades by Judea Pearl and

his collaborators, and presented in Pearl’s seminal work [Pearl, 2000], can sharpen

causal intuition into mathematical precision for a variety of causal problems faced

by scientists.

Acknowledgments: Jin Tian was partly supported by NSF grant IIS-0347846.

Ilya Shpitser was partly supported by AFOSR grant #F49620-01-1-0055, NSF grant

#IIS-0535223, MURI grant #N00014-00-1-0617, and NIH grant #R37AI032475.

References

A. Balke and J. Pearl. Counterfactual probabilities: Computational methods,

bounds, and applications. In R. Lopez de Mantaras and D. Poole, editors,

540

On Identifying Causal Effects

Uncertainty in Artificial Intelligence 10, pages 46–54. Morgan Kaufmann,

San Mateo, CA, 1994.

A. Balke and J. Pearl. Probabilistic evaluation of counterfactual queries. In Pro-

ceedings of the Twelfth National Conference on Artificial Intelligence, vol-

ume I, pages 230–237. MIT Press, Menlo Park, CA, 1994.

D. Galles and J. Pearl. Testing identifiability of causal effects. In P. Besnard and

S. Hanks, editors, Uncertainty in Artificial Intelligence 11, pages 185–195.

Morgan Kaufmann, San Francisco, 1995.

C. Glymour and G. Cooper, editors. Computation, Causation, and Discovery.

MIT Press, Cambridge, MA, 1999.

D. Heckerman and R. Shachter. Decision-theoretic foundations for causal reason-

ing. Journal of Artificial Intelligence Research, 3:405–430, 1995.

J.J. Heckman. Randomization and social policy evaluation. In C. Manski and

I. Garfinkle, editors, Evaluations: Welfare and Training Programs, pages 201–

230. Harvard University Press, 1992.

Y. Huang and M. Valtorta. Identifiability in causal bayesian networks: A sound

and complete algorithm. In Proceedings of the Twenty-First National Confer-

ence on Artificial Intelligence, pages 1149–1154, Menlo Park, CA, July 2006.

AAAI Press.

Y. Huang and M. Valtorta. Pearl’s calculus of interventions is complete. In

R. Dechter and T.S. Richardson, editors, Proceedings of the Twenty-Second

Conference on Uncertainty in Artificial Intelligence. AUAI Press, July 2006.

M. Kuroki and M. Miyakawa. Identifiability criteria for causal effects of joint

interventions. Journal of the Japan Statistical Society, 29(2):105–117, 1999.

S. Lauritzen. Graphical models for causal inference. In O.E. Barndorff-Nielsen,

D. Cox, and C. Kluppelberg, editors, Complex Stochastic Systems, chapter 2,

pages 67–112. Chapman and Hall/CRC Press, London/Boca Raton, 2000.

J. Pearl and J.M. Robins. Probabilistic evaluation of sequential plans from causal

models with hidden variables. In P. Besnard and S. Hanks, editors, Uncer-

tainty in Artificial Intelligence 11, pages 444–453. Morgan Kaufmann, San

Francisco, 1995.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San

Mateo, CA, 1988.

J. Pearl. Comment: Graphical models, causality, and intervention. Statistical

Science, 8:266–269, 1993.

J. Pearl. Causal diagrams for empirical research. Biometrika, 82:669–710, Decem-

ber 1995.

541

Jin Tian and Ilya Shpitser

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University

Press, NY, 2000.

James M. Robins, VanderWeele Tyler J., and Thomas S. Richardson. Comment

on causal effects in the presence of non compliance: a latent variable inter-

pretation by antonio forcina. METRON, LXIV(3):288–298, 2006.

J.M. Robins. A new approach to causal inference in mortality studies with a

sustained exposure period – applications to control of the healthy workers

survivor effect. Mathematical Modeling, 7:1393–1512, 1986.

J.M. Robins. A graphical approach to the identification and estimation of causal

parameters in mortality studies with sustained exposure periods. Journal of

Chronic Diseases, 40(Suppl 2):139S–161S, 1987.

J.M. Robins. Causal inference from complex longitudinal data. In Latent Variable

Modeling with Applications to Causality, pages 69–117. Springer-Verlag, New

York, 1997.

I. Shpitser and J. Pearl. Identification of conditional interventional distributions.

In R. Dechter and T.S. Richardson, editors, Proceedings of the Twenty-Second

Conference on Uncertainty in Artificial Intelligence, pages 437–444. AUAI

Press, July 2006.

I. Shpitser and J. Pearl. Identification of joint interventional distributions in

recursive semi-markovian causal models. In Proceedings of the Twenty-First

National Conference on Artificial Intelligence, pages 1219–1226, Menlo Park,

CA, July 2006. AAAI Press.

Ilya Shpitser and Judea Pearl. What counterfactuals can be tested. In Twenty

Third Conference on Uncertainty in Artificial Intelligence. Morgan Kauf-

mann, 2007.

I. Shpitser and J. Pearl. Complete identification methods for the causal hierarchy.

Journal of Machine Learning Research, 9:1941–1979, 2008.

Ilya Shpitser and Judea Pearl. Effects of treatment on the treated: Identifica-

tion and generalization. In Proceedings of the Conference on Uncertainty in

Artificial Intelligence, volume 25, 2009.

Ilya Shpitser, Thomas S. Richardson, and James M. Robins. Testing edges by

truncations. In International Joint Conference on Artificial Intelligence, vol-

ume 21, pages 1957–1963, 2009.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search (2nd

Edition). MIT Press, Cambridge, MA, 2001.

J. Tian and J. Pearl. A general identification condition for causal effects. In

Proceedings of the Eighteenth National Conference on Artificial Intelligence

(AAAI), pages 567–573, Menlo Park, CA, 2002. AAAI Press/The MIT Press.

542

On Identifying Causal Effects

J. Tian and J. Pearl. On the testable implications of causal models with hid-

den variables. In Proceedings of the Conference on Uncertainty in Artificial

Intelligence (UAI), 2002.

J. Tian and J. Pearl. On the identification of causal effects. Technical Report

R-290-L, Department of Computer Science, University of California, Los An-

geles, 2003.

J. Tian. Identifying conditional causal effects. In Proceedings of the Conference

on Uncertainty in Artificial Intelligence (UAI), 2004.

543

Part IV: Reminiscences

31

Questions and Answers

Nils J. Nilsson

Few people have contributed as much to artificial intelligence (AI) as has Judea

Pearl. Among his several hundred publications, several stand out as among the

historically most significant and influential in the theory and practice of AI. With

my few pages in this celebratory volume, I join many of his colleagues and former

students in showing our gratitude and respect for his inspiration and exemplary

career. He is a towering figure in our field.

Certainly one key to Judea’s many outstanding achievements (beyond dedication

and hard work) is his keen ability to ask the right questions and follow them up

with insightful intuitions and penetrating mathematical analyses. His overarching

question, it seems to me, is “how is it that humans can do so much with simplistic,

unreliable, and uncertain information?” The very name of his UCLA laboratory,

the Cognitive Systems Laboratory, seems to proclaim his goal: understanding and

automating the most cognitive of all systems, namely humans.

In this essay, I’ll focus on the questions and inspirations that motivated his

ground-breaking research in three major areas: heuristics, uncertain reasoning, and

causality. He has collected and synthesized his work on each of these topics in three

important books [Pearl 1984; Pearl 1988; Pearl 2000].

1 Heuristics

Pearl is explicit about what inspired his work on heuristics [Pearl 1984, p. xi]:

The study of heuristics draws its inspiration from the ever-amazing ob-

servation of how much people can accomplish with that simplistic, un-

reliable information source known as intuition. We drive our cars with

hardly any thought of how they function and only a vague mental pic-

ture of the road conditions ahead. We write complex computer programs

while attending to only a fraction of the possibilities and interactions

that may take place in the actual execution of these programs. Even

more surprisingly, we maneuver our way successfully in intricate social

situations having only a guesswork expectation of the behavior of other

persons around and even less certainty of their expectations of us.

The question is “How do people do that?” The answer, according to Pearl, is

that they use heuristics. He defines heuristics as “criteria, methods, or principles

for deciding which among several alternative courses of action promises to be the

547

Kaoru
Text Box
Return to TOC

Nils J. Nilsson

most effective in order to achieve some goal.” “For example,” he writes, “a popular

method for choosing [a] ripe cantaloupe involves pressing the spot on the candidate

cantaloupe where it was attached to the plant, and then smelling the spot. If the

spot smells like the inside of a cantaloupe, it is most probably ripe [Pearl 1984, p.

3].”

Although heuristics, in several forms, were used in AI before Pearl’s book on the

subject, no one had analyzed them as profitably and in as much detail as did Pearl.

Besides focusing on several heuristic search procedures, including A*, his book

beneficially tackles the question of how heuristics can be discovered. He proposes

a method: consult “simplified models of the problem domain” particularly those

“generated by removing constraints which forbid or penalize certain moves in the

original problem [Pearl 1984, p. 115].”

2 Uncertain Reasoning

Pearl was puzzled by the contrast between, on the one hand, the ease with which hu-

mans reason and make inferences based on uncertain information and, on the other

hand, the computational difficulties of duplicating those abilities using probability

calculations. Again the question, “How do humans reason so effectively with un-

certain information?” He was encouraged in his search for answers by the following

observations [Pearl 1993]:

1. The consistent agreement between plausible reasoning and probability calculus

could not be coincidental, but strongly suggests that human intuition invokes

some crude form of probabilistic computation.

2. In light of the speed and effectiveness of human reasoning, the computational

difficulties that plagued earlier probabilistic systems could not be very fun-

damental and should be overcome by making the right choice of simplifying

assumptions.

Some ideas about how to proceed came to him in the late 1970s after reading a

paper on reading comprehension by David Rumelhart [Rumelhart 1976]. In Pearl’s

words [Pearl 1988, p. 50]:

In this paper, Rumelhart presented compelling evidence that text com-

prehension must be a distributed process that combines both top-down

and bottom-up inferences. Strangely, this dual mode of inference, so

characteristic of Bayesian analysis, did not match the capabilities of ei-

ther the “certainty factors” calculus or the inference networks of PROSPEC-

TOR – the two major contenders for uncertainty management in the

1970s. I thus began to explore the possibility of achieving distributed

computation in a “pure” Bayesian framework, so as not to compromise

its basic capacity to combine bi-directional inferences (i.e., predictive

and abductive).

548

Questions and Answers

Previous work in probabilistic reasoning had used graphical structures to encode

probabilistic information, and Pearl speculated that “it should be possible to use

the links [in a graphical model] as message-passing channels, and [that] we could

then update beliefs by parallel distributed computations, reminiscent of neural ar-

chitectures [Pearl 1988, p. 51].” In the course of developing these ideas, Pearl says

[Pearl 1988, p. 50]:

it became clear that conditional independence is the most fundamental

relation behind the organization of probabilistic knowledge and the most

crucial factor facilitating distributed computations. I therefore decided

to investigate systematically how directed and undirected graphs could

be used as a language for encoding, decoding, and reasoning with such

independencies.

Pearl’s key insight was that beliefs about propositions and other quantities could

often be regarded as “direct causes” of other beliefs and that these causal linkages

could be used to construct the graphical structures he was interested in. Most

importantly, this method of constructing them would automatically encode the key

conditional independence assumptions among probabilities which he regarded as so

important for simplifying probabilistic reasoning.

Out of these insights, and after much hard work by Pearl and others, we get one

of the most important sets of inventions in all of AI – Bayesian networks and their

progeny.

3 Causality

Pearl’s work on causality was inspired by his notion that beliefs could be regarded as

causes of other beliefs. He came to regard “causal relationships [as] the fundamental

building blocks both of physical reality and of human understanding of that reality”

and that “probabilistic relationships [were] but the surface phenomena of the causal

machinery that underlies and propels our understanding of the world.” [Pearl 2000,

p. xiii]

In a Web page describing the genesis of his ideas about causality, Pearl writes

[Pearl 2000]:

I got my first hint of the dark world of causality during my junior year

of high school.

My science teacher, Dr. Feuchtwanger, introduced us to the study of

logic by discussing the 19th century finding that more people died from

smallpox inoculations than from smallpox itself. Some people used this

information to argue that inoculation was harmful when, in fact, the

data proved the opposite, that inoculation was saving lives by eradicat-

ing smallpox.

549

Nils J. Nilsson

“And here is where logic comes in,” concluded Dr. Feuchtwanger, “To

protect us from cause-effect fallacies of this sort.” We were all enchanted

by the marvels of logic, even though Dr. Feuchtwanger never actually

showed us how logic protects us from such fallacies.

It doesn’t, I realized years later as an artificial intelligence researcher.

Neither logic, nor any branch of mathematics had developed adequate

tools for managing problems, such as the smallpox inoculations, involv-

ing cause-effect relationships.

So, the question is “How are we to understand causality?” Even though, as

Pearl noted, most of his colleagues “considered causal vocabulary to be dangerous,

avoidable, ill-defined, and nonscientific,” he felt that his intuitions about causality

should be “expressed, not suppressed.” He writes that once he “got past a few

mental blocks, I found causality to be smiling with clarity, bursting with new ideas

and new possibilities.” The key, again, was the use of graphical causal models.

Pearl’s work on causality, the subject of his third book, has had major impacts

even beyond the normal boundaries of AI. It has influenced work in philosophy,

psychology, statistics, econometrics, epidemiology, and social science. Judging by

citations and quotations from the literature, it is hard to identify another body of

AI research that has been as influential on these related disciplines as has Pearl’s

work on causality.

One must be mathematically proficient to understand and to benefit from Pearl’s

work. Some have criticized him for “substituting mathematics for clarity.” But, as

Pearl points out [Pearl 1993, p. 51], “. . . it was precisely this conversion of networks

and diagrams to mathematically defined objects that led to their current acceptance

in practical reasoning systems.” Indeed AI practitioners now acknowledge that suc-

cessful applications depend increasingly on skillful use of AI’s mathematically deep

technology. Pearl, along with others in “modern AI,” have made it so.

I’ll close with a non-mathematical, but none-the-less important, topic. As we

all know, Judea and Ruth Pearl’s son, Danny, a Wall Street Journal reporter, was

kidnapped and murdered by terrorists in Pakistan. In their grief, Judea and Ruth

asked the question “How could people do this to to someone like Danny who ‘exuded

compassion and joy wherever he went’?” To help diffuse the hatred that led to this

and other tragedies, Danny’s family and friends formed the Daniel Pearl Founda-

tion. Among the principles that the foundation hopes to promote are ones Judea

himself has long exemplified: “uncompromised objectivity and integrity; insightful

and unconventional perspective; tolerance and respect for people of all cultures;

unshaken belief in the effectiveness of education and communication; and the love

of music, humor, and friendship [Daniel Pearl Foundation].”

Shalom!

550

Questions and Answers

References

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem

Solving, Reading, MA: Addison-Wesley Publishing Company.

Pearl, J. (1988). Probabilistic Reasoning Systems: Networks of Plausible Infer-

ence, San Francisco: Morgan Kaufmann Publishers.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference, New York: Cam-

bridge University Press (second edition, 2009).

Pearl, J. (1993). Belief networks revisited. Artificial Intelligence 59, 49–56.

Rumelhart, D. (1976). Toward an interactive model of reading. Tech. Rept.

#CHIP-56. University of California at San Diego, La Jolla, CA.

Pearl, J. (2000). http://bayes.cs.ucla.edu/BOOK-2K/why.html.

Daniel Pearl Foundation. http://www.danielpearl.org/.

551

32

Fond Memories From an Old Student

Edward T. Purcell

I was very lucky to have been Professor Judea Pearl’s first graduate student

advisee in the UCLA Computer Science Department. Now I am further honored to

be invited to contribute – in distinguished company – some fond memories of those

early days studying under Professor Pearl.

In January 1972, after completing the core coursework for the M.S. degree, I took

my first class in Artificial Intelligence from Professor Pearl. Thirty-eight calendar

years seems like cyber centuries ago, such has been the incredible pace of growth of

computer technologies and Computer Science and AI as academic disciplines.

The ARPAnet maps posted on the Boelter Hall corridor walls only showed a few

dozen nodes, and AI was still considered an “ad hoc” major field of study, requiring

additional administrative paperwork of prospective students. (Some jested, unfairly,

this was because AI was one step ahead of AH — ad hoc.)

The UCLA Computer Science Department had become a separate Department

in the School of Engineering only two and a half years earlier, in the Fall of 1969,

at the same time it became the birthplace of the Internet with the deployment of

the first ARPAnet Interface Message Processor node in room 3420 of Boelter Hall.

The computers available were “big and blue,” IBM S/360 and S/370 mainframes

of the Campus Computing Network, located on the fourth floor of the Mathemat-

ical Sciences Building, access tightly controlled. Some campus laboratories were

fortunate to have their own DEC PDP minicomputers.

Programming was coded in languages like Assembly Language, Fortran, APL,

PL/1, and Pascal, delimited by Job Control Language commands. Programs were

communicated via decks of punched cards fed to card readers at the Campus Com-

puting Network facility. A few hours later, the user could examine the program’s

output on print-out paper. LISP was not available at the Campus Computing Net-

work. Time-sharing terminals and computers were just beginning to introduce a

radical change in human-computer interaction: on screen programming, both input

and output.

Professor Pearl’s first “Introduction to AI” course was based on Nils Nilsson’s

Problem-Solving Methods in AI, a classic 1971 textbook focusing on the then two

core (definitely non-ad-hoc) problem-solving methodologies in AI: search and logic.

(As with the spectacular growth of computer technology, it is wondrous to regard

how much Judea’s research has extended and fortified these foundations of AI.)

Supplemental study material included Edward Feigenbaum’s 1963 compilation of

553

Kaoru
Text Box
Return to TOC

Edward T. Purcell

articles on early AI systems, Computers and Thought, and a 1965 book by Nils

Nilsson, Learning Machines.

In class I was immediately impressed and enchanted by Judea’s knowledge, in-

telligence, brilliance, warmth and humor. His teaching style engaging, interactive,

informative and fun. My interest in AI, dating back to pre-Computer Science un-

dergraduate days, was much stimulated.

After enjoying this first AI class, I asked Professor Pearl if he would serve as my

M.S. Advisor, and was very happy when he agreed.

Other textbooks Professor Pearl used in subsequent AI classes and seminars in-

cluded Howard Raiffa’s 1968 Decision Analysis: Introductory Lectures on Choices

under Uncertainty, Duncan Luce and Howard Raiffa’s 1957 Games and Decisions,

and George Polya’s How to Solve it, and the challenging 1971 three-volume Founda-

tions of Measurement, by David Krantz, Duncan Luce, Patrick Suppes and Amos

Tversky. The subtitles and chapter headings in this three-volume opus hint at

Professor Pearl’s future research on Bayesian networks: Volume I: Additive and

Polynomial Representations; Volume II: Geometrical, Threshold, and Probabilistic

Representations; and Volume III: Representation, Axiomatization, and Invariance.

It was always fun to visit Professor Pearl in his office. Along with the academic

consultation, Judea had time to talk about assorted extra-curricular topics, and

became like a family friend. One time, I found Judea strumming a guitar in his

office, singing a South American folk song, “Carnavalito,” which I happend to know

because of my U.S. diplomat’s son upbringing in South America. I was happy to

help with the pronunciation of the song’s lyrics. It was nice to discover that we

shared a love of music, Judea more in tune with classical music, myself more a jazz

fan. Now and then I would see Judea and his wife Ruth at Royce Hall concerts, for

example, a recital by the classical guitarist Narciso Yepes.

Judea’s musical orientation (and humor) appeared in the title of a presentation a

few years later at a Decision Analysis workshop, with the title acronym “AIDA’’ as

Artificial Intelligence and Decision Analysis. The titles of other Pearl papers also

revealed wry humor: “How to Do with Probabilities What People Say You Can’t,”

and “Reverend Bayes on Inference Engines: a Distributed Hierarchical Approach.”

My M.S. thesis title was “‘A Game-Playing Procedure for a Game of Induction,”

and included results from a (PL/1) program for the induction game Patterns, a

pattern sampling and guessing game introduced by Martin Gardner in his November

1969 Scientific American “Mathematical Games” column. (After sending Martin

Gardner a copy of my M.S. thesis, I received a letter of appreciation from the game

wizard himself.)

At a small public demonstration of the Patterns game-playing program in early

1973, a distinguished elderly scholar was very interested and asked many questions.

After the presentation Professor Pearl asked if I knew who the inquisitive gentleman

was. “No,” I said. “That was Jacob Marschak,” said Judea. Whenever I attend a

Marschak Colloquium presentation at the UCLA Anderson School of Management,

554

Fond Memories from an Old Student

including several talks by Judea, I remember Professor Marschak’s interest in my

modest game-playing program.

Then, as now, seminars at Boelter Hall 3400 were an integral part of the UCLA

Computer Science education. I remember several distinguished presentations there,

for example, a seminar on coding theory given by Professor Andrew Viterbi, then

still at UCLA, whom Professor Pearl engaged in an animated discussion, and an-

other standing-room-only seminar on algorithms given by Donald Knuth, who lis-

tened attentively to Judea at a smaller, post-seminar gathering.

Soon enough, in June 1973, I was very proud and happy to receive my M.S.

degree in Computer Science.

When I began my graduate studies in Computer Science at UCLA, I had only

hoped to study for a Masters’ degree. Though I was having a lot of fun studying

AI and being mentored by Professor Pearl, I was not sure of my ability to pursue

the doctorate degree. Encouraged and approved by Judea, I applied for and was

accepted as a Ph.D. candidate, with Professor Pearl as my Advisor.

The early Ph.D. qualifying exams were challenging, because of the depth and

breadth of topics covered, some topics beyond those covered in my classes. Thanks

to Judea’s guidance and support, I was able to overcome these challenges.

Professor Pearl’s support extended beyond academic issues. On one lean oc-

casion, I remember Judea lending me some funds to cover my registration fees.

Fortunately, UCLA tuition fees were very modest in those days (unlike today’s

costs), and I was soon able to repay Judea’s kind loan.

My classes were now mostly individual study seminars led by Professor Pearl.

Despite a variety of readings and studies, I was stumped for a good dissertation

topic. Judea suggested a very interesting topic: learning of heuristics for search

algorithms.

I was immediately piqued by this topic, and soon formulated a perceptron-like

learning-while-searching procedure for A*-like heuristic search algorithms. The un-

supervised learning consisted of adjusting the weight vector w of a heuristic vector

function h, trying to satisfy, on a local scale, necessary (but not sufficient) metric

and order consistency properties of the perfect knowledge heuristic function h*.

The learning samples derived from search observations of problem graph edge costs

and node orderings, obtained as the search algorithm progressed.

The topic of learning heuristics for search algorithms was well received by the

Ph.D. dissertation qualifying committee. I remember Professor Pearl telling me

committee member Dr. Ken Colby of the UCLA School of Medicine expressed a

favorable review of this topic and of my introductory overview of the topic.

I was able to complement and support my UCLA Computer Science studies with

interesting part-time work, near campus and related to my studies. During 1974

and 1975 I worked part-time at Technology Service Corporation for William Meisel

and Leo Breiman, and was invited to be co-author of a 1977 paper (“Variable-

Kernel Estimates of Multi-Variate Densities,” Technometrics, vol. 19, no. 2, pp.

555

Edward T. Purcell

135-144, 1977), whose experimental results were based on my programming. (Many

years later I learned this paper earned me an Erdős 4 number.)

In late 1976 and early 1977 I worked part-time for System Development Cor-

poration, and was tasked by Drs. Jeff Barnett and Mort Bernstein with writing

summaries of papers, reports and other documents on the emerging technology of

knowledge-based systems, which contributed to a June 1977 System Development

Corporation report (ADA044883), “Knowledge-Based Systems: A Tutorial.”

Many of the early expert systems implemented the MYCIN - Prospector certainty

factor calculus. Probabilities were dismissed because of the exponential number of

joint probabilities presumed to be required. I remember Professor Pearl discussing

the topic of uncertainty calculus with colleagues at a Workshop on Decision Analysis

held at a hotel in Bel Air in the summer of 1977.

I thoroughly enjoyed those lean student days, commuting to campus on bicycle,

studying Computer Science and AI under Professor Pearl. I remember many fun

activities: a barbecue dinner hosted by Judea and Ruth Pearl for Donald Michie

in May 1976, participating in experiments with Norman Dalkey’s Delphi group

decision-making system, attending Royce Hall concerts, playing perhaps too much

soccer and rugby. (But I had good company in these sports activities: fellow UCLA

Computer Science graduate student David Patterson was also a UCLA rugby team-

mate.)

The final hurdles on the doctoral track were more logistical and administrative

rather than technical, and included scheduling (in pre-email days) five busy dis-

sertation committee members to a common time and place, applying (in pre-PC

days) for additional computer run time from Campus Computing Network, obtain-

ing the approval of the UCLA School of Engineering bibliography checker, finding

(in pre-TEXdays) a good typist, making copies of the dissertation, etc.

In June 1978, thanks to much encouragement, guidance and nurturing from Pro-

fessor Pearl, I completed my Ph.D. dissertation, “Machine Learning of Heuristics

for Ordered-Search Algorithms.”

The fun memories associated with Professor Pearl continued after my graduation.

During an AI conference in Miami in December 1984, a dinner with Judea at a

restaurant in little Havana. Other AI conference dinners hosted by Professor Pearl

for his graduate students. One day in 1985, when I visited Judea in his office enroute

to a Computer Science Seminar, I remember him asking me which designation I liked

better: “Bayes net” or “Bayesian network.” I voted for the latter as more poetic. In

November 1996 I was invited by Judea to attend his University of California Faculty

Research Lecture at Schoenberg Auditorium. A capacity crowd listened attentively

as Judea discussed “The Art and Science of Cause and Effect.” Afterward, Judea

and his family celebrated at a tea reception at the Chancellor’s Residence. A special

seminar for the publication of “Causality” in 2000. And the fond memories continue.

Many colleagues ask me, “Did you study under Judea Pearl?” “Yes!” I answer

proudly. I am very proud to have been Professor Pearl’s first student, even though

556

Fond Memories from an Old Student

I was probably not worthy.

I cherish the memories of those student days in the UCLA Computer Science

Department, studying under and learning from Professor Pearl.

With deep appreciation, I would like to thank you very much, Judea, for all your

kindness, help, guidance and education through the years.

God bless you!

557

33

––

Reverend Bayes and inference engines

DAVID SPIEGELHALTER

I first met Judea in 1986 at a conference in Paris on the “management of uncertainty

in knowledge-based systems”: this topic, which now sounds rather dated, was of consum-

ing interest at the time and I was anxious about coming face-to-face with someone who

might be considered a competitor in the field – what would he be like? I need not have

worried.

This was an unusual research area for a statistician, but since the early 1980s I had

been part of a group working on decision-support systems in medicine which used ex-

plicit probabilities for diagnosis and prognosis. There was a strong and (usually) good-

natured rivalry between techniques based on formal probabilistic methods for so-called

‘expert’ or ‘knowledge-based systems’ and those arising in the computer science com-

munity that were more rooted in artificial intelligence and attempted to represent expert

knowledge through a network of rules, with a separate ‘inference engine’ to control the

reasoning process. The MYCIN team from Stanford were international leaders in this

field with their system of ‘certainty factors’ to handle uncertainty in the rules. There was

no rigid distinction between the approaches: everything was in the pot, from purely quali-

tative reasoning, through rather ad-hoc quantification, fuzzy logic, and attempts to use

probabilities in a network of rules. It was a very exciting and competitive time, in which

many disciplines were trying to establish authority.

A Royal Statistical Society discussion paper [Spiegelhalter and Knill-Jones, 1984]

brought the controversy into the statistical world, but this was outdated even by the time

of its publication. Struggling with the problem of handling probability models on di-

rected graphs of arbitrary size and complexity (and, crucially, being totally unaware of

Judea’s work in this area), I realised that Wermuth and Lauritizen [1983] provided a

connection between probabilistic models on directed graphs and unconnected graphs: the

latter had been established for some time as an elegant way of representing conditional

independence relations in contingency tables [Darroch, Lauritzen and Speed, 1980]. In

April 1984 I met Steffen Lauritzen at the 150th Anniversary celebrations of the Royal

Statistical Society and told him that his work on graphical models was of fundamental

importance to artificial intelligence. He did not seem to believe me, but he was kind

enough to take me seriously enough to invite me to visit.

So I took the long journey to Aalborg in the north of Jutland in Denmark. By a re-

markable stroke of good fortune Steffen shared a department with a research team who

were working on uncertainty in expert systems, and together we persuaded him that he

should get involved. And he is still working in this area after 25 years.

559

Kaoru
Text Box
Return to TOC

David Spiegelhalter

As a bonus, the Danish group finally introduced me to Pearl [1982] and Kim and

Pearl [1983]. These came as a shock: looking beneath the poor typography revealed

fundamental and beautiful ideas on local computation that made me doubt we could con-

tribute more. But Judea was working solely with directed graphs, and we felt the connec-

tion with undirected graphs was worth pursuing in the search for a general algorithm for

probability propagation in arbitrary graphs.

I wrote to Judea who replied in a typically enthusiastic and encouraging way, and so

at a 1985 workshop at Bell Labs I was able to try and put together his work with our

current focus on triangulated graphs, clique separations, potential representations and so

on [Spiegelhalter, 1986]. Then in July 1986 we finally met in Paris at the conference

mentioned at the start of this article, where Judea was introducing the audience to d-

separation. I have mentioned that I was nervous, but Judea was as embracing as ever.

We ended up in a pavement café in the Latin quarter, with Judea drawing graphs on the

paper napkin and loudly claiming that anyone could see that observations on a particular

node rendered two others independent – grabbing a passer-by, Judea demanded to know

whether this unfortunate Frenchman could recognise this obvious property, but the poor

innocent man just muttered something and walked briskly away, pleased to have escaped

these lunatics.

We continued to meet at conferences as he developed his propagation techniques

based on directed graphs [Pearl, 1986] and we published our algorithm based on embed-

ding the directed graph in a triangulated undirected graph that could be represented as a

tree of cliques [Lauritzen and Spiegelhalter, 1988]. We even jointly presented a tutorial

on probabilistic reasoning at the 1989 IJCAI meeting in Detroit, which I particularly

remember as my bus got stuck in traffic and I was late arriving, but Judea had just carried

on, extemporising from a massive pile of overhead slides from which he would appar-

ently draw specimens at random.

Then I started on MCMC on graphical models, and he began on causality, which was

too difficult for me. But I look back on that time in the mid 1980s as perhaps the most

exciting and creative period of my working life, continually engaged in a certain amount

of friendly rivalry with Judea, who always responded with characteristic generosity of

spirit.

References

Darroch, J. N., Lauritzen, S. L. and Speed, T. P. (1980) Markov Helds and log-linear

models for contingency tables. Ann. Statist., 8, 522-539.

Kim, J. H. and Pearl, J. (1983) A computational model for causal and diagnostic rea-

soning in inference systems. In Proc. 8th International Joint Conference on Artifi-

cial Intelligence, Karlsruhe, pp. 190-193.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988) Local Computations with Probabili-

ties on Graphical Structures and Their Application to Expert Systems. Journal of

the Royal Statistical Society. Series B (Methodological), 50, 157-224.

560

Reverend Bayes and Inference Engines

Pearl, J. (1982) Reverend Bayes on inference engines: a distributed hierarchical ap-

proach. Proc. AAAI National Conference on AI, Pittsburgh, pp. 133-136.

Pearl. J. (1986) Fusion, propagation and structuring in belief networks. Artificial In-

telligence, 29, 241-288.

Spiegelhalter, D. J. (1986) A statistical view of uncertainty in expert systems. In Arti-

ficial Intelligence and Statistics (ed. W. Gale), pp. 17-56. Reading: Addison-

Wesley.

561

34

An old-fashioned scientist shaping

a modern discipline

Hector Geffner

I took a course with Judea in September of 1984, while I was finishing my MS in

Systems Science at UCLA. Right after, I switched to Computer Science, became his

PhD student, and started working as a research assistant in his group. I finished

my PhD five years later, a time during which I learned from him how science is

done and how a scientist works, two things that were extremely valuable to me for

at least two reasons. The first is that I was a pure science ‘consumer’, enthusiastic

and well-informed but more inclined to read than to produce science. The second

is that, unknown to me, AI was being redefined, with no one playing a larger role

in the change than Judea.

While Judea published regularly in AI conferences from the late 70s on and the

Heuristics book was about to be published, he still felt very much like an outsider in

AI, even at UCLA, where the AI Lab, headed by former students of Roger Schank,

used to get the spotligth, lavish funding, and most of the aspiring AI students.

Judea, on the other hand, directed the Cognitive Systems Lab, which to my surprise

was no more than a sign on the door of a secretary, whose main task, although not

an easy one, was to input Judea’s handwritings into the computer.

Judea’s door was in front of the Lab with no sign revealing his name so that

unwanted intrusions would be discouraged. Years later he added a sign, “Don’t

knock. Experiments in Progress” that remained there for more than 20 years.

Judea liked to work at home early in the day, showing up by his office at 3pm, for

meeting students and the secretary, for answering mail, and of course, for thinking,

which is what he liked and needed the most. He kept administration to a minimum,

and since the 80s at least, has not taught undergraduates (I still don’t know how he

got away with this). He also used to wear a pair of earplugs, and you could often

discover that you said something interesting when you saw Judea taking them off.

What struck me first about Judea was not his research – I couldn’t say much

about it then – nor his classes, which I certainly liked but were not typical of the

‘best teachers’ (I still remember Judea correcting a slide in class with his finger,

after dipping it into the coffee!), but his attitude toward students, toward science,

and toward life in general. He was humble, fun, unassuming, respectful, intelligent,

enthusiastic, full of life, very easy to get along with, and driven by a pure and

uncorrupted passion for understanding. Judea doesn’t just seek understanding,

he needs it; it’s something personal. I’m sure that this is the way scientists and

563

Kaoru
Text Box
Return to TOC

Hector Geffner

philosophers like Hume, Newton, and Leibniz felt centuries ago, although I doubt

that they were as much fun to be with.

In the late 80s, Judea had a small group of students, and we all used to meet

weekly for the seminars. Judea got alone well with everyone, and had a lot of

patience, in particular with me, who was a mix of rebel and dilettante, and couldn’t

get my research focused as Judea expected (and much less on the topics he was

interested in, even if he was paying my research assistantship!). I remember telling

him during the first couple of years that I didn’t feel I was ready for research and

preferred to learn more AI first. His answer was characteristic: “you do research

now, you learn later — after your PhD”. I told him also that I wanted to do

something closer to the mainstream, something closer to Schankian AI for example,

then in fashion. Judea wouldn’t get offended at all. He would answer with calm

“We will get there eventually”, and he certainly meant it. Judea was probably a bit

frustrated with me, but he never showed it; quite the opposite, he was sympathetic

to my explorations, gave me full confidence and support, and eventually let me

do my thesis in the area of non-monotonic reasoning using ideas from probability

theory, something that actually attracted his interest at the time.

Since Judea was not an expert in this area (although, unsurprisingly, he quickly

became one), I didn’t get much technical guidance from him in my specific disser-

tation research. By that time, however, I had learned from him something much

more important: I learned how science is done, and the passion and attitude that

go into it. Well, may be I didn’t learn this at all, and rather he managed to infect

me with the ‘virus’; in seminars, in conversations, by watching him work and ask

questions, by osmosis. If so, by now, I’m a proud and grateful carrier. In any case,

I have been extremely privileged and fortunate to have had the chance to benefit

from Judea’s generosity, passion, and wisdom, and from his example in both science

and life. I know I wouldn’t be the same person if I hadn’t met him.

564

35

Sticking With the Crowd of Four

Rina Dechter

I joined Judea’s lab at UCLA at about the same time that Hector did, and his

words echo my experience and impressions so very well. In particular, I know I

wouldn’t be the same person, scientist, and educator if I hadn’t met Judea.

Interestingly, when I started this journey I was working in industry (with a

company named Perceptronics). We had just come to the U.S. then, my husband

Avi started his Ph.D. studies, and I was the breadwinner in our family. When I

discussed my plans to go back to school for a PhD, I was given a warning by three

former students of Judea who worked in that company (Chrolotte, Saleh, and Leal).

They all said that working with Judea was fun, but not practical. “If you want a

really good and lucrative career,” they said, “you should work with Len Kleinrock.”

This was precisely what I did. I was a student of Kleinrock for three years (and

even wrote a paper with him), and took AI only as a minor. During my 3rd year,

I decided to ignore practical considerations and follow my interests. I switched to

working with Judea.

At that time, Judea was giving talks about games and heuristic search to whoever

was willing to listen. I remember one talk that he gave at UCLA where the audience

consisted of me, Avi, and two professors from the math department. Judea spoke

enthusiastically just like he was speaking in front of the Hollywood Bowl. Even the

two math professors were mesmerized.

Kleinrock was a star already, and his students were getting lucrative positions

in Internet companies. I congratulate myself for sticking with the crowd of four,

fascinated by how machines can generate their own heuristics. Who could tell that

those modest seminars would eventually give birth to the theories of heuristics,

Bayesian networks, and causal reasoning?

Judea once told me that when he faces a really hard decision, a crossroad, he

asks himself “What would Rabbi Akiva do?”. Today, when I face a hard decision,

I ask “What would Judea do?”.

Thanks Judea for being such a wonderful (though quite a challenging) role model!

565

Kaoru
Text Box
Return to TOC

	tribute-toc-linked.pdf
	toc
	authors_embed
	preface_embed

	tribute-toc-linked.pdf
	toc
	authors_embed
	preface_embed

	part1-heuristics-linked.pdf
	Part1-Sep_embed
	1_embed
	2_embed
	3_embed
	4_embed
	5_embed
	6_embed
	7_embed
	8_embed
	9_embed
	10_embed
	11_embed
	12_embed
	13_embed
	14_embed
	15_embed
	16_embed
	tribute-toc-part1.pdf
	toc
	authors_embed
	preface_embed

	part2-probability-linked.pdf
	Part1-Sep_embed
	1_embed
	2_embed
	3_embed
	4_embed
	5_embed
	6_embed
	7_embed
	8_embed
	9_embed
	10_embed
	11_embed
	12_embed
	13_embed
	14_embed
	15_embed
	16_embed

	part3-causality.pdf
	Part3-Sep_embed
	17_embed
	18_embed
	19_embed
	20_embed
	21_embed
	22_embed
	23_embed
	24_embed
	25_embed
	26_embed
	27_embed
	28_embed
	29_embed
	30_embed
	part3b-causality.pdf
	Part3-Sep_embed
	17_embed
	18_embed
	19_embed
	20_embed
	21_embed
	22_embed
	23_embed
	24_embed
	25_embed
	26_embed
	27_embed
	28_embed
	29_embed
	30_embed

	part4-reminiscences.pdf
	Part4-Sep_embed
	31_embed
	32_embed
	33_embed
	34_embed
	35_embed

