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Preface xiii

The book is organized in four chapters.

Chapter 1 provides the basic statistical, probabilistic, and graphical concepts that readers
will need to understand the rest of the book. It also introduces the fundamental concepts of
causality, including the causal model, and explains through examples how the model can con-
vey information that pure data are unable to provide.

Chapter 2 explains how causal models are reflected in data, through patterns of statistical
dependencies. It explains how to determine whether a data set complies with a given causal
model, and briefly discusses how one might search for models that explain a given data set.

Chapter 3 is concerned with how to make predictions using causal models, with a particular
emphasis on predicting the outcome of a policy intervention. Here we introduce techniques
of reducing confounding bias using adjustment for covariates, as well as inverse probability
weighing. This chapter also covers mediation analysis and contains an in-depth look at how
the causal methods discussed thus far work in a linear system. Key to these methods is the
fundamental distinction between regression coefficients and structural parameters, and how
students should use both to predict causal effects in linear models.

Chapter 4 introduces the concept of counterfactuals—what would have happened, had we
chosen differently at a point in the past—and discusses how we can compute them, estimate
their probabilities, and what practical questions we can answer using them. This chapter is
somewhat advanced, compared to its predecessors, primarily due to the novelty of the notation
and the hypothetical nature of the questions asked. However, the fact that we read and compute
counterfactuals using the same scientific models that we used in previous chapters should
make their analysis an easy journey for students and instructors. Those wishing to understand
counterfactuals on a friendly mathematical level should find this chapter a good starting point,
and a solid basis for bridging the model-based approach taken in this book with the potential
outcome framework that some experimentalists are pursuing in statistics.
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Preliminaries: Statistical and Causal Models 3

The answer is nowhere to be found in simple statistics. In order to decide whether the drug
will harm or help a patient, we first have to understand the story behind the data—the causal
mechanism that led to, or generated, the results we see. For instance, suppose we knew an
additional fact: Estrogen has a negative effect on recovery, so women are less likely to recover
than men, regardless of the drug. In addition, as we can see from the data, women are signifi-
cantly more likely to take the drug than men are. So, the reason the drug appears to be harmful
overall is that, if we select a drug user at random, that person is more likely to be a woman and
hence less likely to recover than a random person who does not take the drug. Put differently,
being a woman is a common cause of both drug taking and failure to recover. Therefore, to
assess the effectiveness, we need to compare subjects of the same gender, thereby ensuring
that any difference in recovery rates between those who take the drug and those who do not
is not ascribable to estrogen. This means we should consult the segregated data, which shows
us unequivocally that the drug is helpful. This matches our intuition, which tells us that the
segregated data is “more specific,” hence more informative, than the unsegregated data.

With a few tweaks, we can see how the same reversal can occur in a continuous example.
Consider a study that measures weekly exercise and cholesterol in various age groups. When
we plot exercise on the X-axis and cholesterol on the Y-axis and segregate by age, as in
Figure 1.1, we see that there is a general trend downward in each group; the more young
people exercise, the lower their cholesterol is, and the same applies for middle-aged people
and the elderly. If, however, we use the same scatter plot, but we don’t segregate by age
(as in Figure 1.2), we see a general trend upward; the more a person exercises, the higher their
cholesterol is. To resolve this problem, we once again turn to the story behind the data. If we
know that older people, who are more likely to exercise (Figure 1.1), are also more likely to
have high cholesterol regardless of exercise, then the reversal is easily explained, and easily
resolved. Age is a common cause of both treatment (exercise) and outcome (cholesterol). So
we should look at the age-segregated data in order to compare same-age people and thereby
eliminate the possibility that the high exercisers in each group we examine are more likely to
have high cholesterol due to their age, and not due to exercising.

However, and this might come as a surprise to some readers, segregated data does not always
give the correct answer. Suppose we looked at the same numbers from our first example of drug
taking and recovery, instead of recording participants’ gender, patients’ blood pressure were

Cholesterol

Exercise

Figure 1.1 Results of the exercise—cholesterol study, segregated by age
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Preliminaries: Statistical and Causal Models 9

Table 1.3  Age breakdown of voters in 2012 election
(all numbers in thousands)

Age group # of voters
18-29 20,539
3044 30,756
45-64 52,013

65+ 29,641
132,948

Table 1.4 Age breakdown of voters over the age of
29 in 2012 election (all numbers in thousands)

Age group # of voters
30-44 30,756
45-64 52,013

65+ 29,641
112,409

the data to form a new set (shown in Table 1.4), using only the cases where voters were older
than 29.
In this new data set, there are 112,409,000 total votes, so we would estimate that

30.756,000 _ .

P(Voter A 45| Voter Age > 29) = ——— =
(Voter Age < 45|Voter Age 9) 112.409.000

Conditional probabilities such as these play an important role in investigating causal questions,
as we often want to compare how the probability (or, equivalently, risk) of an outcome changes
under different filtering, or exposure, conditions. For example, how does the probability of
developing lung cancer for smokers compare to the analogous probability for nonsmokers?

Study questions
Study question 1.3.2

Consider Table 1.5 showing the relationship between gender and education level in the U.S.
adult population.

(a) Estimate P(High School).

(b) Estimate P(High School OR Female).
(c) Estimate P(High School | Female).
(d) Estimate P(Female | High School).
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14 Causal Inference in Statistics

on the sum of a roll of two dice. So 11 will be the sum in % ﬁ of cases: P(“117| “craps”) =

E In roulette, there are 38 equally probable outcomes, so P(“117| “roulette”) = ﬁ' In this
situation, there are two possible hypotheses; “craps” and ° roulette Since there are an equal
number of craps and roulette games, P“crap{’(“craps”) = =, our prior belief before we hear

the “11” shout. Usmf,?,the law of total probability,

P(C11”) = PC“117| “craps”)P(“craps”) + P(“117| “roulette ) P(“roulette”)
1 1 1 1 7

TR AT IR TT]

We have now fairly easily obtained all the information we need to determine
P(“craps”|“117):

P(“117|“craps”) x P(“craps”) _ 1/18 X 1/2

P [Q » “11’7 — —
(“eraps”["117) PC117) 7/171

=0.679

Another informative example of Bayes’ rule in action is the Monty Hall problem, a classic
brain teaser in statistics. In the problem, you are a contestant on a game show, hosted by Monty
Hall. Monty shows you three doors—A, B, and C—behind one and only one of which is a new
car. (The other two doors have goats.) If you guess correctly, the car is yours; otherwise, you
get a goat. You guess A at random. Monty, who is forbidden from revealing where the car is,
then opens Door C, which, of course, has a goat behind it. He tells you that you can now switch
to Door B, or stick with Door A. Whichever you pick, you’ll get what’s behind it.

Are you better off opening Door A, or switching to Door B?

Many people, when they first encounter the problem, reason that, since the location of the
car is independent of the door you first choose, switching doors neither gains nor loses you
anything; the probability that the car is behind Door A is equal to the probability that it is
behind Door B.

But the correct answer, as decades of statistics students have found to their consternation, is
that you are twice as likely to win the car if you switch to Door B as you are if you stay with
Door A. The reasoning often given for this counterintuitive solution is that, when you originally
chose a door, you had a % probability of picking the door with the car. Since Monty always
opens a door with a goat, no matter whether you initially chose the car or not, you have received
no new information since then. Therefore, there is still a % probability that the door you picked

hides the car, and the remaining % probability must lie with the only other closed door left.

We can prove this surprising fact using Bayes’ rule. Here we have three variables: X,
the door chosen by the player; Y, the door behind which the car is hidden; and Z, the door
which the host opens. X, Y, and Z can all take the values A, B, or C. We want to prove that
PY=B|X=A,Z=C)> P(Y =A|X =A,Z = C). Our hypothesis is that the car lies behind
Door A; our evidence is that Monty opened Door C. We will leave the proof to the reader—see
Study question 1.3.5. To further develop your intuition, you might generalize the game to
having 100 doors (which contain 1 hidden car and 99 hidden goats). The contestant still
chooses one door, but now Monty opens 98 doors—all revealing goats deliberately—before
offering the contestant the chance to switch before the final doors are opened. Now, the choice
to switch should be obvious.

Why does Monty opening Door C constitute evidence about the location of the car? It didn’t,
after all, provide any evidence for whether your initial choice of door was correct. And, surely,
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Preliminaries: Statistical and Causal Models 15

when he was about to open a door, be it B or C, you knew in advance that you won’t find a
car behind it. The answer is that there was no way for Monty to open Door A after you chose
it—but he could have opened Door B. The fact that he didn’t make:it more likely that he
opened Door C because he was forced to; it provides evidence that the car lies behind Door B.
This is a general theme of Bayesian analysis: Any hypothesis that has withstood some test of
refutation becomes more likely. Door B was vulnerable to refutation (i.e., Monty could have
opened it), but Door A was not. Therefore, Door B becomes a more likely location, whereas
Door A does not.

The reader may find it instructive to note that the explanation above is laden with counter-
factual terminology; for example, “He could have opened,” “because he was forced,” “He was
about to open.” Indeed, what makes the Monty Hall example unique among probability puz-
zles is its critical dependence on the process that generated the data. It shows that our beliefs
should depend not merely on the facts observed but also on the process that led to those facts.
In particular, the information that the car is not behind Door C, in itself, is not sufficient to
describe the problem; to figure out the probabilities involved, we must also know what options
were available to the host before opening Door C. In Chapter 4 of this book we will formu-
late a theory of counterfactuals that will enable us to describe such processes and alternative
options, so as to form the correct beliefs about choices.

There is some controversy attached to Bayes’ rule. Often, when we are trying to ascertain
the probability of a hypothesis given some evidence, we have no way to calculate the prior
probability of the hypothesis, P(A), in terms of fractions or frequencies of cases. Consider:
If we did not know the proportion of roulette tables to craps tables in the casino, how on
Earth could we determine the prior probability P(“craps”)? We might be tempted to postulate
PA) = % as a way of expressing our ignorance. But what if we have a hunch that roulette
tables are less common in this casino, or the tone of the voice of the caller reminds us of a craps
dealer we heard yesterday? In cases such as this, in order to use Bayes’ rule, we substitute, in
place of P(A), our subjective belief in the relative truth of the hypothesis compared to other
possibilities. The controversy stems from the subjective nature of that belief—how are we to
know whether the assigned P(A) accurately summarizes the information we have about the
hypothesis? Should we insist on distilling all of our pro and con arguments down to a single
number? And even if we do, why should we update our subjective beliefs about hypotheses
the same way that we update objective frequencies? Some behavioral experiments suggest
that people do not update their beliefs in accordance with Bayes’ rule—but many believe that
they should, and that deviations from the rule represent compromises, if not deficiencies in
reasoning, and lead to suboptimal decisions. Debate over the proper use of Bayes’ theorem
continues to this day. Despite these controversies, however, Bayes’ rule is a powerful tool for
statistics, and we will use it to great effect throughout this book.

Study questions
Study question 1.3.3

Consider the casino problem described in Section 1.3.6

(a) Compute P(“craps”|“11”) assuming that there are twice as many roulette tables as craps
games at the casino.
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16 Causal Inference in Statistics

(b) Compute P(“roulette”|“10”) assuming that there are twice as many craps games das
roulette tables at the casino.

Study question 1.3.4

Suppose we have three cards. Card 1 has two black faces, one on each side; Card 2 has two
white faces; and Card 3 has one white face and oneblackface. You select a card at random
and place it on the table. You find that it is black on the face-up side. What is the probability
that the face-down side of the card is also black?

(a) Use your intuition to argue that the probability that the face-down side of the card is also
black is % Why might it be greater than % ?

(b) Express the probabilities and conditional probabilities that you find easy to estimate (for
example, P(Cp, = Black)), in terms of the following variables:

I = Identity of the card selected (Card 1, Card 2, or Card 3)
Cp = Color of the face-down side (Black, White)
Cy; = Color of the face-up side (Black, White)

Find the probability that the face-down side of the selected card is black, using your esti-
mates above.

(c¢) Use Bayes’ theorem to find the correct probability of a randomly selected card’s back
being black if you observe that its front is black?

Study question 1.3.5 (Monty Hall)

Prove, using Bayes’ theorem, that switching doors improves your chances of winning the car
in the Monty Hall problem.

1.3.8 Expected Values

In statistics, one often deals with data sets and probability distributions that are too large to
effectively examine each possible combination of values. Instead, we use statistical measures
to represent, with some loss of information, meaningful features of the distribution. One such
measure is the expected value, also called the mean, which can be used when variables take on
numerical values. The expected value of a variable X, denoted E(X), is found by multiplying
each possible value of the variable by the probability that the variable will take that value, then
summing the products:

EX) = ZxP(X:x) (1.10)

X

For instance, a variable X representing the outcome of one roll of a fair six-sided die has the fol-
lowing probability distribution: P(1) = ¢, P(2) = £, P(3) = ¢, P(4) = £, P(5) = £, P(6) = ¢.
The expected value of X is given by:

E(X):<1xé>+<2xé>+<3xé>+<4xé)+<5xé)+<6x%)=3.5
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Preliminaries: Statistical and Causal Models 17

Similarly, the expected value of any function of X—say, g(X)—is obtained by summing
g(x)P(X = x) over all values of X.

E[gX)] = ) g(0P(x) (1.11)

For example, if after rolling a die, I receive a cash prize equal to the square of the result, we
have g(X) = X2, and the expected prize is

El[g(X)] = (12>< %) + (22x é) ¥ (32 x é) + (42 x é) + <52>< é) + (62>< é) = 15.17
(1.12)

We can also calculate the expected value of Y conditional on X, E(Y|X = x), by multiplying
each possible value y of Y by P(Y = y|X = x), and summing the products.

EY|X=x)=) yP(¥ =y|X=1x) (1.13)

y

E(X)is one way to make a “best guess” of X’s value. Specifically, out of all the guesses g that
we can make, the choice “g = E(X)” minimizes the expected square error E(g — X)?. Similarly,
E(Y|X = x) represents a best guess of Y, given that we observe X = x. If g = E(Y|X = x), then
¢ minimizes the expected square error E[(g — Y)*|X = xﬁ.

For example, the expected age of a 2012 voter, as demonstrated by Table 1.3, is

E(Voter’s Age) =23.5x0.16 437 x0.23 + 54.5 % 0.39 + 70 X 0.22 = 48.9

(For this calculation, we have assumed that every age within each category is equally
likely, e.g., a voter is as likely to be 18 as 25, and as likely to be 30 as 44. We have also
assumed that the oldest age of any voter is 75.) This means that if we were asked to guess
the age of a randomly chosen voter, with the understanding that if we were off by e years,
we would lose ¢2 dollars, we would lose the least money, on average, if we guessed 48.9.
Similarly, if we were asked to guess the age of a random voter younger than the age of 45,
our best bet would be

E[Voter’s Age | Voter’s Age < 45] = 23.5 % 0.40 + 37 x 0.60 = 31.6 (1.14)

The use of expectations as a basis for predictions or “best guesses” hinges to a great extent
on an implicit assumption regarding the distribution of X or Y|X = x, namely that such distri-
butions are approximately symmetric. If, however, the distribution of interest is highly skewed,
other methods of prediction may be better. In such cases, for example, we might use the median
of the distribution of X as our “best guess’’; this estimate minimizes the expected absolute error
E(]g — X|). We will not pursue such alternative measures further here.

1.3.9 Variance and Covariance

The variance of a variable X, denoted Var(X) or o2, is a measure of roughly how “spread out”
the values of X in a data set or population are from their mean. If the values of X all hover close
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18 Causal Inference in Statistics

to one value, the variance will be relatively small; if they cover a large range, the variance will
be comparatively large. Mathematically, we define the variance of a variable as the average
square difference of that variable from its mean. It can be computed by first finding its mean,
u, and then calculating

Var(X) = E(X — u)%) (1.15)

The standard deviation oy of a random variable X is the square root of its variance. Unlike the
variance, oy is expressed in the same units as X. For example, the variance of under-45 voters’
age distribution, according to Table 1.3, can easily be calculated to be (Eq. (1.15)):

Var(X) = ((23.5 — 31.5)> x 0.41) + (37 — 31.5)*> x 0.59)
= (64 x 0.41) + (30.25 X .59)
= 26.24 4+ 17.85 = 43.09 years’

while the standard deviation is

oy = V(43.09) = 6.56 years

This means that, choosing a voter at random, chances are high that his/her age will fall less
than 6.56 years away from the average 31.5. This kind of interpretation can be quantified.
For example, for a normally distributed random variable X, approximately two-thirds of the
population values of X fall within one standard deviation of the expectation, or mean. Further,
about 95% fall within two standard deviations from the mean.

Of special importance is the expectation of the product (X — E(X))(Y — E(Y)), which is
known as the covariance of X and Y,

oxy 2 E[(X — EQ))Y — E(Y))] (1.16)

It measures the degree to which X and Y covary, that is, the degree to which the two variables
vary together, or are “associated.” This measure of association actually reflects a specific way
in which X and Y covary; it measures the extent to which X and Y linearly covary. You can
think of this as plotting Y versus X and considering the extent to which a straight line captures
the way in which Y varies as X changes.

The covariance oyy is often normalized to yield the correlation coefficient

Py = (1.17)

O0x0y

which is a dimensionless number ranging from —1 to 1, which represents the slope of the
best-fit line after we normalize both X and Y by their respective standard deviations. pyy is
one if and only if one variable can predict the other in a linear fashion, and it is zero whenever
such a linear prediction is no better than a random guess. The significance of oy, and pyy
will be discussed in the next section. At this point, it is sufficient to note that these degrees of
covariation can be readily computed from the joint distribution P(x,y), using Eqs. (1.16) and
(1.17). Moreover, both oy, and pyy vanish when X and Y are independent. Note that nonlinear
relationships between Y and X cannot naturally be captured by a simple numerical summary;
they require a full specification of the conditional probability P(Y = y|X = x).
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22 Causal Inference in Statistics

This result is not surprising, since Y (the sum of the two dice) can be written as
Y=X+Z7

where Z is the outcome of Die 2, and it stands to reason that if X increases by one unit, say
from X = 3 to X = 4, then E[Y] will, likewise, increase by one unit. The reader might be a bit
surprised, however, to find out that the reverse is not the case; the regression of X on Y does
not have a slope of 1.0. To see why, we write

E[X|Y =y] = E[Y — Z|Y = y] = 1.0y — E[Z|Y = y] (1.20)

and realize that the added term, E[Z|Y = y], since it depends (linearly) on y, makes the slope
less than unity. We can in fact compute the exact value of E[X|Y = y] by appealing to symmetry
and write

E[X|Y =y] = E[Z]Y = y]
which gives, after substituting in Eq. (1.20),
E[X|Y =y] =0.5y

The reason for this reduction is that, when we increase Y by one unit, each of X and Z con-
tributes equally to this increase on average. This matches intuition; observing that the sum of
the two dice is Y = 10, our best estimate of eachis X =5and Z = 5.

In general, if we write the regression equation for Y on X as

y=a+bx (1.21)

the slope b is denoted by Ryy, and it can be written in terms of the covariate oy as follows:

b=Ry = X (1.22)

From this equation, we see clearly that the slope of ¥ on X may differ from the slope
of X on Y—that is, in most cases, Ryy # Ryy. (Ryy = Ryy only when the variance of X is
equal to the variance of Y.) The slope of the regression line can be positive, negative, or zero.
If it is positive, X and Y are said to have a positive correlation, meaning that as the value of
X gets higher, the value of Y gets higher; if it is negative, X and Y are said to have a negative
correlation, meaning that as the value of X gets higher, the value of Y gets lower; if it is zero
(a horizontal line), X and Y have no linear correlation, and knowing the value of X does not
assist us in predicting the value of Y, at least linearly. If two variables are correlated, whether
positively or negatively (or in some other way), they are dependent.

1.3.11 Multiple Regression

It is also possible to regress a variable on several variables, using multiple linear regression.
For instance, if we wanted to predict the value of a variable Y using the values of the variables
X and Z, we could perform multiple linear regression of Y on {X, Z}, and estimate a regression
relationship

Y=ry+nrx+nrz (1.23)
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which represents an inclined plane through the three-dimensional coordinate system.

We can create a three-dimensional scatter plot, with values of ¥ on the y-axis, X on the
x-axis, and Z on the z-axis. Then, we can cut the scatter plot into slices along the Z-axis. Each
slice will constitute a two-dimensional scatter plot of the kind shown in Figure 1.4. Each of
those 2-D scatter plots will have a regression line with a slope r,. Slicing along the X-axis will
give the slope r,.

The slope of ¥ on X when we hold Z constant is called the partial regression coefficient and
is denoted by Ryy.,. Note that it is possible for Ryy to be positive, whereas Ryy., is negative
as shown in Figure 1.1. This is a manifestation of Simpson’s Paradox: positive association
between Y and X overall, that becomes negative when we condition on the third variable Z.

The computation of partial regression coefficients (e.g., r; and r, in (1.23)) is greatly facil-
itated by a theorem that is one of the most fundamental results in regression analysis. It states
that if we write Y as a linear combination of variables X, X,, ... , X, plus a noise term e,

Y=r0+r1X]+r2X2+-~-+rka+€ (124)

then, regardless of the underlying distribution of Y, X, X,, ... , X}, the best least-square coef-
ficients are obtained when € is uncorrelated with each of the regressors X, X,, ... , X;. Thatis,

Cov(e,X))=0 for i=12, ...k

To see how this orthogonality principle is used to our advantage, assume we wish to compute
the best estimate of X = Die I given the sum

Y = Die I + Die 2

Writing
X=a+pY+e A(l.25a)

our goal is to find @ and f in terms of estimable statistical measures. Assuming without loss
of generality E[e] = 0, and taking expectation on both sides of the equation, we obtain

E[X] = a + BE[Y] (1.25b,
o . 51.25a) ) . . )
Further multiplying both sides of the-equation by Y and taking the expectation gives

E[XY] = aE[Y] + PE[Y.?] + E[Ye] (1.26)

1.25b
—> —> The orthogonality principle dictates E[Ye] = 0, and (#25) and (1.26) yield two equations with

two unknowns, « and f. Solving for @ and f, we obtain

a = EX) - B2
Oy
p="2

Oy

which completes the derivation. The slope f could have been obtained from Eq. (1.22), by sim-
ply reversing X and Y, but the derivation above demonstrates a general method of computing
slopes, in two or more dimensions.
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object. A mathematical graph is a collection of vertices (or, as we will call them, nodes) and
edges. The nodes in a graph are connected (or not) by the edges. Figure 1.5 illustrates a simple
graph. X, Y, and Z (the dots) are nodes, and A and B (the lines) are edges.

X Y Z

Figure 1.5 An undirected graph in which nodes X and Y are adjacent and nodes Y and Z are adjacent
but not X and Z

Two nodes are adjacent if there is an edge between them. In Figure 1.5, X and Y are adjacent,
and Y and Z are adjacent. A graph is said to be a complete graph if there is an edge between
every pair of nodes in the graph.

A path between two nodes X and Y is a sequence of nodes beginning with X and ending
with Y, in which each node is connected to the next by an edge. For instance, in Figure 1.5,
there is a path from X to Z, because X is connected to Y, and Y is connected to Z.

Edges in a graph can be directed or undirected. Both of the edges in Figure 1.5 are
undirected, because they have no designated “in” and “out” ends. A directed edge, on the
other hand, goes out of one node and into another, with the direction indicated by an arrow
head. A graph in which all of the edges are directed is a directed graph. Figure 1.6 illustrates
a directed graph. In Figure 1.6, A is a directed edge from X to ¥ and B is a directed edge from
YtoZ

X Y V4

Figure 1.6 A directed graph in which node X is a parent of Y and Y is a parent of Z

The node that a directed edge starts from is called the parent of the node that the edge goes
into; conversely, the node that the edge goes into is the child of the node it comes from. In
Figure 1.6, X is the parent of Y, and Y is the parent of Z; accordingly, Y is the child of X,
and Z is the child of Y. A path between two nodes is a directed path if it can be traced along
the arrows, that is, if no node on the path has two edges on the path directed into it, or two
edges directed out of it. If two nodes are connected by a directed path, then the first node is the
ancestor of every node on the path, and every node on the path is the descendant of the first
node. (Think of this as an analogy to parent nodes and child nodes: parents are the ancestors of
their children, and of their children’s children, and of their children’s children’s children, etc.)
For instance, in Figure 1.6, X is the ancestor of both Y and Z, and both Y and Z are descendants
of X.

When a directed path exists from a node to itself, the path (and graph) is called cyclic. A
directed graph with no cycles is acyclic. For example, in Figure 1.7(a) the graph is acyclic;
however, the graph in Figure 1.7(b) is cyclic. Note that inlj\(a) there is no directed path from
any node to itself, whereas in! XW there are directed paths from X back to X, for example.
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Because there are edges connecting Z to X and Y, we can conclude just by looking at the
graphical model that there is some function f, in the model that assigns Z a value based on X
and Y, and therefore that X and Y are causes of Z. However, without the fuller specification of
an SCM, we can’t tell from the graph what the function is that defines Z—or, in other words,
how X and Y cause Z.

If graphical models contain less information than SCMs, why do we use them at all? There
are several reasons. First, usually the knowledge that we have about causal relationships is not
quantitative, as demanded by an SCM, but qualitative, as represented in a graphical model.
We know off-hand that sex is a cause of height and that height is a cause of performance in
basketball, but we would hesitate to give numerical values to these relationships. We could,
instead of drawing a graph, simply create a partially specified version of the SCM:

SCM 1.5.2 (Basketball Performance Based on Height and Sex)
V = {Height, Sex, Performance}, U ={U;,U,,U;}, F ={f1, f2}
Sex = Uj
Height = f,(Sex, U,)
Performance = f,(Height, Sex, Us)

Here, U = {U,, U,, U5} represents unmeasured factors that we do not care to name, but that
affect the variables in V that we can measure. The U factors are sometimes called “error terms”
or “omitted factors.” These represent additional unknown and/or random exogenous causes of
what we observe.

But graphical models provide a more intuitive understanding of causality than do such par-
tially specified SCMs. Consider the SCM and its associated graphical model introduced above;
while the SCM and its graphical model contain the same information, that is, that X causes
Z and Y causes Z, that information is more quickly and easily ascertained by looking at the
graphical model.

Study questions
Study question 1.5.1

Suppose we have the following SCM. Assume all exogenous variables are independent and
that the expected value of each is 0.

SCM 1.5.3

V={X,Y,Z}, U= {UXv UY’ Uz}» F= {fx’fy’fz}

Jx 1 X =Uy
fZ:Z=£+UZ

16
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(a) Draw the graph that complies with the model.

(b) Determine the best guess of the value (expected value) of Z, given that we observe Y = 3.
(c) Determine the best guess of the value of Z, given that we observe X = 3.

(d) Determine the best guess of the value of Z, given that we observe X = 1 and Y = 3.

(e) Assume that all exogenous variables are normally distributed with zero means and unit

variance, that is, o = 1.

(i) Determine the best guess of X, given that we observed Y = 2.

(ii) (Advanced) Determine the best guess of Y, given that we observed X = 1 and Z = 3.
[Hint: You may wish to use the technique of multiple regression, together with the
fact that, for every three normally distributed variables, say X, Y, and Z, we have

ElY|X =x,Z =z7] = Ryy.zx + Ry, x2.]

1.5.2  Product Decomposition

Another advantage of graphical models is that they allow us to express joint distributions very
efficiently. So far, we have presented joint distributions in two ways. First, we have used tables,
in which we assigned a probability to every possible combination of values. This is intuitively
easy to parse, but in models with many variables, it can take up a prohibitive amount of space;
10 binary variables would require a table with 1024 rows!

Second, in a fully specified SCM, we can represent the joint distributions of n variables
with greater efficiency: We need only to specify the n functions that govern the relationships
between the variables, and then from the probabilities of the error terms, we can discover all
the probabilities that govern the joint distribution. But we are not always in a position to fully
specify a model; we may know that one variable is a cause of another but not the form of the
equation relating them, or we may not know the distributions of the error terms. Even if we
know these objects, writing them down may be easier said than done, especially, when the
variables are discrete and the functions do not have familiar algebraic expressions.’g

Fortunately, we can use graphical models to help overcome both of these barriers through
the following rule.

Rule of product decomposition

For any model whose graph is acyclic, the joint distribution of the variables in the model is
given by the product of the conditional distributions P(child|parents) over all the “families” in
the graph. Formally, we write this rule as

P(x), %, ... ox,) = [ [ Pilpay) (1.29)

where pa; stands for the values of the parents of variable X;, and the product [, runs over all
i, from 1 to n. The relationship (1.29) follows from certain universally true independencies
among the variables, which will be discussed in the next chapter in more detail.

For example, in a simple chain graph X — Y — Z, we can write directly:

PX=x,Y=y,Z=2)=PX=x)PY =y|X=x)PZ=z]Y =)
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(c) Using your results for (b), find a combination of parameters that exhibits Simpson’s
reversal.

Study question 1.5.3

Consider a graph X, — X, — X3 — X, of binary random variables, and assume that the con-
ditional probabilities between any two consecutive variables are given by

PX;=1X,_,,=1)=p
PX;=1|X;_.,=0)=¢
PX, = 1) = p,
Compute the following probabilities
PX, =1,X=0,X;=1,X,=0)
PX,=11X;=1)
PX, =1X,=1)

Study question 1.5.4

Define the structural model that corresponds to the Monty Hall problem, and use it to describe
the joint distribution of all variables.

Bibliographical Notes for Chapter 1

An extensive account of the history of Simpson’s paradox is given in Pearl (2009, pp. 174-182),
including many attempts by statisticians to resolve it without invoking causation. A more
recent account, geared for statistics instructors is given in (Pearl 2014c). Among the many
texts that provide basic introductions to probability theory, Lindley (2014) and Pearl (1988,
Chapters 1 and 2) are the closest in spirit to the Bayesian perspective used in Chapter 1. The
textbooks by Selvin (2004) and Moore et al. (2014) provide excellent introductions to clas-
sical methods of statistics, including parameter estimation, hypothesis testing and regression
analysis.

The Monty Hall problem, discussed in Section 1.3, appears in many introductory books
on probability theory (e.g., Grinstead and Snell 1998, p. 136; Lindley 2014, p. 201) and
is mathematically equivalent to the “Three Prisoners Dilemma” discussed in (Pearl 1988,
pp- 58-62). Friendly introductions to graphical models are given in Elwert (2013), Glymour
and Greenland (2008), and the more advanced texts of Pearl (1988, Chapter 3), Lauritzen
(1996) and Koller and Friedman (2009). The product decomposition rule of Section 1.5.2
was used in Howard and Matheson (1981) and Kiiveri et al. (1984) and became the semantic
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SCM 2.2.3 (Work Hours, Training, and Race Time)

V={X,Y,Z},U= {UX» UY’ Uz}»F= {fx’fy’fz}

Jx 1 X=Uy
fy Y =84—x+Uy
100

SCMs 2.2.1-2.2.3 share the graphical model shown in Figure 2.1.

SCMs 2.2.1 and 2.2.3 deal with continuous variables; SCM 2.2.2 deals with categorical
variables. The relationships between the variables in 2.2.1are all positive (i.e., the higher the
value of the parent variable, the higher the value of the child variable); the correlations between
the variables in 2.2.3 are all negative (i.e., the higher the value of the parent variable, the lower
the value of the child variable); the correlations between the variables in 2.2.2 are not linear at
all, but logical. No two of the SCMs share any functions in common. But because they share
a common graphical structure, the data sets generated by all three SCMs must share certain
independencies—and we can predict those independencies simply by examining the graphical
model in Figure 2.1. The independencies shared by data sets generated by these three SCMs,
and the dependencies that are likely shared by all such SCMs, are these:

1. ZandY ail*l G ependent
For some z,y, P(Z =z|Y =y) # P(Z =72)
2. Yand X arzé,\filé/pendent
For some y,x,P(Y =y|X =x) #P(Y =)
3. Z and X are likely dependent
For some z,x,P(Z =zl X =x) # P(Z =z)
4. Z and X are independent, conditional on Y
Forallx,y,z, PZ =z|X =x,Y =y)=P(Z =z|Y =)

To understand why these independencies and dependencies hold, let’s examine lti]ﬁe §raphical
model. First, we will verify that any two variables with an edge between them are,\?ll pendent.
Remember tth%% an arrow from one variable to another indicates that the first variable causes
the second A s i a the value of the first variable is part of the function
that determines the value of the second. Therefore, the second variable depends on the first for

Ux

X
Uy

Y
Uz

Figure 2.1 The graphical model of SCMs 2.2.1-2.2.3
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its value; there is some cas in which changing the value of the first variable changes the value
of the second. "Ilﬁat/{neans that when we examine those variables in the data set, the probability
that one variable t,akles a given value will change, given that we know the value of the other
variable. So ir?/égyl‘cgausal model, regardless of the specific functions, two variables connected
by an edge are dependent. By this reasoning, we can see that in SCMs 2.2.1-2.2.3, Z and Y
arc'al,(ﬁ%endent, and Y and X arléA(alé/pend ng

From these two facts, we can concﬁ%that Z and X are likely dependent. If Z depends on Y
for its value, and Y depends on X for its value, then Z likely depends on X for its value. There
are pathological cases in which this is not true. Consider, for example, the following SCM,
which also has the graph in Figure 2.1.

SCM 2.2.4 (Pathological Case of Intransitive Dependence)
V=A{X,Y,Z},U = {Uyx, Uy, Uz}, F = {fx.fy.f7}
Jx X =Uy

a IFX=1ANDU, =1
fr:Y={b IFX=2AND U, =1

¢ IFU, =2
fizo i FY=cORU; =1
YT IFU,=2

In this case, no matter what value Uy and U, take, X will have no effect on the value that
Z takes; changes in X account for variation in Y between a and b, but Y doesn’t affect Z unless
it takes the value c. Therefore, X and Z vary independently in this model. We will call cases
such as these intransitive cases.

However, intransitive cases form only a small number of the cases we will encounter. In
most cases, the values of X and Z vary together just as X and Y do, and Y and Z. Therefore,
they are likely dependent in the data set.

Now, let’s consider point 4: Z and X are independent conditional on Y. Remember that when
we condition on Y, we filter the data into groups based on the value of Y. So we compare all
the cases where Y = q, all the cases where Y = b, and so on. Let’s assume that we’re looking
at the cases where Y = a. We want to know whether, in these cases only, the value of Z is
independent of the value of X. Previously, we determined that X and Z are likely dependent,
because when the value of X changes, the value of Y likely changes, and when the value of Y
changes, the value of Z is likely to change. Now, however, examining only the cases where
Y = a, when we select cases with different values of X, the value of Uy changes so as to keep
Y atY = a, butsince Z depends only on Y and U, not on Uy, the value of Z remains unaltered.
So selecting a different value of X doesn’t change the value of Z. So, in the case where Y = q,
X is independent of Z. This is of course true no matter which specific value of ¥ we condition
on. So X is independent of Z, conditional on Y.

This configuration of variables—three nodes and two edges, with one edge directed into and
one edge directed out of the middle variable—is called a chain. Analogous reasoning to the
above tells us that in any graphical model, given any two variables X and Y, if the only path
between X and Y is composed entirely of chains, then X and Y are independent conditional
on any intermediate variable on that path. This independence relation holds regardless of the
functions that connect the variables. This gives us a rule:

# This occurs for example when X and Uy are fair coins and Y = 1 if and only X=U,. In this case P(Y=1|X=1) =
P(Y=11X=0) = P(Y=1)=1/2. Such pathological cases require precise numerical probabilities to achieve independence
(P(X=1)=P(Uy)=1/2); they are rare, and can be ignored for all practical purposes.
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40 Causal Inference in Statistics

If we assume that the error terms Uy, Uy, and U, are independent, then by examining the
graphical model in Figure 2.2, we can determine that SCMs 2.2.5 and 2.2.6 share the following
dependencies and independencies:

. Xand Y arel,l\éeeli)/endent.
For some x,y, P(X = x|Y = y) # P(X = x)
2. Xand Z arexczfc)ﬁendent.
For some x,z, PX = x|Z =2) # PX = x)
3. Z and Y are likely dependent.
For some z,y, P(Z =z|Y =y) # P(Z =2)
4. Y and Z are independent, conditional on X.
Forall %, v, 2, P(Y = y|Z =2, X =x) = P(Y = y|X = x)

Points 1 and 2 follow, once again, from the fact that ¥ and Z are both di %{cﬁly connected to
X by an arrow, so when the value of X changes, the values of both Y and ,I\C%Xnge. This tells
us something further, however: If ¥ changes when X changes, and Z changes when X changes,
then it is likely (though not certain) that ¥ changes together with Z, and vice versa. Therefore,
since a change in the value of Y gives us information about an associated change in the value
of Z,Y \glzld Z are likely dependent variables.

Why, then, are Y and Z independent conditional on X? Well, what happens when we condi-
tion on X? We filter the data based on the value of X. So now, we’re only comparing cases where
the value of X is constant. Since X does not change, the values of Y and Z do not change in
accordance with it—they change only in response to Uy and U, which we have assumed to be
independent. Therefore, any additional changes in the values of ¥ and Z must be independent
of each other.

This configuration of variables—three nodes, with two arrows emanating from the middle
variable—is called a fork. The middle variable in a fork is the common cause of the other two
variables, and of any of their descendants. If two variables share a common cause, and if that
common cause is part of the only path between them, then analogous reasoning to the above
tells us that these dependencies and conditional independencies are true of those variables.
Therefore, we come by another rule:

Rule 2 (Conditional Independence in Forks) Ifavariable X is a common cause of variables
Y and Z, and there is only one path between Y and Z, then Y and Z are independent conditional
on X.

2.3 Colliders

So far we have looked at two simple configurations of edges and nodes that can occur on a path
between two variables: chains and forks. There is a third such configuration that we speak of
separately, because it carries with it unique considerations and challenges. The third config-
uration contains a collider node, and it occurs when one node receives edges from two other
nodes. The simplest graphical causal model containing a collider is illustrated in Figure 2.3,
representing a common effect, Z, of two causes X and Y.

As is the case with every graphical causal model, all SCMs that have Figure 2.3 as their
graph share a set of dependencies and independencies that we can determine from the graphical
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Ux Uy

Figure 2.3 A simple collider

model alone. In the case of the model in Figure 2.3, assuming independence of Uy, Uy, and
U,, these independencies are as follows:

1. Xand Z arlé,%%endent.

For some x,z, P(X = x|Z =2) # P(X = Xx)
2. Yand Z aré,@@};endent.

For some y,z, P(Y = y|Z=272) # P(Y =)
3. X and Y are independent.

For all x, y,[,fl’(( =x|Y =y)=PX =Xx)
4. XandY artlz/\t%pendent conditional on Z.

For some x,y,z, PX =x|Y =y,Z=2) # PX =x|Z =72)

The truth of the first two points was established in Section 2.2. Point 3 is self-evident; neither
X nor Y is a descendant or an ancestor of the other, nor do they depend for their value on the
same variable. They respond only to Uy and Uy, which are assumed independent, so there is no
causal mechanism by which variations in the value of X should be associated with variations
in the value of Y. This independence also reflects our understanding of how causation operates
in time; events that are independent in the present do not become dependent merely because
they may have common effects in the future.

Why, then, does point 4 hold? Why would two independent variables suddenly become
dependent when we condition on their common effect? To answer this question, we return
again to the definition of conditioning as filtering by the value of the conditioning variable.
When we condition on Z, we limit our comparisons to cases in which Z takes the same value.
But remember that Z depends, for its value, on X and Y. So, when comparing cases where
Z taka takes Some)}eﬁ-@&value, any change in value of X must be compensated for by a change
in the value of Y—otherwise, the value of Z would change as well.

The reasoning behind this attribute of colliders—that conditioning on a collision node pro-
duces a dependence between the node’s parents—can be difficult to grasp at first. In the most
basic situation where Z = X + Y, and X and Y are independent variables, we have the follow-
ing logic: If I tell you that X = 3, you learn nothing about the potential value of Y, because
the two numbers are independent. On the other hand, if I start by telling you that Z = 10, then
telling you that X = 3 immediately tells you that ¥ must be 7. Thus, X and Y are dependent,
given that Z = 10.

This phenomenon can be further clarified through a real-life example. For instance, suppose
a certain college gives scholarships to two types of students: those with unusual musical talents
and those with extraordinary grade point averages. Ordinarily, musical talent and scholastic
achievement are independent traits, so, in the population at large, finding a person with musical
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talent tells us nothing about that person’s grades. However, discovering that a person is on a
scholarship changes things; knowing that the person lacks musical talent then tells us immedi-
ately that he is likely to have high grade point average. Thus, two variables that are marginally
independent become dependent upon learning the value of a third variable (scholarship) that
is a common effect of the first two.

Let’s examine a numerical example. Consider a simultaneous (independent) toss of two
fair coins and a bell that rings whenever at least one of the coins lands on heads. Let the
outcomes of the two coins be denoted X and Y, respectively, and let Z stand for the state of
the bell, with Z = 1 representing ringing, and Z = 0 representing silence. This mechanism can

—> be represented asa collider as in Figure 2.3, in which the outcomes of the two coins are the
parent nodes, and the state of the bell is the collision node.

If we know that Coin 1 landed on heads, it tells us nothing about the outcome of Coin 2, due
to their independence. But suppose that we hear the bell ring and then we learn that Coin 1
landed on tails. We now know that Coin 2 must have landed on heads. Similarly, if we assume
that we’ve heard the bell ring, the probability that Coin 1 landed on heads changes if we learn
that Coin 2 also landed on heads. This particular change in probability is somewhat subtler
than the first case.

To see the latter calculation, consider the initial probabilities as shown in Table 2.1.

We see that

P(X = “Heads”|Y = “Heads”) = P(X = “Tails”|Y = “Tails”) = %

That is, X and Y are independent. Now, let’s condition on Z = 1 and Z = 0 (the bell ringing
and not ringing). The resulting data subsets are shown in Table 2.2.
By calculating the probabilities in these tables, we obtain
12

1
P(X = “Heads”|Z=1)==+-==
( eads” | ) 3+3 3

If we further filter the Z = 1 subtable to examine only those cases where Y = “Heads”, we get
P(X = “Heads”|Y = “Heads”, Z =1) = %

We see that, given Z = 1, the probability of X = “Heads” changes from % to 1 upon learn-
ing that ¥ = “Heads.” So, clearly, X and Y are dependent given Z = 1. A more pronounced
dependence occurs, of course, when the bell does not ring (Z = 0), because then we know that
both coins must have landed on tails.

Table 2.1 Probability distribution for two flips of a fair coin, with X
representing flip one, Y representing flip two, and Z representing a bell
that rings if either flip results in heads

X Y z P(X,Y,Z)
Heads Heads 1 0.25
Heads Tails 1 0.25
Tails Heads 1 0.25
Tails Tails 0 0.25
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Table 2.2 Conditional probability distributions for the distribution
in Table 2.1 (Top: Distribution conditional on Z = 1. Bottom:
Distribution conditional on Z = 0)

X Y PX,Y|Z=1)
Heads Heads 0.333
Heads Tails 0.333
Tails Heads 0.333
Tails Tails 0

X Y PrX,Y|Z=0)
Heads Heads 0
Heads Tails 0

Tails Heads 0

Tails Tails 1

Another example of colliders in action—one that may serve to further illuminate the diffi-
culty that such configurations can present to statisticians—is the Monty Hall Problem, which
we first encountered in Section 1.3. At its heart, the Monty Hall Problem reflects the presence
of a collider. Your initial choice of door is one parent node; the door behind which the car is
placed is the other parent node; and the door Monty opens to reveal a goat is the collision node,
causally affected by both the other two variables. The causation here is clear: If you choose
Door A, and if Door A has a goat behind it, Monty is forced to open whichever of the remaining
doors that has a goat behind it.

Your initial choice and the location of the car are independent; that’s why you initially have
a % chance of choosing the door with the car behind it. However, as with the two independent
coins, conditional on Monty’s choice of door, your initial choice and the placement of the
prizes are dependent. Though the car may only be behind Door B in % of cases, it will be

behind Door B in 2 of cases in which you choose Door A and Monty opened Door C.

Just as conditioning on a collider makes previously independent variables dependent, so too
does conditioning on any descendant of a collider. To see why this is true, let’s return to our
example of two independent coins and a bell. Suppose we do not hear the bell directly, but
instead rely on a witness who is somewhat unreliable; whenever the bell does not ring, there
is 50% chance that our witness will falsely report that it did. Letting W stand for the witness’s
report, the causal structure is shown in Figure 2.4, and the probabilities for all combinations
of X, Y, and W are shown in Table 2.3.

The reader can easily verify that, based on this table, we have

P(X = “Heads”|Y = “Heads”) = P(X = “Heads”) = %

and

P(X = “Heads”|W = 1) = (0.25 + 0.25) 05+ (0.25+0.25+0.25 4+ 0.125) = (;)%
and

P(X = “Heads”|Y = “Heads”, W = 1) = 025 67 < (0.25 + 0.25) = 0.5 < %
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Uy Uy
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X l Y
vy 12
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Figure 2.4 A simple collider, Z, with one child, W, representing the scenario from Table 2.3, with X
representing one coin flip, Y representing the second coin flip, Z representing a bell that rings if either X
or Y is heads, and W representing an unreliable witness who reports on whether or not the bell has rung

Table 2.3 Probability distribution for two flips of a fair coin and a bell
that rings if either flip results in heads, with X representing flip one,

Y representing flip two, and W representing a witness who, with variable
reliability, reports whether or not the bell has rung

X Y w PX,Y, W)
Heads Heads 1 0.25
Heads Tails 1 0.25
Tails Heads 1 0.25
Tails Tails 1 0.125
Tails Tails 0 0.125

Thus, X and Y are independent before reading the witness report, but become dependent
thereafter.

These considerations lead us to a third rule, in addition to the two we established in
Section 2.2.

Rule 3 (Conditional Independence in Colliders) If a variable Z is the collision node
between two variables X and Y, and there is only one path between X and Y, then X and Y are
unconditionally independent but are dependent conditional on Z and any descendants of Z.

Rule 3 is extremely important to the study of causality. In the coming chapters, we will see
that it allows us to test whether a causal model could have generated a data set, to discover
models from data, and to fully resolve Simpson’s Paradox by determining which variables to
measure and how to estimate causal effects under confounding.

Remark Inquisitive students may wonder why it is that dependencies associated with con-
ditioning on a collider are so surprising to most people—as in, for example, the Monty Hall
example. The reason is that humans tend to associate dependence with causation. Accordingly,
they assume (wrongly) that statistical dependence between two variables can only exist if there
is a causal mechanism that generates such dependence; that is, either one of the variables causes
the other or a third variable causes both. In the case of a collider, they are surprised to find a
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X—>R—S—»T<=2—U=—V—>Y

Figure 2.5 A directed graph for demonstrating conditional independence (error terms are not shown
explicitly)

X—>R—>»S—»TeU=—V—>Y

P

Figure 2.6 A directed graph in which P is a descendant of a collider

dependence that is created in a third way, thus violating the assumption of “no correlation
without causation.”

Study questions
Study question 2.3.1

(a) List all pairs of variables in Figure 2.5 that are independent conditional on the set
Z={R,V}.

(b) For each pair of nonadjacent variables in Figure 2.5, give a set of variables that, when
conditioned on, renders that pair independent.

(c) List all pairs of variables in Figure 2.6 that are independent conditional on the set
Z = {R, P}.

(d) For each pair of nonadjacent variables in Figure 2.6, give a set of variables that, when
conditioned on, renders that pair independent.

(e) Suppose we generate data by the model described in Figure 2.5, and we fit them with the
linear equation Y = a + bX + c¢Z. Which of the variables in the model may be chosen for
Z so as to guarantee that the slope b would be equal to zero? [Hint: Recall, a non zero
slope implies that Y and X are dependent given Z.]

(f) Continuing question (e),%suppose we fit the data with the equation:
butnowin referenceo Figure 2.6,

Y=a+bX+cR+dS+eT+fP

which of the coefficients would be zero?

2.4 d-separation

Causal models are generally not as simple as the cases we have examined so far. Specifically,
it is rare for a graphical model to consist of a single path between variables. In most graphical
models, pairs of variables will have multiple possible paths connecting them, and each

path will traverse a variety of chains, forks, and colliders. The question remains whether there
is a criterion or process that can be applied to a graphical causal model of any complexity in
order to predict dependencies that are shared by all data sets generated by that graph.
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There is, indeed, such a process: d-separation, which is built upon the rules established in
the previous section. d-separation (the d stands for “directional”) allows us to determine, for
any pair of nodes, whether the nodes are d-connected, meaning there exists a connecting path
between them, or d-separated, meaning there exists no such path. When we say that a pair of
nodes are d-separated, we mean that the variables they represent are definitely independent;
when we say that a pair of nodes are d-connected, we mean that they are possibly, or most
likely, dependent.!

Two nodes X and Y are d-separated if every path between them (should any exist) is blocked.
If even one path between X and Y is unblocked, X and Y are d-connected. The paths between
variables can be thought of as pipes, and dependence as the water that flows through them; if
even one pipe is unblocked, some water can pass from one place to another, and if a single path
is clear, the variables at either end will be dependent. However, a pipe need only be blocked
in one place to stop the flow of water through it, and similarly, it takes only one node to block
the passage of dependence in an entire path.

There are certain kinds of nodes that can block a path, depending on whether we are perform-
ing unconditional or conditional d-separation. If we are not conditioning on any variable, then
only colliders can block a path. The reasoning for this is fairly straightforward: as we saw in
Section 2.3, unconditional dependence can’t pass through a collider. So if every path between
two nodes X and Y has a collider in it, then X and Y cannot be unconditionally dependent; they
must be marginally independent.

If, however, we are conditioning on a set of nodes Z, then the following kinds of nodes can
block a path:

e A collider that is not conditioned on (i.e., not in Z), and that has no descendants in Z.
e A chain or fork whose middle node is in Z.

The reasoning behind these points goes back to what we learned in Sections 2.2 and 2.3.
A collider does not allow dependence to flow between its parents, thus blocking the path.
But Rule 3 tells us that when we condition on a collider or its descendants, the parent nodes
may become dependent. So a collider whose collision node is not in the conditioning set Z
would block dependence from passing through a path, but one whose collision node, or its
descendants, is in the conditioning set would not. Conversely, dependence can pass through
noncolliders—chains and forks—but Rules 1 and 2 tell us that when we condition on them,
the variables on either end of those paths become independent (when we consider one path at
a time). So any noncollision node in the conditioning set would block dependence, whereas
one that is not in the conditioning set would allow dependence through.

We are now prepared to give a general definition of d-separation:

Definition 2.4.1 (d-separation) A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A — B — C or a fork A < B — C such that the middle node B
isin Z (i.e., B is conditioned on), or

2. p contains a collider A — B < C such that the collision node B is not in Z, and no descen-
dant of Bis in Z.

! The d-connected variables will be dependent for almost all sets of functions assigned to arrows in the graph, the
exception being the sorts of intransitive cases discussed in Section 2.2.
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U, Uy U
Lo |
Z l X Y
Uy w
\. U
Figure 2.7 A graphical model containing a collider with child and a fork

If Z blocks every path between two nodes X and Y, then X and Y are d-separated, conditional
on Z, and thus are independent conditional on Z.

Armed with the tool of d-separation, we can now look at some more complex graph-
ical models and determine which variables in them are independent and dependent, both
marginally and conditional on other variables. Let’s take, for example, the graphical model in
Figure 2.7. This graph might be associated with any number of causal models. The variables
might be discrete, continuous, or a mixture of the two; the relationships between them might
be linear, exponential, or any of an infinite number of other relations. No matter the model,
however, d-separation will always provide the same set of independencies in the data the
model generates.

In particular, let’s look at the relationship between Z and Y. Using an empty conditioning
set, they are d-separated, which tells us that Z and Y are unconditionally independent. Why?
Because there is no unblocked path between them. There is only one path between Z and Y,
and that path is blocked by a collider (Z - W « X).

But suppose we condition on W. d-separation tells us that Z and Y are d-connected, con-
ditional on W. The reason is that our conditioning set is now { W}, and since the only path
between Z and Y contains a fork (X) that is not in that set, and the only collider (W) on the path
is in that set, that path is not blocked. (Remember that conditioning on colliders “unblocks”
them.) The same is true if we condition on U, because U is a descendant of a collider along
the path between Z and Y.

On the other hand, if we condition on the set { W, X}, Z and Y remain independent. This time,
the path between Z and Y is blocked by the first criterion, rather than the second: There is now a
noncollider node (X) on the path that is in the conditioning set. Though W has been unblocked
by conditioning, one blocked node is sufficient to block the entire path. Since the only path
between Z and Y is blocked by this conditioning set, Z and Y are d-separated conditional on
{W,X}.

Now, consider what happens when we add another path between Z and Y, as in
Figure 2.8. Z and Y are now unconditionally dependent. Why? Because there is a path
between them (Z « T — Y) that contains no colliders. If we condition on 7, however,
that path is blocked, and Z and Y become independent again. Conditioning on {7, W},
on the other hand, makes them d-connected again (conditioning on 7 blocks the path
Z < T — Y, but conditioning on W unblocks the path Z - W «~ X — Y). And if we
add X to the conditioning set, making it {7, W,X},Z, and Y become independent yet
again! In this graph, Z and Y are d-connected (and therefore likely dependent) conditional
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Figure 2.8 The model from Figure 2.7 with an additional forked path between Z and Y

on W, U, {W,U},{W,T},{U,T},{W,U,T},{W,X},{U,X}, and {W,U,X}. They are
d-separated (and therefore independent) conditional on 7, {X, T}, {W,X,T},{U,X, T}, and
{W,U,X,T}. Note that T is in every conditioning set that d-separates Z and Y; that’s because
T is the only node in a path that unconditionally d-connects Z and Y, so unless it is conditioned
on, Z and Y will always be d-connected.

Study questions
Study question 2.4.1

Figure 2.9 below represents a causal graph from which the error terms have been deleted.
Assume that all those errors are mutually independent.

(a) For each pair of nonadjacent nodes in this graph, find a set of variables that d-separates
that pair. What does this list tell us about independencies in the data?

(b) Repeat question (a) assuming that only variables in the set {Z;,W,X,Z,} can be
measured.

(c) For each pair of nonadjacent nodes in the graph, determine whether they are independent
conditional on all other variables.

(d) For every variable V in the graph, find a minimal set of nodes that renders V independent
of all other variables in the graph.

(e) Suppose we wish to estimate the value of Y from measurements taken on all other variables
in the model. Find the smallest set of variables that would yield as good an estimate of Y
as when we measured all variables.

(f) Repeat question (e) assuming that we wish to estimate the value of Z,.

(g) Suppose we wish to predict the value of Z, from measurements of Zs. Would the quality of
our prediction improve if we add measurement of W? Explain.

2.5 Model Testing and Causal Search

The preceding sections demonstrate that causal models have festable implications in the data
sets they generate. For instance, if we have a graph G that we believe might have generated
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w
Y

Figure 2.9 A causal graph used in study question 2.4.1, all U terms (not shown) are assumed
independent

a data set S, d-separation will tell us which variables in G must be independent conditional
on which other variables. Conditional independence is something we can test for using a data
set. Suppose we list the d-separation conditions in G, and note that variables A and B must
be independent conditional on C. Then, suppose we estimate the probabilities based on S, and
discover that the data suggests that A and B are not independent conditional on C. We can then
reject G as a possible causal model for S.

We can demonstrate it on the causal model of Figure 2.9. Among the many conditional
independencies advertised by the model, we find that W and Z; are independent given X,
because X d-separates W from Z;. Now suppose we regress W on X and Z;. Namely, we find
the line

W =ryxx+rz

that best fits our data. If it turns out that r; is not equal to zero, we know that W depends
on Z, given X and, consequently, that the model is wrong. [Recall, conditional correlation
implies conditional dependence.] Not onlyA\gve know that the model is wrong, but we also know
where it is wrong; the true model must have a path between W and Z, that is not d-separated
by X. Finally, this is a theoretical result that holds for all acyclic models with independent
errors (Verma and Pearl 1990), and we also know that if every d-separation condition in the
model matches a conditional independence in the data, then no further test can refute the
model. This means that, for any data set whatsoever, one can always find a set of functions
F for the model and an assignment of probabilities to the U terms, so as to generate the data
precisely.

There are other methods for testing the fitness of a model. The standard way of evaluating
fitness involves a statistical hypothesis testingover the entire model, that is, we evaluate how
likely it is for the observed samples to have been generated by the hypothesized model, as
opposed to sheer chance. However, since the model is not fully specified, we need to first
estimate its parameters before evaluating that likelihood. This can be done (approximately)
when we assume a linear and Gaussian model (i.e., all functions in the model are linear and all
error terms are normally distributed), because, under such assumptions, the joint distribution
(also Gaussian) can be expressed succinctly in terms of the model’s parameters, and we can
then evaluate the likelihood that the observed samples +& have been generated by the fully
parameterized model (Bollen 1989).

There are, however, a number of issues with this procedure. First, if any parameter cannot
be estimated, then the joint distribution cannot be estimated, and the model cannot be tested.
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As we shall see in Section 3.8.3, this can occur when some of the error terms are correlated or,
equivalently, when some of the variables are unobserved. Second, this procedure tests models
globally. If we discover that the model is not a good fit to the data, there is no way for us to
determine why that is—which edges should be removed or added to improve the fit. Third,
when we test a model globally, the number of variables involved may be large, and if there is
measurement noise and/or sampling variation associated with each variable, the test will not
be reliable.

d-separation presents several advantages over this global testing method. First, it is nonpara-
metric, meaning that it doesn’t rely on the specific functions that connect variables; instead,
it uses only the graph of the model in question. Second, it tests models locally, rather than
globally. This allows us to identify specific areas, where our hypothesized model is flawed,
and to repair them, rather than starting from scratch on a whole new model. It also means that
if, for whatever reason, we can’t identify the coefficient in one area of the model, we can still
get some incomplete information about the rest of the model. (As opposed to the first method,
in which if we could not estimate one coefficient, we could not test any part of the model.)

If we had a computer, we could test and reject many possible models in this way, even-
tually whittling down the set of possible models to only a few whose testable implications
do not contradict the dependencies present in the data set. It is a set of models, rather than a
single model, because some graphs have indistinguishable implications. A set of graphs with
indistinguishable implications is called an equivalence class. Two graphs G| and G, are in
the same equivalence class if they share a common skeleton—that is, the same edges, regard-
less of the direction of those edges—and if they share common v-structures, that is, colliders
whose parents are not adjacent. Any two graphs that satisfy this criterion have identical sets of
d-separation conditions and, therefore, identical sets of testable implications (Verma and Pearl
1990).

The importance of this result is that it allows us to search a data set for the causal models
that could have generated it. Thus, not only can we start with a causal model and generate
a data set—but we can also start with a data set, and reason back to a causal model. This is
enormously useful, since the object of most data-driven research is exactly to find a model that
explains the data.

There are other methods of causal search—including some that rely on the kind of global
model testing with which we began the section—but a full investigation of them is beyond
the scope of this book. Those interested in learning more about search should refer to (Pearl
2000; Pearl and Verma 1991; Rebane and Pearl 2003; Spirtes and Glymour 1991; Spirtes et al.
1993).

Study questions
Study question 2.5.1

(a) Which of the arrows in Figure 2.9 can be reversed without being detected by any statistical
test? [Hint: Use the criterion for equivalence class.

(b) List all graphs that are observationally equivalent to the one in Figure 2.9.

(c) Listthe arrows in Figure 2.9 whose directionality can be determined from nonexperimental
data.
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(d) Write down a regression equation for Y such that, if a certain coefficient in that equation
is nonzero, the model of Figure 2.9 is wrong.

(e) Repeat question (d) for variable Zs.

(f) Repeat question (e) assuming the X is not measured.

(g) How many regression equations of the type described in (d) and (e) are needed to ensure
that the model is fully tested, namely, that if it passes all these testsyit cannot be refuted

DY, additional tests of these kind. [Hint: Ensure that you test every vanishing partial regression

coefficient that is implied by the product decomposition (1.29).]

Bibliographical Notes for Chapter 2

The distinction between chains and forks in causal models was made by Simon (1953) and
Reichenbach (1956) while the treatment of colliders (or common effect) can be traced back
to the English economist Pigou (1911) (see Stigler 1999, pp. 36—41). In epidemiology, collid-
ers came to be associated with “Selection bias” or “Berkson paradox” (Berkson 1946) while
in artificial intelligence it came to be known as the “explaining away effect” (Kim and Pearl
1983). The rule of d-separation for determining conditional independence by graphs (Defini-
tion 2.4.1) was introduced in Pearl (1986) and formally proved in Verma and Pearl (1988) using
the theory of graphoids (Pearl and Paz 1987). Gentle introductions to d-separation are available
in Hayduk et al. (2003), Glymour and Greenland (2008), and Pearl (2000, pp. 335-337). Algo-
rithms and software for detecting d-separation, as well as finding minimal separating sets are
described in Tian et al. (1998), Kyono (2010), and Textor et al. (2011). The advantages of local
over global model testing, are discussed in Pearl (2000, pp. 144—-145) and further elaborated
in Chen and Pearl (2014). Recent applications of d-separation include extrapolation across
populations (Pearl and Bareinboim 2014) and handling missing data (Mohan et al. 2013).

, recovering from sampling selection bias (Bareinboim et al. 2014),



kaoru
Text Box
, recovering from sampling selection bias (Bareinboim et al. 2014), 

kaoru
Line

kaoru
Line

kaoru
Line

kaoru
Line

kaoru
Text Box
by

kaoru
Text Box
,

kaoru
Polygonal Line

kaoru
Polygonal Line


The Effects of Interventions 55

directly from the data set, using the procedures described in Part One, while the former varies
depending on the structure of the causal graph. It is the graph that instructs us which arrow
should be removed for any given intervention.

In notation, we distinguish between cases where a variable X takes a value x naturally and
cases where we fix X = x by denoting the latter do(X = x). So P(Y = y|X = x) is the probabil-
ity that ¥ = y conditional on finding X = x, while P(Y = y|do(X = x)) is the probability that
Y =y when we intervene to make X = x. In the distributional terminology, P(Y = y|X = x)
reflects the population distribution of ¥ among individuals whose X value is x. On the other
hand, P(Y = y|do(X = x)) represents the population distribution of Y if everyone in the popu-
lation had their X value fixed at x. We similarly write P(Y = y|do(X = x),Z = z) to denote the
conditional probability of ¥ =y, given Z = z, in the distribution created by the intervention
do(X = x).

Using do-expressions and graph surgery, we can begin to untangle the causal relationships
from the correlative. In the rest of this chapter, we learn methods that can, astoundingly, tease
out causal information from purely observational data, assuming of course that the graph con-
stitutes a valid representation of reality. It is worth noting here that we are making a tacit
assumption that the intervention has no “side effects,” that is, that assigning the value x
for the valuable X for an individual does not alter subsequent variables in a direct way. For
example, being “assigned” a drug might have a different effect on recovery than being forced
to take the drug against one’s religious objections. When side effects are present, they need to
be specified explicitly in the model.

3.2 The Adjustment Formula

The ice cream example represents an extreme case in which the correlation between X and
Y was totally spurious from a causal perspective, because there was no causal path from X
to Y. Most real-life situations are not so clear-cut. To explore a more realistic situation, let us
examine Figure 3.3, in which Y responds to both Z and X. Such a model could represent, for
example, the first story we encountered for Simpson’s paradox, where X stands for drug usage,
Y stands for recovery, and Z stands for gender. To find out how effective the drug is in the pop-
ulation, we imagine a hypothetical intervention by which we administer the drug uniformly
to the entire population and compare the recovery rate to what would obtain under the com-
plementary intervention, where we prevent everyone from using the drug. Denoting the first
intervention by do(X = 1) and the second by do(X = 0), our task is to estimate the difference

P(Y = 1|do(X = 1)) = P(Y = 1|do(X = 0)) 3.1)
UZ
z
Uy Uy
X Y

Figure 3.3 A graphical model representing the effects of a new drug, with Z representing gender, X
standing for drug usage, and Y standing for recovery
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which is known as the “causal effect difference,” or “average causal effect” (ACE). In general,
however, if X and Y can each take on more than one value, we would wish to predict the
general causal effect P(Y = y|do(X = x)), where x and y are any two values that X and Y can
take on. For example, x may be the dosage of the drug and y the patient’s blood pressure.

We know from first principles that causal effects cannot be estimated from the data set
itself without a causal story. That was the lesson of Simpson’s paradox: The data itself was
not sufficient even for determining whether the effect of the drug was positive or negative. But
with the aid of the graph in Figure 3.3, we can compute the magnitude of the causal effect from
the data. To do so, we simulate the intervention in the form of a graph surgery (Figure 3.4)
just as we did in the ice cream example. The causal effect P(Y = y|do(X = x)) is equal to the
conditional probability P, (Y = y|X = x) that prevails in the manipulated model of Figure 3.4.
(This, of course, also resolves the question of whether the correct answer lies in the aggregated
or the Z-specific table—when we determine the answer through an intervention, there’s only
one table to contend with.)

Uz

L2

- o

Uy
Y

Figure 3.4 A modified graphical model representing an intervention on the model in Figure 3.3 that
sets drug usage in the population, and results in the manipulated probability P,,

X=x

The key to computing the causal effect lies in the observation that P,,, the manipulated
probability, shares two essential properties with P (the original probability function that pre-
vails in the preintervention model of Figure 3.3). First, the marginal probability P(Z = 7) is
invariant under the intervention, because the process determining Z is not affected by remov-
ing the arrow from Z to X. In our example, this means that the proportions of males and
females remain the same, before and after the intervention. Second, the conditional proba-
bility P(Y = y|Z = z, X = x) is invariant, because the process by which Y responds to X and
Z,Y = f(x, z,uy), remains the same, regardless of whether X changes spontaneously or by
deliberate manipulation. We can therefore write two equations of invariance:

P,Y=y|Z=2X=x)=PY=y|Z=2X=x) and P,(Z=27)=PZ=2)

We can also use the fact that Z and X are d-separated in the modified model and are, there-
fore, independent under the intervention distribution. This tells us that P,,(Z = z|X = x) =
P, (Z = z) = P(Z = 7), the last equality following from above. Putting these considerations
together, we have

P(Y = y|do(X = x))
=P,Y=y|X=x (by definition) (3.2)
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=Y P,(Y=ylX=xZ=2P,Z=2X=1x) (3.3)

=Y P, (Y =yX=x,Z=2P,(Z=2) (3.4)
4
Equation (3.3) is obtained mﬁﬁmyﬁfﬁl&%ﬁ%ﬁ and summing over all values
of Z=z(as in Eq. (1.9)),while )SEq.(3-4)> makes use of the independence of Z and X in the
modified model. a
Finally, using the invariance relations, we obtain a formula for the causal effect, in terms of
preintervention probabilities:

P(Y =yldo(X =x)) = ) P(Y =y|X =x.Z=)P(Z=2) (3.5)

Equation (3.5) is called the adjustment formula, and as you can see, it computes the associ-
ation between X and Y for each value z of Z, then averages over those values. This procedure
is referred to as “adjusting for Z” or “controlling for Z.”

This final expression—the right-hand side of Eq. (3.5)—can be estimated directly from the
data, since it consists only of conditional probabilities, each of which can be computed by the
filtering procedure described in Chapter 1. Note also that no adjustment is needed in a random-
ized controlled experiment since, in such a setting, the data are generated by a model which
already possesses the structure of Figure 3.4, hence, P,, = P regardless of any factors Z that
affect Y. Our derivation of the adjustment formula (3.5) constitutes therefore a formal proof
that randomization gives us the quantity we seek to estimate, namely P(Y = y|do(X = x)). In
practice, investigators use adjustments in randomized experiments as well, for the purpose of
minimizing sampling variations (Cox 1958).

To demonstrate the working of the adjustment formula, let us apply it numerically to
Simpson’s story, with X = 1 standing for the patient taking the drug, Z = 1 standing for the
patient being male, and Y = 1 standing for the patient recovering. We have

PY=1ldoX=1)=P¥=1X=1,Z=DPZ=1)+P¥Y =1|X=1,Z=0)P(Z = 0)

Substituting the figures given in Table 1.1 we obtain
0.93(87 + 270) + 0.73(263 + 80)

P(Y = l|do(X = 1)) = =0.832
(¥ = lldo(X = 1)) 700 700
while, similarly,
. 2 69(2
P(Y = 1|do(X = 0)) = 0.87(87 + 270) N 0.69(263+80) _ o010

700 700

Thus, comparing the effect of drug-taking (X = 1) to the effect of nontaking (X = 0), we
obtain

ACE = P(Y = 1|do(X = 1)) — P(Y = 1|do(X = 0)) = 0.832 — 0.7818 = 0.0502

giving a clear positive advantage to drug-taking. A more informal interpretation of ACE here is
that it is simply the difference in the fraction of the population that would recover if everyone
took the drug compared to when no one takes the drug.

We see that the adjustment formula instructs us to condition on gender, find the benefit of
the drug separately for males and females, and only then average the result using the percent-
age of males and females in the population. It also thus instructs us to ignore the aggregated
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these parents that we neutralize when we fix X by external manipulation. Denoting the parents
of X by PA(X), we can therefore write a general adjustment formula and summarize it in a rule:

Rule 1 (The Causal Effect Rule) Given a graph G in which a set of variables PA are desig-
nated as the parents of X, the causal effect of X on Y is given by

P(Y = yldo(X = x)) =) P(Y = y|X = x,PA = 9)P(PA = 7) (3.6)

where z ranges over all the combinations of values that the variables in PA can take.

If we multiply and divide the summand in (3.6) by the probability P(X = x|PA = z), we get
a more convenient form:
PX=x,Y=y,PA=7)

POIo) = Y =5 = (3.7)

which explicitly displays the role played by the parents of X in predicting the results of inter-
ventions. The factor P(X = x|PA = z) is known as the “propensity score” and the advantages
of expressing P(y|do(x)) in this form will be discussed in Section 3.5.

We can appreciate now what role the causal graph plays in resolving Simpson’s paradox,
and, more generally, what aspects of the graph allow us to predict causal effects from purely
statistical data. We need the graph in order to determine the identity of X’s parents—the set of
factors that, under nonexperimental conditions, would be sufficient for determining the value
of X, or the probability of that value.

This result alone is astounding; using graphs and their underlying assumptions, we were
able to identify causal relationships in purely observational data. But, from this discussion,
readers may be tempted to conclude that the role of graphs is fairly limited; once we identify
the parents of X, the rest of the graph can be discarded, and the causal effect can be evaluated
mechanically from the adjustment formula. The next section shows that things may not be
so simple. In most practical cases, the set of X’s parents will contain unobserved variables
that would prevent us from calculating the conditional probabilities in the adjustment formula.
Luckily, as we will see in future sections, we can adjust for other variables in the model to
substitute for the unmeasured elements of PA(X).

Study questions
Study questions 3.2.1

Referring to Study question 1.5.2 (Figure 1.10) and the parameters listed therein,

(a) Compute P(y|do(x)) for all values of x and y, by simulating the intervention do(x) on the
model.

(b) Compute P(y|do(x)) for all values of x and y, using the adjustment formula (3.5)

(c¢) Compute the ACE

ACE = P(y,|do(x,)) — P(y,|do(xy))
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and compare it to the Risk Difference
RD = P(y,|x)) — P(y;|xo)

What is the difference between ACE and the RD? What values of the parameters would
minimize the difference?

(d) Find a combination of parameters that exhibit Simpson’s reversal (as in Study question
1.5.2(c)) and show explicitly that the overall causal effect of the drug is obtained from the
desegregated data.

3.2.2  Multiple Interventions and the Truncated Product Rule

In deriving the adjustment formula, we assumed an intervention on a single variable, X, whose
parents were disconnected, so as to simulate the absence of their influence after intervention.
However, social and medical policies occasionally involve multiple interventions, such as those
that dictate the value of several variables simultaneously, or those that control a variable over
time. To represent multiple interventions, it is convenient to resort to the product decompo-
sition that a graphical model imposes on joint distributions, as we have discussed in Section
1.5.2. According to the Rule of Product Decomposition, the preintervention distribution in the
model of Figure 3.3 is given by the product

P(x,y,7) = P(2)P(x|2)P(y|x, z) (3.8)

whereas the postintervention distribution, governed by the model of Figure 3.4 is given by the
product

P(z,y|do(x)) = P, (2)P,,(y|x,z) = P(2)P(y|x,z) (3.9

with the factor P(x|z) purged from the product, since X becomes parentless as it is fixed at
X = x. This coincides with the adjustment formula, because to evaluate P(y|do(x)) we need to
marginalize (or sum) over z, which gives

P(yldo(x)) = ) PQP(x,2)

in agreement with (3.5).
This consideration also allows us to generalize the adjustment formula to multiple interven-

tions, that is, interventions that fix the values of a set of variables X to constants. We simply
write down the product decomposition of the preintervention distribution, and strike out all
factors that correspond to variables in the intervention set X. Formally, we write

P(xy,xy, ... ,x,|do(x)) = HP(xl-lpai) for all i with X; not in X.
i
This came to be known as the truncated product formula or g-formula. To illustrate, assume

that we intervene on the model of Figure 2.9 and set X to xand Z; to z;. The postintervention
distribution of the other variables in the model will be

P(z1, 20, w,y|ldo(X =x,Z3 = z3)) = P(2))P(2)P(WI)P(y|w, 23, 2)

where we have deleted the factors P(x|z;, z3) and P(z3|z;, z,) from the product.
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It is interesting to note that combining (3.8) and (3.9), we get a simple relation between the
pre- and postintervention distributions:

P(x,y,2)

P(z,y|do(x)) = PGla)

(3.10)
It tells us that the conditional probability P(x|z) is all we need to know in order to predict

the effect of an intervention do(x) from nonexperimental data governed by the distribution
P(x,y,z2).

3.3 The Backdoor Criterion

In the previous section, we came to the conclusion that we should adjust for a variable’s parents,
when trying to determine its effect on another variable. But often, we know, or believe, that the
variables have unmeasured parents that, though represented in the graph, may be inaccessible
for measurement. In those cases, we need to find an alternative set of variables to adjust for.

This dilemma unlocks a deeper statistical question: Under what conditions does a causal
story permit us to compute the causal effect of one variable on another, from data obtained by
passive observations, with no interventions? Since we have decided to represent causal stories
with graphs, the question becomes a graph-theoretical problem: Under what conditions, is the
structure of the causal graph sufficient for computing a causal effect from a given data set?

The answer to that question is long enough—and important enough—that we will spend
the rest of the chapter addressing it. But one of the most important tools we use to determine
whether we can compute a causal effect is a simple test called the backdoor criterion. Using
it, we can determine whethe, for any two variables X and Y in a causal model represented by
a DAG, which set of variables Z in that model should be conditioned on when searching for
the causal relationship between X and Y.

Definition 3.3.1 (The Backdoor Criterion) Given an ordered pair of variables (X,Y) in a
directed acyclic graph G, a set of variables Z satisfies the backdoor criterion relative to (X, Y)
if no node in Z is a descendant of X, and Z blocks every path between X and Y that contains
an arrow into X.

If a set of variables Z satisfies the backdoor criterion for X and Y, then the causal effect of
X on Y is given by the formula

P(Y =yldo(X =x))= ) P(Y =y|X =x.Z =)P(Z =2)

Z

just as when we adjust for PA(X). (Note that PA(X) always satisfies the backdoor criterion.)
The logic behind the backdoor criterion is fairly straightforward. In general, we would like
to condition on a set of nodes Z such that

1. We block all spurious paths between X and Y.
2. We leave all directed paths from X to Y unperturbed.
3. We create no new spurious paths.
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62 Causal Inference in Statistics

When trying to find the causal effect of X on Y, we want the nodes we condition on to block
any “backdoor” path in which one end has an arrow into X, because such paths may make
X and Y dependent, but are obviously not transmitting causal influences from X, and if we do
not block them, they will confound the effect that X has on Y. We condition on backdoor paths
so as to fulfill our first requirement. However, we don’t want to condition on any nodes that
are descendants of X. Descendants of X would be affected by an intervention on X and might
themselves affect Y; conditioning on them would block those pathways. Therefore, we don’t
condition on descendants of X so as to fulfill our second requirement. Finally, to comply with
the third requirement, we should refrain from conditioning on any collider that would unblock
a new path between X and Y. The requirement of excluding descendants of X also protects us
from conditioning on children of intermediate nodes between X and Y (e.g., the collision node
W in Figure 2.4.) Such conditioning would distort the passage of causal association between
X and Y, similar to the way conditioning on their parents would.

To see what this means in practice, let’s look at a concrete example, shown in Figure 3.6.

D

1

O——®

Figure 3.6 A graphical model representing the relationship between a new drug (X), recovery (Y),
weight (W), and an unmeasured variable Z (socioeconomic status)

Here we are trying to gauge the effect of a drug (X) on recovery (Y). We have also measured
weight (W), which has an effect on recovery. Further, we know that socioeconomic status (Z)
affects both weight and the choice to receive treatment—but the study we are consulting did
not record socioeconomic status.

Instead, we search for an observed variable that fits the backdoor criterion from X to Y.
A brief examination of the graph shows that W, which is not a descendant of X, also blocks
the backdoor path X « Z — W — Y. Therefore, W meets the backdoor criterion. So long as
the causal story conforms to the graph in Figure 3.6, adjusting for W will give us the causal
effect of X on Y. Using the adjustment formula, we find

P(Y = yldo(X = x)) = ). P(Y = y|X = x, W = w)P(W = w)

This sum can be estimated from our observational data, so long as W is observed.

With the help of the backdoor criterion, you can easily and algorithmically come to a con-
clusion about a pressing policy concern, even in complicated graphs. Consider the model in
Figure 2.8, and assume again that we wish to evaluate the effect of X on Y. What variables
should we condition on to obtain the correct effect? The question boils down to finding a set
of variables that satisfy the backdoor criterion, but since there are no backdoor paths from X
to Y, the answer is trivial: The empty set satisfies the criterion, hence no adjustment is needed.
The answer is

P(yldo(x)) = P(ylx)

Suppose, however, that we were to adjust for W. Would we get the correct result for the
—> effectof X on Y? Since W is a collider, conditioning on W would open the path X — W « Z<«  (left arrow)
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T — Y. This path is spurious since it lies outside the causal pathway from X to Y. Opening this
path will create bias and yield an erroneous answer. This means that computing the association
between X and Y for each value of W separately will not yield the correct effect of X on Y, and

it might even give the wrong effect for each value of W. In Figure2.8,

How then do we compute the causal effect of X on Y for a specific value w of W? AV may
represent, for example, the level of posttreatment pain of a patient, and we might be interested
in assessing the effect of X on Y for only those patients who did not suffer any pain. Specifying
the value of W amounts to conditioning on W = w, and this, as we have realized, opens a
spurious path from X to Y by virtue of the fact thaiW is a collider.

The answer is that we still have the option of blocking that path using other variables. For
example, if we condition on 7, we would block the spurious path X - W « Z & T > Y,
even if W is part of the conditioning set. Thus to compute the w-specific causal effect, written

P(y|do(x), w), we adjust for T, and obtain X
=X,
P(Y =yldoX =x),W =w) = ZP(Y =y X=x,W=w,T=0)P(T = t|XV =w) (3.11)
t

Computing such W-specific causal effects is an essential step in examining effect modifi-
cation or moderation, that is, the degree to which the causal effect of X 0On Y is modified
by different values of W. Consider, again, the model in Figure 3.6, and suppose we wish to
test whether the causal effect for units at level W = w is the same as for units at level W = w/
(W may represent any pretreatment variable, such as age, sex, or ethnicity). This question calls
for comparing two causal effects,

P(Y =y|ldoX =x),W=w) and P =yldo(X =x),W=w)

In the specific example of Figure 3.6, the answer is simple, because W satisfies the backdoor
criterion. So, all we need to compare are the conditional probabilities P(Y = y|X =x, W = w)
and P(Y = y|X = x, W = w/); no summation is required. In the more general case, where W
alone does not satisfy the backdoor criterion, yet a larger set, 7 U W, does, we need to adjust
for members of 7', which yields Eq. (3.11). We will return to this topic in Section 3.5.

From the examples seen thus far, readers may get the impression that one should refrain
from adjusting for colliders. Such adjustment is sometimes unavoidable, as seen in Figure 3.7.
Here, there are four backdoor paths from X to Y, all traversing variable Z, which is a collider on
the path X « E - Z < A — Y. Conditioning on Z will unblock this path and will violate the
backdoor criterion. To block all backdoor paths, we need to condition on one of the following
sets: {E,Z},{A,Z},or {E,Z,A}. Each of these contains Z. We see, therefore, that Z, a collider,
must be adjusted for in any set that yields an unbiased estimate of the effect of X on Y.

E A

X Y

Figure 3.7 A graphical model in which the backdoor criterion requires that we condition on a collider
(Z) in order to ascertain the effect of X on Y
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(c) Write the adjustment formula for the effect of the drug on recovery.
(d) Repeat questions (a)—(c) assuming that the nurse gave lollipops a day after the study, still
preferring patients who received treatment over those who received placebo.

3.4 The Front-Door Criterion

The backdoor criterion provides us with a simple method of identifying sets of covariates that
should be adjusted for when we seek to estimate causal effects from nonexperimental data. It
does not, however, exhaust all ways of estimating such effects. The do-operator can be applied
to graphical patterns that do not satisfy the backdoor criterion to identify effects that on first
sight seem to be beyond one’s reach. One such pattern, called front-door, is discussed in this
section.

Consider the century-old debate on the relation between smoking and lung cancer. In the
years preceding 1970, the tobacco industry managed to prevent antismoking legislation
by promoting the theory that the observed correlation between smoking and lung cancer could
be explained by some sort of carcinogenic genotype that also induces an inborn craving for

nicotine.
U U
Genotype Genotype
Y z Y

S X Lung X Tar — Lung

moking Smoking .
cancer deposits cancer

(a) (b)

Figure 3.10 A graphical model representing the relationships between smoking (X) and lung cancer
(Y), with unobserved confounder (U) and a mediating variable Z

A graph depicting this example is shown in Figure 3.10(a) This graph does not satisfy the
backdoor condition because the variable U is unobserved and hence cannot be used to block
the backdoor path from X to Y. The causal effect of smoking on lung cancer is not identifiable
in this model; one can never ascertain which portion of the observed correlation between X and
Y is spurious, attributable to their common effect, U, and what portion is genuinely causative.
(We note, however, that even in these circumstances, much compelling work has been done to
quantify how strong the (unobserved) associates between both U and X, and U and Y, must be
in order to entirely explain the observecassociation between X and Y.)

However, we can go much further by considering the model in Figure 3.10(b), where an
additional measurement is available: the amount of tar deposits in patients,l‘lungs. This model
does not satisfy the backdoor criterion, because there is still no variable capable of blocking
the spurious path X « U — Y. We see, however, that the causal effect P(Y = y|do(X = x)) is
nevertheless identifiable in this model, through two consecutive applications of the backdoor
criterion.

How can the intermediate variable Z help us to assess the effect of X on Y? The answer is
not at all trivial: as the following quantitative example shows, it may lead to heated debate.
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Assume that a careful study was undertaken, in which the following factors were measured
simultaneously on a randomly selected sample of 800,000 subjects considered to be at very
high risk of cancer (because of environmental exposures such as smoking, asbestos, randon—"
and the like).

1. Whether the subject smoked
2. Amount of tar in the subject’s lungs
3. Whether lung cancer has been detected in the patient.

The data from this study are presented in Table 3.1, where, for simplicity, all three variables
are assumed to be binary. All numbers are given in thousands.

Table 3.1 A hypothetical data set of randomly selected samples showing the percentage of
cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

Tar No tar All subjects
400 400 800
Smokers Nonsmokers | Smokers Nonsmokers | Smokers Nonsmokers
380 20 20 380 400 400
No cancer 323 1 18 38 341 39
(85%) (5%) (90%) (10%) (85%) (9.75%)
Cancer 57 19 2 342 59 361
(15%) (95%) (10%) (90%) (15%) (90.25%)

Two opposing interpretations can be offered for these data. The tobacco industry argues
that the table proves the beneficial effect of smoking. They point to the fact that only 15% of
the smokers have developed lung cancer, compared to 90.25% of the nonsmokers. Moreover,
within each of two subgroups, tar and no tar, smokers show a much lower percentage of cancer
than nonsmokers. (These numbers are obviously contrary to empirical observations but well
illustrate our point that observations are not to be trusted.)

However, the antismoking lobbyists argue that the table tells an entirely different story—that
smoking would actually increase, not decrease, one’s risk of lung cancer. Their argument goes
as follows: If you choose to smoke, then your chances of building up tar deposits are 95%,
compared to 5% if you choose not to smoke (380/400 vs 20/400). To evaluate the effect of tar
deposits, we look separately at two groups, smokers and nonsmokers, as done in Table 3.2. All
numbers are given in thousands.

Table 3.2 Reorganization of the data set of Table 3.1 showing the percentage
of cancer cases in each smoking-tar category (numbersin thousands)

Smokers Nonsmokers All subjects
400 400 800

Tar No tar Tar No tar Tar No tar

380 20 20 380 400 400

No cancer 323 18 1 38 324 56
(85%) (90%) (5%) (10%) (81%) (19%)

Cancer 57 2 19 342 76 344
(15%) (10%) (95%) (90%) (9%) (81%)
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68 Causal Inference in Statistics

It appears that tar deposits have a harmful effect in both groups; in smokers it increases
cancer rates from 10% to 15%, and in nonsmokers it increases cancer rates from 90% to 95%.
Thus, regardless of whether I have a natural craving for nicotine, I should avoid the harmful
effect of tar deposits, and no-smoking offers very effective means of avoiding them.

The graph of Figure 3.10(b) enables us to decide between these two groups of statisticians.
First, we note that the effect of X on Z is identifiable, since there is no backdoor path from X
to Z. Thus, we can immediately write

P(Z = zldo(X = x)) = P(Z = X = x) (3.12)

Next we note that the effect of Z on Y is also identifiable, since the backdoor path from Z to
Y,namely Z <~ X < U — Y, can be blocked by conditioning on X. Thus, we can write

P(Y =yldo(Z=z2)= ) P(Y =y|Z=12,X = X)P(X = X)) (3.13)

Both (3.12) and (3.13) are obtained through the adjustment formula, the first by conditioning
on the null set, and the second by adjusting for X.

We are now going to chain together the two partial effects to obtain the overall effect of
X on Y. The reasoning goes as follows: If nature chooses to assign Z the value z, then the
probability of ¥ would be P(Y = y|do(Z = z)). But the probability that nature would choose
to do that, given that we choose to set X at x, is P(Z = z|do(X = x)). Therefore, summing over
all states z of Z, we have

P(Y =yldo(X =x)) = Z P(Y = y|do(Z = 2))P(Z = z|do(X = x)) (3.14)

z

The terms on the right-hand side of (3.14) were evaluated in (3.12) and (3.13), and we can
substitute them to obtain a do-free expression for P(Y = y|do(X = x)). We also distinguish
between the x that appears in (3.12) and the one that appears in (3.13), the latter of which is
merely an index of summation and might as well be denoted x’. The final expression we have is

P(Y = y|do(X = x)) =
Y D PY =yZ=2X=x)PX=x)P(Z=z|X =x) (3.15)

xl

Equation (3.15) is known as the front-door formula.

Applying this formula to the data in Table 3.1, we see that the tobacco industry was wrong;
tar deposits have a harmful effect in that they make lung cancer more likely and smoking, by
increasing tar deposits, increases the chances of causing this harm.

The data in Table 3.1 are obviously unrealistic and were deliberately crafted so as to surprise
readers with counterintuitive conclusions that may emerge from naive analysis of observational
data. In reality, we would expect observational studies to show positive correlation between
smoking and lung cancer. The estimand of (3.15) could then be used for confirming and quan-
tifying the harmful effect of smoking on cancer.

The preceding analysis can be generalized to structureiowhere multiple paths lead from X
toY.
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Definition 3.4.1 (Front-Door) A set of variables Z is said to satisfy the front-door criterion
relative to an ordered pair of variables (X, Y) if

1. Z intercepts all directed paths from X to Y.
2. There is no unblocked path from X to Z.
3. All backdoor paths from Z to Y are blocked by X.

Theorem 3.4.1 (Front-Door Adjustment) If Z satisfies the front-door criterion relative to
(X,Y) and if P(x,z) > 0, then the causal effect of X on Y is identifiable and is given by the
formula

P(yldo(x)) = )" Plx) Y PGIY, 2)P() (3.16)

The conditions stated in Definition 3.4.1 are overly conservative; some of the backdoor paths
excluded by conditions (2) and (3) can actually be allowed provided they are blocked by some
variables. There is a powerful symbolic machinery, called the do-calculus, that allows analysis
of such intricate structures. In fact, the do-calculus uncovers all causal effects that can be iden-
tified from a given graph. Unfortunately, it is beyond the scope of this book (see Pearl 2009
and-Shpitser-and-Pearl-2008, for details). But the combination of the adjustment formula, the
backdoor criterion, and the front-door criterion covers numerous scenarios. It proves the enor-
mous, even revelatory, power that causal graphs have in not merely representing, but actually
discovering causal information.

Study questions
Study question 3.4.1

Assume that in Figure 3.8, only X, Y, and one additional variable can be measured. Which
variable would allow the identification of the effect of X on Y ? What would that effect be?

Study question 3.4.2

I went to a pharmacy to buy a certain drug, and I found that it was available in two different
bottles: one priced at $1, the other at $10. I asked the druggist, “What’s the difference?” and
he told me, “The $10 bottle is fresh, whereas the $1 bottle one has been on the shelf for 3 years.
But, you know, data shows that the percentage of recovery is much higher among those who
bought the cheap stuff. Amazing isn’t it?” I asked if the aged drug was ever tested. He said,
“Yes, and this is even more amazing; 95% of the aged drug and only 5% of the fresh drug
has lost the active ingredient, yet the percentage of recovery among those who got bad bottles,
with none of the active ingredient, is still much higher than among those who got good bottles,
with the active ingredient.”

Before ordering a cheap bottle, it occurred to me to have a good look at the data. The data
were, for each previous customer, the type of bottle purchased (aged or fresh), the concentra-
tion of the active ingredient in the bottle (high or low), and whether the customer recovered
from the illness. The data perfectly confirmed the druggist’s story. However, after making some
additional calculations, I decided to buy the expensive bottle after all; even without testing its

TianandPearl2002,ShpitserandPearl2008,Pearl2009,andBareinboimandPearl2012 |
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70 Causal Inference in Statistics

content, I could determine that a fresh bottle would offer the average patient a greater chance
of recovery.

Based on two very reasonable assumptions, the data show clearly that the fresh drug is more
effective. The assumptions are as follows:

(i) Customers had no information about the chemical content (high or low) of the specific
bottle of the drug that they were buying; their choices were influenced by price and
shelf-age alone.

(ii) The effect of the drug on any given individual depends only on its chemical content,
not on its shelf age (fresh or aged).

(a) Determine the relevant variables for the problem, and describe this scenario in a causal
graph.

(b) Construct a data set compatible with the story and the decision to buy the expensive
bottle.

(c) Determine the effect of choosing the fresh versus the aged drug by using assumptions (i)
and (ii), and the data given in (b).

3.5 Conditional Interventions and Covariate-Specific Effects

The interventions considered thus far have been limited to actions that merely force a vari-
able or a group of variables X to take on some specified value x. In general, interventions
may involve dynamic policies in which a variable X is made to respond in a specified way
to some set Z of other variables—say, through a functional relationship x = g(z) or through a
stochastic relationship, whereby X is set to x with probability P*(x|z). For example, suppose
a doctor decides to administer a drug only to patients whose temperature Z exceeds a certain
level, Z = z. In this case, the action will be conditional upon the value of Z and can be written
do(X = g(Z)), where g(Z) is equal to one when Z > z and zero otherwise (where X = O repre-
sents no drug). Since Z is a random variable, the value of X chosen by the action will similarly
be a random variable, tracking variations in Z. The result of implementing such a policy is a
probability distribution written P(Y = y|do(X = g(Z))), which depends only on the function g
and the set Z of variables that drive X.

In order to estimate the effect of such a policy, let us take a closer look at another concept, the
“z-specific effect” of X, which we encountered briefly in Section 3.3 (Eq. (3.11)). This effect,
written P(Y = y|do(X = x),Z = z) measures the distribution of Y in a subset of the population
for which Z achieves the value z after the intervention. For example, we may be interested in
how a treatment affects a specific age group, Z = z, or people with a specific feature, Z = z,
which may be measured after the treatment.

The z-specific effect can be identified by a procedure similar to the backdoor adjustment.
The reasoning goes as follows: When we aim to estimate P(Y = y|do(X = x)), an adjustment
for a set S is justified if S blocks all backdoor paths from X to Y. Now that we wish to identify
P(Y = y|do(X = x),Z = z), we need to ensure that those paths remain blocked when we add
one more variable, Z, to the conditioning set. This yieldsa simple criterion for the identification
of z-specific effect:

Rule 2 The z-specific effect P(Y = y|do(X = x),Z = z) is identified whenever we can measure
a set S of variables such that S U Z satisfies the backdoor criterion. Moreover, the z-specific
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effect is given by the following adjustment formula
PY =y|ldo(X =x),Z =72)
= ZP(Y =y X=x,S=52Z=2PS = sA| Z=1)

This modified adjustment formula is similar to Eq. (3.5) with two exceptions. First,
the adjustment set is S U Z, not just S and, second, the summation goes only over S, not
including Z. The U symbol in the expression S U Z stands for set addition (or union), which
means that, if Z is a subset of S, we have SUZ = §, and S alone need satisfy the backdoor
criterion.

Note that the identifiability criterion for z-specific effects is somewhat stricter than that
for nonspecific effect. Adding Z to the conditioning set might create dependencies that would
prevent the blocking of all backdoor paths. A simple example occurs when Z is a collider; con-
ditioning on Z will create/"i}lew dependency between Z’s parents arrll}f\%hus violate the backdoor
requirement.

We are now ready to tackle our original task of estimating conditional interventions.
Suppose a policy maker contemplates an age-dependent policy whereby an amount x of drug
is to be administered to patients, depending on their age Z. We write it as do(X = g(2)).
To find out the distribution of outcome Y that results from this policy, we seek to estimate
P(Y = yldo(X = g(2))).

We now show that identifying the effect of such policies is equivalent to identifying the
expression for the z-specific effect P(Y = y|do(X = x),Z = z).

To compute P(Y = y|do(X = g(Z))), we condition on Z = z and write

P(Y = y|do(X = g(2)))
= ZP(Y = yldo(X = g8(2)), Z = 2)P(Z = z|do(X = g(Z)))

= ) P(Y =y|do(X = g(z)).Z = )P(Z = ) (3.17)

Z

The equality
P(Z =z|ldo(X = g(2))) = P(Z =2)

stems, of course, from the fact that Z occurs before X; hence, any control exerted on X can
have no effect on the distribution of Z. Equation (3.17) can also be written as

Z P(Y = y|do(X = X),2)|yg)P(Z = 2)

which tells us that the causal effect of a conditional policy do(X = g(Z)) can be evaluated
directly from the expression of P(Y = y|do(X = x),Z = z) simply by substituting g(z) for x
and taking the expectation over Z (using the observed distribution P(Z = z)).

Study question 3.5.1

Consider the causal model of Figure 3.8.

(a) Find an expression for the c-specific effect of X on Y.
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(b) Identify a set of four variables that need to be measured in order to estimate the z-specific
effect of X on Y, and find an expression for the size of that effect.

(c) Using your answer to part (b), determine the expected value of Y under a Z-dependent
strategy, where X is set to 0 when Z is smaller or equal to 2 and X is set to 1 when Z is
larger than 2. (Assume Z takes on integer values from I to 5.)

3.6 Inverse Probability Weighing

By now, the astute reader may have noticed a problem with our intervention procedures. The
backdoor and front-door criteria tell us whether it is possible to predict the results of hypothet-
ical interventions from data obtained in an observational study. Moreover, they tell us that we
can make this prediction without simulating the intervention and without even thinking about
it. All we need to do is identify a set Z of covariates satisfying one of the criteria, plug this set
into the adjustment formula, and we’re done: the resulting expression is guaranteed to provide
a valid prediction of how the intervention will affect the outcome.

This is lovely in theory, but in practice, adjusting for Z may prove problematic. It entails
looking at each value or combination of values of Z separately, estimating the conditional
probability of Y given X in that stratum and then averaging the results. As the number of
strata increases, adjusting for Z will encounter both computational and estimational difficulties.
Since the set Z can be comprised of dozens of variables, each spanning dozens of discrete
values, the summation required by the adjustment formula may be formidable, and the number
of data samples falling within each Z = z cell may be too small to provide reliable estimates
of the conditional probabilities involved.

All of our work in this chapter has not been for naught, however. The adjustment procedure
is straightforward, and, therefore, easy to use in the explanation of intervention criteria. But
there is another, more subtle procedure that overcomes the practical difficulties of adjustment.

In this section, we discuss one way of circumventing this problem, provided only that we can
obtain a reliable estimate of the function g(x, z) = P(X = x|Z = 7), often called the “propensity
score,” for each x and z. Such an estimate can be obtained by fitting the parameters of a flexible
function g(x, z) to the data at hand, in much the same way that we fitted the coefficients of a
linear regression function, so as to minimize the mean square error with respect to a set of
samples (Figure 1.4). The method used will depend on the nature of the random variable X,
whether it is continuous, discrete \binary, for example.

Assuming that the function P(X = x|Z = z) is available to us, we can use it to generate
artificial samples that act as though they were drawn from the postintervention probability P,,,
rather than P(x, y, 7). Once we obtain such fictitious samples, we can evaluate P(Y = y|do(x))
by simply counting the frequency of the event Y =y, for each stratum X = x in the sample. In
this way, we skip the labor associated with summing over all strata Z = z; we essentially let
nature do the summation for us.

The idea of estimating probabilities using fictitious samples is not new to us; it was used all
along, though implicitly, whenever we estimated conditional probabilities from finite samples.

In Chapter 1, we characterized conditioning as a process of filtering—that is, ignoring all
cases for which the condition X = x does not hold, and normalizing the surviving cases, so
that their total probabilities would add up to one. The net result of this operation is that the
probability of each surviving case is boosted by a factor 1 /P(X = x). This can be seen directly
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from Bayes’ rule, which tells us that

PY=y2=2X=1x

PY=y,Z=z]X=x)= X

In other words, to find the probability of each row in the surviving table, we multiply the
unconditional probability, P(Y =y, Z = z, X = x) by the constant 1 /P(X = x).

Let us now examine the population created by the do(X = x) operation and ask how the
probability of each case changes as a result of this operation. The answer is given to us by the
adjustment formula, which reads

P(yldo(x)) = Y P(Y =y|X =x,Z =2)P(Z =2)

Multiplying and dividing the expression inside the sum by the propensity score P(X = x|Z =

7), we get
PY =y X=x,Z=2)PX =x|Z=2P(Z=72)

P =
Oldo(e) =2 A =3Z=7

Upon realizing the numerator is none other but the pretreatment distribution of (X, Y, Z), we

can write
PY=y,X=x,Z=7)

PX=x|Z=2

P(yldo(x)) = )

Z

and the answer becomes clear: each case (Y = y, X = x, Z = z) in the population should boost
its probability by a factor equzi}j to 1/P(X = x|Z = z). (Hence the name “inverse probability
weighting.”)

This provides us with a simple procedure of estimating P(Y = y|do(X = x)) when we have
finite samples. If we weigh each available sample by a factor = 1/P(X = x|Z = z), we can then
treat the reweighted samples as if they were generated from P,,, not P, and proceed to estimate
P(Y = y|do(x)) accordingly.

This is best demonstrated in an example.

Table 3.3 returns to our Simpson’s paradox example of the drug that seems to help men and
women but to hurt the general population. We’ll use the same data we used before but presented

Table 3.3 Joint probability distribution P(X, Y, Z) for the drug-
gender-recovery story of Chapter 1 (Table 1.1)

X Y Zz % of population
Yes Yes Male 0.116
Yes Yes Female 0.274
Yes No Male 0.01

Yes No Female 0.101

No Yes Male 0.334

No Yes Female 0.079

No No Male 0.051

No No Female 0.036
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Table 3.4 Conditional probability distribution P(Y, Z|X) for drug users
(X = yes) in the population of Table 3.3

X Y VA % of population
Yes Yes Male 0.232
Yes Yes Female 0.547
Yes No Male 0.02

Yes No Female 0.202

this time as a weighted table. In this case, X represents whether or not the patient took the drug,
Y represents whether the patient recovered, and Z represents the patient’s gender.

If we condition on “X = Yes,” we get the data set shown in Table 3.4, which was formed
in two steps. First, all rows with X = No were excluded. Second, the weights given to the
remaining rows were “‘renormalized,” that is, multiplied by a constant so as to make them
sum to one. This constant, according to Bayes’ rule, is 1/P(X = yes), and P(X = yes) in our
example, is the combined weight of the first four rows of Table 3.3, which amounts to

P(X = yes) = 0.116 + 0.274 + 0.01 + 0.101 =A0.501

The result is the weight distribution in the four top rows of Table 3.4; the weight of each row
has been boosted by a factorAl/ 0.501 =2.00.

Let us now examine the population created by the do(X = yes) operation, representing a
deliberate decision to administer the drug to the same population.

To calculate the distribution of weights in this population, we need to compute the factor
P(X = yes|Z = z) for each z, which, according to Table 3.3, is given by

(0.116 + 0.01) _ 0047
(0.116 + 0.01 + 0.334 + 0.051) A

(0.274 +0.101)
(0.274 + 0.101 + 0.079 + 0.036)

P(X = yes|Z = Male) =

P(X = yes|Z = Female) = =0.765
Multiplying the gender-matching rows by 1 /A0‘247 and 1/0.765, respectively, we obtain
Table 3.5, which represents the postintervention distribution of the population of Table 3.3.
The probability of recovery in this distribution can now be computed directly from the data,
by summing the first two rows:

P(Y = yes|do(X = yes)) = 0.476 + 0.357 = 0.833

Table 3.5 Probability distribution for the population of Table 3.3 under the
intervention do(X = Yes), determined via the inverse probability method

X Y V4 % of population
Yes Yes Male 0.476
Yes Yes Female 0.357
Yes No Male 0.041

Yes No Female 0.132
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the controlled direct effect (CDE) on Y of changing the value of X from x to x’ is defined as
CDE = P(Y = y|do(X = x),do(Z = 7)) — P(Y = y|do(X = x),do(Z = 2)) (3.18)

The obvious advantage of this definition over the one based on conditioning is its generality;
it captures the intent of “keeping Z constant” even in cases where the Z — Y relationship is
confounded (the same goes for the X — Z and X — Y relationships). Practically, this definition
assures us that in any case where the intervened probabilities are identifiable from the observed
probabilities, we can estimate the direct effect of X on Y. Note that the direct effect may differ
for different values of Z; for instance, it may be that hiring practices discriminate against
women in jobs with high qualification requirements, but they discriminate against men in jobs
with low qualifications. Therefore, to get the full picture of the direct effect, we’ll have to
perform the calculation for every relevant value z of Z. (In linear models, this will not be
necessary; for more information, see Section 3.8.)

Income
Qualification

Gender Hiring

Figure 3.12 A graphical model rep{showingqualification(Z) asa mediatorbetweergender(X) andhiring (Y),

with-seeioeconomicstatus-as-a-medigandincome(l) asa confoundeibetweergualificationandhiring.

How do we estimate the direct effect when its expression contains two do-operators? The
technique is more or less the same as the one employed in Section 3.2, where we dealt with a
single do-operator by adjustment. In our example of Figure 3.12, we first notice that there is no
backdoor path from X to Y in the model, hence we can replace do(x) with simply conditioning
on x (this essentially amounts to adjusting for all confounders). This results in

P(Y =y|X =x,do(Z=2)) — P(Y =y|X =xX,do(Z = 7))

Next, we attempt to remove the do(z) term and notice that two backdoor paths exist from Z
to Y, one through X and one through /. The first is blocked (since X is conditioned on) and the
second can be blocked if we adjust for /. This gives

NIPY=yX=x2Z=zl=i)-P¥=yX=x.Z=z1=0)PU =)

1

The last formula is do-free, which means it can be estimated from nonexperimental data.
In general, the CDE of X on Y, mediated by Z, is identifiable if the following two properties
hold:

1. There exists a set S; of variables that blocks all backdoor paths from Z to Y.
2. There exists a set S, of variables that blocks all backdoor paths from X to Y, after deleting
all arrows entering Z.
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enormous simplification of the procedure needed for causal analysis. We are all familiar with
the bell-shaped curve that characterizes the normal distribution of one variable. The reason it
is so popular in statistics is that it occurs so frequently in nature whenever a phenomenon is a
byproduct of many noisy microprocesses that add up to produce macroscopic measurements
such as height, weight, income, or mortality. Our interest in the normal distribution, however,
stems primarily from the way several normally distributed variables combine to shape their
joint distribution. The assumption of normality gives rise to four properties that are of enor-
mous use when working with linear systems:

1. Efficient representation

2. Substitutability of expectations for probabilities
3. Linearity of expectations

4. Invariance of regression coefficients.

Starting with two normal variables, X and Y, we know that their joint density forms a
three-dimensional cusp (like a mountain rising above the X—Y plane) and that the planes of
equal height on that cusp are ellipses like those shown in Figure 1.2. Each such ellipse is
characterized by five parameters: puy, uy, oy, oy, and pyy, as defined in Sections 1.3.8 and
1.3.9. The parameters uy and u, specify the location (or the center of gravity) of the ellipse
in the X-Y plane, thegyarianees oy and oy specify the spread of the ellipse along the X and Y

deviation:

dimensions, respectively, and the correlation coefficient pyy specifies its orientation. In three
dimensions, the best way to depict the joint distribution is to imagine an oval football sus-
pended in the X—Y-Z space (Figure 1.2); every plane of constant Z would then cut the football
in a two-dimensional ellipse like the ones shown in Figure 1.1.

As we go to higher dimensions, and consider a set of N normally distributed variables
X, X5, ..., Xy, we need not concern ourselves with additional parameters; it is sufficient to
specify those that characterize the N(N — 1)/2 pairs of variables, (X;, X;). In other words, the
joint density of (X,X,, ... ,Xy) is fully specified once we specify the bivariate d ensity of
(X, X;), with i and j (i # j) ranging from 1 to N. This is an enormously useful property, as it
offers an extremely parsimonious way of specifying the N-variable joint distribution. More-
over, since the joint distribution of each pair is specified by fi ve parameters, we conclude
that the joint distribution requires at most 5 X N(N — 1)/2 parameters (means, variances, and
covariances), each defined by e xpectation. In fact, the total number o f p arameters i s even
smaller than this, namely 2N + N(N — 1)/2; the first term gives the number of mean and vari-
ance parameters, and the second the number of correlations.

This brings us to another useful feature of multivariate normal distributions: they are fully
defined by expectations, so we need not concern ourselves with probability tables as we did
when dealing with discrete variables. Conditional probabilities can be expressed as conditional
expectations, and notions such as conditional independence that define the structure of graphi-
cal models can be expressed in terms of equality relationships among conditional expectations.
For instance, to express the conditional independence of ¥ and X, given Z,

P(Y|X,2) = P(Y|2)
we can write
E[Y|X,Z] = E[Y|Z]

(where Z is a set of variables).
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This feature of normal systems gives us an incredibly useful ability: Substituting expecta-
tions for probabilities allows us to use regression (a predictive method) to determine causal
information. The next useful feature of normal distributions is their linearity: every conditional
expectation E[Y|X,,X,, ... ,X,]is given by a linear combination of the conditioning variables.
Formally,

ElY|IX,=x,X, =%y, ... . X, =x, ] =rg+rx;+rx+- - +71,x

n-n

where each of the slopes r|,r,, ... ,r, is a partial regression coefficient %f;as defined in
Sections 1.3.10 and 1.3.11.
The magnitudes of these slopes do not depend on the values x|, x,, ... ,x, of the condition-

ing variables, called regressors; they depend only on which variables are chosen as regressors.
In other words, the sensitivity of Y to the measurement X; = x; does not depend on the measured
values of the other variables in the regression; it depends only on which variables we choose
to measure. It doesn’t matter whether X; = 1,X; =2, or X; = 312.3; as long as we regress
Y on X, the-eoeffieient 1, of X, will remrain-the-samme: <1, Xo,..., X, all slopeswill remainthesame.

This unique and useful feature of normal distributions is illustrated in Figures 1.1 and 1.2
of Chapter 1. Figure 1.1 shows that regardless of what level of age we choose, the slope of
Y on X at that level is the same. If, however, we do not hold age constant (i.e., we do not
regress on it), the slope becomes vastly different, as is shown in Figure 1.2.

The linearity assumption also permits us to fully specify the functions in the model by anno-
tating the causal graph with a path coefficient (or structural coefficient) along each edge. The
path coefficient g along the edge X — Y quantifies the contribution of X in the function that
defines Y in the model. For instance, if the function defines Y = 3X + U, the path coefficient
of X — Y will be 3. The path coefficients f,, §,, ... , f, are fundamentally different from the
regression coefficients ry,r,, ... ,r, that we discussed in Section 1.3. The former are “struc-
tural” or “causal,” whereas the latter are statistical. The difference is explained in the next
section.

Many of the regression methods we discuss are far more general, applying in situations
where the variables X, ... , X} follow distribution far from multivariate Normal; for example,
when some of the X;’s are categorical or even binary. Such generalizations also therefore allow
the conditional mean E(Y|X,| = x|, ... , X, = x;) to include nonlinear combinations of the X;’s,
including such terms as X, X,, for example, to allow for effect modification, or interaction.
Since we are conditioning on the values of the X;’s, it is usually not necessary to enforce a dis-
tributional assumption for such variables. Nevertheless, the full multivariate Normal scenario
provides considerable insight into structural causal models.

3.8.1 Structural versus Regression Coefficients

As we are now about to deal with linear models, and thus, as a matter of course, with
regression-like equations, it is of paramount importance to define the difference between
regression equations and the structural equations we have used in SCMs throughout the book.
A regression equation is descriptive; it makes no assumptions about causation. When we write
y = ryx + r,z + €, as aregression equation, we are not saying that X and Z cause Y. We merely
confess our need to know which values of r| and r, would make the equation y = rjx + r,z
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the best linear approximation to the data, or, equivalently, the best linear approximation of
E(y|x, 2).

Because of this fundamental difference between structural and regression equations, some
books distinguish them by writing an arrow, instead of equality sign, in structural equations,
and some distinguish the coefficients by using a different font. We distinguish them by denot-
ing structural coefficients as a, ff, and so on, and regression coefficients as ry, r,, and so on. In
addition, we distinguish between the stochastic “error terms” that appear in these equations.
Errors in regression equations are denoted €y, €,, and so on, as in Eq. (1.24), and those in struc-
tural equations by U, U,, and so onjas in SCM 1.5.2. The former denote the residual errors in
observation, after fitting the equation y = r x + r,z to data, whereas the latter represent latent
factors (sometimes called “disturbances” or “omitted variables™) that influence Y and are not
themselves affected by X. The former are human-made (due to imperfect fitting); the latter are
nature-made.

Though they are not causally binding themselves, regression equations are of significant use
in the study of causality as it pertains to linear systems. Consider: In Section 3.2, we were able
to express the effects of interventions in terms of conditional probabilities, as, for example, in
the adjustment formula of Eq. (3.5). In linear systems, the role of conditional probabilities
will be taken over by regression coefficients, since these coefficients represent the depen-
dencies induced by the model and, in addition, they are easily estimable using least square
analyses. Similarly, whereas the testable implications of nonparametric models are expressed
in the form of conditional independencies, these independencies are signified in linear models
by vanishing regressiolcoefficients, like those discussed in Section 1.3.11. Specifically, given
the regression equation

y=ry+rx +nx+-o+rx,+e

if r; = 0, then Y is independent of X; conditional on all the other regression variables.

3.8.2 The Causal Interpretation of Structural Coefficients

In a linear system, every path coefficient stands for the direct effect of the independent variable,
X, on the dependent variable, Y. To see why this is so, we refer to the interventional definition
of direct effect given in Section 3.7 (Eq. (3.18)), which calls for computing the change in Y as
X increases by one unit whereas all other parents of Y are held constant. When we apply this
definition to any linear system, regardless of whether the disturbances are correlated or not,
the result will be the path coefficient on the arrow X — Y.

Consider, for example, the model in Figure 3.13, and assume we wish to estimate the direct
effect of Z on Y. The structural equations in the fully specified model read:

X =Uy
Z=aX+U,

W =bX+cZ+ Uy
Y=dZ+eW+ Uy
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is the sum of the products of the coefficients on the two nonbackdoor paths from Z to Y. This
will be the case in all linear models; algebra demands it. Moreover, the sum of product rule
will be valid regardless of the distributions of the U variables and regardless of whether they
are dependent or independent.

3.8.3 Identifying Structural Coefficients and Causal Effect

Thus far, we have expressed the total and direct effects in terms of path coefficients, assuming
that the latter are either known to us a priori or estimated from interventional experiments. We
now tackle a much harder problem; estimating total and direct effects from nonexperimental
data. This problem is known as “identifiability” and, mathematically, it amounts to expressing
the path coefficients associated with the total and direct effects in terms of the covariances oy
or regression coefficients Ryy.,, where X and Y are any two variables in the model, and Z a set
of variables in the model (Eqgs. (1.27) and (1.28) and Section 1.3.11).

In many cases, however, it turns out that to identify direct and total effects, we do not need
to identify each and every structural parameter in the model. Let us first demonstrate with the
total effect, 7. The backdoor criterion gives us the set Z of variables we need to adjust for in
order to determine the causal effect of X on Y. How, though, do we make use of the criterion to
determine effects in a linear system? In principle, once we obtain the set, Z, we can estimate
the conditional expectation of Y given X and Z and, then, averaging over Z, we can use the
resultant dependence between Y and X to measure the effect of X on Y. We need only translate
this procedure to the language of regression.

The translation is rather simple. First, we find a set of covariates Z that satisfies the backdoor
criterion from X to Y in the model. Then, we regress Y on X and Z. The coefficient of X in
the resulting equation represents the true causal effect of X on Y. The reasoning for this is
similar to the reasoning we used to justify the backdoor criterion in the first place—regressing
on Z adds those variables into the equation, blocking all backdoor paths from X and Y, thus
preventing the coefficient of X from absorbing the spurious information those paths contain.

For example, consider a linear model that complies with the graph in Figure 3.14. If we want
to find the total causal effect of X on Y, we first determine, using the backdoor criterion, that
we must adjust for 7. So we regress ¥ on X and 7, using the regression equation y = ryX +

Figure 3.14 A graphical model in which X has no direct effect on Y, but a total effect that is determined
by adjusting for T’
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rrT + €. The coefficient ry represents the total effect of X on Y. Note that this identification
was possible without identifying any of the model parameters and without measuring variable
W; the graph structure in itself gave us the license to ignore W, regress ¥ on 7" and X only, and
identify the total effect (of X on Y) with the coefficient of X in that regression.

Suppose now that instead of the total causal effect, we want to find X’s direct effect on Y. In
a linear system, this direct effect is the structural coefficient @ in the function y = ax + fz +
-+ -+ Uy that defines Y in the system. We know from the graph of Figure 3.14 that a = 0,
because there is no direct arrow from X to Y. So, in this particular case, the answer is trivial:
the direct effect is zero. But in general, how do we find the magnitude of « from data, if the
model does not determine its value?

Uz

U V4
x_ P
\X Uy

4

a

Uy
\’ 5
Y

w

Figure 3.15 A graphical model in which X has direct effect « on Y

We can invoke a procedure similar to backdoor, except that now, we need to block not only
backdoor paths but also indirect paths going from X to Y. First, we remove the edge from X to
Y (if such an edge exists), and call the resulting graph G,,. If, in G, there is a set of variables
Z that d-separates X and Y, then we can simply regress Y on X and Z. The coefficient of X in
the resulting equation will equal the structural coefficient a.

The procedure above, which we might as well call “The Regression Rule for Identification”
provides us with a quick way of determining whether any given parameter (say a) can be
identified by ordinary least square (OLS) regression and, if so, what variables should gointo
the regression equation. For example, in the linear model of Figure 3.15, we can find the direct
effect of X on Y by this method. First, we remove the edge between X and Y and get the graph
G, shown in Figure 3.16. It’s easy to see that in this new graph, W d-separates X and Y. So we
regress Y on X and W, using the regression equation Y = ryX + ry W + €. The coefficient ry
is the direct effect of X on Y.

Summarizing our observations thus far, two interesting features emerge. First, we see that, in
linear systems, regression serves as the major tool for the identification and estimation of causal
effects. To estimate a given effect, all we need to do is to write down a regression equation and
specify (1) what variables should be included in the equation and (2) which of the coefficients
in that equation represents the effect of interest. The rest is routine least square analysis on the
sampled data which, as we remarked before, is facilitated by a variety of extremely efficient
software packages. Second, we see that, as long as the U variables are independent of each
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to simulate interventions by modifying equations in the model (see Pearl (2015() for histori-
cal account). Strotz and Wold (1960) later advocated “wiping out” the equation determining
X, and Spirtes et al. (1993) gave it a graphical representation in a form of a “manipulated
graph.” The “adjustment formula” of Eq. (3.5) as well as the “truncated product formula”
first appeared in Spirtes et al. (1993), though these are implicit in the G-computation formula
of Robins (1986), which was derived using counterfactual assumptions (see Chapter 4). The
backdoor criterion of Definition 3.3.1 and its implications for adjustments were introduced
in Rearl (1993), oIQ%JEQH@?W&Hﬁ&SﬁOH and a general cv\zl%%llus for identifying causal effects
(named do-calculus),were ig}]tﬁgd}legﬁéloiln 5%%5;; ({%%a)and,further improved in Tian and Pearl
(2002)and Shpitser and Pear (5007 A ectlona'a(. , and the identification of conditional inter-
ventions and c-specific effects is based on (Pear] 2009, pp. 113—114). Its extension to dynamic,
time-varying policies is described in Pearl and Robins (1995) and (Pearl 2009, pp. 119-126). <}—
The role of covariate-specific effects in assessing interaction, moderation or effect modifica-

tion is described in Morgan and Winship (2014Jand Vanderweele (2015), whereas applications

of Rule 2 to the detection of latent heterogeneity are described in Pearl (2015b). Additional
discussions on the use of inverse probability weighting (Section 3.6) can be found in Hernan

and Robins (2006). Our discussion of mediation (Section 3.7) and the identification of CDEs

are based on Pearl (2009, pp. 126—130), whereas the fallibility of “conditioning” on a mediator

to assess direct effects is demonstrated in Pearl (1998) as well as Cole and Hernan (2002).

The analysis of mediation has become extremely active in the past 15 years, primarily due
to the advent of counterfactual logic (see Section 4.4.5); a comprehensive account of this
progress is given in Vanderweele (2015). A tutorial survey of causal inference in linear sys-
tems (Section 3.8), focusing on parameter identification, is provided by Chen and Pear1 (2014).
Additional discussion on the confusion of regression versus structural equations can be found
in Bollen and Pearl (2013).

A classic, and still the best textbook on the relationships between structural and regession
coefficients is Heise (1975) (available online: http://www.indiana.edu/~socpsy/public_files/
CausalAnalysis.zip). Other classics are Duncan (1975), Kenny (1979), and Bollen (1989).
Classical texts, however, fall short of providing graphical tools of identification, such as those
invoking backdoor and G, (see Study question 3.8.1). A recent exception is Kline (2016).

Introductions to instrumental variables can be found in Greenland (2000) and in many text-
books of econometrics (e.g., Bowden and Turkington 1984, Wooldridge 2013). Generalized
instrumental variables, extending the classical definition of Section 3.8.3 were introduced in
Brito and Pearl (2002).

The program DAGitty (which is available online: http://www.dagitty.net/dags.html), permits
users to search the graph for generalized instrumental variables, and reports the resulting IV

estimators (Textor et al. 2011).
More recently the do-calculuswasusedto

solveproblemsof externalvalidity, data-
fusion,andmeta-analysi¢Bareinboimand
Pearl2013,BareinboimandPearl2016,Pearl
andBareinboim2014).
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If we try to express this estimate using do-expressions, we come to an impasse. Writing
E(driving time|do(freeway), driving time = 1 hour)

leads to a clash between the driving time we wish to estimate and the actual driving time
observed. Clearly, to avoid this clash, we must distinguish symbolically between the following
two variables:

1. Actual driving time
2. Hypothetical driving time under freeway conditions when actual surface driving time is
known to be 1 hour.

Unfortunately, the do-operator is too crude to make this distinction. While the do-operator
allows us to distinguish between two probabilities, P(driving time|do(freeway)) and
P(driving time|do(Sepulveda)), it does not offer us the means of distinguishing between
the two variables themselves, one standing for the time on Sepulveda, the other for the
hypothetical time on the freeway. We need this distinction in order to let the actual driving
time (on Sepulveda) inform our assessment of the hypothetical driving time.

Fortunately, making this distinction is easy; we simply use different subscripts to label the
two outcomes. We denote the freeway driving time by Yy_; (or Y;, where context permits) and
Sepulveda driving time by Yy_, (or ¥;). In our case, since Y, is the Y actually observed, the
quantity we wish to estimate is

EYy |X=0Y=Y,=1) @.1)

The novice student may feel somewhat uncomfortable at the sight of the last expression,
which contains an eclectic mixture of three variables: one hypothetical and two observed,
with the hypothetical variable Yy_, predicated upon one event (X = 1) and conditioned upon
the conflicting event, X = 0, which was actually observed. We have not encountered such a
clash before. When we used the do-operator to predict the effect of interventions, we wrote
expressions such as

E[Y|do(X = x)] 4.2)

and-we-sought-to-estimate-theminterms-of-observed-probabilitiessuehas PX= ¥ =)
The Y in this expression is predicated upon the event X = x. With our new notation, the
expression might as well have been written E[Yy_,]. But since all variables in this expression
were measured in the same world, there is no need to abandon the do-operator and invoke
counterfactual notation.

We run into problems with counterfactual expressions like (4.1) because Yy_; = yand X =0
are—and must be—events occurring under different conditions, sometimes referred to as “dif-
ferent worlds.” This problem does not occur in intervention expressions, because Eq. (4.1)
seeks to estimate our total drive time in a world where we chose the freeway, given that the
actual drive time (in the world where we chose Sepulveda) was 1 hour, whereas Eq. (4.2) seeks
to estimate the expected drive time in a world where we chose the freeway, with no reference
whatsoever to another world.
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we can use SEMs to define what counterfactuals stand for, how to read counterfactuals from a
given model, and how probabilities of counterfactuals can be estimated when portions of the
models are unknown.

We begin with a fully specified model M, for which we know both the functions {F'} and
the values of all exogenous variables. In such a deterministic model, every assignment U = u
to the exogenous variables corresponds to a single member of, or “unit” in a population, or to a
“situation” in nature. The reason for this correspondence is as follows: Each assignment U = u
uniquely determines the values of all variables in V. Analogously, the characteristics of each
individual “unit” in a population have unique values, depending on that individual’s identity. If
the population is “people,” these characteristics include salary, address, education, propensity
to engage in musical activity, and all other properties we associate with that individual at any
given time. If the population is “agricultural lots,” these characteristics include soil content,
surrounding climate, and local wildlife, among others. There are so many of these defining
properties that they cannog\possibly be included in the model, but taken all together, they
uniquely distinguish each individual and determine the values of the variables we do include
in the model. It is in this sense that every assignment U = u corresponds to a single member
or “unit” in a population, or to a “situation” in nature.

For example, if U = u stands for the defining characteristics of an individual named Joe,
and X stands for a variable named “salary,” then X(u) stands for Joe’s salary. If U = u stands
for the identity of an agricultural lot and Y stands for the yield measured in a given season,
then Y (u), stands for the yield produced by lot U = u in that season.

Consider now the counterfactual sentence, “Y would be y had X been x, in situation U = u,”
denoted Y,(«)=y, where Y and X are any two variables in V. The key to interpreting such a
sentence is to treat the phrase “had X been x” as an instruction to make a minimal modifica-
tion in the current model so as to establish the antecedent condition X = x, which is likely to
conflict with the observed value of X, X(). Such a minimal modification amounts to replac-
ing the equation for X with a constant x, which may be thought of as an external intervention
do(X = x), not necessarily by a human experimenter. This replacement permits the constant x
to differ from the actual value of X (namely, X(«)) without rendering the system of equations
inconsistent, and in this way, it allows all variables, exogenous as well as endogenous, to serve
as antecedents to other variables.

We demonstrate this definition on a simple causal model consisting of just three variables,
X, Y, U, and defined by two equations:

X = al 4.3)
Y=bX+U 4.4)

We first compute the counterfactual Y,.(u), that is, what ¥ would be had X been x, in situation
U = u. Replacing the first equation with X = x gives the “modified” model M:

X=x
Y=bX+U

Substituting U = u and solving for Y gives

Y.(u)=bx+u
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training? Or, what would his expected score be in such hypothetical world? Unlike in the
example of Model 4.1, we now do not have information on all three variables, {X, Y, H}, and
we cannot therefore determine uniquely the value u that pertains to Joe. Instead, Joe may
belong to a large class of units compatible with the evidence available, each having a different
value of u.

Nondeterminism enters causal models by assigning probabilities P(U = u) over the exoge-
nous variables U. These represent our uncertainty as to the identity of the subject under con-
sideration or, when the subject is known, what other characteristics that subject has that might
have bearing on our problem.

The exogenous probability P(U = u) induces a unique probability distribution on the
endogenous variables V, P(v), with the help of which we can define and compute not only
the probability of any single counterfactual, Y, =y, but also the joint distributions of all
combinations of observed and counterfactual variables. For example, we can determine
P(Y,=y,Z,=2X=x"), where X,Y,Z, and W are arbitrary variables in a model. Such
joint probabilities refer to the proportion of individuals u in the population for which all the
events in the parentheses are true, namely, Y, («) = y and Z,,(1) = z and X(u) = x’, allowing,
in particular, w or x’ to conflict with x.

A typical query about these probabilities asks, “Given that we observe feature E = e for a
given individual, what would we expect the value of Y for that individual to be if X had been
x?7” This expectation is denoted E[Yy_,|E = e], where we allow E = e to conflict with the
antecedent X = x. E = e after the conditioning bar represents all information (or evidence) we
might have about the individual, potentially including the values of X, Y, or any other variable,
as we have seen in Eq. (4.1). The subscript X = x represents the antecedent specified by the
counterfactual sentence.

The specifics of how these probabilities and expectations are dealt with will be examined in
the following sections, but for now, it is important to know that using them, we can generalize
our three-step process to any probabilistic nonlinear system.

Given an arbitrary counterfactual%f the form, E[Yy_,|E = e], the three-step process reads:

(i) Abduction: Update P(U) by the evidence to obtain P(U|E = e).

(i1) Action: Modify the model, M, by removing the structural equations for the variables
in X and replacing them with the appropriate functions X = x, to obtain the modified
model, M,.

(iii) Prediction: Use the modified model, M,, and the updated probabilities over the
U variables, P(U|E = e), to compute the expectation of Y, the consequence of the
counterfactual.

We shall see in Section 4.4 that the above probabilistic procedure applies not only to ret-
rospective counterfactual queries (queries of the form “What would have been the value of ¥
had X been x?’) but also to certain kinds of intervention queries. In particular, it applies when
we make every individual take an action that depends on the current value of his/her X. A typ-
ical example would be “additive intervention”: for example, adding 5 mg/1 of insulin to every
patient’s regiment, regardless of their previous dosage. Since the final level of insulin varies
from patient to patient, this policy cannot be represented in do-notation.

For another example, suppose we wish to estimate, using Figure 4.1, the effect on test score
provided by a school policy that sends students who are lazy on their homework (H < H,)) to
attend the after-school program for X = 1. We can’t simply intervene on X to set it equal to 1
in cases where H is low, because in our model, X is one of the causes of H.
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Instead, we express the expected value of this quantity in counterfactual notation as
—> EA[YX:1 |H < H,], which can, in principle, be computed using the above three-step method.
Counterfactual reasoning and the above procedure are necessary for estimating the effect of
actions and policies on subsets of the population characterized by features that, in themselves,
are affected by the policy (e.g., H < H).

4.3 Nondeterministic Counterfactuals
4.3.1 Probabilities of Counterfactuals

To examine how nondeterminism is reflected in the calculation of counterfactuals, let us assign
probabilities to the values of U in the model of Egs. (4.3) and (4.4). Imagine that U = {1, 2,3}
represents three types of individuals in a population, occurring with probabilities

PU=1)= %,P(U=2)= % and P(U=3)=é

All individuals within a population type have the same values of the counterfactuals, as speci-
fied by the corresponding rows in Table 4.1. With these values, we can compute the probability
that the counterfactuals will satisfy a specified condition. For instance, we can compute the
proportion of units for which ¥ would be 3 had X been 2, or Y,(«) = 3. This condition occurs
only in the first row of the table and, since it is a property of U = 1, we conclude that it will
occur with probability %, giving P(Y, =3) = % We can similarly compute the probability of
any counterfactual statement, for example, P(Y; = 4) = é,P(Y 1=3)= %,P(YQ >3)= %, and
so on. What is remarkable, however, is that we can also compute joint probabilities of every
combination of counterfactual and observable events. For example,

P(Y1<4,Y—X>1):%

In the first of these expressions, we find a joint probability of two events occurring in two
different worlds; the first ¥, > 3 in an X = 2 world, and the second Y; <4, in X = 1. The
probability of their conjunction evaluates to % because the two events co-occur only at U = 2,

which was assigned a probability of % Other cross-world events appear in the second and third
expressions. Remarkably (and usefully), this clash between the worlds provides no barrier to
calculation. In fact, cross-world probabilities are as simple to derive as intra-world ones: We
simply identify the rows in which the specified combination is true and sum up the probabilities
assigned to those rows. This immediately gives us the capability of computing conditional
probabilities among counterfactuals and defining notions such as dependence and conditional
independence among counterfactuals, as we did in Chapter 1 when we dealt with observable
variables. For instance, it is easy to verify that, among individuals for which Y is greater than 2,
the probability is 2 that Y would increase if X were 3. (Because P(Y; > Y|Y > 2) = % / % = %.)
Similarly, we can verify that the difference Y, ; — Y, is independent of x, which means that the


kaoru
Line

kaoru
Text Box
E

kaoru
Polygonal Line


Counterfactuals and Their Applications 99

causal effect of X on Y does not vary across population types, a property shared by all linear
models.

Such joint probabilities over multiple-world counterfactuals can easily be expressed using
the subscript notation, as in P(Y; =y,,Y, =y,), and can be computed from any structural
model as we did in Table 4.1. They cannot however be expressed using the do(x) notation,
because the latter delivers just one probability for each intervention X = x. To see the ramifi-
cations of this limitation, let us examine a slight modification of the model in Egs. (4.3) and
(4.4), in which a third variable Z acts as mediator between X and Y. The new model’s equations
are given by

X=U Z=aX+U,Y=0bZ 4.7)

and its structure is depicted in Figure 4.3. To cast this model in a context, let X = 1 stand for
having a college education, U, = 1 for having professional experience, Z for the level of skill
needed for a given job, and Y for salary.

Suppose our aim is to compute E[Yy_,|Z = 1], which stands for the expected salary of indi-
viduals with skill level Z = 1, had they received a college education. This quantity cannot
be captured by a do-expression, because the condition Z = 1 and the antecedent X = 1 refer
to two different worlds; the former represents current skills, whereas the latter represents a
hypothetical education in an unrealized past. An attempt to capture this hypothetical salary
using the expression E[Y|do(X = 1),Z = 1] would not reveal the desired information. The
do-expression stands for the expected salary of individuals who all finished college and have
since acquired skill level Z = 1. The salaries of these individuals, as the graph shows, depend
only on their skill, and are not affected by whether they obtained the skill through college or
through work experience. Conditioning on Z = 1, in this case, cuts off the effect of the interven-
tion that we’re interested in. In contrast, some of those who currently have Z = 1 might not have
gone to college and would have attained higher skill (and salary) had they gotten college edu-
cation. Their salaries are of great interest to us, but they are not included in the do-expression.
Thus, in general, the do-expression will not capture our counterfactual question:

E[Y|do(X = 1), Z=1] # E[Yy_,|Z = 1] (4.8)

We can further confirm this inequality by noting that, while E[Y|do(X = 1),Z = 1] is equal
to E[Y|do(X =0),Z =11, E[Yy_,1Z = 1] is not equal to E[Yy_y|Z = 1]; the formers treat
Z =1 as a postintervention condition that prevails for two different sets of units under the
two antecedents, whereas the latters treat it as defining one set of units in the current world
that would react differently under the two antecedents. The do(x) notation cannot capture the
latters because the events X = 1 and Z = 1 in the expression E[Yy_,|Z = 1] refer to two dif-
ferent worlds, pre- and postintervention, respectively. The expression E[Y|do(X = 1),Z = 1],

U, U,

x ¢ z b vy
(College)  (Skill) (Salary)

Figure 4.3 A model representing Eq. (4.7), illustrating the causal relations between college education
(X), skills (Z), and salary (Y)
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on the other hand, invokes only postintervention events, and that is why it is expressible in
do(x) notation.

A natural question to ask is whether counterfactual notation can capture the postintervention,
single-world expression E[Y|do(X = 1),Z = 1]. The answer is affirmative; being more flexi-
ble, counterfactuals can capture both single-world and cross-world probabilities. The transla-
tion of E[Y|do(X = 1), Z = 1] into counterfactual notation is simply E[Yy_,|Zy—; = 1], which
explicitly designates the event Z = 1 as postintervention. The variable Zy_ stands for the value
that Z would attain had X been 1, and this is precisely what we mean when we put Z = zin a
do-expression by Bayes’ rule:

P(Y = y,Z = z|do(X = 1))
P(Z = zldo(X = 1))

PIY = y|ldoX = 1),Z =7] =

This shows explicitly how the dependence of Z on X should be treated. In the special case
where Z is a preintervention variable, as age was in our discussion of conditional interventions
(Section 3.5) we have Zy_, = Z, and we need not distinguish between the two. The inequality
in (4.8) then turns into an equality.

Let’s look at how this logic is reflected in the numbers. Table 4.2 depicts the counterfactuals
associated with the model of (4.7), with all subscripts denoting the state of X. It was constructed
by the same method we used in constructing Table 4.1: replacing the equation X = u with the
appropriate constant (zero or one) and solving for Y and Z. Using this table, we can verify
immediately that

ElY||Z=1]1=(a+ 1)b (4.9)
ElY)|lZ=1]1=b (4.10)
ElY|doX=1),Z=1]=b A(see footnote 2) (4.11)
E[Y|do(X =0),Z=1]=b (4.12)

These equations provide numerical confirmation of the inequality in (4.8). They also demon-
strate a peculiar property of counterfactual conditioning that we have noted before: Despite
the fact that Z separates X from Y in the graph of Figure 4.3, we find that X has an effect on Y
for those units falling under Z = 1:

The reason for this behavior is best explained in the context of our salary example. While the
salary of those who have acquired skill level Z = 1 depends only on their skill, not on X, the

Table 4.2 The values attained by X(u), Y(u), Z(u), Y, (), Y, (u), Z,(u), and Z, (u) in the model of
Eq. 4.7)

X=u Z=aX+u, Y=>bZ

u, i, X(u) Z(u) Y(u) Y, (u) Y, (u) Zy(u) Z,(u)
0 0 0 0 0 0 ab 0 a
0 1 0 1 b b (a+ 1)b 1 a+1
1 0 1 a ab 0 ab 0 a
1 1 1 a+1 (a+ 1)b b (a+ 1)b 1 a+1

2 Strictly speaking, the quantity E[ Y| do(X=1), Z=1] in Eq. (4.11) is undefined because the observation Z=1 is not
possible post-intervention of do( X = 1). However, for the purposes of the example, we can imagine that Z =1 was

observed due to some error term & —* Z that accounts for the deviation. Eq. (4.11) then follows.
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salary of those who are currently at Z = 1 would have been different had they had a differ-
ent past. Retrospective reasoning of this sort, concerning dependence on the unrealized past,
is not shown explicitly in the graph of Figure 4.3. To facilitate such reasoning, we need to
devise means of representing counterfactual variables directly in the graph; we provide such
representations in Section 4.3.2.

Thus far, the relative magnitudes of the probabilities of P(u;) and P(u,) have not entered
into the calculations, because the condition Z = 1 occurs only for #; = 0 and u, = 1 (assuming
that a # 0 and a # 1), and under these conditions, each of Y, Y|, and Y|, has a definite value.
These probabilities play a role, however, if we assume a = 1 in the model, since Z = 1 can
now occur under two conditions: (#; = 0,u, = 1) and (#; = 1,u, = 0). The first occurs with
probability P(u; = 0)P(u, = 1) and the second with probability P(u; = 1)P(u, = 0). In such
a case, we obtain

ElVe_|Z=1]1=b(1 Pluy = 0P, = 1) 413

Yyal2=11= ( +P(u1 =0)P(u, = 1)+ P(u, = 1)P(u2=0)> (4.13)

ElYyolZ=11=b Plu, = 0P, =1) (4.14)
Puy =0)Pu, =1)+ P(u; = )P(u, =0)

The fact that the first expression is larger than the second demonstrates again that the
skill-specific causal effect of education on salary is nonzero, despite the fact that salaries are
determined by skill only, not by education. This is to be expected, since a nonzero fraction of
the workers at skill level Z = 1 did not receive college education, and, had they been given
college education, their skill would have increased to Z; = 2, and their salaries to 2b.

Study question 4.3.1

Consider the model in Figure 4.3 and assume that U; and U, are two independent Gaussian
variables, each with zero mean and unit variance.

(a) Find the expected salary of workers at skill level Z = z had they received x years of col-
lege education. [Hint: Use Theorem 4.3.2, with e . Z = z, and the fact that for any two
Gaussian variables, say X and Z, we have E[X|Z = z] = E[x] + Ry,(z — E[Z]). Use the
material in Sections 3.8.2 and 3.8.3 to express all regression coefficients in terms of struc-
tural parameters, and show that E[Y,|Z = z] = abx + bz/(1 + a%).]

(b) Based on the solution for (a), show that the skill-specific effect of education on salary is
independent Of the skill level.

4.3.2 The Graphical Representation of Counterfactuals

Since counterfactuals are byproducts of structural equation models, a natural question to ask
is whether we can see them in the causal graphs associated with those models. The answer is
affirmative, as can be seen from the fundamental law of counterfactuals, Eq. (4.5). This law
tells us that if we modify model M to obtain the submodel M, then the outcome variable Y in
the modified model is the counterfactual Y, of the original model. Since modification calls for
removing all arrows entering the variable X, as illustrated in Figure 4.4, we conclude that the
node associated with the Y variable serves as a surrogate for Y, with the understanding that
the substitution is valid only under the modification.
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102 Causal Inference in Statistics

Figure 4.4 Illustrating the graphical reading of counterfactuals. (a) The original model. (b) The modi-
fied model M in which the node labeled Y, represents the potential outcome Y predicated on X = x

This temporary visualization of counterfactuals is sufficient to answer some fundamental
questions about the statistical properties of Y, and how those properties depend on other vari-
ables in the model, specifically when those other variables are conditioned on.

When we ask about the statistical properties of Y,, we need to examine what would cause
Y, to vary. According to its structural definition, Y, represents the value of ¥ under a condition
where X is held constant at X = x. Statistical variations of Y, are therefore governed by all
exogenous variables capable of influencing ¥ when X is held constant, that is, when the arrows
entering X are removed, as in Figure 4.4(b). Under such conditions, the set of variables capable

—>  of transmitting variations to Y are the parents of Yy (observed and unobserved/\as well as
parents of nodes on the pathways between X and Y. In Figure 4.4(b), for example, these parents
are {Z;, W,, Us, Uy}, where Uy and Us, the error terms of ¥ and W;, are not shown in the

—> diagram.pAny set of variables that blocks a path to these parents also blocks that path to Y,
and will result in, therefore, a conditional independence for Y, . In particular, if we have a set Z
—> of covariate:that satisfies the backdoor criterion in M (see Definition 3.3.1), that set also blocks
all paths between X and those parents, and consequently, it renders X and Y, independent in
every stratum Z = z.
These considerations are summarized formally in Theorem 4.3.1.

Theorem 4.3.1 (Counterfactual Interpretation of Backdoor) If a set Z of variables sat-
isfies the backdoor condition relative to (X, Y), then, for all x, the counterfactual Y, is condi-
tionally independent of X given Z

PY,|X,Z)=P(Y,|Z) (4.15)
Theorem 4.3.1 has far-reaching consequences when it comes to estimating the probabilities
of counterfactuals from observational studies. In particular, it implies that P(Y, = y) is iden-

—> tifiable by the adjustment formula of Eq. (3.5). To prove this, we conditionalize on Z (as in
Eq. (1.9)) and write

P(Y,=y)= Y P(Y,=)|Z=2)P()

= PY,=y|Z=2X=x)P2)
(Thesevariablesremainthe z;’ !

samein bothmodels.)

= ) P(Y =)|Z=z.X = 0)P(2) (4.16)
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The second line was licensed by Theorem 4.3.1, whereas the third line was licensed by the
consistency rule (4.6).

The fact that we obtained the familiar adjustment formula in Eq. (4.16) is not really sur-
prising, because this same formula was derived in Section 3.2 (Eq. (3.4)), for P(Y = y|do(x)),
and we know that P(Y, = y) is just another way of writing P(Y = y|do(x)). Interestingly, this
derivation invokes only algebraic steps; it makes no reference to the model once we ensure
that Z satisfies the backdoor criterion. Equation (4.15), which converts this graphical real-
ity into algebraic notation, and allows us to derive (4.16), is sometimes called “conditional
ignorability”’; Theorem 4.3.1 gives this notion a scientific interpretation and permits us to test
whether it holds in any given model.

Having a graphical representation for counterfactuals, we can resolve the dilemma we faced
in Section 4.3.1 (Figure 4.3), and explain graphically why a stronger education (X) would have
had an effect on the salary (Y) of people who are currently at skill level Z = z, despite the fact
that, according to the model, salary is determined by skill only. Formally, to determine if the
effect of education on salary (Y,) is statistically independent of the level of education, we need
to locate Y, in the graph and see if it is d-separated from X given Z. Referring to Figure 4.3,
we see that Y, can be identified with U,, the only parent of nodes on the causal path from X
to Y (and therefore, the only variable that produces variations in Y, while X is held constant).
A quick inspection of Figure 4.3 tells us that Z acts as a collider between X and U,, and,
therefore, X and U, (and similarly X and Y,) are not d-separated given Z. We couclude
therefore

Errlx,z1# E[v,|2]

despite the fact that
ElY|X,Z] = E[Y|Z]

In Study question 4.3.1, we evaluate these counterfactual expectations explicitly, assuming
a linear Gaussian model. The graphical representation established in this section permits us
to determine independencies among counterfactuals by graphical means, without assuming
linearity or any specific parametric form. This is one of the tools that modern causal analysis
has introduced to statistics, and, as we have seen in the analysis of the education—skill-salary
story, it takes a task that is extremely hard to solve by unaided intuition and reduces it to simple
operations on graphs. Additional methods of visualizing counterfactual dependencies, called
“twin networks,” are discussed in (Pearl 2000, pp. 213-215).

4.3.3 Counterfactuals in Experimental Settings

Having convinced ourselves that every counterfactual question can be answered from a fully
specified structural model, we next move to the experimental setting, where a model is not
available, and the experimenter must answer interventional questions on the basis of a finite
sample of observed individuals. Let us refer back to the “encouragement design” model of
Figure 4.1, in which we analyzed the behavior of an individual named Joe, and assume that
the experimenter observes a set of 10 individuals, with Joe being participant 1. Each individual
is characterized by a distinct vector U; = (Uy, Uy, Uy), as shown in the first three columns of
Table 4.3.
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104 Causal Inference in Statistics

Table 4.3 Potential and observed outcomes predicted by the structural model of Figure 4.1
units were selected at random, with each U, uniformly distributed over [0, 1]

Participant Observed Predicted potential
characteristics behavior outcomes
Participant U, Uy U, X Y H Y, Y, H, H, Yoo -
1 05 075 075 |05 150 1.0 | 1.05 195 075 1.25 0.75
2 03 0.1 04 | 03 071 025|044 134 0.1 0.6 0.4
3 05 09 02 | 05 101 1.15]| 05 146 09 14 0.2
4 06 05 03 | 06 104 08 | 050 140 05 1.0 0.3
5 05 08 09 | 05 167 1.05 | 1.22 212 08 1.3 0.9
6 0.7 09 03 |07 129 125|066 156 09 14 0.3
7 02 03 08 | 02 110 04 | 092 182 03 0.8 0.8
8 04 06 02 | 04 080 08 | 044 134 06 1.1 0.2
9 06 04 03 | 06 100 0.7 | 046 136 04 0.9 0.3
10 03 08 03 |03 08 095|062 152 08 1.3 0.3

Using this information, we can create a full data set that complies with the model. For
each triplet (Uy, Uy, Uy), the model of Figure 4.1 enables us to complete a full row of the
table, including Y|, and Y|, which stand for the potential outcomes under treatment (X = 1)
and control (X = 0) conditions, respectively. We see that the structural model in Figure 4.1
encodes in effect a synthetic population of individuals together with their predicted behavior
under both observational and experimental conditions. The columns labeled X, Y, H predict
the results of observational studies, and those labeled Y, Y,, Hy, H; predict the hypothetical
outcome under two treatment regimes, X = 0, and X = 1. Many more, in fact infinite, potential
outcomes may be predicted; for example, Yy_q 5 7= as computed for Joe from Figure 4.2, as
well as all combinations of subscripted variables. From this synthetic population, one can esti-
mate the probability of every counterfactual query on variables X, Y,H, assuming, of course,
that we are in possession of all entries of the table. The estimation would require us to sim-
ply count the proportion of individuals that satisfy the specified query as demonstrated in
Section 4.3.1.

Needless to say, the information conveyed by Table 4.3 is not available to us in either obser-
vational or experimental studies. This information was deduced from a parametric model such
as the one in Figure 4.2, from which we could infer the defining characteristics { Uy, Uy, Uy}
of each participant, given the observations {X, H, Y}. In general, in the absence of a paramet-
ric model, there is very little we learn about the potential outcomes Y; and Y, of individual
participants, when all we have is their observed behavior {X, H, Y}. Theoretically, the only
connection we have between the counterfactuals {Y;, ¥} and the observables {X, H, Y} is the
consistency rule of Eq. (4.6), which informs us that, ¥; must be equal to ¥ in case X = 1
and Y, must be equal to Y in case X = 0. But aside from this tenuous connection, most of the
counterfactuals associated with the individual participants will remain unobserved.

Fortunately, there is much we can learn about those counterfactuals at the population level,
such as estimating their probabilities or expectation. This we have witnessed already through
the adjustment formula of (4.16), where we were able to compute E(Y| — Y;)) using the graph
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alone, instead of a complete model. Much more can be obtained from experimental studies,
where even the graph becomes dispensable.

Assume that we have no information whatsoever about the underlying model. All we have
are measurements on Y taken in an experimental study in which X is randomized over two
levels, X =0and X = 1.

Table 4.4 describes the responses of the same 10 participants (Joe being participant 1)
under such experimental conditions, with participants 1,5,6,8, and 10 assigned to X =0,
and the rest to X = 1. The first two columns give the true potential outcomes (taken from
Table 4.3), while the last two columns describe the information available to the experimenter,
where a square indicates that the response was not observed. Clearly, Y, is observed only
for participants assigned to X =0 and, similarly, Y, is observed only for those assigned
to X = 1. Randomization assures us that, although half of the potential outcomes are not
observed, the difference between the observed means in the treatment and control groups
will converge to the difference of the population averages, E(Y; — Y;)) = 0.9. This is because
randomization distributes the black squares at random along the two rightmost columns of
Table 4.4, independent of the actual values of Y and Y, so as the number of sampledncreases,
the sample means converge to the population means.

This unique and important property of randomized experiments is not new to us, since
randomization, like interventions, renders X independent of any variable that may affect Y
(as in Figure 4.4(b)). Under such conditions, the adjustment formula (4.16) is applicable with
Z = {1}, yielding E[Y,]=E[Y|X =x], where x =1 represents treated units and x =0
untreated. Table 4.4 helps us understand what is actually computed when we take sample
averages in experimental settings and how those averages are related to the underlying
counterfactuals, Y, and Y.

Table 4.4 Potential and observed outcomes in a randomized clinical trial with X randomized
overX =0and X =1

Predicted Observed
potential outcomes outcomes
Participant Y, Y, Y, Y,
1 1.05 1.95 1.05 ]
2 0.44 1.34 [ 1.34
3 0.56 1.46 [} 1.46
4 0.50 1.40 [ | 1.40
5 1.22 2.12 1.22 ]
6 0.66 1.56 0.66 ]
7 0.92 1.82 ] 1.82
8 0.44 1.34 0.44 ]
9 0.46 1.36 ] 1.36
10 0.62 1.52 0.62 [ ]

2'g

True average treatment effect: 0.90  Study average treatment effect: 0.68
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4.3.4  Counterfactuals in Linear Models

In nonparametric models, counterfactual quantities of the form E[Yy_ |Z = z] may not be iden-
tifiable, even if we have the luxury of running experiments. In fully linear models, however,
things are much easier; any counterfactual quantity is identifiable whenever the model parame-
ters are identified. This is because the parameters fully define the model’s functions, and as we
have seen earlier, once the functions are given, counterfactuals are computable using Eq. (4.5).
Since every model parameter is identifiable from interventional studies using the interven-
tional definition of direct effects, we conclude that in linear models, every counterfactual is
experimentally identifiable. The question remains whether counterfactuals can be identified in
observational studies, when some of the model parameters are not identified. It turns out that
any counterfactual of the form E[Yy_,|Z = e], with e an arbitrary set of evidence, is identified
whenever E[Y|do(X = x)] is identified (Pearl 2000, p. 389). The relation between the two is
summarized in Theorem 4.3.2, which provides a shortcut for computing counterfactuals.

Theorem 4.3.2 Let t be the slope of the total effect of X on Y,
7 = E[Y|do(x + 1)] — E[Y|do(x)]
then, for any evidence Z = e, we have

E[Yy_.|Z = €] = E[Y|Z = e] + t(x — E[X|Z = ¢]) 4.17)

This provides an intuitive interpretation of counterfactuals in linear models: E[Yy_,|Z = e]
can be computed by first calculating the best estimate of ¥ conditioned on the evidence e,
E[Y|e], and then adding to it whatever change is expected in ¥ when X is shifted from its
current best estimate, E[X|Z = e], to its hypothetical value, x.

Methodologically, the importance of Theorem 4.3.2 lies in enabling researchers to answer
hypothetical questions about individuals (or sets of individuals) from population data. The ram-
ifications of this feature in legal and social contexts will be explored in the following sections.
In the situation illustrated by Figure 4.2, we computed the counterfactual Y;;_, under the evi-
dence e = {X =0.5,H = 1,Y = 1}. We now demonstrate how Theorem 4.3.2 can be applied
to this model in computing the effect of treatment on the treated

ETT = E[Y, - Y|X =1] (4.18)
Substituting the evidence e = {X = 1} in Eq. (4.17) we get
ETT = E[Y||X = 1] - E[Y,|X = 1]
=EY|X=1]-E[Y|X=1]+7(1 -EX|X =1]) —7z(0 - E[X|X = 1])
=7
=b+ac=09

In other words, the effect of treatment on the treated is equal to the effect of treatment on
the entire population. This is a general result in linear systems that can be seen directly from
Eq. (4.17); E[Y,,, — Y,|e] = 7, independent on the evidence of e. Things are different when a
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Using Eq. (4.21), we readily get an estimable, noncounterfactual expression for ETT
ETT = E[Y, - Yy|lX = 1]
=E[Y||X =1] - E[Y,|X =1]
=E[Y|X=1]- ) E[Y|X=0,Z=zP(Z=2|X=1)
z

where the first term in the final expression is obtained using the consistency rule of Eq. (4.6).
In other words, E[Y;|X = 1] = E[Y|X = 1] because, conditional on X = 1, the value that Y
would get had X been 1 is simply the observed value of Y.

Another situation permitting the identification of ETT occurs for binary X whenever both
experimental and nonexperimental data are available, in the form of P(Y = y|do(X = x)) and
P(X =x,Y =), respectively. Still another occurs when an intermediate variable is available
between X and Y satisfying the front-door criterion (Figure 3.10(b)). What is common to these
situations is that an inspection of the causal graph can tell us whether ETT is estimable and, if
so, how.

Study questions
Study question 4.4.1

(a) Prove that, if X is binary, the effect of treatment on the treated can be estimated from both
observational and experimental data. Hint: Decompose E[Y ] into

E[Y,] = E[Y,|X'1P(xX) + E[Y,|x]P(x)

(b) Apply the result of Question (a) to Simpson’s story with the nonexperimental data of Table
1.1, and estimate the effect of treatment on those who used the drug by choice. [Hint:
Estimate E[Y,] assuming that gender is the only confounder. ]

(c¢) Repeat Question (b) using Theorem 4.3.2 and the fact that Z in Figure 3.3 satisfies the
backdoor criterion. Show that the answers to (b) and (c¢) coincide.

4.4.2 Additive Interventions

Example 4.4.2 In many experiments, the external manipulation consists of adding (or sub-
tracting) some amount from a variable X without disabling preexisting causes of X, as required
by the do(x) operator. For example, we might give 5 mg/l of insulin to a group of patients with
varying levels of insulin already in their systems. Here, the preexisting causes of the manip-
ulated variable continue to exert their influences, and a new quantity is added, allowing for
differences among units to continue. Can the effect of such interventions be predicted from
observational studies, or from experimental studies in which X was set uniformly to some
predetermined value x?

If we write our question using counterfactual variables, the answer becomes obvious.
Suppose we were to add a quantity g to a treatment variable X that is currently at level X = x’.
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The reader may also wonder why E[Y|add(q)] is not equal to the average causal effect

ZE[YMO(X:X +q)] - E[Y|d0(X=x)ﬂ P(X =x)

After all, if we know that adding ¢ to an individual at level X = x would increase its expected
Y by E[Y|do(X = x + q)] — E[Y|do(X = x)], then averaging this increase over X should give
us the answer to the policy question E[Y|add(g)]. Unfortunately, this average does not capture
the policy question. This average represents an experiment in which subjects are chosen at
random from the population, a fraction P(X = x) are given an additional dose ¢, and the rest
are left alone. But things are different in the policy question at hand, since P(X = x) represents
the proportion of subjects who entered level X = x by free choice, and we cannot rule out the
possibility that subjects who attain X = x by free choice would react to add(q) differently from
subjects who “receive” X = x by experimental decree. For example, it is quite possible that sub-
jects who are highly sensitive to add(g) would attempt to lower their X level, given the choice.
We translate into counterfactual analysis and write the inequality:

E[Yl|add(q)] - E[Y] = Y E[Y, XIP(X = x) # 3 E[Y,,,IP(X = x)

Equality holds only when Y, is independent of X, a condition that amounts to nonconfounding
(see Theorem 4.3.1). Absent this condition, the estimation of E[Y |add(q)] can be accomplished
either by g-specific intervention or through stronger assumptions that enable the translation of
ETT to do-expressions, as in Eq. (4.21).

Study question 4.4.2

Joe has never smoked before but, as a result of peer pressure and other personal factors, he
decided to start smoking. He buys a pack of cigarettes, comes home, and asks himself: “I am
about to start smoking, should 1?”

(a) Formulate Joe’s question mathematically, in terms of ETT, assuming that the outcome of
interest is lung cancer.

(b) What type of data would enable Joe to estimate his chances of getting cancer given that
he goes ahead with the decision to smoke, versus refraining from smoking.

(¢) Use the data in Table 3.1 to estimate the chances associated with the decision in (b).

4.4.3  Personal Decision Making

Example 4.4.3 Ms Jones, a cancer patient, is facing a tough decision between two possible
treatments: (i) lumpectomy alone or (ii) lumpectomy plus irradiation. In consultation with
her oncologist, she decides on (ii). Ten years later, Ms Jones is alive, and the tumor has not
recurred. She speculates: Do I owe my life to irradiation?

Mrs Smith, on the other hand, had a lumpectomy alone, and her tumor recurred after a year.
And she is regretting: I should have gone through irradiation.

Can these speculations ever be substantiated from statistical data? Moreover, what good
would it do to confirm Ms Jones’s triumph or Mrs Smith’s regret?
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The overall effectiveness of irradiation can, of course, be determined by randomized exper-
iments. Indeed, on October_17, 2002, the New England Journal of Medicine published a paper
by Fisher et al. describingiZO-year follow-up of a randomized trial comparing lumpectomy
alone and lumpectomy plus irradiation. The addition of irradiation to lumpectomy was shown
to cause substantially fewer recurrences of breast cancer (14% vs 39%).

These, however, were population results. Can we infer from them the specific cases of Ms
Jones and Mrs Smith? And what would we gain if we do, aside from supporting Ms Jones’s
satisfaction with her decision or intensifying Mrs Smith’s sense of failure?

To answer the first question, we must first cast the concerns of Ms Jones and Mrs Smith in
mathematical form, using counterfactuals. If we designate remission by ¥ = 1 and the decision
to undergo irradiation by X = 1, then the probability that determines whether Ms Jones is
justified in attributing her remission to the irradiation (X = 1) is

PN=P(Y,=0X=1,Y=1) (4.23)

It reads: the probability that remission would not have occurred (Y = 0) had Ms Jones not gone
through irradiation, given that she did in fact go through irradiation (X = 1), and remission did
occur (Y = 1). The label PN stands for “probability of necessity” that measures the degree to
which Ms Jones’s decision was necessary for her positive outcome.

Similarly, the probability that Ms Smith’s regret is justified is given by

PS=PY, =1]X=0,Y =0) (4.24)

It reads: the probability that remission would have occurred had Mrs Smith gone through
irradiation (¥; = 1), given that she did not in fact go through irradiation (X = 0), and remission
did not occur (Y = 0). PS stands for the “probability of sufficiency,” measuring the degree to
which the action nettaken; X = 1, weuld-have-been-sufficientforherrecoverywhich wasnottaken.

We see that these expressions have almost the same form (save for interchanging ones with
zeros) and, moreover, both are similar to Eq. (4.1), save for the fact that Y in the freeway
example was a continuous variable, so its expected value was the quantity of interest.

These two probabilities (sometimes referred to as “probabilities of causation”) play a major
role in all questions of “attribution,” ranging from legal liability to personal decision making.
They are not, in general, estimable from either observational or experimental data, but as we
shall see below, they are estimable under certain conditions, when both observational and
experimental data are available.

But before commencing a quantitative analysis, let us address our second question: What is
gained by assessing these retrospective counterfactual parameters? One answer is that notions
such as regret and success, being right or being wrong, have more than just emotional value;
they play important roles in cognitive development and adaptive learning. Confirmation of Ms
Jones’s triumph reinforces her confidence in her decision-making strategy, which may include
her sources of medical information, her attitude toward risks, and her sense of priority, as well
as the strategies she has been using to put all these considerations together. The same applies
to regret; it drives us to identify sources of weakness in our strategies and to think of some kind
of change that would improve them. It is through counterfactual reinforcement that we learn
to improve our own decision-making processes and achieve higher performance. As Kathryn
Schultz says in her delightful book Being Wrong, “However disorienting, difficult, or humbling
our mistakes might be, it is ultimately wrongness, not rightness, that can teach us who we are.”
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Estimating the probabilities of being right or wrong also has tangible and profound impact
on critical decision making. Imagine a third lady, Ms Daily, facing the same decision as Ms
Jones did, and telling herself: If my tumor is the type that would not recur under lumpectomy
alone, why should I go through the hardships of irradiation? Similarly, if my tumor is the type
that would recur regardless of whether I go through irradiation or not, I would rather not go
through it. The only reason for me to go through this is if the tumor is the type that would
remiss under treatment and recur under no treatment.

Formally, Ms Daily’s dilemma is to quantify the probability that irradiation is both necessary
and sufficient for eliminating her tumor, or

PNS =P(Y, = 1,Y,=0) (4.25)

where Y| and Y, stand for remission under treatment (Y;) and nontreatment (Y})), respectively.
Knowing this probability would help Ms Daily’s assessment of how likely she is to belong to
the group of individuals for whom Y| = 1 and ¥;, = 0.

This probability cannot, of course, be assessed from experimental studies, because we can
never tell from experimental data whether an outcome would have been different had the person
been assigned to a different treatment. However, casting Ms Daily’s question in mathematical
form enables us to investigate algebraically what assumptions are needed for estimating PNS
and from what type of data. In the next section (Section 4.5.1, Eq. (4.42)), we see that indeed,
PNS can be estimated if we assume monotonicity, namely, that irradiation cannot cause the
recurrence of a tumor that was about to remit. Moreover, under monotonicity, experimental
data are sufficient to conclude

PNS = P(Y = 1|do(X = 1)) — P(Y = 1|do(X = 0)) (4.26)

For example, if we rely on the experimental data of Fisher et al. (2002), this formula permits
us to conclude that Ms Daily’s PNS is

PNS =0.39-0.14 =0.25

This gives her a 25% chance that her tumor is the type that responds to treatment—specifically,
that it will remit under lumpectomy plus irradiation but will recur under lumpectomy alone.
Such quantification of individual risks is extremely important in personal decision making,
and estimates of such risks from population data can only be inferred through counterfactual
analysis and appropriate assumptions.

4.4.4 Sez{ Discrimination in Hiring

Example 4.4.4 Mary files a law suit against the New York-based XYZ International, alleging
discriminatory hiring practices. According to her, she has applied for a job with XYZ Interna-
tional, and she has all the credentials for the job, yet she was not hired, allegedly because she
mentioned, during the course of her interview, that she is gay. Moreover; she claims, the hiring
record of XYZ International shows consistent preferences for straight employees. Does she
have a case? Can hiring records prove whether XYZ International was discriminating when
declining her job application?
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In this example, fighting employers’ prejudices and launching educational reforms are two
contending policy options that involve costly investments and different implementation strate-
gies. Knowing in advance which of the two, if successful, would have a greater impact on
reducing hiring disparity is essential for planning, and depends critically on mediation anal-
ysis for resolution. For example, knowing that current hiring disparities are due primarily to
employers’ prejudices would render educational reforms superfluous, a fact that may save
substantial resources. Note, however, that the policy decisions in this example concern the
enabling and disabling of processes rather than lowering or raising values of specific vari-
ables. The educational reform program calls for disabling current educational practices and
replacing them with a new program in which women obtain the same educational opportuni-
ties as men. The hiring-based proposal calls for disabling the current hiring process and replacing
it with one in which gender plays no role in hiring decisions.

Because we are dealing with disabling processes rather than changing levels of variables,
there is no way we can express the effect of such interventions using a do-operator, as we
did in the mediation analysis of Section 3.7. We can express it, however, in a counterfactual
language, using the desired end result as an antecedent. For example, if we wish to assess the
hiring disparity after successfully implementing gender-blind hiring procedures, we impose
the condition that all female applicants be treated like males as an antecedent and proceed to
estimate the hiring rate under such a counterfactual condition.

The analysis proceeds as follows: the hiring status (¥) of a female applicant with qualifi-
cation Q = ¢, given that the employer treats her as though she is a male is captured by the
counterfactual Yy_, ,_,, where X = 1 refers to being a male. But since the value g would vary
among applicants, we need to average this quantity according to the distribution of female
qualification, giving Y qE(Yx=1,Q=q)P(Q = ¢g|X = 0). Male applicants would have a similar
chance at hiring except that the average is governed by the distribution of male qualification,
giving

D ElVy_i 0= JP@=g|X = 1)
q

If we subtract the two quantities, we get

Z E[Yy_y 0-,I[P(Q = q|X =0) = P(Q = q|X = 1)]
q

which is the indirect effect of gender on hiring, mediated by qualification. We call this effect
the natural indirect effect (NIE), because we allow the qualification Q to vary naturally from
applicant to applicant, as opposed to the controlled direct effect in Chapter 3, where we held
the mediator at a constant level for the entire population. Here we merely disable the capacity
of Y to respond to X but leave its response to Q unaltered.

The next question to ask is whether such a counterfactual expression can be identified from
data. It can be shown (Pearl 2001) that, in the absence of confounding the NIE can be estimated
by conditional probabilities, giving

NIE= Y E[Y|X = 1,0 = gl[P(Q = ¢IX = 0) ~ P(Q = ¢|X = 1)]
q
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This expression is known as the mediation formula. It measures the extent to which the effect
of X on Y is explained by its effect on the mediator Q. Counterfactual analysis permits us to
define and assess NIE by “freezing” the direct effect of X on Y, and allowing the mediator (Q)
of each unit to react to X in a natural way, as if no freezing took place.

The mathematical tools necessary for estimating the various nuances of mediation are sum-
marized in Section 4.5.

4.5 Mathematical Tool Kits for Attribution and Mediation

As we examined the practical applications of counterfactual analysis in Section 4.4, we noted
several recurring patterns that shared mathematical expressions as well as methods of solu-
tion. The first was the effect of treatment on the treated, E77, whose syntactic signature
was the counterfactual expression E[Y,|X = x'], with x and x’ two distinct values of X. We
showed that problems as varied as recruitment to a program (Section 4.4.1) and additive
interventions (Example 4.4.2) rely on the estimation of this expression, and we have listed
conditions under which estimation is feasible, as well as the resulting estimand (Eqs. (4.21)
and (4.8)).

Another recurring pattern appeared in problems of attribution, such as personal decision
problems (Example 4.4.3) and possible cases of discrimination (Example 4.4.4). Here, the
pattern was the expression for the probability of necessity:

PN=PY,=0|X=1Y=1)

The probability of necessity also pops up in problems of legal liability, where it reads: “The
probability that the damage would not have occurred had the action not been taken (Y = 0),
given that, in fact, the damage did occur (Y = 1) and the action was taken (X = 1).” Section
4.5.1 summarizes mathematical results that will enable readers to estimate (or bound) PN using
a combination of observational and experimental data.

Finally, in questions of mediation (Example 4.4.5) the key counterfactual expression was

E[YX,MXI ]

which reads, “The expected outcome (Y) had the treatment been X = x and, simultaneously,
had the mediator M attained the value (M) it would have attained had X been x’”. Section 4.5.2
will list the conditions under which this “nested” counterfactual expression can be estimated,
as well as the resulting estimands and their interpretations.

4.5.1 A Tool Kit for Attribution and Probabilities of Causation

Assuming binary events, with X = x and Y = y representing treatment and outcome, respec-
tively, and X = x/, Y =)' their negations, our target quantity is defined by the English
sentence:

“Find the probability that if X had been x’, Y would be y’, given that, in reality, X
isxand Yisy.”
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Mathematically, this reads
PN(x,y)=P(Y, =Y |X=x,Y =y) (4.27)

This counterfactual quantity, named “probability of necessity” (PN), captures the legal cri-
terion of “but for,” according to which judgment in favor of a plaintiff should be made if and
only if it is “more probable than not” that the damage would not have occurred but for the
defendant’s action (Robertson 1997).

Having written a formal expression for PN, Eq. (4.27), we can move on to the identification
phase and ask what assumptions permit us to identify PN from empirical studies, be they
observational, experimental, or a combination thereof.P earl

Mathematical analysis of this problem (described in (2000, Chapter 9)) yields the following
results:

Theorem 4.5.1 IfY is monotonic relative to X, that is, Y,(u) > Y,(u) for all u, then PN is
identifiable whenever the causal effect P(y|do(x)) is identifiable, and

_ PO) = POldo(x'))

PN 4.28
P(x,y) o

or, substituting P(y) = P(y|x)P(x) + P(y|x)(1 — P(x)), we obtain
_ PO = POI)  POIY) = POIdo() (4.29)

P(ylx) P(x,y)

The first term on the r.h.s. of (4.29) is called the excess risk ratio (ERR) and is often used
in court cases in the absence of experimental data (Greenland 1999). It is also known as the
Attributable Risk Fraction among the exposed (Jewell 2004, Chapter 4.7). The second term (the
confounding factor (CF)) represents a correction needed to account for confounding bias, that
is, P(y|do(x")) # P(y|x'). Put in words, confounding occurs when the proportion of population
for whom Y =y, when X is set to x’ for everyone is not the same as the proportion of the
population for whom Y = y among those acquiring X = x’ by choice. For instance, suppose
there is a case brought against a car manufacturer, claiming that its car’s faulty design led to
a man’s death in a car crash. The ERR tells us how much more likely people are to die in
crashes when driving one of the manufacturer’s cars. If it turns out that people who buy the
manufacturer’s cars are more likely to drive fast (leading to deadlier crashes) than the general
population§; the second term will correct for that bias.

Equation (4.29) thus provides an estimable measure of necessary causation, which can be
used for monotonic Y, (1) whenever the causal effect P(y|do(x)) can be estimated, be it from
randomized trials or from graph-assisted observational studies (e.g., through the backdoor cri-
terion). More significantly, it has also been shown (Tian and Pearl 2000) that the expression
in (4.28) provides a lower bound for PN in the general nonmonotonic case. In particular, the
upper and lower bounds on PN are given by

aX{O, P(y)—P(yIdO(x'))} <PN < min{l’P(y'IdO(x’))—P(x',Y')} (4.30)
P(x,y) P(x,y)

In drug-related litigation, it is not uncommon to obtain data from both experimental and
observational studies. The former is usually available from the manufacturer or the agency
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of interest, for example, P(Y, =y), for the observational as well as experimental sampled
populations.

Example 4.5.1 (Attribution in Legal Setting) A lawsuit is filed against the manufacturer of
drug x, charging that the drug is likely to have caused the death of Mr A, who took it to relieve

back pains. The manufacturer claims that experimental data on patients with back pains show

conclusively that drug x has only minor effects on death rates. However, the plaintiff argues that

the experimental study is of little relevance to this case because it represents average effects on

patients in the study, not on patients like Mr A who did not participate in the study. In particular,

argues the plaintiff, Mr A is unique in that he used the drug of his own volition, unlike subjects

in the experimental study, who took the drug to comply with experimental protocols. To support
this argument, the plaintiff furnishes nonexperimental data on patients who, like Mr A, chose
drug x to relieve back pains but were not part of any experiment, and who experienced lower
death rates than those who didn’t take the drug. The court must now decide, based on both the

experimental and nonexperimental studies, whether it is “more probable than not” that drug

X was in fact the cause of Mr A’s death.

To illustrate the usefulness of the bounds in Eq. (4.30), consider (hypothetical) data asso-
ciated with the two studies shown in Table 4.5. (In the analyses below, we ignore sampling
variability.)

The experimental data provide the estimates

P(y|do(x)) = 16/1000 = 0.016 (4.35)

P(y|do(x')) = 14/1000 = 0.014 (4.36)

whereas the nonexperimental data provide the estimates

P(y) =30/2000 = 0.015 (4.37)
P(x,y) =2/2000 = 0.001 (4.38)
P(y|lx) =2/1000 = 0.002 (4.39)
P(y|lx") =28/1000 = 0.028 (4.40)

Table 4.5 Experimental and nonexperimental data used to illustrate the estimation
of PN, the probability that drug x was responsible for a person’s death (y)

Experimental Nonexperimental
do(x) do(x") X X'
Deaths (y) 16 14 2 28

Survivals (') 984 986 998 972
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We note that, in general, the total effect can be decomposed as
TE = NDE — NIE, (4.48)

where NIE, stands for the NIE under the reverse transition, from 7 = 1 to 7 = 0. This implies
that NIE is identifiable whenever NDE and TE are identifiable. In linear systems, where reversal
of transitions amounts to negating the signs of their effects, we have the standard additive
formula, TE = NDE + NIE.

We further note that 7E and CDE(m) are do-expressions and can, therefore, be estimated
from experimental data or in observational studies using the backdoor or front-door adjust-
ments. Not so for the NDE and NIE; a new set of assumptions is needed for their identification.
Conditions for identifying natural effects

The following set of conditions, marked A-1 to A-4, are sufficient for identifying both direct
and indirect natural effects.

We can identify the NDE and NIE provided that there exists a set W of measured covariates
such that

A-1 No member of W is a descendant of 7.

A-2 W blocks all backdoor paths from M to Y (after removing T — M and T — Y).

A-3 The W-specific effect of T on M is identifiable (possibly using experiments or adjust-
ments).

A-4 The W-specific joint effect of {7, M} on Y is identifiable (possibly using experiments or
adjustments).

Theorem 4.5.2 (Identification of the NDE) When conditions A-1 and A-2 hold, the natural
direct effect is experimentally identifiable and is given by

NDE =Y Y [E[Y|do(T = 1,M = m),W = w] — E[Y|do(T = 0,M = m), W = wl]

m w

X P(M = m|do(T = 0), W = w)P(W =w) (4.49)

The identifiability of the do-expressions in Eq. (4.49) is guaranteed by conditions A-3 and A-4
and can be determined using the backdoor or front-door criteria.

Corollary 4.5.1 If conditions A-1 and A-2 are satisfied by a set W that also deconfounds the
relationships in A-3 and A-4, then the do-expressions in Eq. (4.49) are reducible to conditional
expectations, and the natural direct effect becomes

NDE =) M[E[Y|T = 1,M =m,W =w] - E[Y|T =0,M =m,W = wl]

m w

X P(M =m|T =0,W = w)P(W = w) (4.50)

In the nonconfounding case (Figure 4.6(a)), NDE reduces to

NDE = Y [E[Y|T =1,M =m] - E[Y|T =0,M =mlIP(M =m|T = 0). 4.51)
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Similarly, using (4.48)and TE = E[ Y | X=1] — E[ Y| X =0], NIE becomes

NIE= Y E[Y|T=0,M=ml[PM=m|T=1)-PM=m|T =0)] (4.52)

The last two expressions are known as the mediation formulas. We see that while NDE is a
weighted average of CDE, no such interpretation can be given to NIE.

The counterfactual definitions of NDE and NIE (Eqs. (4.46) and (4.47)) permit us to give
these effects meaningful interpretations in terms of “response fractions.” The ratio NDE/TE
measures the fraction of the response that is transmitted directly, with M “frozen.” NIE/TE
measures the fraction of the response that may be transmitted through M, with Y blinded to
X. Consequently, the difference (TE — NDE)/TE measures the fraction of the response that is
necessarily due to M.

Numerical example: Mediation with binary variables

To anchor these mediation formulas in a concrete example, we return to the encouragement-
design example of Section 4.2.3 and assume that 7 = 1 stands for participation in an enhanced
training program, Y = 1 for passing the exam, and M = 1 for a student spending more than
3 hours per week on homework. Assume further that the data described in Tables 4.6 and 4.7
were obtained in a randomized trial with no mediator-to-outcome confounding (Figure 4.6(a)).
The data shows that training tends to increase both the time spent on homework and the rate
of success on the exam. Moreover, training and time spent on homework together are more
likely to produce success than each factor alone.

Our research question asks for the extent to which students’ homework contributes to their
increased success rates regardless of the training program. The policy implications of such
questions lie in evaluating policy options that either curtail or enhance homework efforts,
for example, by counting homework effort in the final grade or by providing students with

Table 4.6 The expected success (Y) for treated (7' = 1) and untreated (7' = 0)
students, as a function of their homework (M)

Treatment Homework Success rate
T M EY|T=t,M =m)
1 1 0.80
1 0 0.40
0 1 0.30
0 0 0.20

Table 4.7 The expected homework (M) done by treated
(T =1) and untreated (T = 0) students

Treatment Homework
T EM|T = 1)
0.40

1 0.75
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adequate work environments at home. An extreme explanation of the data, with significant
impact on educational policy, might argue that the program does not contribute substantively to
students’ success, save for encouraging students to spend more time on homework, an encour-
agement that could be obtained through less expensive means. Opposing this theory, we may
have teachers who argue that the program’s success is substantive, achieved mainly due to the
unique features of the curriculum covered, whereas the increase in homework efforts cannot
alone account for the success observed.
Substituting the data into Egs. (4.51) and (4.52) gives

NDE = (0.40 — 0.20)(1 — 0.40) + (0.80 — 0.30)0.40 = 0.32
NIE = (0.75 — 0.40)(0.30 — 0.20) = 0.035
TE = 0.80x 0.75 4+ 0.40 x 0.25 — (0.30 x 0.40 + 0.20 xAg.ﬁg) =0.46
NIE/TE = 0.07, NDE/TE = 0.696,1 — NDE/TE = 0.304
We conclude that the program as a whole has increased the success rate by 46% and that a
significant portion, 30.4%, of this increase is due to the capacity of the program to stimulate

improved homework effort. At the same time, only 7% of the increase can be explained by
stimulated homework alone without the benefit of the program itself.

Study questions
Study question 4.5.2

Consider the structural model.:

y=pBim+ Pyt +u, (4.53)
m=yt+u, (4.54)

(a) Use the basic definition of the natural effects (Eqs. (4.46) and (4.47)) to determine TE,
NDE, and NIE.
(b) Repeat (a) assuming that u,, is correlated with u,,.

Study question 4.5.3

Consider the structural model:
y = pym+ pot + fytm + Pyw + u, (4.55)
m=yt+y,w+u, (4.56)
w=at+u, 4.57)

with fstm representing an interaction term.
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under treatment X = x. It remained relatively unnoticed until Rubin (1974) treated Y, as a
random variable and connected it to observed variable via the consistency rule of Eq. (4.6),
which is a theorem in both Lewis’s logic and in structural models. The relationships among
these three formalisms of counterfactuals are discussed at length in Pearl (2000, Chapter 7),
where they are shown to be logically equivalent; a problem solved in one framework would
yield the same solution in another. Rubin’s framework, known as “potential outcomes,”
differs from the structural account only in the language in which problems are defined, hence,
in the mathematical tools available for their solution. In the potential outcome framework,
problems are defined algebraically as assumptions about counterfactual independencies, also
known as “ignorability assumptions.” These types of assumptions, exemplified in Eq. (4.15),
may become too complicated to interpret or verify by unaided judgment. In the structural
framework, on the other hand, problems are defined in the form of causal graphs, from which
dependencies of counterfactuals (e.g., Eq. (4.15)) can be derived mechanically. The reason
some statisticians prefer the algebraic approach is, primarily, because graphs are relatively
new to statistics. Recent books in social science (e.g., Morgan and Winship 2014) and in
health science (e.g., VanderWeele 2015) are taking the hybrid, graph-counterfactual approach
pursued in our book.

The section on linear counterfactuals is based on Pearl (2009, pp. 389-391). Recent
advances are provided in Cai and Kuroki (2006) and Chen and Pearl (2014). Our discussion
of ETT (Effect of Treatment on the Treated), as well as additive interventions, is based on
Shpitser and Pearl (2009), which provides a full characterization of models in which ETT is
identifiable.

Legal questions of attribution, as well as probabilities of causation are discussed at length in
Greenland (1999) who pioneered the counterfactual approach to such questions. Our treatment
of PN, PS, and PNS is based on Tian and Pearl (2000) and Pearl (2000, Chapter 9). Recent
results, including the tool kit of Section 4.5.1, are given in Pearl (2015a).

Mediation analysis (Sections 4.4.5 and 4.5.2), as we remarked in Chapter 3, has a long tra-
dition in the social sciences (Duncan 1975; Kenny 1979), but has gone through a dramatic
revolution through the introduction of counterfactual analysis. A historical account of the con-
ceptual transition from the statistical approach of Baron and Kenny (1986) to the modern,
counterfactual-based approach of natural direct and indirect effects (Pearl 2001; Robins and
Greenland 1992) is given in Sections 1 and 2 of Pearl (2014a). The recent text of Vander-
Weele (2015) enhances this development with new results and new applications. Additional
advances in mediation, including sensitivity analysis, bounds, multiple mediators, and stronger
identifying assumptions are discussed in Imai et al. (2010) and Muthén andAsparouhoy2015).

The mediation tool kit of Section 4.5.2 is based on Pearl (2014a). Shpitser (2013) has derived
a general criterion for identifying indirect effects in graphs.
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