Chapter 9

Probability of Causation:
Interpretation and
Identification

Come and let us cast lots to find out
who is to blame for this ordeal.
Jonah 1:7

Preface

Assessing the likelihood that one event was the cause of another guides
much of what we understand about (and how we act in) the world. For
example, according to common judicial standard, judgment in favor of
the plaintiff should be made if and only if it is “more probable than not”
that the defendant’s action was the cause for the plaintiff’s damage (or
death). But causation has two faces, necessary and sufficient; which
of the two have lawmakers meant us to consider? And how are we to
evaluate their probabilities?

This chapter provides formal semantics for the probability that
event x was a necessary or sufficient cause (or both) of another event
y. We then explicate conditions under which the probability of neces-
sary (or sufficient) causation can be learned from statistical data, and
we show how data from both experimental and nonexperimental stud-
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ies can be combined to yield information that neither study alone can
provide.

9.1 Introduction

The standard counterfactual definition of causation (i.e., that £ would
not have occurred were it not for C) captures the notion of “necessary
cause.” Competing notions such as “sufficient cause” and “necessary
and sufficient cause” are of interest in a number of applications, and
these, too, can be given concise mathematical definitions in structural
model semantics (Section 7.1). Although the distinction between neces-
sary and sufficient causes goes back to J. S. Mill (1843), it has received
semiformal explications only in the 1960s—via conditional probabilities
(Good 1961) and logical implications (Mackie 1965). These explications
suffer from basic semantical difficulties, and they do not yield effective
procedures for computing probabilities of causes as those provided by
the structural account (Sections 7.1.3 and 8.3).

In this chapter we explore the counterfactual interpretation of neces-
sary and sufficient causes, illustrate the application of structural model
semantics to the problem of identifying probabilities of causes, and
present, by way of examples, new ways of estimating probabilities of
causes from statistical data. Additionally, we argue that necessity and
sufficiency are two distinct facets of causation and that both facets
should take part in the construction of causal explanations.

Our results have applications in epidemiology, legal reasoning, ar-
tificial intelligence (AI), and psychology. Epidemiologists have long
been concerned with estimating the probability that a certain case of
disease is “attributable” to a particular exposure, which is normally
interpreted counterfactually as “the probability that disease would not
have occurred in the absence of exposure, given that disease and ex-
posure did in fact occur.” This counterfactual notion, which Robins
and Greenland (1989) called the “probability of causation,” measures
how necessary the cause is for the production of the effect.? It is used

! The limitations of the probabilistic account are discussed in Section 7.5; those
of the logical account will be discussed in Section 10.1.4.
2Greenland and Robins (1988) further distinguish between two ways of mea-
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frequently in lawsuits, where legal responsibility is at the center of con-
tention (see e.g. Section 8.3). We shall denote this notion by the symbol
PN, an acronym for probability of necessity.

A parallel notion of causation, capturing how sufficient a cause is
for the production of the effect, finds applications in policy analysis,
Al and psychology. A policy maker may well be interested in the
dangers that a certain exposure may present to the healthy population
(Khoury et al. 1989). Counterfactually, this notion can be expressed
as the “probability that a healthy unexposed individual would have
contracted the disease had he or she been exposed,” and it will be
denoted by PS (probability of sufficiency). A natural extension would
be to inquire for the probability of necessary and sufficient causation
(PNS)—that is, how likely a given individual is to be affected both
ways.

As the examples illustrate, PS assesses the presence of an active
causal process capable of producing the effect, while PN emphasizes the
absence of alternative processes—not involving the cause in question—
that is still capable of explaining the effect. In legal settings, where the
occurrence of the cause () and the effect (y) are fairly well established,
PN is the measure that draws most attention, and the plaintiff must
prove that y would not have occurred but for z (Robertson 1997). Still,
lack of sufficiency may weaken arguments based on PN (Good 1993;
Michie in press).

It is known that PN is in general nonidentifiable, that is, it can-
not be estimated from frequency data involving exposures and disease
cases (Greenland and Robins 1988; Robins and Greenland 1989). The
identification is hindered by two factors.

1. Confounding—Exposed and unexposed subjects may differ in sev-
eral relevant factors or, more generally, the cause and the effect
may both be influenced by a third factor. In this case we say

suring probabilities of causation: the first (called “excess fraction”) concerns only
whether the effect (e.g. disease) occurs by a particular time; the second (called “eti-
ological fraction”) requires consideration of when the effect occurs. We will confine
our discussion here to events occurring within a specified time period, or to “all or
none” outcomes (such as birth defects) for which the probability of occurrence but
not the time to occurrence is important.
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that the cause is not exogenous relative to the effect (see Section
7.4.5).

2. Sensitivity to the generative process—Even in the absence of con-
founding, probabilities of certain counterfactual relationships can-
not be identified from frequency information unless we specify the
functional relationships that connect causes and effects. Func-
tional specification is needed whenever the facts at hand (e.g.
disease) might be affected by the counterfactual antecedent (e.g.
exposure) (see the examples in Sections 1.4, 7.5, and 8.3).

Although PN is not identifiable in the general case, several formu-
las have nevertheless been proposed to estimate attributions of various
kinds in terms of frequencies obtained in epidemiological studies (Bres-
low and Day 1980; Hennekens and Buring 1987; Cole 1997). Naturally,
any such formula must be predicated upon certain implicit assump-
tions about the data-generating process. Section 9.2 explicates some
of those assumptions and explores conditions under which they can be
relaxed.® It offers new formulas for PN and PS in cases where causes
are confounded (with outcomes) but their effects can nevertheless be
estimated (e.g., from clinical trials or from auxiliary measurements).
Section 9.3 exemplifies the use of these formulas in legal and epidemi-
ological settings, while Section 9.4 provides a general condition for the
identifiability of PN and PS when functional relationships are only par-
tially known.

The distinction between necessary and sufficient causes has impor-
tant implications in Al, especially in systems that generate verbal ex-
planations automatically (see Section 7.2.3). As can be seen from the
epidemiological examples, necessary causation is a concept tailored to
a specific event under consideration (singular causation), whereas suffi-
cient causation is based on the general tendency of certain event types
to produce other event types. Adequate explanations should respect
both aspects. If we base explanations solely on generic tendencies (i.e.,

3A set of sufficient conditions for the identification of etiological fractions are
given in Robins and Greenland (1989). These conditions, however, are too re-
strictive for the identification of PN, which is oblivious to the temporal aspects
associated with etiological fractions.
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sufficient causation) then we lose important specific information. For
instance, aiming a gun at and shooting a person from 1,000 meters
away will not qualify as an explanation for that person’s death, ow-
ing to the very low tendency of shots fired from such long distances to
hit their marks. This stands contrary to common sense, for when the
shot does hit its mark on that singular day, regardless of the reason, the
shooter is an obvious culprit for the consequence. If, on the other hand,
we base explanations solely on singular-event considerations (i.e., nec-
essary causation), then various background factors that are normally
present in the world would awkwardly qualify as explanations. For
example, the presence of oxygen in the room would qualify as an ex-
planation for the fire that broke out, simply because the fire would not
have occurred were it not for the oxygen. That we judge the match
struck, not the oxygen, to be the actual cause of the fire indicates that
we go beyond the singular event at hand (where each factor alone is
both necessary and sufficient) and consider situations of the same gen-
eral type—where oxygen alone is obviously insufficient to start a fire.
Clearly, some balance must be made between the necessary and the
sufficient components of causal explanation, and the present chapter
illuminates this balance by formally explicating the basic relationships
between the two components.

9.2 Necessary and Sufficient Causes:
Conditions of Identification

9.2.1 Definitions, Notation, and Basic Relation-
ships
Using the counterfactual notation and the structural model semantics

introduced in Section 7.1, we give the following definitions for the three
aspects of causation discussed in the introduction.

Definition 9.2.1 (Probability of Necessity, PN)
Let X and Y be two binary variables in a causal model M. Let x and
y stand (respectively) for the propositions X = true and Y = true, and
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let ' and y' denote their complements. The probability of necessity is
defined as the expression

PN P(Yy = false | X = true,Y = true)

P(yylz,y). (9.1)

> e

In other words, PN stands for the probability of 3., (the event y would
not have occurred in the absence of event z), given that z and y did in
fact occur.

Observe the slight change in notation relative to that used Section
7.1. Lowercase letters (e.g.,  and y) denoted values of variables in
Section 7.1 but now stand for propositions (or events). Note also the
abbreviations y, for ¥, = true and g/, for ¥, = false.* Readers accus-
tomed to writing “A > B” for the counterfactual “B if it were A” can

translate (9.1) to read PN = P(x' > y'|z,y).

Definition 9.2.2 (Probability of Sufficiency, PS)

PS £ P(y,|y', 2"). (9.2)

PS measures the capacity of x to produce y and, since “production”
implies a transition from the absence to the presence of z and y, we
condition the probability P(y,) on situations where x and y are both
absent. Thus, mirroring the necessity of = (as measured by PN), PS
gives the probability that setting z would produce y in a situation where
x and y are in fact absent.

“These were proposed by Peyman Meshkat (in class homework) and substantially
simplify the derivations.

SDefinition 9.2.1 generalizes naturally to cases where X and Y are multivalued,
say ¢ € {z1,Z2,..., 2%} and y € {y1,¥2,...,y}. We say that event C =/, (X =
x;) is “counterfactually necessary” for E = \/;;(Y = y;), written C > E, if Y,
falls outside E whenever X = z is outside C. Accordingly, the probability that
C was a necessary cause of E is defined as PN = P(C > E|C,E). For simplicity,
however, we will pursue the analysis in the binary case.
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Definition 9.2.3 (Probability of Necessity and Sufficiency,
PNS)

PNS £ P(ys, yi). 9-3)

PNS stands for the probability that y would respond to x both ways,
and therefore measures both the sufficiency and necessity of x to pro-
duce y.

Associated with these three basic notions are other counterfactual
quantities that have attracted either practical or conceptual interest.
We will mention two such quantities but will not dwell on their analyses,
since these can be easily inferred from our treatment of PN, PS, and
PNS.

Definition 9.2.4 (Probability of Disablement, PD)

PD 2 P(ybly). (9.4)

PD measures the probability that y would have been prevented if it
were not for z; it is therefore of interest to policy makers who wish
to assess the social effectiveness of various prevention programs (Fleiss
1981, pp. 75-6).

Definition 9.2.5 (Probability of Enablement, PE)

A
PE = P(y.|y").

PE is similar to PS, save for the fact that we do not condition on z’.
It is applicable, for example, when we wish to assess the danger of
an exposure on the entire population of healthy individuals, including
those who were already exposed.

Although none of these quantities is sufficient for determining the
others, they are not entirely independent, as shown in the following
lemma.
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Lemma 9.2.6 The probabilities of causation, (PNS, PN and PS) sat-
wsfy the following relationship:

PNS = P(z,y)PN + P(z',y")PS. (9.5)

Proof
The consistency conditions of (7.19), X = z = Y, = Y, translate in
our notation into

Hence we can write

Yr ANy = (Ye Ayp) A (zV ')
= WAz AY)V (Y= Ay A2).

Taking probabilities on both sides and using the disjointness of x and
z', we obtain

P(Ys,Yp) = Pyy,z,y)+ Pys, 2',y")
P(yplz,y)P(z,y) + P(y:|z", ¥ ) P(2',3),

which proves Lemma 9.2.6. O
To put into focus the aspects of causation captured by PN and PS, it
is helpful to characterize those changes in the causal model that would
leave each of the two measures invariant. The next two lemmas show
that PN is insensitive to the introduction of potential inhibitors of vy,
while PS is insensitive to the introduction of alternative causes of y.

Lemma 9.2.7 Let PN(x,y) stand for the probability that = is a neces-
sary cause of y. Let z = y A q be a consequence of y, that is potentially

inhibited by ¢'. Then

PN(z,2) £ P(Zy|w, 2) = P(yyla,y) = PN(z,y).
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Cascading the process Y (u) with the link z = y A ¢ amounts to in-
hibiting the output of the process with probability P(q'). Lemma 9.2.7
asserts that we can add such a link without affecting PN. The reason
is clear; conditioning on x and z implies that, in the scenario under
consideration, the added link was not inhibited by ¢'.

Proof of Lemma 9.2.7 We have

P ,’a ’
PN(z,z) = P(z|z,2) = %
P(zlz’: Z, Z|Q)P(q) + P(zlz’: Z, Z|qI)P(qI) (9 6)
P(z,z,q) + P(z,z,q") ) ’
Using z = y A g, it follows that
q=(2=vy), ¢= (2, =y.), and ¢ = 2;
therefore,
P (Y7, ylg)P(q) + 0
PN =
(z.2) P(y,z,q9)+ 0
P(y,’axay) !
———== = P(y,.|ry) = PN(z,y).
et — Py [ay) = PN(z.1)
O

Lemma 9.2.8 Let PS(z,y) stand for the probability that x is a suffi-
cient cause of y, and let z =y V r be a consequence of y that may also
be triggered by r. Then

PS(z,2) = P(z|2',7") = P(y.|2',y') = PS(z,y).

Lemma 9.2.8 asserts that we can add alternative causes (), not involv-
ing x, without affecting PS. The reason again is clear; conditioning on
the event 2’ and 3’ implies that the added causes (r) were not active.
The proof of Lemma 9.2.8 is similar to that of Lemma 9.2.7.

Since all the causal measures defined above invoke conditionaliza-
tion on ¥, and since y is presumed to be affected by x, we know that
none of these quantities is identifiable from knowledge of the causal
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diagram G(M) and the data P(v) alone, even under conditions of no-
confounding. Moreover, none of these quantities determines the oth-
ers in the general case. However, simple interrelationships and useful
bounds can be derived for these quantities under the assumption of
no-counfounding, and assumption that we call exogeneity.

9.2.2 Bounds and Basic Relationships under Exo-
geneity

Definition 9.2.9 (Exogeneity)
A wvariable X is said to be exogenous relative to Y in model M if and
only if

P(y:cayw"x) = P(ywa yw')' (97)
In other words, the way Y would potentially respond to conditions x or
x' is independent of the actual value of X.

Equation (9.7) is a strong version of those used in Chapter 5 (equa-
tion (5.31)) and in Chapter 6 (for no-confounding) in that it involves the
joint event {y;,y,»}. This definition was named “strong ignorability”
in Rosenbaum and Rubin (1983), and it corresponds to the classical
econometric criterion for exogeneity that X be independent (jointly)
of all the error terms in the equation for Y (Christ 1966, p. 156). A
graphical criterion ensuring exogeneity is the absence of a common an-
cestor of X and Y in G(M) or, more precisely, the absence of an active
back-door path between X and Y (Section 3.3.1).

The importance of exogeneity lies in permitting the identification
of P(y.), the causal effect of X on Y, since (using = (y, = y))

P(ym) = P(yw‘x) = P(y‘.’l?), (98)
with similar reduction for P(y,).

Theorem 9.2.10 Under condition of exogeneity, PNS is bounded as
follows:

max[0, P(y|z) — P(yla")] < PNS < min[P(y[z), P(y'la)].  (9.9)

Both bounds are sharp in the sense that, for every joint distribution
P(x,y), there exists a model y = f(x,u), with u independent of x, that
realizes any value of PNS permitted by the bounds.
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Proof
For any two events A and B, we have the sharp bounds

max[0, P(A) + P(B) — 1] < P(A, B) < min[P(A), P(B)].  (9.10)

Equation (9.9) follows from (9.10) using A = y,, B = y.,, P(y.) =
P(y|z), and P(y,) = P(y'|2"). O
Clearly, if exogeneity cannot be ascertained, then PNS is bound by
inequalities similar to those of (9.9), with P(y,) and P(y.,) replacing
P(y|z) and P(y'|z"), respectively.

Theorem 9.2.11 Under condition of exogeneity, the probabilities PN,
PS, and PNS are related to each other as follows:

PNS

PN = W‘xs), (9.11)
PN
PS = iy (9.12)

Thus, the bounds for PNS in (9.9) provide corresponding bounds for PN
and PS.

The resulting bounds for PN,

max|0, P(y|z) — P(y|z')] min[P(y|z), P(y'|z")]
P(ylo) SN by

place limits on our ability to identify PN in experimental studies, where
exogeneity holds.

(9.13)

Corollary 9.2.12 If x and y occur in an experimental study, and
P(yz) and P(yy) are the causal effects measured in that study, then,
for any point p in the range

max[0, P(y;) — P(yy)] min[P(y,), P(y4)]
P(y.) =P= P(y.) ’

there exists a causal model M that agrees with P(y.), P(yy) and for
which PN = p.

(9.14)
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Other bounds can be established for nonexperimental events, if we have
data from both experimental and observational studies (as in Section
9.3.4). The non-zero widths of these bounds imply that probabilities
of causation cannot be defined uniquely in stochastic (non-Laplacian)
models where, for each u, Y, (u) is specified in probability P(Y,(u) = y)
instead of a single number.®

Proof of Theorem 9.2.11:

Using x = (y, = y), we can write z Ay, = A y and so obtain

PN = P(yy|z,y) = P(yw,z,y)/P(z,y) (9.15)
= P(y.,z,y:)/P(x,y) (9.16)
P(Yy, yz) P(x)/ P(z,y) (9.17)
PNS
= Pl (918)

which establishes (9.11). Equation (9.12) follows by identical steps. O
For completeness, we write the relationship between PNS and the prob-
abilities of enablement and disablement:

P(z) PNS . _ P(z/) PNS

"= Py

(9.19)

9.2.3 Identifiability under Monotonicity and Exo-
geneity

Before attacking the general problem of identifying the counterfactual
quantities in (9.1)—(9.3), it is instructive to treat a special condition,
called monotonicity, which is often assumed in practice and which ren-
ders these quantities identifiable. The resulting probabilistic expres-
sions will be recognized as familiar measures of causation that often
appear in the literature.

6Robins and Greenland (1989), who used a stochastic model of Y, (u), defined
the probability of causation as

PN(u) = [P(y|z,u) — P(yl’,w)]/P(y|z,u)

instead of the counterfactual definition in (9.1).
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Definition 9.2.13 (Monotonicity)

A wvariable Y is said to be monotonic relative to variable X in a causal
model M if and only if the function Yy(u) is monotonic in x for all u.
Equivalently, Y 1is monotonic relative to X if and only if

v Ay = false. (9.20)

Monotonicity expresses the assumption that a change from X = false
to X = true cannot, under any circumstance make Y change from true
to false.” In epidemiology, this assumption is often expressed as “no
prevention,” that is, no individual in the population can be helped by
exposure to the risk factor.

Theorem 9.2.14 (Identifiability under Exogeneity and Mono-
tonicity)
If X is exogenous and Y is monotonic relative to X, then the probabili-
ties PN, PS, and PNS are all identifiable and are given by (9.11)-(9.12),
with

PNS = P(y|z) — P(y|2'). (9.21)

The r.h.s. of (9.21) is called “risk difference” in epidemiology, and is also
misnomered “attributable risk” (Hennekens and Buring 1987, p. 87).

From (9.11) we see that the probability of necessity is identifiable
and given by the excess risk ratio

_ P(ylz) — P(ylz')
=

often misnomered as the “attributable fraction” (Schlesselman 1982),
“attributable-rate percent” [Hennekens and Buring, 1987](Hennekens
and Buring 1987, p. 88), or “attributable proportion” (Cole 1997).
Taken literally, the ratio presented in (9.22) has nothing to do with
attribution, since it is made up of statistical terms and not of causal or

: (9.22)

"Our analysis remains invariant to complementing = or y (or both); hence, the
general condition of monotonicity should read: Either y. Ay, = false or y., Ay, =
false. For simplicity, however, we will adhere to the definition in (9.20).
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counterfactual relationships. However, the assumptions of exogeneity
and monotonicity together enable us to translate the notion of attri-
bution embedded in the definition of PN (equation (9.1)) into a ratio
of purely statistical associations. This suggests that exogeneity and
monotonicity were tacitly assumed by the many authors who proposed
or derived (9.22) as a measure for the “fraction of exposed cases that
are attributable to the exposure.”

Robins and Greenland (1989) analyzed the identification of PN un-
der the assumption of stochastic monotonicity (i.e., P(Y;(u) = y) >
P(Y,(u) = y)) and showed that this assumption is too weak to permit
such identification; in fact, it yields the same bounds as in (9.13). This
indicates that stochastic monotonicity imposes no constraints whatso-
ever on the functional mechanisms that mediate between X and Y.

The expression for PS (equation (9.12)) is likewise quite revealing,

P(ylz) — P(y|z')
P = ha )

: (9.23)

since it coincides with what epidemiologists call the “relative difference”
(Shep 1958), which is used to measure the susceptibility of a population
to a risk factor x. Susceptibility is defined as the proportion of persons
who possess “an underlying factor sufficient to make a person contract
a disease following exposure” (Khoury et al. 1989). PS offers a for-
mal counterfactual interpretation of susceptibility, which sharpens this
definition and renders susceptibility amenable to systematic analysis.

Khoury et al. (1989) recognized that susceptibility in general is
not identifiable and derived (9.23) by making three assumptions: no-
confounding, monotonicity,® and independence (i.e., assuming that sus-
ceptibility to exposure is independent of susceptibility to background
not involving exposure). This last assumption is often criticized as un-
tenable, and Theorem 9.2.14 assures us that independence is in fact
unnecessary; (9.23) attains its validity through exogeneity and mono-
tonicity alone.

Equation (9.23) also coincides with what Cheng (1997) calls “causal
power,” namely, the effect of x on y after suppressing “all other causes of

8Monotonicity is not mentioned in (Khoury et al. (1989), but it must have been
assumed implicitly to make their derivations valid.
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y.” The counterfactual definition of PS, P(y.|z',y'), suggests another
interpretation of this quantity. It measures the probability that setting
x would produce y in a situation where x and y are in fact absent.
Conditioning on 3" amounts to selecting (or hypothesizing) only those
worlds in which “all other causes of y” are indeed suppressed.

It is important to note, however, that the simple relationships
among the three notions of causation (equations (9.11)—(9.12)) hold
only under the assumption of exogeneity; the weaker relationship of
(9.5) prevails in the general, nonexogenous case. Additionally, all these
notions of causation are defined in terms of the global relationships
Y (u) and Y,/ (u), which are too crude to fully characterize the many
nuances of causation; the detailed structure of the causal model leading
from X to Y is often needed to explicate more refined notions, such as
“actual cause” (see Chapter 10).

Proof of Theorem 9.2.14
Writing y,» V y., = true, we have

Yo = Yo N Y VU) = Wa AYar) V (Yz AYL) (9.24)

and

Yo = Yor N (Yo V Yg) = W AYa) V (Yo AYp) = Yo Ao, (9-25)
since monotonicity entails y,» Ay, = false. Substituting (9.25) into
(9.24) yields

Yr = Yo V (Yo A Ysr)- (9.26)

Taking the probability of (9.26) and using the disjointness of y, and
Y., we obtain

P(yz) = P(ym’) + P(ya:a y;')
or

P(yway;,c’) = P(yw) - P(yw’)' (927)

Equation (9.27), together with the assumption of exogeneity (equation
(9.8)) establishes (9.21). O
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9.2.4 Identifiability under Monotonicity and
Nonexogeneity

The relations established in Theorems 9.2.10-9.2.14 were based on the
assumption of exogeneity. In this section, we relax this assumption
and consider cases where the effect of X on Y is confounded, that is,
when P(y,;) # P(y|z). In such cases P(y,) may still be estimated
by auxiliary means (e.g., through adjustment of certain covariates or
through experimental studies), and the question is whether this added
information can render the probability of causation identifiable. The
answer is affirmative.

Theorem 9.2.15 If Y is monotonic relative to X, then PNS, PN,
and PS are identifiable whenever the causal effects P(yy;) and P(y, are
identifiable:

PNS = P(yway;’) = P(ym) _P(yz’)a (928)
PN = Pylry)= P(y;(;z gy) (9.29)
PS = P(yld,y) = P(iﬁ”()xj y],’)(y) (9.30)

In order to appreciate the difference between equations (9.29) and
(9.22), we can expand P(y) and write

pn = PWle)P(@)+ Plyla)P(z') — Plyx)
P(y|z)P(z)
P(y|lx) — P(ylz")  P(yl|z') — P(ym)
Pylz) | P(ny) (9.31)

The first term on the r.h.s. of (9.31) is the familiar excess risk ratio (as
n (9.22)) and represents the value of PN under exogeneity. The second
term represents the correction needed to account for X’s nonexogeneity,
that is, P(y,) # P(y|z').

Equations (9.28)—(9.30) thus provide more refined measures of cau-
sation, which can be used in situations where the causal effect P(y,) can
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be identified through auxiliary means (see Example 4, Section 9.3.4).
It can also be shown that expressions in (9.28)-(9.30) provide lower
bounds for PNS, PN, and PS in the general, nonmonotonic case (J.
Tian, personal communication).

Remarkably, since PS and PN must be nonnegative, (9.29)-(9.30)
provide a simple necessary test for the assumption of monotonicity:

P(yz) > P(y) > P(yw), (9.32)
which strengthen the standard inequalities (from z Ay = v,)
P(ys) > P(z,y), Plyr) > P(2',y). (9.33)

It can be shown that these inequalities are in fact sharp: every com-
bination of experimental and nonexperimental data that satisfies these
inequalities can be generated from some causal model in which Y is
monotonic in X. That the commonly made assumption of “no preven-
tion” is not entirely exempt from empirical scrutiny should come as a
relief to many epidemiologists. Alternatively, if the no-prevention as-
sumption is theoretically unassailable, then (9.32) can be used for test-
ing the compatibility of the experimental and non-experimental data,
that is, whether subjects used in clinical trials are representative of the
target population as characterized by the joint distribution P(z,y).

Proof of Theorem 9.2.15
Equation (9.28) was established in (9.27). To prove (9.30), we write
P(ya::xlayl) P(yazax,ay:,c’)

P(y,lz’y) = = 34
(Yalz', y") P@.y) Pay) (9.34)

because ' Ay’ = 2’ Ay., (by consistency). To calculate the numerator
of (9.34), we conjoin (9.26) with z’ to obtain

A Y = (2 AYar) V (Yo Ay A ).

We then take the probability on both sides, which gives (since y,» and
y!, are disjoint)

P(ymay;’ax,) = P(xlayz) _P(xlay.’l:’)
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P’ y,) — P2, y)

= P(y,) = P(z,y,) — P(a',y)

= P(yz) — P(z,y) — P(a',y)

= P(y) — P(y)-

Substituting into i(9.34), we finally obtain

P (y:c) - P (y)

Play)
which establishes (9.30). Equation (9.29) follows via identical steps. O
One common class of models that permits the identification of P(y,)
under conditions of nonexogeneity was exemplified in Chapter 3. It
was shown in Section 3.2 (equation (3.13)) that, for every two variables
X and Y in a positive Markovian model M, the causal effect P(y,) is
identifiable and is given by

P(y.) = Y P(ylpax,z)P(pax), (9.35)

pax

P(y,lz',y") =

where pay are (realizations of) the parents of X in the causal graph
associated with M. Thus, we can combine (9.35) with Theorem 9.2.15
to obtain a concrete condition for the identification of the probability
of causation.

Corollary 9.2.16 For any positive-Markovian model M, if the func-
tion Y, (u) is monotonic then the probabilities of causation PNS, PS,
and PN are identifiable and are given by (9.28)—(9.30), with P(y,) as
given in (9.35).

A broader identification condition can be obtained through the use of
the back-door and front-door criteria (Section 3.3), which are applica-
ble to semi-Markovian models. These were further generalized in Galles
and Pearl (1995) (see also Section 4.3.1) and lead to the following corol-
lary.

Corollary 9.2.17 Let GP be the class of semi-Markovian models that
satisfy the graphical criterion of Theorem 4.3.1. If Y, (u) is monotonic,
then the probabilities of causation PNS, PS, and PN are identifiable
in GP and are given by (9.28)—(9.30), with P(y,) determined by the
topology of G(M) through the algorithm of Section 4.3.3.
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9.3 Examples and Applications

9.3.1 Example 1: Betting against a Fair Coin

We must bet heads or tails on the outcome of a fair coin toss; we win
a dollar if we guess correctly and lose if we don’t. Suppose we bet
heads and win a dollar, without glancing at the actual outcome of the
coin. Was our bet a necessary cause (or a sufficient cause, or both) for
winning?

This example is isomorphic to the clinical trial discussed in Sec-
tion 1.4.4 (Figure 1.6). Let z stand for “we bet on heads,” y for “we
win a dollar,” and u for “the coin turned up heads.” The functional
relationship between y, z, and u is

y=(zAu)V (' Au), (9.36)

which is not monotonic but nevertheless permits us to compute the
probabilities of causation from the basic definitions of (9.1)-(9.3). To
exemplify,

PN = P(y.|z,y) = P(yy|u) =1,

because z Ay = u and Yy (u) = false. In words, knowing the current
bet (z) and current win (y) permits us to infer that the coin outcome
must have been a head (u), from which we can further deduce that bet-
ting tails (2') instead of heads would have resulted in a loss. Similarly,

PS = P(ys|a’,y') = P(yazlu) = 1
(because z' Ay’ = u) and

PNS = P(ys,Yy)
= 1(0.5) + 0(0.5) = 0.5.

We see that betting heads has 50% chance of being a necessary and
sufficient cause of winning. Still, once we win, we can be 100% sure
that our bet was necessary for our win, and once we lose (say on betting
tails) we can be 100% sure that betting heads would have been sufficient
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for producing a win. The empirical content of such counterfactuals is
discussed in Section 7.2.2.

It is easy to verify that these counterfactual quantities cannot be
computed from the joint probability of X and Y without knowledge of
the functional relationship in (9.36), which tells us the (deterministic)
policy by which a win or a loss is decided (Section 1.4.4). This can be
seen, for instance, from the conditional probabilities and causal effects
associated with this example,

P(ylz) = P(yla") = P(ys) = Plys) = Py) = 3,
because identical probabilities would be generated by a random payoff
policy in which y is functionally independent of xz—say, by a bookie
who watches the coin and ignores our bet. In such a random policy,
the probabilities of causation PN, PS, and PNS are all zero. Thus,
according to our definition of identifiability (Definition 3.2.3), if two
models agree on P and do not agree on a quantity @, then @ is not
identifiable. Indeed, the bounds delineated in Theorem 9.2.10 (equa-
tion (9.9)) read 0 < PNS < , meaning that the three probabilities
of causation cannot be determined from statistical data on X and Y
alone, not even in a controlled experiment; knowledge of the functional
mechanism is required, as in (9.36).

It is interesting to note that whether the coin is tossed before or after
the bet has no bearing on the probabilities of causation as just defined.
This stands in contrast with some theories of probabilistic causality
(e.g. Good 1961), which attempt to avoid deterministic mechanisms by
conditioning all probabilities on “the state of the world just before” the
occurrence of the cause in question (z). When applied to our betting
story, the intention is to condition all probabilities on the state of the
coin (u), but this is not fulfilled if the coin is tossed after the bet is
placed. Attempts to enrich the conditioning set with events occurring
after the cause in question have led back to deterministic relationships
involving counterfactual variables (see Cartwright 1989, Eells 1991) and
the discussion in Section 7.5.4).

One may argue, of course, that if the coin is tossed after the bet then
it is not at all clear what our winnings would be had we bet differently;
merely uttering our bet could conceivably affect the trajectory of the
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coin (Dawid 1997). This objection can be diffused by placing x and u
in two remote locations and tossing the coin a split second after the
bet is placed but before any light ray could arrive from the betting
room to the coin-tossing room. In such a hypothetical situation, the
counterfactual statement “our winning would be different had we bet
differently” is rather compelling, even though the conditioning event
(u) occurs after the cause in question (z). We conclude that temporal
descriptions such as “the state of the world just before x” cannot be
used to properly identify the appropriate set of conditioning events
(u) in a problem; a deterministic model of the mechanisms involved is
needed for formulating the notion of “probability of causation.”

9.3.2 Example 2: The Firing Squad
Consider again the firing squad of Section 7.1.2 (see Figure 9.1); A and

U (Court order)

C (Captain)
X: A shoots A B (Riflemen)

T (Prisoner)
y. Tdies

Figure 9.1: Causal relationships in the two-man firing-squad example.

B are riflemen, C is the squad’s captain (who is waiting for the court
order, U), and T is a condemned prisoner. Let u be the proposition
that the court has ordered an execution, z the proposition stating that
A pulled the trigger, and y that T is dead. We assume again that
P(u) = %, that A and B are perfectly accurate marksmen who are
alert and law-abiding, and that 7" is not likely to die from fright or
other extraneous causes. We wish to compute the probability that z
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was a necessary (or sufficient, or both) cause for y (i.e., we wish to
calculate PN, PS, and PNS).

Definitions 9.2.1-9.2.3 permit us to compute these probabilities di-
rectly from the given causal model, since all functions and all probabil-
ities are specified, with the truth value of each variable tracing that of
U. Accordingly, we can write®

P(y;) = P(Yy(u) =true)P(u) + P(Y(u') = true)P(u')
(1+1)=1. (9.37)

N | =

Similarly, we have

P(yy) = P(Yy(u) =true)P(u) + P(Yy(u') = true) P(u')

—_

= ~(1+0) (9.38)

\V]

In order to compute PNS, we must evaluate the probability of the
joint event y,s A y,. Given that these two events are jointly true only
when U = true, we have

PNS = P(ya)ayw’)

P (Yo, Yor [0) P (1) + P (Ya, Yor [u') P (u')
1 1
= —-(14+0)=-. 9.39
Sa40)= (9.39)
The calculation of PS and PN is likewise simplified by the fact that
each of the conditioning events, z A y for PN and 2’ Ay for PS, is true

in only one state of U. We thus have
PN = P(yL|z,y) = P(y./|u) = 0,

reflecting that, once the court orders an execution (u), 7' will die (y)
from the shot of rifleman B, even if A refrains from shooting (z').
Indeed, upon learning of 7’s death, we can categorically state that
rifleman A’s shot was not a necessary cause of the death.

9Recall that P(Y,(u') = true) involves the submodel M, in which X is set to
“true” independently of U. Thus, although under condition ' the captain has not
given a signal, the potential outcome Y, (u') calls for hypothesizing that rifleman A
pulls the trigger (z) unlawfully.
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Similarly,
PS = P(y.|2', ") = P(yz|v) = 1,

matching our intuition that a shot fired by an expert marksman would
be sufficient for causing the death of 7', regardless of the court decision.

Note that Theorems 9.2.10 and 9.2.11 are not applicable to this
example because x is not exogenous; events x and y have a common
cause (the captain’s signal), which renders P(y|z') = 0 # P(yy) = 3.
However, the monotonicity of Y (in z) permits us to compute PNS, PS,
and PN from the joint distribution P(z,y) and the causal effects (us-
ing (9.28)—(9.30)), instead of consulting the functional model. Indeed,
writing

1

P(z,y) = P(e'y) = 5 (9.40)
and

P(z,y') = P(2',y) =0, (9-41)

we obtain 11
pN = PW) = Ply) _ 3 “z_g (9.42)

P(z,y) 3

and (1) () 1

P(y,) — P(y l1—3
PS=—p 7y) 3 =t .

as expected.

9.3.3 Example 3: The Effect of Radiation on
Leukemia

Consider the following data (Table 9.1, adapted from'® Finkelstein and
Levin 1990) comparing leukemia deaths in children in southern Utah
with high and low exposure to radiation from the fallout of nuclear tests
in Nevada. Given these data, we wish to estimate the probabilities that
high exposure to radiation was a necessary (or sufficient, or both) cause
of death due to leukemia.

0The data in Finkelstein and Levin (1990) are given in “person-year” units. For
the purpose of illustration we have converted the data to absolute numbers (of
deaths and nondeaths) assuming a ten-year observation period.
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Exposure
High () Low (z')
Deaths (y) 30 16

Survivals (y') 69,130 59,010

Table 9.1:

Assuming monotonicity—that exposure to nuclear radiation had no
remedial effect on any individual in the study—the process can be mod-
eled by a simple disjunctive mechanism represented by the equation

y= f(z,u,q) = (x A q) Vu, (9.44)

where u represents “all other causes” of y and where ¢ represents all
“enabling” mechanisms that must be present for z to trigger y. As-
suming that ¢ and u are both unobserved, the question we ask is under
what conditions we can identify the probabilities of causation (PNS,
PN, and PS) from the joint distribution of X and Y.

Since (9.44) is monotonic in z, Theorem 9.2.14 states that all three
quantities would be identifiable provided X is exogenous; that is, z
should be independent of ¢ and u. Under this assumption, (9.21)-
(9.23) further permit us to compute the probabilities of causation from
frequency data. Taking fractions to represent probabilities, the data in
Table 9.1 imply the following numerical results:

30 16
PNS=P - P N = — = (. 162
() = Plyl2") = 55 69,130~ 16355,010 0.0001625,
(9.45)
PNS PNS
PN = = — 0.37535 9.46
P(ylz) — 30/(30 + 69, 130) ) (9.46)
PNS PNS

PS =0.0001625.  (9.47)

T 1-P(ylz')  1-16/(16+ 59,010)
Statistically, these figures mean that:
1. There is a 1.625 in ten thousand chance that a randomly chosen

child would both die of leukemia if exposed and survive if not
exposed;
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2. There is a 37.535% chance that an exposed child who died from
leukemia would have survived had he or she not been exposed;

3. There is a 1.625 in ten thousand chance that any unexposed sur-
viving child would have died of leukemia had he or she been ex-
posed.

Glymour (1998) analyzed this example with the aim of identifying
the probability P(g) (Cheng’s “causal power”), which coincides with PS
(see Lemma 9.2.8). Glymour concluded that P(g) is identifiable and is
given by (9.23), provided that x, u, and ¢ are mutually independent.
Our analysis shows that Glymour’s result can be generalized in several
ways. First, since Y is monotonic in X, the validity of (9.23) is assured

K W . (Confounding

) / o ', Factors)
(Enabling i (Radiation) \
Factors) Q X !

(Leukemia)

Y

Figure 9.2: Causal relationships in the radiation-leukemia example,
where W represents confounding factors.

even when ¢ and u are dependent, because exogeneity merely requires
independence between z and {u, ¢} jointly. This is important in epi-
demiological settings, because an individual’s susceptibility to nuclear
radiation is likely to be associated with susceptibility to other potential
causes of leukemia (e.g., natural kinds of radiation).
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Second, Theorem 9.2.11 assures us that the relationships between
PN, PS, and PNS (equations (9.11)—(9.12)), which Glymour derives
for independent ¢ and u, should remain valid even when u and ¢ are
dependent.

Finally, Theorem 9.2.15 assures us that PN and PS are identifiable
even when z is not independent of {u, ¢}, provided only that the mecha-
nism of (9.44) is embedded in a larger causal structure that permits the
identification of P(y,). For example, assume that exposure to nuclear
radiation (z) is suspect of being associated with terrain and altitude,
which are also factors in determining exposure to cosmic radiation. A
model reflecting such consideration is depicted in Figure 9.2, where W
represents factors affecting both X and U. A natural way to correct for
possible confounding bias in the causal effect of X on Y would be to
adjust for W, that is, to calculate P(y,) using the standard adjustment
formula (equation (3.19))

P(y:) = Y Plylz, w)P(w) (9.48)

(instead of P(y|z)), where the summation runs over levels of W. This
adjustment formula, which follows from (9.35), is correct regardless of
the mechanisms mediating X and Y, provided only that W represents
all common factors affecting X and Y (see Section 3.3.1).

Theorem 9.2.15 instructs us to evaluate PN and PS by substituting
(9.48) into (9.29) and (9.30), respectively, and it assures us that the
resulting expressions constitute consistent estimates of PN and PS. This
consistency is guaranteed jointly by the assumption of monotonicity and
by the (assumed) topology of the causal graph.

Note that monotonicity as defined in (9.20) is a global property of
all pathways between = and y. The causal model may include several
nonmonotonic mechanisms along these pathways without affecting the
validity of (9.20). However, arguments for the validity of monotonic-
ity must be based on substantive information, since it is not testable
in general. For example, Robins and Greenland (1989) argued that
exposure to nuclear radiation may conceivably be of benefit to some in-
dividuals because such radiation is routinely used clinically in treating
cancer patients. The inequalities in (9.32) constitute a statistical test
of monotonicity (albeit a weak one) that is based on both experimental
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and observational studies.

9.3.4 Example 4: Legal Responsibility from Ex-
perimental and Nonexperimental Data

A lawsuit is filed against the manufacturer of drug z, charging that the
drug is likely to have caused the death of Mr. A, who took the drug to
relieve symptom S associated with disease D.

The manufacturer claims that experimental data on patients with
symptom S show conclusively that drug x may cause only minor in-
crease in death rates. However, the plaintiff argues that the experi-
mental study is of little relevance to this case because it represents the
effect of the drug on all patients, not on patients like Mr. A who actu-
ally died while using drug x. Moreover, argues the plaintiff, Mr. A is
unique in that he used the drug on his own volition, unlike subjects in
the experimental study who took the drug to comply with experimental
protocols. To support this argument, the plaintiff furnishes nonexperi-
mental data indicating that most patients who chose drug « would have
been alive were it not for the drug. The manufacturer counterargues
by stating that: (1) counterfactual speculations regarding whether pa-
tients would or would not have died are purely metaphysical and should
be avoided (Dawid 1997); and (2) nonexperimental data should be dis-
missed a priori on the grounds that such data may be highly confounded
by extraneous factors. The court must now decide, based on both the
experimental and nonexperimental studies, what the probability is that
drug x was in fact the cause of Mr. A’s death.

The (hypothetical) data associated with the two studies are shown
in Table 9.2. The experimental data provide the estimates

P(y,) = 16/1000 = 0.016, (9.49)
P(yy) =14/1000 = 0.014; (9.50)

the nonexperimental data provide the estimates

P(y) =30/2000 = 0.015, (9.51)
P(y,z) =2/2000 =0.001. (9.52)
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Experimental Nonexperimental
! /

T z x T

Deaths (y) 16 14 2 28

Survivals (y') 984 986 998 972
Table 9.2:

Assuming that drug = can only cause (can never prevent) death,
Theorem 9.2.15 is applicable and (9.29) yields

P(y) — P(y»s) _ 0.015—0.014

PN =
P(y,z) 0.001

= 1.00. (9.53)

Thus, the plaintiff was correct; barring sampling errors, the data pro-
vide us with 100% assurance that drug x was in fact responsible for the
death of Mr. A. Note that a straightforward use of the experimental
excess risk ratio would yield a much lower (and incorrect) result:

P(y,) — P(yw) _ 0.016 — 0.014

= =0.125. 9.54
P(y,) 0.016 (9:54)

Evidently, what the experimental study does not reveal is that,
given a choice, terminal patients avoid drug x. Indeed, if there were
any terminal patients who would choose x (given the choice), then the
control group (z') would have included some such patients (due to ran-
domization) and so the proportion of deaths among the control group
P(y,) would have been higher than P(z’,y), the population proportion
of terminal patients avoiding . However, the equality P(y,) = P(y, ')
tells us that no such patients were included in the control group; hence
(by randomization) no such patients exist in the population at large and
therefore none of the patients who freely chose drug x was a terminal
case; all were susceptible to z.

The numbers in Table 9.2 were obviously contrived to represent an
extreme case and so facilitate a qualitative explanation of the valid-
ity of (9.29). Nevertheless, it is instructive to note that a combina-
tion of experimental and nonexperimental studies may unravel what
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experimental studies alone will not reveal and, in addition, that such
combination may provide a necessary test for the assumption of no-
prevention, as outlined in Section 9.2.4 (equation (9.32)). For example,
if the frequencies in Table 9.2 were slightly different, they could easily
yield a negative value for PN in (9.53) and thus indicate violation of
the fundamental inequalities of (9.32)—(9.33). Such violation might be
due either to nonmonotonicity or to incompatibility of the experimental
and nonexperimental groups.

This last point may warrant a word of explanation, lest the reader
wonder why two data sets—taken from two separate groups under dif-
ferent experimental conditions—should constrain one another. The
explanation is that certain quantities in the two subpopulations are
expected to remain invariant to all these differences, provided that
the two subpopulations were sampled properly from the population
at large. These invariant quantities are simply the causal effects proba-
bilities, P(y,) and P(y,). Although these counterfactual probabilities
were not measured in the observational group, they must (by defini-
tion) nevertheless be the same as those measured in the experimental
group. The invariance of these quantities is the basic axiom of con-
trolled experimentation, without which no inference would be possible
from experimental studies to general behavior of the population. The
invariance of these quantities, together with monotonicity, implies the
inequalities of (9.32)—(9.33).

9.3.5 Summary of results

We now summarize the results from Sections 9.2 and 9.3 that should
be of value to practicing epidemiologists and policy makers. These
results are shown in Table 9.3, which lists the best estimand of PN
under various assumptions and various types of data—the stronger the
assumptions, the more informative the estimates.

We see that the excess risk ratio (ERR), which epidemiologists com-
monly equate with the probability of causation, is a valid measure of
PN only when two assumptions can be ascertained: exogeneity (i.e., no
confounding) and monotonicity (i.e., no prevention). When monotonic-
ity does not hold, ERR provides merely a lower bound for PN, as shown
in (9.13). (The upper bound is usually unity.) The nonentries—in the
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Assumptions Data Available

Exogeneity Monotonicity Additional || Experimental Observational Combined

+ + ERR ERR ERR

+ - bounds bounds bounds

— + covariate — corrected corrected
control ERR ERR

— + — — corrected

ERR
— — — — bounds

Table 9.3: PN as Function of Assumptions and Awvailable
Data Note: ERR stands for the excess risk ratio, 1 —
P(y|z")/P(y'|z"); corrected ERR is given in (9.31).

r.h.s. of Table 9.3 represent vacuous bounds (i.e., 0 < PN < 1). In the
presence of confounding, ERR must be corrected by the additive term
[P(y|lx) — P(yz)]/P(z,y), as stated in (9.31). In other words, when
confounding bias (of the causal effect) is positive, PN is higher than
ERR by the amount of this additive term. Clearly, owing to the divi-
sion by P(x,y), the PN bias can be many times higher than the causal
effect bias P(y|z) — P(y,). However, confounding results only from as-
sociation between exposure and other factors that affect the outcome;
one need not be concerned with associations between such factors and
susceptibility to exposure (see Figure 9.2).

The last row in Table 9.3, corresponding to no assumptions what-
soever, leads to vacuous bounds for PN. This does not mean, however,
that justifiable assumptions other than monotonicity and exogeneity
could not be helpful in rendering PN identifiable. The use of such
assumptions is explored in the next section.
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9.4 Identification in Nonmonotonic Mod-
els

In this section we discuss the identification of probabilities of causation
without making the assumption of monotonicity. We will assume that
we are given a causal model M in which all functional relationships are
known, but since the background variables U are not observed, their
distribution is not known and the model specification is not complete.

Our first step would be to study under what conditions the function
P(u) can be identified, thus rendering the entire model identifiable. If
M is Markovian, then the problem can be analyzed by considering each
parents-child family separately. Consider any arbitrary equation in M

y = f(pay,uy)
= f(.Tl,ﬂ')z,...,.’Ek,ul,...,Um), (955)

where Uy = {Uy, ..., Uy} is the set of background (possibly dependent)
variables that appear in the equation for Y. In general, the domain of
Uy can be arbitrary, discrete, or continuous, since these variables rep-
resent unobserved factors that were omitted from the model. However,
since the observed variables are binary, there is only a finite number
(2(2k)) of functions from PAy to Y and, for any point Uy = u, only
one of those functions is realized. This defines a partition of the do-
main of Uy into a set S of equivalence classes, where each equivalence
class s € S induces the same function f*) from PAy to Y (see Section
8.2.2). Thus, as u varies over its domain, a set S of such functions
is realized, and we can regard S as a new background variable whose
values correspond to the set {f(*) : s € S} of functions from PAy to
Y that are realizable in Uy. The number of such functions will usually
be smaller than 2(2) 11

For example, consider the model described in Figure 9.2. As the
background variables (Q,U) vary over their respective domains, the
relation between X and Y spans three distinct functions:

.Y = true, f@:Y = false, and f®:V =X.

HBalke and Pearl (1994a,b) called these S variables “response variables,” as in
Section 8.2.2; Heckerman and Shachter (1995) called them “mapping variables.”
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The fourth possible function, Y # X, is never realized because fy ()
is monotonic. The cells (¢,u) and (¢',u) induce the same function
between X and Y'; hence they belong to the same equivalence class.

If we are given the distribution P(uy) then we can compute the
distribution P(s), and this will determine the conditional probabilities
P(y|pay) by summing P(s) over all those functions f(*) that map pay
into the value true,

Plypo)= Y Pls). (9.56)

s:f()(pay) = true

To ensure model identifiability, it is sufficient that we can invert the pro-
cess and determine P(s) from P(y|pay). If we let the set of conditional
probabilities P(y|pay) be represented by a vector p (of dimensionality
2F) and P(s) by a vector g, then the relation between q and p is linear
and can be represented as a matrix multiplication (Balke and Pearl
1994b),

P = Rq, (9.57)

where R is a 2% x |S| matrix whose entries are either 0 or 1. Thus,
a sufficient condition for identification is simply that R, together with
the normalizing equation }°; g; = 1, be invertible.

In general, R will not be invertible because the dimensionality of g
can be much larger than that of p. However, in many cases, such as
the “noisy OR” mechanism

Y=0U \/ (X;AU), (9.58)

i=1,...k

symmetry permits g to be identified from P(y|pay) even when the
exogenous variables Uy, Uy, ..., Uy are not independent. This can be
seen by noting that every point u for which Uy = false defines a unique
function f(*) because, if T is the set of indices ¢ for which U; is true,
the relationship between PAy and Y becomes

Y=0U\V X (9.59)

1€l

and, for Uy = false, this equation defines a distinct function for each
T. The number of induced functions is 2¥ + 1, which (subtracting 1 for
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normalization) is exactly the number of distinct realizations of PAy-.
Moreover, it is easy to show that the matrix connecting p and q is
invertible. We thus conclude that the probability of every counterfac-
tual sentence can be identified in any Markovian model composed of
noisy OR mechanisms, regardless of whether the background variables
in each family are mutually independent. The same holds, of course, for
noisy AND mechanisms or any combination thereof (including negating
mechanisms), provided that each family consists of one type of mecha-
nism.

To generalize this results to mechanisms other than noisy OR and
noisy AND, we note that—although fy(-) in this example was mono-
tonic (in each X;)—it was the redundancy of fy(-) and not its mono-
tonicity that ensured identifiability. The following is an example of a
monotonic function for which the R matrix is not invertible:

Y=(X1AU)V (X AUp) V(X1 A Xy AUs).

This function represents a noisy OR gate for Uz = false; it becomes
a noisy AND gate for U3 = trueandU; = U, = false. The number of
equivalence classes induced is six, which would require five independent,
equations to determine their probabilities; the data P(y|pay) provide
only four such equations.

In contrast, the mechanism governed by the following function, al-
though nonmonotonic, is invertible:

Y = XOR(Xy, XOR(Us, ..., XOR(Uy,_1, XOR(Xg, Uy)))),

where XOR(-) stands for exclusive OR. This equation induces only two
functions from PAy to Y:

y = XOR,(Xl,,Xk) if XOR(Ul,,Uk) = false,
o _IXOR(Xl,,Xk) if XOR(Ul,,Uk): true.

A single conditional probability, say P(y|z1,...,zx), would therefore
suffice for computing the one parameter needed for identification:
PIXOR(Uy,...,Uy) = truel.

We summarize these considerations with a theorem.
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Definition 9.4.1 (Local Invertibility)
A model M is said to be locally invertible if, for every variable V; € V,
the set of 2% + 1 equations

P(ylpa;) = > ails), (9.60)

s:f(8)(pa;)= true

Yals) = 1 (9.61)

has a unique solution for qi(s), where each f (pa;) corresponds to the
function f;(pa;,u;) induced by u; in equivalence class s.

Theorem 9.4.2 Given a Markovian model M = (U, V,{f;}) in which
the functions {f;} are known and the exogenous variables U are unob-
served, if M s locally invertible then the probability of every counter-
factual sentence is identifiable from the joint probability P(v).

Proof
If (9.60) has a unique solution for ¢;(s), then we can replace U with S
and obtain an equivalent model as follows:

M’ =(S,V,{f]}), where f = f"(pa;).

The model M’, together with g;(s), completely specifies a probabilistic
causal model (M’', P(s)) (owing to the Markov property), from which
probabilities of counterfactuals are derivable by definition. O Theorem
9.4.2 provides a sufficient condition for identifying probabilities of cau-
sation, but of course it does not exhaust the spectrum of assumptions
that are helpful in achieving identification. In many cases we might
be justified in hypothesizing additional structure on the model—for
example, that the U variables entering each family are themselves in-
dependent. In such cases, additional constraints are imposed on the
probabilities P(s), (9.60) may be solved even when the cardinality of
S far exceeds the number of conditional probabilities P(y|pay ).

9.5 Conclusions

This chapter has explicated and analyzed the interplay between the nec-
essary and sufficient components of causation. Using counterfactual in-
terpretations that rest on structural model semantics, we demonstrated



9.5. CONCLUSIONS 455

how simple techniques of computing probabilities of counterfactuals can
be used in computing probabilities of causes, deciding questions of iden-
tification, uncovering conditions under which probabilities of causes can
be estimated from statistical data, and devising tests for assumptions
that are routinely made (often unwittingly) by analysts and investiga-
tors.

On the practical side, we have offered several useful tools (partly
summarized in Table 9.3) for epidemiologists and health scientists. This
chapter formulates and calls attention to subtle assumptions that must
be ascertained before statistical measures such as excess risk ratio can
be used to represent causal quantities such as attributable risk or prob-
ability of causes (Theorem 9.2.14). It shows how data from both exper-
imental and nonexperimental studies can be combined to yield informa-
tion that neither study alone can reveal (Theorem 9.2.15 and Section
9.3.4). Finally, it provides tests for the commonly made assumption of
“no prevention” and for the often asked question of whether a clinical
study is representative of its target population (equation (9.32)).

On the conceptual side, we have seen that both the probability of
necessity (PN) and probability of sufficiency (PS) play a role in our
understanding of causation and that each component has its logic and
computational rules. Although the counterfactual concept of necessary
cause (i.e., that an outcome would not have occurred “but for” the
action) is predominant in legal settings [Robertson, 1997](Robertson
1997) and in ordinary discourse, the sufficiency component of causation
has a definite influence on causal thoughts.

The importance of the sufficiency component can be uncovered in
examples where the necessary component is either dormant or ensured.
Why do we consider striking a match to be a more adequate explanation
(of a fire) than the presence of oxygen? Recasting the question in the
language of PN and PS, we note that, since both explanations are
necessary for the fire, each will command a PN of unity. (In fact, the
PN is actually higher for the oxygen if we allow for alternative ways
of igniting a spark). Thus, it must be the sufficiency component that
endows the match with greater explanatory power than the oxygen.
If the probabilities associated with striking a match and the presence
of oxygen are denoted p,, and p,, respectively, then the PS measures
associated with these explanations evaluate to PS(match) = p, and
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PS(oxygen) = pp,, clearly favoring the match when p, >> pp,. Thus, a
robot instructed to explain why a fire broke out has no choice but to
consider both PN and PS in its deliberations.

Should PS enter legal considerations in criminal and tort law? I
believe that it should—as does I.J. Good (1993)—because attention to
sufficiency implies attention to the consequences of one’s action. The
person who lighted the match ought to have anticipated the presence
of oxygen, whereas the person who supplied—or who could (but did
not) remove—the oxygen is not generally expected to have anticipated
match-striking ceremonies.

However, what weight should the law assign to the necessary versus
the sufficient component of causation? This question obviously lies be-
yond the scope of our investigation, and it is not at all clear who would
be qualified to tackle the issue or whether our legal system would be
prepared to implement the recommendation. I am hopeful, however,
that whoever undertakes to consider such questions will find the analy-
sis in this chapter to be of some use. The next chapter combines aspects
of necessity and sufficiency in explicating a more refined notion: “actual
cause.”
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