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Similarly, the expected value of any function of X—say, g(X)—is obtained by summing
g(x)P(X = x) over all values of X.

E[g(X)] = ) g(0)P(X) (1.11)

For example, if after rolling a die, I receive a cash prize equal to the square of the result, we
have ¢(X) = X2, and the expected prize is

Ele(X)] = (12 X é) + (22 X é) + (32>< é) + (42>< é) + (52>< é) + (62 X é) =15.17
(1.12)

We can also calculate the expected value of Y conditional on X, E(Y|X ='x), by multiplying
cach possible value y of Y by P(¥Y = y|X = x), and summing the products.

E(Y|X =x) = 2yP(Y=y|X=x) (1.13)

E(X) is one way to make a “best guess™ of X’s value. Specifically, out of all the guesses g that
we can make, the choice “g = E(X)” minimizes the expected square error £(g — X)?. Similarly,
E(Y|X = x) represents a best guess of ¥, given that we observe X = x. If g = E(Y|X = x), then
¢ minimizes the expected square error E[(g — Y)2|X = £).

For example, the expected age of a 2012 voter, as demonstrated by Table 1.3, is

E(Voter’s Age) = 23.5x0.16 +37 X 0.23 + 54.5 % 0.39 + 70 X 0.22 = 48.9

(For this calculation, we have assumed that every age within cach calegory is equally
likely, c.g., a voter is as likely to be 18 as 25, and as likely to be 30 as 44. We have also
assumed that the oldest age of any voter is 75.) This means that if we were asked to guess
the age of a randomly chosen voter, with the understanding that if we were off by e years,
we would lose e? dollars, we would lose the least money, on average, if we guessed 48.9.
Similarly, if we were asked to guess the age of a random voter younger than the age of 45,
our best bet would be

E[Voter’s Age | Voter's Age < 45] = 23.5x0.40+37x0.60 = 31.6 (1.14)

The use of expectations as a basis for predictions or “best guésses™ hinges to a great extent
or an implicit assumption regarding the distribution of X or Y|X = x, namely that such distri-
butions are approximately symimetric. If, however, the distribution of interest is highly skewed,
other methods of prediction may be better. In such cases, for example, we might use the median
of the distribution of X as our “best guess™; this estimate minimizes the expected absolute error
E(]g — X]). We will not pursue such alternative measures further here.

1.3.9 Variance and Covariance

The variance of a variable X, denoted Var(X) or o2, is a measure of roughly how “spread out”
the values of X in a data set or population are from their mean. If the values of X all hover close
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which represents an inclined plane through the three-dimensional coordinate system.

We can.create a three-dimensional scatter plot, with values of ¥ on the y-axis, X on the
x-axis, and Z on the z-axis. Then, we can cut the scatter plot into slices along the Z-axis. Each
slice will constitute a two-dimensional scatter plot of the kind shown in Figure 1.4. Each of
those 2-D scatter plots will have a regression line with a slope ;. Slicing along the X-axis will
give the slope r,. ‘

The slope of Y on X when we hold Z constant is called the partial regression coefficient and
is denoted by Ryy.;. Note that it is possible for Ryy to be positive, whereas Ryy . is negative
as shown in Figure 1.1. This is a manifestation of Simpson’s Paradox: positive association
between Y and X overall, that becomes negative when we condition on the third variable Z.

The computation of partial regression coefficients (e.g., r; and r, in (1.23)) is greatly facil-
itated by a theorem that is one of the most fundamental results in regression analysis. It states
that if we write Y as a linear combination of variables X, X,, ... , X; plus a noise term ¢,

Y=r0+r1Xl+r‘2X2+---+?’ka+6‘ (124)

then, regardless of the underlying distribution of Y, X, X;, ... , X, the best least-square coef-
ficients are obtained when e is uncorrelated with each of the regressors X, X5, ... , X,. That s,

Covie,X)=0 for i=12,..,k

To see how this orthogonality principle is used to our advantage, assume we wish to compute
the best estimate of X = Die | given the sum

Y = Die I + Die 2

Writing
X=a4+fi¥ +¢

our goal is to find a and f in terms of estimable statistical measures. Assuming without loss
of generality E[c] = (), and taking expectation on both sides of the equation, we obtain

E[X] = a + fE[Y] (1.25)
—>  Further multiplying both sides of the equation by Y and taking the expectation gives |
—> E[XY] = aELY] + BE[Y?] + E[Ye] (1.26)

—> The orthogonality principle dictates E[Ye] = 0, and (1.25) and (1.26) yield two equations with
two unknowns, a and f. Solving for a and f, we obtain

= B E(}f)fi‘éK
Oy
§ = Oxr

2
ay

which completes the derivation. The slope f could have been obtained from Eq. (1.22), by sim-
ply reversing X and Y, but the derivation above demonstrates a general method of computing
slopes, in two or more dimensions.
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Graphical Models and Their Applications 37

SCM 2.2.3 (Work Hours, Training, and Race Time)

V={X,Y,Z2},U= {UX; UY! UZ]»Fz [fX?fY’fZ}
Jx 2 X =Uy
fy i Y=84—-x+Uy

fz:z=‘y@+uZ

SCMs 2.2.1-2.2.3 share the graphical model shown in Figure 2.1.

SCMs 2.2.1 and 2.2.3 deal with continuous variables; SCM 2.2.2 deals with categorical
variables. The relationships between the variables in 2.1.1 are all positive (i.e., the higher the
value of the parent variable, the higher the value of the child variable); the correlations between
the variables in 2.2.3 are all negative (i.e., the higher the value of the parent variable, the lower
the value of the child variable); the correlations between the variables in 2.2.2 are not linear at
all, but logical. No two of the SCMs share any functions in common. But because they share
a common graphical structure, the data sets generated by all three SCMs must share certain
independencies—and we can predict those independencies simply by examining the graphical
model in Figure 2.1. The independencies shared by data sets generated by these three SCMs,
and the dependencies that are likely shared by all such SCMs, are these:

1. ZandY a%f%pendent
Forsome z,y, P(Z=z|]Y = y) # P(Z =z
2. Yand X aﬁ’lgé c%pendent ‘
For some v? PY =y|X = x) 3 P(Y =)
3. Z and X are likely dependent
.Forsomez.x,PZ =21 X=x)# P(Z=2)
4. Z and X are independent, conditional on Y
Forallx,y,z,P(Z=z|]X =x,Y=y)=P(Z =z|]Y =y)

To understand why these independencies and dependencies hold, let’s examinel_tline graphical
model. First, we will verify that any two variables with an edge between them ar'efc%pendent.
Remember that an arrow from one variable to another indicates that the first variable causes

thatis, ” . . .
the second—a-nd,—mmpoﬂmﬂ-y;—fhaf the value of the first variable is part of the function

that determines the value of the second. Therefore, the second vartable depends on the first for

Uy

4,

Figure 2.1 The graphical model of SCMs 2.2.1-2.2.3
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38 Causal Inference in Statistics

its value; there is §¢ une pase in which changing the value of the first variable changes the value .
of the second. fgap\meaﬂq that when we examine those variables in the data set, the probability
that one variaz%%elrcgixkes a given value will change, given that we know the value of the other
variable. So in@aayicausal model, regardless of the specific functions, two variables connected
by an edge are dependent. By this reasoning, we can see that in SCMs 2.2.1-2.2.3, Z and ¥
are dependent, and Y and X are dependen}? ' ‘

From these two facts, we can conclude that Z and X are likely dependent. If Z depends on ¥
for its value, and Y depends on X for its value, then Z likely depends on X for its value. There
arc pathological cases in which this is not true. Consider, for example, the following SCM,

which also has the graph in Figure 2.1.
SCM 2.2.4 (Pathological Case of Intransitive Dependence)

V=I{XV,ZL,U= {UX’ U}', UZ},F = {fX&fY%fZ}

fX:XZUX
¢ IFX=1AND Uy =1
‘ fy:Y={b IFX=2AND Uy =1
c IFUy =2
i IRY=cORU;=1
friZd=4. B

In this case, no matter what value Uy and U, take, X will have no effect on the value that
Z takes; changes in X account for variation in Y between a and b, but ¥ doesn’t affect Z unless
it takes the value ¢. Therefore, X and Z vary independently in this model. We will call cases
such as these intransitive cases.

However, intransitive cases {orm only a small number of the cases we will encounter. In
most cases, the values of X and Z vary together just as X and Y do, and Y and Z. Therefore,
they are likely dependent in the data set. :

Now, let’s consider point 4: Z and X are independent conditional on Y. Remember that when
we condition on Y, we filter the data into groups based on the value of Y. So we compare all
the cases where Y = q, all the cases where Y = b, and so on. Let’s assume that we’re looking
at the cases where Y = a. We want to know whether, in these cases only, the value of Z is
independent of the value of X. Previously, we determined that X*and Z are likely dependent,
because when the value of X changes, the value of Y likely changes, and when the value of ¥
changes, the value of Z is likely to change. Now, however, examining only the cases where
Y = a, when we select cases with different values of X, the value of U, changes so as to keep
Y at ¥ = a, but since Z depends only on ¥ and Uy, not on Uy, the value of Z remains unaltered.
So selecting a different value of X doesn’t change the value of Z. So, in the case where ¥ = q,
X is independent of Z. This is of course true no matter which specific value of ¥ we condition
on. So X is independent of Z, conditional on Y.

This configuration of variables—three nodes and two edges, with one edge directed into and
one edge directed out of the middle variable—is called a chain. Analogous reasoning to the
above tells us that in any graphical model, given any two variables X and Y, if the only path
between X and Y is composed entirely of chains, then X and Y are independent conditional
on any intermediate variable on that path. This independence relation holds regardless of the
functions that conncct the variables. This gives us a rule:

.

# This occursfor examplewhen X and Uy are fair coinsand Y = 1 if and only X=U,. In this caseP(Y=1[X=1) = P(Y=1|X=0) =
P(Y=1)=1/2.Suchpathologicalcasesequireprecisenumericalprobabilitiesto achieveindependencéP(X=1)=P(Ux)=1/2); theyare
rare,andcanbeignoredfor all practicalpurposes.
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40 Causal Inference in Statistics

If we assume that the error terms Uy, Uy, and U, are independent, then by examining the
graphical model in Figure 2.2, we can determine that SCMs 2.2.5 and 2.2.6 share the following

dependencies and independencies:

likel
l. Xand Y are,\d%pendent.
For some 2 PX =x|Y =y)# P(X =x)
2. Xand Z areAt?;zpendent.
Forsome x,z, PX =x|Z =2) # P(X =Xx)
3. Zand Y are likely dependent.
For some z,y, P(Z = z|Y = y) # P(Z = 2)
4. Y and Z are independent, conditional on X.
Forall 4x,y,z, P(Y =y|Z =z, X =x) = P(Y = y|X = X)

Points 1 and 2 follow, once again, from the fact that ¥ and Z are both diﬁ*g ly connected to
X by an arrow, so when the value of X changes, the values of both ¥ and Z,change. This tells
us something further, however: If ¥ changes when X changes, and Z changes when X changes,
then it is likely (though not certain) that ¥ changes together with Z, and vice versa. Therefore,
since a change in the value of ¥ gives us information about an associated change in the value
of Z, Y, and Z are likely dependent variables.

Why, then, are ¥ and Z independent conditional on X? Well, what happens when we condi-
tion on X? We filter the data based on the value of X. So now, we’re only comparing cases where
the value of X is constant. Since X does not change, the values of ¥ and Z do not change in
accordance with it—they change only in response to Uy and Uz, which we have assumed to be
independent. Therefore, any additional changes in the values of ¥ and Z must be independent
of cach other.

This configuration of variables—three nodes, with two arrows emanating {rom the middle
variable—is called a fork, The middlc variable in a fork is the common cause of the other two
variables, and of any of their descendants. If two variables share a common cause, and if that
common cause is part of the only path between them, then analogous reasoning to the above
tells us that these dependencies and conditional independencies are true of those variables.
Therefore, we come by another rule:

Rule 2 (Conditional Independence in Forks) Ifavariable X is a common cause of variables
Y and Z, and there is only one path between Y and Z, then Y and Z are independent conditional

onX.

2.3 Colliders

So far we have looked at two simple configurations of edges and nodes that can occur on a path
between two variables: chains and forks. There is a third such configuration that we speak of
separately, because it carries with it unique considerations and challenges. The third config-
uration contains a collider node, and it occurs when one node receives edges from two other
nodes. The simplest graphical causal model containing a collider is illustrated in Figure 2.3,
representing a common efféct, Z, of two causes X and Y.

As is the case with every graphical causal model, all SCMs that have Figure 2.3 as their
graph share a set of dependencies and independencies that we can determine from the graphical
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Graphical Models and Their Applications 41

Ux Uy

Figure 2.3 A simple collider

model alone. In the case of the model in Figure 2.3, assuming independence of Uy, Uy, and
U, these independencies are as follows:

.. likely
|. X and Z areylependent.
For some A P(X = x| 2=z} 2:PTX =X}
2. Yand Z are d%pendent
For some v, 2, P(Y = y|Z=2) # P(Y =)
3. Xand Y are independent.
For all x, y, P X=x[Y=y)=PX=1x)
4. X and Y are c?fependent conditional on Z.
For some x, },‘h, PX=x|¥ =3 Z=20+PX =x|Z=2)

The truth of the first two points was cstablished in Section 2.2, Point 3 is self-cvident; neither
X nor Y is a descendant or an ancestor of the other, nor do they depend for their value on the
same variable. They respond only to Uy and Uy, which are assumed independent, so there is no
causal mechanism by which variations in the value of X should be associated with variations
in the value of Y. This independence also reflects our understanding of how causation operates
in time; events that are independent in the present do not become dependent merely because
they may have common effects in the future.

Why, then, does point 4 hold? Why would two independent variables suddenly become
dependent when we condition on their common effect? To answer this question, we return
again to the definition of conditioning as filtering by the value of the conditioning variable.
When we condition on Z, we limit our comparisons to cases in which Z takes the same value.
But remember that Z depends, for its value, on X and Y. So, when comparing cases where
Z takes, for example, the value, any change in value of X must be compensated for by a change
in the value of Y—otherwise, the value of Z would change as well.

The reasoning behind this attribute of colliders—that conditioning on a collision node pro-
duces a dependence between the node’s parents—can be difficult to grasp at first. In the most
basic situation where Z = X + Y, and X and Y are independent variables, we have the follow-
ing logic: If I tell you that X = 3, you learn nothing about the potential value of ¥, because
the two numbers are independent. On the other hand, if I start by telling you that Z = 10, then
telling you that X = 3 immediately tells you that ¥ must be 7. Thus, X and Y are dependent,
given that Z = 10.

This phenomenon can be further clarified through a real-life example. For instance, suppose
a certain college gives scholarships to two types of students: those with unusual musical talents
and those with extraordinary grade point averages. Ordinarily, musical talent and scholastic
achievement are independent traits, so, in the population at large, finding a person with musical
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= NP (Y =yX=xZ=0)P,(Z=12lX =) (3.3)

=Y P Y =y|X=nZ=9P,E=2 (3.4)
Z usingthe Law of Total Probability
—>  Equation (3.3) is obtained fremBayes*ruf by conditioning on and summing over all values
—> of Z =z (as in Eq. (1.9)) whi1e§Eq. (3.4)makes use of the independence of Z and X in the
modified model. Y
Finally, using the invariance relations, we obtain a formula for the causal effect, in terms of
preintervention probabilities:

P(Y = y|do(X = x)) = Z PY=yX=x,Z=9P(Z=2) (3.5)

Equation (3.5) is called the adjustment formula, and as you can see, it computes the associ-
ation between X and Y for each value z of Z, then averages over those values. This procedure
is referred to as “adjusting for Z” or “controlling for Z.”

This final expression—the right-hand side of Eq. (3.5)—can be estimated directly from the
data, since it consists only of conditional probabilities, each of which can be computed by the
filtering procedure described in Chapter 1. Note also that no adjustment is needed in a random-
ized controlled experiment since, in such a setting, the data are generated by a model which
already possesses the structure of Figure 3.4, hence, P,, = P regardless of any factors Z that
affect Y. Our derivation of the adjustment formula (3.5) constitutes therefore a formal proof
that randomization gives us the quantity we seek to estimate, namely P(Y = y|do(X = x)). In
practice, investigators use adjustments in randomized experiments as well, for the purpose of
minimizing sampling variations (Cox 1958).

To demonstrate the working of the adjustment formula, let us apply it numerically to
Simpson’s story, with X = 1 standing for the patient taking the drug, Z = 1 standing for the
patient being male, and ¥ = | standing for the patient recovering. We have

PY=1lldoX=1)=P¥=1X=1,Z=1D)PZ=D+P¥ =1|X=1,Z=0)PZ = 0)

Substituting the figures given in Table 1.1 we obtain
0.93(87 + 270) i 0.73(263 + 80)

P(Y =lldo(X = 1)) = = 0.832
= sket= L 700 700 0
while, similarly, ;
0.87(87 +270)  0.69(263 + 80)
P(Y = 1|do(X = 0)) 700 + 700 7818
Thus, comparing the effect of drug-taking (X = 1) to the effect of nontaking (X = 0), we

obtain
ACE = P(Y = l]ldo{X = 1)) = P(Y = l|do(X = 0)) = 0.832 — 0.7818 = 0.0502

giving a clear positive advantage to drug-taking. A more informal interpretation of ACE here is
that it is simply the difference in the fraction of the population that would recover if everyone
took the drug compared to when no one takes the drug. .

We see that the adjustment formula instructs us to condition on gender, find the benefit of
the drug separately for males and females, and only then average the result using the percent-
age of males and females in the population. It also thus instructs us to ignore the aggregated
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these parents that we neutralize when we fix X by external manipulation. Denoting the parents
of X by PA(X), we can therefore write a general adjustment formula and summarize it in a rule:

Rule 1 (The Causal Effect Rule) Given a graph G in which a set of variables PA are desig-
nated as the parents of X, the causal effect of X on' Y is given by

— P(Y = yldo(X = x))= ) P(Y =y|X = x,PA = ))P(PA = 2) (3.6)
where z ranges over all the combinations of values that the variables in PA can 1ake.

If we multiply and divide the summand in (3.6) by the probability P(X = x|PA = z), we get
a more convenient form:
PX=x,Y=y,PA=2)

P(X =x|PA=2) )

P(yldo(x)) = )’

which explicitly displays the role played by the parents of X in predicting the results of inter-
ventions. The factor P(X = x|PA = z) is known as the “propensity score” and the advantages
of expressing P(y|do(x)) in this form will be discussed in Section 3.5.

We can appreciate now what role the causal graph plays in resolving Simpson’s paradox,
and, more generally, what aspects of the graph allow us to predict causal effects from purely
statistical data. We need the graph in order to determine the identity of X’s parents—the set of
factors that, under nonexperimental conditions, would be sufficient for determining the value
of X, or the probability of that value.

This result alone is astounding; using graphs and their underlying assumptions, we were
able to identify causal relationships in purely observational data. But, from this discussion,
readers may be tempted to conclude that the role of graphs is fairly limited; once we identify
the parents of X, the rest of the graph can be discarded, and the causal effect can be evaluated
mechanically from the adjustment formula. The next section shows that things may not be
so simple. In most practical cases, the set of X's parents will contain unobserved variables
that would prevent us from calculating the conditional probabilities in the adjustment formula.
Luckily, as we will see in future sections, we can adjust for other variables in the model to
substitute for the unmeasured elements of PA(X).

Study questions

Study questions 3.2.1

Referring to Study question 1.5.2 (Figure 1.10) and the parameters listed therein,

(a) Compute P(yv|do(x)) for all values of x and y, by simulating the intervention do(x) on the

model.
(b) Compute P(y|do(x)) for all values of x and y, using the adjustment formula (3.5)
(c) Compute the ACE :

ACE = P(y,|do(x,)) — P(y,|do(xy))
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The second line was licensed by Theorem 4.3.1, whereas the third line was licensed by the
consistency rule (4.6).

The fact that we obtained the familiar adjustment formula in Eq. (4.16) is not really sur-
prising, because this same formula was derived in Section 3.2 (Eq. (3.4)), for P(Y = y|do(x)),
and we know that P(Y, = y) is just another way of writing P(Y = yldo(x)). Interestingly, this
derivation invokes only algebraic steps; it makes no reference to the model once we ensure
that Z satisfies the backdoor criterion. Equation (4.15), which converts this graphical real-
ity into algebraic notation, and allows us to derive (4.16), is sometimes called “conditional
ignorability™; Theorem 4.3.1 gives this notion a scientific interpretation and permits us to test
whether it holds in any given model.

Having a graphical representation for counterfactuals, we can resolve the dilemma we faced
in Section 4.3.1 (Figure 4.3), and explain graphically why a stronger education (X) would have
had an effect on the salary (Y) of people who are currently at skill level Z = z, despite the fact
that, according to the model, salary is determined by skill only. Formally, to determine if the
effect of education on salary (Y,) is statistically independent of the level of education, we need
to locate Y, in the graph and see if it is d-separated from X given Z. Referring to Figure 4.3,
we see that ¥, can be identified with Uy, the only parent of nodes on the causal path from X
to ¥ (and therefore, the only variable that produces variations in ¥, while X is held constant).
A quick inspection of Figure 4.3 tells us that Z acts as a collider between X and Us, and,
therefore, X and U, (and similarly X and Y,) are not d-separated given Z. We conclude
therefore

E[Y,|X,Z] # E[Y,|Z]

despite the fact that

E[Y|X,Z) = E[Y|Z]

In Study question 4.3.1, we evaluate these counterfactual expectations explicitly, assuming
a linear Gaussian model. The graphical representation established in this section permits us
to determine independencies among counterfactuals by graphical means, without assuming
lincarity or any specific parametric form. This is one of the tools that modern causal analysis
has introduced 1o statistics, and, as we have seen in the analysis of the education—skill—salary
story, it takes a task that is extremely hard to solve by unaided intuition and reduces it to simple
operations on graphs. Additional methods of visualizing counterfactual dependencies, called
“twin networks,” are discussed in (Pearl 2000, pp. 213-215).

4.3.3  Counterfactuals in Experimental Settings

Having convinced ourselves that every counterfactual question can be answered from a fully
specified structural model, we next move to the experimental setting, where a model is not
available, and the experimenter must answer interventional questions on the basis of a finite
sample of observed individuals. Let us refer back to the “encouragement design” model of
Figure 4.1, in which we analyzed the behavior of an individual named Joe, and assume that
the experimenter observes a set of 10 individuals, with Joe being participant 1. Each individual
is characterized by a distinct vector U; = (Uy, Uy, Uy), as shown in the first three columns of
Table 4.3.
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We note that, in general, the total effect can be decomposed as
TE = NDE - NIE, (4.48)

where NIE, stands for the NIE under the reverse transition, from 7 = 1 to 7 = 0. This implies
that N/E is identifiable whenever NDE and TE are identifiable. In linear systems, where reversal
of transitions amounts to negating the signs of their effects, we have the standard additive

formula, TE = NDE + NIE.

We further note that TE and CDE(m) are do-expressions and can, therefore, be estimated
from experimental data or in observational studies using the backdoor or front-door adjust-
ments. Not so for the NDE and NIE; a new set of assumptions is needed for their identification.

Conditions for identifying natural effects
The following set of conditions, marked A-1 to A-4, are sufficient for identifying both direct

and indirect natural effects.
We can identify the NDE and NIE provided that there exists a set W of measured covariates

such that

A-1 No member of W is a descendant of T.
A-2 W blocks all backdoor paths from M to Y (after removingT - M and T — Y).
A-3 The W-specific effect of T on M is identifiable (possibly using experiments or adjust-

ments).
A-4 The W-specific joint effect of {T, M} on Y is identifiable (possibly using experiments or

adjustments).

Theorem 4.5.2 (Identification of the NDE) When conditions A-1 and A-2 hold, the natural
direct effect is experimentally identifiable and is given by

NDE =Y Y [E[Y|do(T = 1,M = m),W = w] - E[Y|do(T = 0,M = m), W = wl]

m W

X P(M = m|do(T = 0), W = w)P(W =w) (4.49)

The identifiability of the do-expressions in Eq. (4.49) is guaranteed by conditions A-3 and A-4
and can be determined using the backdoor or front-door criteria.

Corollary 4.5.1 If conditions A-1 and A-2 are satisfied by a set W that also deconfounds the
relationships in A-3 and A-4, then the do-expressions in Eq. (4.49) are reducible to conditional
expectations, and the natural direct effect becomes

NDE = Z E[E[Y[T: I M=mW=w]—E[Y|T=0,M=mW =w]]|

n W

—> x PM =m|T =0,W = w)P(W = w) (4.50)

In the nonconfounding case (Figure 4.6(a)), NDE reduces to

NDE= Y [E[Y|T=1,M=m)-EY|T=0,M=m)PM=m|T=0). (451


kaoru
Text Box
×

kaoru
Line


	primer-errata-may2016.pdf
	Blank Page




