Chapter 8

Imperfect Experiments:
Bounding Effects and
Counterfactuals

Would that I could discover truth
as easily as I can uncover falsehood.
Cicero (44 B.C.)

Preface

In this chapter we describe how graphical and counterfactual models
(Sections 3.2 and 7.1) can combine to elicit causal information from im-
perfect experiments: experiments that deviate from the ideal protocol
of randomized control. A common deviation occurs, for example, when
subjects in a randomized clinical trial do not fully comply with their as-
signed treatment, thus compromising the identification of causal effects.
When conditions for identification are not met, the best one can do is
derive bounds for the quantities of interest—mnamely, a range of possible
values that represents our ignorance about the data-generating process
and that cannot be improved with increasing sample size. The aim of
this chapter is to demonstrate (i) that such bounds can be derived by
simple algebraic methods and (ii) that, despite the imperfection of the
experiments, the derived bounds can yield significant and sometimes
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accurate information on the impact of a policy on the entire popula-
tion as well as on a particular individual who participated in the study.
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8.1 Introduction

8.1.1 Imperfect and Indirect Experiments

Standard experimental studies in the biological, medical, and behav-
ioral sciences invariably invoke the instrument of randomized control;
that is, subjects are assigned at random to various groups (or treat-
ments or programs), and the mean differences between participants in
different groups are regarded as measures of the efficacies of the associ-
ated programs. Deviations from this ideal setup may take place either
by failure to meet any of the experimental requirements or by delib-
erate attempts to relax these requirements. Indirect experiments are
studies in which randomized control is either unfeasible or undesirable.
In such experiments, subjects are still assigned at random to various
groups, but members of each group are simply encouraged (rather than
forced) to participate in the program associated with the group; it is
up to the individuals to select among the programs.

Recently, use of strict randomization in social and medical experi-
mentation has been questioned for three major reasons.

1. Perfect control is hard to achieve or ascertain. Studies in which
treatment is assumed to be randomized may be marred by uncon-
trolled imperfect compliance. For example, subjects experiencing
adverse reactions to an experimental drug may decide to reduce
the assigned dosage. Alternatively, if the experiment is testing a
drug for a terminal disease, a subject suspecting that he or she
is in the control group may obtain the drug from other sources.
Such imperfect compliance renders the experiment indirect and
introduces bias into the conclusions that researchers draw from
the data. This bias cannot be corrected unless detailed models of
compliance are constructed (Efron and Feldman 1991).

2. Denying subjects assigned to certain control groups the benefits
of the best available treatment has moral and legal ramifications.
For example, in AIDS research it is difficult to justify placebo
programs because those patients assigned to the placebo group
would be denied access to potentially life-saving treatment (Palca
1989).
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3. Randomization, by its very presence, may influence participation
as well as behavior (Heckman 1992). For example, eligible can-
didates may be wary of applying to a school once they discover
that it deliberately randomizes its admission criteria. Likewise,
as Kramer and Shapiro (1984) noted, subjects in drug trials may
be less likely to participate in randomized trials than in nonex-
perimental studies, even when the treatments are equally non-
threatening.

Altogether, researchers are beginning to acknowledge that mandated
randomization may undermine the reliability of experimental evidence
and that experimentation with human subjects often involves—and
sometimes should involve—an element of self-selection.

This chapter concerns the drawing of inferences from studies in
which subjects have final choice of program; the randomization is con-
fined to an indirect instrument (or assignment) that merely encourages
or discourages participation in the various programs. For example, in
evaluating the efficacy of a given training program, notices of eligibility
may be sent to a randomly selected group of students or, alternatively,
eligible candidates may be selected at random to receive scholarships
for participating in the program. Similarly, in drug trials, subjects may
be given randomly chosen advice on recommended dosage level, yet the
final choice of dosage will be determined by the subjects to fit their
individual needs.

Imperfect compliance poses a problem because simply comparing
the fractions in the treatment and control groups may provide a mis-
leading estimate for how effective the treatment would be if applied
uniformly to the population. For example, if those subjects who de-
clined to take the drug are precisely those who would have responded
adversely, the experiment might conclude that the drug is more effec-
tive than it actually is. In Chapter 3 (see Section 3.5, Figure 3.7(b)),
we showed that treatment effectiveness in such studies is actually non-
tdentifiable. That is, in the absence of additional modeling assumptions,
treatment effectiveness cannot be estimated from the data without bias,
even when the number of subjects in the experiment approaches infin-
ity and even when a record is available of the action and response of
each subject.
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The question we attempt to answer in this chapter is whether in-
direct randomization can provide information that allows approximate
assessment of the intrinsic merit of a program, as would be measured,
for example, if the program were to be extended and mandated uni-
formly to the population. The analysis presented shows that, given a
minimal set of assumptions, such inferences are indeed possible—albeit
in the form of bounds, rather than precise point estimates, for the causal
effect of the program or treatment. These bounds can be used by the
analyst to guarantee that the causal effect of a given program must be
higher than one measurable quantity and lower than another.

Our most crucial assumption is that, for any given person, the en-
couraging instrument influences the treatment chosen by that person
but has no effect on how that person would respond to the treatment
chosen (see the definition of instrumental variables in Section 7.4.5).
The second assumption, one which is always made in experimental
studies, is that subjects respond to treatment independently of one
other. Other than these two assumptions, our model places no con-
straints on how tendencies to respond to treatments may interact with
choices among treatments.

8.1.2 Noncompliance and Intent to Treat

In a popular compromising approach to the problem of imperfect com-
pliance, researchers perform an “intent to treat” analysis in which the
control and treatment group are compared without regard to whether
the treatment was actually received.! The result of such an analysis is
a measure of how well the treatment assignment affects the disease, as
opposed to the desired measure of how well the treatment itself affects
the disease. Estimates based on intent-to-treat analyses are valid only
as long as the experimental conditions perfectly mimic the conditions
prevailing in the eventual usage of the treatment. In particular, the
experiment should mimic subjects’ incentives for receiving each treat-
ment. In situations where field incentives are more compelling than
experimental incentives, as is usually the case when drugs receive the
approval of a government agency, treatment effectiveness may vary sig-

! This approach is currently used by the FDA to approve new drugs.
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nificantly from assignment effectiveness. For example, imagine a study
in which (a) the drug has an adverse effect on a large segment of the
population and (b) only those members of the segment who drop from
the treatment “arm” (subpopulation) recover. The intent-to-treat anal-
ysis will attribute these cases of recovery to the drug because they are
part of the intent-to-treat arm, although in reality these cases recovered
by avoiding the treatment.

Another approach to the problem is to use a correction factor based
on an instrumental variables formula (Angrist et al. 1996), according
to which the intent-to-treat measure should be divided by the fraction
of subjects who comply with the treatment assigned to them. Angrist
et al. (1996) showed that, under certain conditions, the corrected for-
mula is valid for the subpopulation of “responsive” subjects—that is,
subjects who would have changed treatment status if given a differ-
ent assignment. Unfortunately, this subpopulation cannot be identified
and, more seriously, it cannot serve as a basis for policies involving
the entire population because it is instrument-dependent: individuals
who are responsive in the study may not remain responsive in the field,
where the incentives for obtaining treatment differ from those used in
the study. We therefore focus our analysis on the stable aspect of the
treatment—the aspect that would remain invariant to changes in com-
pliance behavior.



8.2. BOUNDING CAUSAL EFFECTS 393

8.2 Bounding Causal Effects

8.2.1 Problem Formulation

The basic experimental setting associated with indirect experimenta-
tion is shown in Figure 8.1, which is isomorphic to Figures 3.7(b) and
5.9. To focus the discussion, we will consider a prototypical clinical
trial with partial compliance, although in general the model applies to
any study in which a randomized instrument encourages subjects to
choose one program over another.

Treatment Latent
Assigned Factors
Treatment
Received
Observed
Response

Figure 8.1: Graphical representation of causal dependencies in a ran-
domized clinical trial with partial compliance.

We assume that 7, X, Y are observed binary variables, where Z
represents the (randomized) treatment assignment, X is the treatment
actually received, and Y is the observed response. The U term rep-
resents all factors, both observed and unobserved, that influence the
way a subject responds to treatments; hence, an arrow is drawn from
U to Y. The arrow from U to X denotes that the U factors may also
influence the subject’s choice of treatment X; this dependence may
represent a complex decision process standing between the assignment
(Z) and the actual treatment (X).

To facilitate the notation, we let z, x, y represent (respectively) the
values taken by the variables Z, X, Y, with the following interpreta-
tion:

z € {20,721}, 21 asserts that treatment has been assigned (zp, its nega-
tion);
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x € {xo, 1}, 1 asserts that treatment has been administered (zo, its
negation); and

y € {yo,y1}, y1 asserts a positive observed response (yo, its negation).

The domain of U remains unspecified and may, in general, combine the
spaces of several random variables, both discrete and continuous.
The graphical model reflects two assumptions.

1. The assigned treatment Z does not influence Y directly but rather
through the actual treatment X. In practice, any direct effect 7
might have on Y would be adjusted for through the use of a
placebo.

2. The variables Z and U are marginally independent; this is ensured
through the randomization of Z, which rules out a common cause
for both Z and U.

These assumptions impose on the joint distribution the decomposi-
tion
P(y,a,2,u) = P(yla,u)P(a]zu)P()P(u), (8.1)

which, of course, cannot be observed directly because U is unobserved.
However, the marginal distribution P(y,z,z) and, in particular, the
conditional distributions

P(y,z|z) = ZP ylx,u)P(x|z,u)P(u), z € {z0,21}, (8.2)

are observed,? and the challenge is to assess from these distributions
the average change in Y due to treatment.

Treatment effects are governed by the distribution P(y|do(x)),
which—using the truncated factorization formula of (3.10)—is given
by

P(y|do(x) Zpymu (u); (8-3)

2In practice, of course, only a finite sample of P(y, z|z) will be observed. But our
task is one of identification, not estimation, so we make the large-sample assumption
and consider P(y,z|z) as given.
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here, the factors P(y|z,u) and P(u) are the same as those in (8.2).
Therefore, if we are interested in the average change in Y due to treat-
ment then we should compute the average causal effect, ACE(X — Y)
(Holland 1988), which is given by

ACE(X = Y) = P(yildo(x1)) — P(y1|do(zo))
= Y [P(nl21,u) = P(yilzo, u)P(u)].  (8.4)

Our task is then to estimate or bound the expression in (8.4) given
the observed probabilities P(y,x|29) and P(y,x|z), as expressed in
(8.2). This task amounts to a constrained optimization exercise of
finding the highest and lowest values of (8.4) subject to the equality
constraint in (8.2), where the maximization ranges over all possible
functions

P(u), P(yi|zo,u), P(y1|z1,u), P(x1|20,u), and P(x|21,u)

that satisfy those constraints.

8.2.2 The Evolution of Potential-Response Vari-
ables

The bounding exercise described in Section 8.2.1 can be solved using
conventional techniques of mathematical optimization. However, the
continuous nature of the functions involved—as well as the unspecified
domain of U—makes this representation inconvenient for computation.
Instead, we can use the observation that U can always be replaced by
a finite-state variable such that the resulting model is equivalent with
respect to all observations and manipulations of Z, X, Y (Pearl 1994a).

Consider the structural equation that connects two binary variables,
Y and X, in a causal model:

y=f(z,u).
For any given u, the relationship between X and Y must be one of four
functions:
fO:yZO: fliy:.’E,
fory #ua, f3ry=1 (8.5)
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As u varies along its domain, regardless of how complex the variation,
the only effect it can have on the model is to switch the relationship
between X and Y among these four functions. This partitions the do-
main of U into four equivalence classes, as shown in Figure 8.2, where
each class contains those points u that correspond to the same function.
We can thus replace U by a four-state variable, R(u), such that each

Domain

o

Figure 8.2: The partition of U into four equivalence classes, each induc-
ing a distinct functional mapping from X to Y for any given function

Yy = f(xvu)

state represents one of the four functions. The probability P(u) would
automatically translate into a probability function P(r), r =0,1,2,3,
that is given by the total weight assiged to the equivalence class cor-
responding to r. A state-minimal variable like R is called a “response
variable” by Balke and Pearl (1994a, b) and a “mapping variable” by
Heckerman and Shachter (1995).3

Because Z, X, and Y are all binary variables, the state space of U
divides into 16 equivalence classes: each class dictates two functional
mappings, one from Z to X and the other from X to Y. To describe
these equivalence classes, it is convenient to regard each of them as a

3In the potential-outcome model (see Section 7.4.4), u stands for an experimen-
tal unit and R(u) corresponds to the potential response of unit u to treatment x.
The assumption that each experimental unit (e.g., an individual subject) possesses
an intrinsic, seemingly “fatalistic” response function has met with some objections
(Dawid 1997), owing to the complexity and inherent unobservability of the many
factors that might govern an individual response to treatment. The equivalence-
class formulation of R(u) mitigates those objections by showing that R(u) evolves
naturally and mathematically from any complex system of stochastic latent vari-
ables, provided only that we acknowledge the existence of such variables through
the equation y = f(z,u). Those who invoke quantum-mechanical objections to
the latter step as well (e.g. Salmon 1998), should regard the functional relationship
y = f(z,u) as an abstract mathematical construct, representing the extreme points
(vertices) of the set of conditional probabilities P(y|z,u) satisfying the constraints
of (8.1) and (8.2).
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point in the joint space of two four-valued variables R, and R,. The
variable R, determines the compliance behavior of a subject through
the mapping

( Zo if Ty = 0,
T if Ty = and z = 20,
B . T lf Ty = 1 and Z = 21,
T = fX(Zi Tm) - T lf Ty = 2 and Z = 29, (86)
T lf Ty = 2 and Z = Z1;
{ 1 if Ty = 3.

Imbens and Rubin (1997) call a subject with compliance behavior r, =
0,1, 2, 3 (respectively) a never-taker, a complier, a defier, and an always-
taker. Similarly, the variable 12, determines the response behavior of a
subject through the mapping:

( Yo if T'y = O;
Yo if Ty = and z = Zo,
B B Y1 if Ty = 1 and z = T3
Y= fY(xi Ty) = 9 Y1 if ry =92 and z = T, (87)
yo if 7, =2 and z=ux;
L U1 if Ty = 3.

Following Heckerman and Shachter (1995), we call the response behav-
ior r, = 0,1, 2,3 (respectively) never-recover, helped, hurt, and always-
recover.

The correspondence between the states of variable R, and the po-
tential response variables, Y, and Y;,, defined in Section 7.1 (Definition
7.1.4) is as follows:

v — y1 ifry=1orr, =3,
o yo otherwise;
v y1 ifry=2orr, =3,
w0 Yo otherwise.

In general, response and compliance may not be independent, hence
the double arrow R, <- -» R, in Figure 8.3. The joint distribution over
R, x R, requires 15 independent parameters, and these parameters
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Figure 8.3: A structure equivalent to that of Figure 8.1 but employing
finite-state response variables R,, R;, and R,.

are sufficient for specifying the model of Figure 8.3, P(y, z, 2,75, 7y) =
P(y|z,ry)P(z|ry, 2)P(2)P(r4,1y), because Y and X stand in fixed func-
tional relations to their parents in the graph. The causal effect of the
treatment can now be obtained directly from (8.7), giving

P(yi|do(z1)) = P(ry=1)+ P(r,=3),
P(yi|do(z0)) = P(ry=2) + P(r,=3),

and
ACE(X —»Y) = P(r,=1) — P(r,=2). (8.10)

8.2.3 Linear Programming Formulation

By explicating the relationship between the parameters of P(y,z|z2)
and those of P(r,,7,), we obtain a set of linear constraints needed for
minimizing or maximizing ACE(X — YY) given P(y, z|z).

The conditional distribution P(y, z|z) over the observable variables
is fully specified by eight parameters, which will be written as follows:

21/0,330\20 ; Poo.1 yo;$o|21 )

P( ) P( )
Poio = P(y 71]20), Po1a = P(y r1|21),
( ) ( )
P( ) P( )

)

Y1, an0\2’0 Y1, 370|Z1

y1;331|20 ; P11 y1;$1|z1 .

3
=
IS
Il
>

) Pio1 = ’



8.2. BOUNDING CAUSAL EFFECTS 399

The probabilistic constraints

11 11
S pro=1 and > pui=1 (8.11)
n=00 n=00

further imply that ' = (poo.o,---,P11.1) can be specified by a point in
6-dimensional space. This space will be referred to as P.
The joint probability P(r,,r,) has 16 parameters:

9k = P(Ta::ja Ty:k),
where 7,k € {0,1,2,3}. The probabilistic constraint
3 3
> 2 gk = 1
§=0k=0
implies that ¢ specifies a point in 15-dimensional space. This space will
be referred to as Q.
Equation (8.10) can now be rewritten as a linear combination of the
() parameters:
ACE(X = Y) =qo1 +quu + g1 + 31 — Qo2 — q12 — G2 — g32-  (8.12)

Applying (8.6) and (8.7) we can write the linear transformation from a
point ¢ in () to a point p'in P:

D00.0 = qoo + Go1 + 10 + qi1, P00.1 = qoo Tt Go1 + g20 + Ga1,
Do1.0 = G20 + G22 + 30 T g32, Por.1 = qio t Gi2 + ¢30 + G32,
P10.0 = go2 + go3 + 12 + ¢13, P1o.1 = Qo2 + Go3 + G22 + G23,
D110 = G21 + G23 + 31 + g33, P11 = qu1 + Gi3 + ¢31 + G33;

this can be written in matrix form as p'= Rgq.

Given a point p'in P-space, the strict lower bound on ACE(X — Y)
can be determined by solving the following linear programming prob-
lem.

Minimize go1 + q11 + g21 + @31 — Qo2 — q12 — @22 — q32
subject to:

3 3

> g = 1,

j=0k=0
Rf = 7 (8.13)
9k > 0 for j,k € {0,1,2,3}
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Moreover, for problems of this size, procedures are available for
deriving symbolic expressions as well (Balke 1995), leading to the fol-
lowing lower bound on the treatment effect

(

P11+ Pooo — 1
P10+ Poo1 — 1
P11.0 — P11.1 — P1o.1 — Po1.o — P10.0
ACE(X - Y) > max { Pi11.1 — P11.0 — P1o.0 — Po1.1 — P1o.1 [ .(8.14a)
—Po1.1 — P1o.1
—Po1.0 — P10.0
Poo.1 — Po1.1 — P1o.1 — Po1.0 — P00.0
\ Po0.0 — Po1.o0 — P10.0 — Po1.1 — Poo.1 )

Similarly, the upper bound is given by

( 1 —po1.1 — Proo
1 —po1.0 — pioa
—Po1.0 + Po1.1 + Poo.1 + P11.0 + Poo.o
ACE(X — Y) < min —Po1.1 + P11.1 + Poo.1 + Po1.0 + Poo.o , (3.14b)
P11.1 + Poo.
P11.0 T Poo.o
—P10.1 + P11.1 + Poo.1 + P11.0 + Pio.o
| —P10.0 + Pi1.0 + Poo.o + P11 + Pro1 )

We may also derive bounds for (8.8) and (8.9) individually (under
the same linear constraints), giving:

P10.0 + P11.0 — Poo.1 — P11.1

P(y1]do(xo)) > max P1o.1 |
P1o.0

Po1.0 + P10.0 — Poo.1 — Po1.1
Po1.0 T P10.0 T P1o.1 + P11.1

P(y2|do(zo)) < min L= Poo. . (8.15)
1 — poo.o

P10.0 T P11.0 + Po1.1 + P1o.1

P11.0

D111
P(y,|do(z1)) > max ,
(y1ldo(a)) 2 —P00.0 — Po1.0 + Poo.1 + P11.1

—Po1.0 — P10.0 + P1o.1 + P11.1
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1 —poi1
P(y|do(z1)) < min L= powo . (8.16)
Poo.o + P11.0 + P1o.1 + P11
P10.0 T P11.0 + Poo.1 + P11.1

These expressions give the tightest possible assumption-free* bounds
on the quantities involved.

8.2.4 The Natural Bounds

The expression for ACE(X — Y) (equation (8.4)) can be bounded by
two simple formulas, each made up of the first two terms in (8.14a and
(8.14b)) (Robins 1989; Manski 1990; Pearl 1994):

ACE(X =Y) > P(yi|z1) — P(y1|z0) = P(y1, wol21) — P(yo, 21|20)
ACE(X = Y) < P(y1|z1) — P(y1|20) + P (Yo, zo|21) + P(y1, 21|20)
(8.17)

Because of their simplicity and wide range of applicability, the bounds
given by (8.17) were named the natural bounds (Balke and Pearl
1997). The natural bounds guarantee that the causal effect of the
actual treatment cannot be smaller than that of the encouragement
(P(y1]21) — P(y1|20)) by more than the sum of two measurable quan-
tities, P(y1,zo|z1) + P(yo,z1|20); they also guarantee that the causal
effect of the treatment cannot exceed that of the encouragement by
more than the sum of two other measurable quantities, P(yo, zo|21) +
P(y1,x1|20). The width of the natural bounds, not surprisingly, is given
by the rate of noncompliance, P(x1|z9) + P(x¢|21).

The width of the sharp bounds in (8.14ab) can be substantially nar-
rower though. In Balke (1995) and Pearl (1995b), it is shown that—
even under conditions of 50% noncompliance—these bounds may col-
lapse to a point and thus permit consistent estimation of ACE(X — V).
This occurs whenever (a) the percentage of subjects complying with as-
signment zp is the same as those complying with z; and (b) ¥ and Z

4 «Assumption-transparent” might be a better term; we make no assumptions
about factors that determine subjects’ compliance, but we rely on the assumptions
of (i) randomized assignment and (ii) no side effects, as displayed in the graph (e.g.,
Figure 8.1).
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are perfectly correlated in at least one treatment arm z (see Table 8.1
in Section 8.5).

Although more complicated than the natural bounds of (8.17ab),
the sharp bounds of (8.14ab) are nevertheless easy to assess once we
have the frequency data in the eight cells of P(y,z|z). It can also be
shown (Balke 1995) that the natural bounds are optimal when we can
safely assume that no subject is contrarian—iin other words, that no
subject would consistently choose a treatment arm contrary to the one
assigned.

Note that, if the response Y is continuous, then one can associate
y1 and yo with the binary events Y > ¢ and Y < t (respectively) and
let ¢ vary continuously over the range of Y. (8.15) and (8.16) would
then provide bounds on the entire distribution of the treatment effect
P(Y <t | do(z)).

8.2.5 Effect of Treatment on the Treated

Much of the literature assumes that ACE(X — Y) is the parameter
of interest, because ACE(X — Y) predicts the impact of applying the
treatment uniformly (or randomly) over the population. However, if a
policy maker is not interested in introducing new treatment policies but
rather in deciding whether to maintain or terminate an existing pro-
gram under its current incentive system, then the parameter of interest
should measure the impact of the treatment on the treated, namely, the
mean response of the treated subjects compared to the mean response
of these same subjects had they not been treated (Heckman 1992). The
appropriate formula for this parameter is

ACE*(X = Y) = P(Y,, =wlt1) — P(Ys, = y1|21)
= Z[P(ylu‘l’u) - P(yl‘xoau)]P(U‘iﬁ), (818)

which is similar to (8.4) except for replacing the expectation over u
with the conditional expectation given X = x;.

The analysis of ACE*(X — Y) reveals that, under conditions of no
intrusion (i-e., P(x1|z9) = 0, as in most clinical trials), ACE*(X — Y)
can be identified precisely (Bloom 1984; Angrist and Imbens 1991).
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The natural bounds governing ACE*(X — Y) in the general case can
be obtained by similar means, which yield
P(yi|z1) — P(yilz)  P(yo,21]20)
ACE*(X - Y) > _ ,
X 2 e P P(e)
yilz1) — P(y1]20) | P(y1,%1]20)
P(z1)/P(z1) P(z1)

The sharp bounds are presented in Balke (1995, p. 113). Clearly, in
situations where treatment may be obtained only by those encouraged
(by assignment), we have P(z1]|z) = 0 and

P(y1|z1) — P(y1]20)
P(z1]21) '

ACE*(X — v) < 2 (8.19)

ACE* (X = Y) = (8.20)
Unlike ACE(X —Y), ACE*(X — Y) is not an intrinsic property of
the treatment, since it varies with the encouraging instrument. Hence,
its significance lies in studies where it is desired to evaluate the efficacy
of an existing program on its current participants.

8.2.6 Example: The Effect of Cholestyramine

To demonstrate by example how the bounds for ACE(X — Y') can be
used to provide meaningful information about causal effects, consider
the Lipid Research Clinics Coronary Primary Prevention Trial data
(Program 1984). A portion (covering 337 subjects) of this data was
analyzed in Efron and Feldman (1991) and is the focus of this example.
Subjects were randomized into two treatment groups of roughly equal
size; in one group, all subjects were prescribed cholestyramine (z),
while subjects in the other group were prescribed a placebo (zg). Over
several years of treatment, each subject’s cholesterol level was mea-
sured many times, and the average of these measurements was used
as the posttreatment cholesterol level (continuous variable Cr). The
compliance of each subject was determined by tracking the quantity of
prescribed dosage consumed (a continuous quantity).

In order to apply the bounds of (8.17) to data from this study, the
continuous data is first transformed, using thresholds, to binary vari-
ables representing treatment assignment (Z), received treatment (X),
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and treatment response (Y). The threshold for dosage consumption
was selected as roughly the midpoint between minimum and maximum
consumption; the threshold for cholesterol level reduction was set at 28
units. After this “thresholding” procedure, the data samples give rise
to the following eight probabilities:

P(y0,$0|20) = 0919, P(y0,$0|Z1) = 0315,
P(yo, z1|20) = 0.000,  P(yo,z1|z1) = 0.139,
P(y1,$0|20) = 0081, P(y1,$0|21) = 0073,
P(y1,z1|20) = 0.000, Py, x1|z) = 0473
These data represent a compliance rate of
P(z1]z1) = 0.139 + 0.473 = 0.61,
a mean difference (using P(z;) = 0.50) of
0.473 0.073 + 0.081

P(yi|z1) — p(yn]xo) = = 0.662,

0.473+0.139 1+ 0.315+0.073
and an encouragement effect (intent to treat) of

P(y1]21) — P(y]z) = 0.073 + 0.473 — 0.081 = 0.465.
According to (8.17), ACE(X — Y') can be bounded by

ACE(X = Y)
ACE(X = Y)

465 — 0.073 — 0.000 = 0.392,

> 0.
< 0.465 + 0.315 + 0.000 = 0.780.

These are remarkably informative bounds: although 38.8% of the
subjects deviated from their treatment protocol, the experimenter can
categorically state that, when applied uniformly to the population, the
treatment is guaranteed to increase by at least 39.2% the probability
of reducing the level of cholesterol by 28 points or more.

5We make the large-sample assumption and take the sample frequencies as rep-
resenting P(y, z|z). To account for sample variability, all bounds should be supple-
mented with confidence intervals and significance levels, as in traditional analyses
of controlled experiments. Section 8.5.1 assesses sample variability using Gibbs
sampling.
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The impact of treatment “on the treated” is equally revealing. Us-
ing equation (8.20), ACE*(X — Y) can be evaluated precisely (since
P(x1]z) = 0): .

ACE* (X - Y) = 0.610 = 0.762.
In other words, those subjects who stayed in the program are much
better off than they would have been if not treated: the treatment can
be credited with reducing cholesterol levels by at least 28 units in 76.2%

of these subjects.

8.3 Counterfactuals and Legal Responsi-
bility

Evaluation of counterfactual probabilities could be enlightening in some
legal cases in which a plaintiff claims that a defendant’s actions were
responsible for the plaintiff’s misfortune. Improper rulings can easily
be issued without an adequate treatment of counterfactuals. Consider
the following hypothetical and fictitious case study, specially crafted
in Balke and Pearl (1994a) to accentuate the disparity between causal
effects and causal attribution.

The marketer of PeptAid (antacid medication) randomly mailed out
product samples to 10% of the households in the city of Stress, Cali-
fornia. In a follow-up study, researchers determined for each individual
whether they received the PeptAid sample, whether they consumed
PeptAid, and whether they developed peptic ulcers in the following
month.

The causal structure for this scenario is identical to the partial com-
pliance model given by Figure 8.1, where z; asserts that PeptAid was
received from the marketer, x; asserts that PeptAid was consumed,
and y; asserts that peptic ulceration occurred. The data showed the
following distribution:

P(yo,x0|20) = 0.32,  P(yo,zo|z1) = 0.02,
P(yo, z1]20) = 0.32, P(yo, z1]21) = 0.17,
P(y1,x0|20) = 0.04,  P(y1,20|21) = 0.67,
P(y1,x1|20) = 0.32,  P(y1,21|z1) = 0.14.
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These data indicate a high correlation between those who consumed
PeptAid and those who developed peptic ulcers:

In addition, the intent-to-treat analysis showed that those individuals
who received the PeptAid samples had a 45% greater chance of devel-
oping peptic ulcers:

The plaintiff (Mr. Smith), having heard of the study, litigated
against both the marketing firm and the PeptAid producer. The plain-
tiff’s attorney argued against the producer, claiming that the consump-
tion of PeptAid triggered his client’s ulcer and resulting medical ex-
penses. Likewise, the plaintiff’s attorney argued against the marketer,
claiming that his client would not have developed an ulcer if the mar-
keter had not distributed the product samples.

The defense attorney, representing both the manufacturer and mar-
keter of PeptAid, rebutted this argument, stating that the high cor-
relation between PeptAid consumption and ulcers was attributable to
a common factor, namely, pre-ulcer discomfort. Individuals with gas-
trointestinal discomfort would be much more likely both to use PeptAid
and to develop stomach ulcers. To bolster his clients’ claims, the de-
fense attorney introduced expert analysis of the data showing that,
on average, consumption of PeptAid actually decreases an individual’s
chances of developing ulcers by at least 15%.

Indeed, the application of (8.14ab) results in the following bounds on
the average causal effect of PeptAid consumption on peptic ulceration:

—0.23 < ACE(X — Y) < —0.15;

this proves that PeptAid is beneficial to the population as a whole.
The plaintiff’s attorney, though, stressed the distinction between the
average treatment effects for the entire population and for the subpop-
ulation consisting of those individuals who, like his client, received the
PeptAid sample, consumed it, and then developed ulcers. Analysis of
the population data indicated that, had PeptAid not been distributed,
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Mr. Smith would have had at most a 7% chance of developing ulcers—
regardless of any confounding factors such as pre-ulcer pain. Likewise,
if Mr. Smith had not consumed PeptAid, he would have had at most
a 7% chance of developing ulcers.

The damaging statistics against the marketer are obtained by eval-
uating the bounds on the counterfactual probability that the plaintiff
would have developed a peptic ulcer if he had not received the PeptAid
sample, given that he in fact received the sample PeptAid, consumed
the PeptAid, and developed peptic ulcers. This probability may be
written in terms of the parameters ¢i3, ¢31, and ¢33 as

P(r,=1)(q13 + g31 + ¢33)

P(Y,, =iy, 21,21) = Plyr, oo 21)

since only the combinations {r, =1, r, = 3}, {r, =3, r, = 1}, and
{rz = 3, ry = 3} satisfy the joint event {X =z, Y = w1, Y, =y}
Therefore,

13 + g31 + g33

P(Yz0=y1|y1,$1,21) = W

This expression is linear in the ¢ parameters and may be bounded using
linear programming to give

0
P11.1 — Poo.o
P(YZO - yl‘zhxl’ yl) = Z% max P11.0 — Poo.1 — P1o.1
P10.0 — Po1.1 — P10
P11
P(Y,, =121, 21,11) < Iﬁ min D10.0 + P11.0
1 = poo.o — Pro1

Similarly, the damaging evidence against PeptAid’s producer is ob-
tained by evaluating the bounds on the counterfactual probability

q13 + q33

P(}/z‘o:ylkglaxlazl) =
Pi1a

If we minimize and maximize the numerator (subject to (8.13), we
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obtain

0
P(Yy = yilyr, 1, 21) > ﬁ max 4 Pi1.1 — Poo.o — P11.0 (5
P10.0 — Po1.1 — P1o.1

D111
P(Yyy = 1ly1, 21, 21) < ]% min P1o.0 + Pi1.0o
1 —poo.o — Pro1

Substituting the observed distribution P(y, z|z) into these formulas,
the following bounds were obtained:

0.93 < P(Y,, = y1|21, 71, y1) < 1.00,
0.93 S P(on = y1|21,:c1,y1) S 1.00.

Thus, at least 93% of the people in the plaintiff’s category would not
have developed ulcers had they not been encouraged to take PeptAid
(z0) or, similarly, had they not taken PeptAid (zo). This lends very
strong support for the plaintiff’s claim that he was adversely affected
by the marketer and producer’s actions and product.

In Chapter 9 we will continue the analysis of causal attribution in
specific events, and we will establish conditions under which the prob-
ability of correct attribution can be identified from both experimental
and nonexperimental data.

8.4 A Test for Instruments

As defined in Section 8.2, our model of imperfect experiment rests on
two assumptions: Z is randomized, and Z has no side effect on Y.
These two assumptions imply that Z is independent of U, a condition
that economists call “exogeneity” and which qualifies Z as an instru-
mental variable (see Sections 5.4.3 and 7.4.5) relative to the relation be-
tween X and Y. For a long time, experimental verification of whether a
variable Z is exogenous or instrumental has been thought to be impos-
sible (Imbens and Angrist 1994), since the definition involves unobserv-
able factors (or disturbances, as they are usually called) such as those
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represented by U.% The notion of exogeneity, like that of causation
itself, has been viewed as a product of subjective modeling judgment,
exempt from the scrutiny of nonexperimental data.

The bounds presented in (8.14ab) tell a different story. Despite its
elusive nature, exogeneity can be given an empirical test. The test
is not guaranteed to detect all violations of exogeneity, but it can, in
certain circumstances, screen out very bad would-be instruments.

By insisting that each upper bound in (8.14b) be higher than the
corresponding lower bound in (8.14a) we obtain the following testable
constraints on the observed distribution:

P(yo,0|20) + P(y1,70|21) < 1,
P(yo, 1]20) + P(y1, 21lz1) < 1,
P(y1, wol20) + P(yo, Tolz1) < 1,
P(y1,z1|20) + P(yo, z1]21) < 1. (8.21)

If any of these inequalities is violated, the investigator can deduce that
at least one of the assumptions underlying our model is violated as
well. If the assignment is carefully randomized, then any violation of
these inequalities must be attributed to some direct influence that the
assignment process has on subjects’ responses (e.g., a traumatic experi-
ence). Alternatively, if direct effects of Z on Y can be eliminated—say,
through an effective use of a placebo—then any observed violation of
the inequalities can safely be attributed to spurious correlation between
Z and U: namely, to assignment bias and hence loss of exogeneity.

The Instrumental Inequality

The inequalities in (8.21), when generalized to multivalued variables,
assume the form
max Z[mzax P(y,z|z)] <1, (8.22)
y

which is called the instrumental inequality. A proof is given in Pearl
(1995b,c). Extending the instrumental inequality to the case where

6The tests developed by economists (Wu 1973) merely compare estimates based
on two or more instruments and, in case of discrepency, do not tell us objectively
which estimate is incorrect.
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Z or Y is continuous presents no special difficulty. If f(y|z,z) is the
conditional density function of Y given X and Z, then the inequality
becomes

/y max(f(ylz, 2) P(ale)ldy < 1 V. (8.23)

However, the transition to a continuous X signals a drastic change
in behavior, and it seems that the structure of Figure 8.1 induces no
constraint whatsoever on the observed density (Pearl 1995c).

From (8.21) we see that the instrumental inequality is violated when
the controlling instrument Z manages to produce significant changes
in the response variable Y while the treatment X remains constant.
Although such changes could in principle be explained by strong cor-
relations between U, X, and Y (since X does not screen off Z from
Y), the instrumental inequality sets a limit on the magnitude of the
changes.

The similarity of the instrumental inequality to Bell’s inequality in
quantum physics (Suppes 1988; Cushing and McMullin 1989) is not
accidental; both inequalities delineate a class of observed correlations
that cannot be explained by hypothesizing latent common causes. The
instrumental inequality can, in a sense, be viewed as a generalization of
Bell’s inequality for cases where direct causal connection is permitted
to operate between the correlated observables, X and Y.

The instrumental inequality can be tightened appreciably if we are
willing to make additional assumptions about subjects’ behavior—for
example, that no individual can be discouraged by the encouragement
instrument or (mathematically) that, for all u, we have

P(z1]z1,u) > P(x1|20,u)-

Such an assumption amounts to having no contrarians in the popula-
tion, that is, no subjects who will consistently choose treatment con-
trary to their assignment. Under this assumption, the inequalities in
(8.21) can be tightened (Balke and Pearl 1997) to yield

P(y,z1]21) > P(y, z1|20)
P(y, zo|z0) > P(y,zo0|21) (8.24)

for all y € {yo,y1}. Violation of these inequalities now means either
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selection bias or direct effect of Z on Y or the presence of defiant
subjects.

8.5 Causal Inference From Finite Samples

8.5.1 Gibbs Sampling

This section describes a method of estimating causal effects and coun-
terfactual probabilities from a finite sample, as presented in Chickering
and Pearl (1997).” The method is applicable within the Bayesian frame-
work, according to which (i) any unknown statistical parameter can be
assigned prior probability and (ii) the estimation of that parameter
amounts to computing its posterior distribution, conditioned on the
sampled data. In our case the parameter in question is the probability
P(rg,ry) (or P(r) for short), from which we can deduce ACE(X — V).

If we think of P(r) not as probability but rather as the fraction
v, of individuals in the population who possess response characteris-
tics given by R = r, then the idea of assigning probability to such a
quantity would fit the standard philosophy of Bayesian analysis; v, is
a potentially measurable (albeit unknown) physical quantity and can
therefore admit a prior probability, one that encodes our uncertainty
in that quantity.

Assume there are m subjects in the experiment. We use 2%, z¢, y*
to denote the observed value of Z, X, Y, respectively, for subject 1.
Similarly, we use 7° to denote the (unobserved) compliance (r;) and
response (r,) combination for subject i. We use X* to denote the triple
{2, 2", y'}.

Given the observed data X from the experiment and a prior dis-
tribution over the unknown fractions v,., our problem is to derive the
posterior distribution for ACE(X — Y') . The posterior distributions of
both v and ACE(X — YY) can be derived using the graphical model
shown in Figure 8.4, which explicitly represents the independencies
that hold in the joint (Bayesian) distribution defined over the variables
{X,vg, ACE(X — Y)}. The model can be understood as m realiza-

7A similar method, though lacking the graphical perspective, is presented in
Imbens and Rubin (1997).
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tions of the response-variable model (Figure 8.3), one for each triple
in X, connected together using the node representing the unknown
fractions vgp = (Vpy, Vrys -« -5 Vry)- LThe model explicitly represents the
assumption that, given the fractions vg, the probability of a subject be-
longing to any of the 16 compliance-response subpopulations does not
depend on the compliance and response behavior of the other subjects
in the experiment. From (8.10), ACE(X — Y) is a deterministic func-
tion of vg and consequently ACE(X — Y) is independent of all other
variables in the domain once these fractions are known.

Figure 8.4: Model used to represent the independencies in P({X} U
{vr} U{ACE(X — Y)}).

In principle, then, estimating ACE(X — Y') reduces to the standard
inference task of computing the posterior probability for a variable in
a fully specified Bayesian network. (The graphical techniques for this
inferential computation are briefly summarized in Section 1.2.4.) In
many cases, the independencies embodied in the graph can be exploited
to render the inference task efficient. Unfortunately, because the r are
never observed, deriving the posterior distribution for ACE(X — Y) is
not tractable in our model, even with the given independencies. To
obtain an estimate of the posterior distribution of ACE(X — Y), an
approximation technique known as Gibbs sampling can be used. A
graphical version of this technique, called “stochastic simulation,” is
described in Pearl (1988b, p. 210); the details (as applied to the graph
of Figure 8.4) are discussed in Chickering and Pearl (1997). Here we
present typical results, in the form of histograms, that demonstrate the
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general applicability of this technique to problems of causal inference.

8.5.2 The Effects of Sample Size and Prior Distri-
bution

The method takes as input (1) the observed data X, expressed as
the number of cases observed for each of the 8 possible realizations
of {z,z,y}, and (2) a Dirichlet prior over the unknown fractions vg,
expressed in terms of 16 parameters. The system outputs the posterior
distribution of ACE(X — Y') , expressed in a histogram.

To show the effect of the prior distribution on the output, we
present all the results using two different priors. The first is a flat
(uniform) distribution over the 16-vector vg, and is commonly used to
express ignorance about the domain. The second prior is skewed to
represent a strong dependency between the compliance and response
characteristics of the subjects. Figure 8.5 shows the distribution of
ACE(X — Y) induced by these two prior distributions (in the absence
of any data). We see that the skewed prior of Figure 8.5(b) assigns
almost all the weight to negative values of ACE(X — Y).

Figure 8.5: (a) The prior distribution of ACE(X — Y') induced
by flat priors over the parameters vcgr. (b) The distribution for
ACE(X — Y) induced by skewed priors over the parameters.

To illustrate how increasing sample size washes away the effect of
the prior distribution, we apply the method to simulated data drawn
from a distribution P(z,y|z) for which ACE is known to be identified.
Such a distribution is shown Table 8.1. For this distribution, the re-
sulting upper and lower bounds of (8.14ab) collapse to a single point:
ACE(X —Y) =0.55.

Figure 8.6 shows the output of the Gibbs sampler when applied to
data sets of various sizes drawn from the distribution shown in Table
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z v y Pz,y,2)
0 0 0 0.275

0 0 1 0.0

0 1 0 0.225
01 1 00

1 0 0 022

1 0 1 00

1 1 0 00

1 1 1 0275

Table 8.1: Distribution resulting in an identifiable ACE(X —Y)

8.1, using both the flat and the skewed prior. As expected, as the num-
ber of cases increases, the posterior distributions become increasingly
concentrated near the value 0.55. In general, because the skewed prior
for ACE(X — Y) is concentrated further from 0.55 than the uniform
prior, more cases are needed before the posterior distribution converges
to the value 0.55.

8.5.3 Causal effects from clinical data with imper-
fect compliance

In this section we analyze two clinical data sets obtained under con-
ditions of imperfect compliance. Consider first the Lipid Research
Clinics Coronary Primary Prevention data described in Section 8.2.6.
The resulting data set (after thresholding) is shown in Table 8.2. Us-
ing the large-sample assumption, (8.14ab) gives the bounds 0.39 <
ACE(X —Y) <0.78.

Figure 8.7 shows posterior densities for ACE(X — Y) , based on
these data. Rather remarkably, even with only 337 cases in the data set,
both posterior distributions are highly concentrated within the large-
sample bounds of 0.39 and 0.78.
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Figure 8.6: Output histograms for identified treatment effect using two
priors. (a), (b), (c), and (d) show the posteriors for ACE(X — Y') using
the flat prior and data sets that consisted of 10, 100, 1,000 and 10,000
subjects, respectively; (e), (f), (g), and (h) show the posteriors for
ACE(X — Y) using the skewed prior with the same respective data
sets.

-1 0 0.39 078 1 -1 0 0.39 078 1

€Y (b)

Figure 8.7: Output histograms for the Lipid data. (a) Using flat priors
and (b) using skewed priors.

As a second example, we consider an experiment described by Som-
mer et al. (1986) that was designed to determine the impact of vitamin
A supplementation on childhood mortality. In the study, 450 villages in
northern Sumatra were randomly assigned to participate in a vitamin
A supplementation scheme or serve as a control group for one year.
Children in the treatment group received two large doses of vitamin A
(x1), while those in the control group received no treatment (o). After
the year had expired, the number of deaths y, were counted for both
groups. The results of this study are also shown in Table 8.2.

Under the large-sample assumption, the inequalities of (8.14ab)
yield the bounds —0.19 < ACE(X —Y) < 0.01. Figure 8.8 shows
posterior densities for ACE(X — Y) , given the data, for two priors.
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Lipid Study  Vitamin A Study

z x 1y Observations Observations
0 0 0 158 74

00 1 14 11,514

01 00 0

0 1 1 0 0

1 0 0 52 34

1 0 1 12 2,385

1 1 0 23 12

1 1 1 78 9,663

Table 8.2: Observed data for the Lipid study and the Vitamin A study

It is interesting to note that, for this study, the choice of the prior dis-

(@ (b)

Figure 8.8: Output histograms for the Vitamin A Supplementation
data: (a) using flat priors; (b) using skewed priors.

tribution has a significant effect on the posterior. This suggests that if
the clinician is not very confident in the prior then a sensitivity anal-
ysis should be performed. In such cases, the asymptotic bounds are
more informative than the Bayesian estimates, and the major role of
the Gibb’s sampler would be to give an indication of the sharpness of
the boundaries around those bounds.
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8.5.4 Bayesian Estimate of Single-Event Causa-
tion

In addition to assessing causal effects, the Bayesian method just de-
scribed is also capable (with only minor modification) of answering a
variety of counterfactual queries concerning individuals with specific
characteristics. Queries of this type were analyzed and bounded in
Section 8.3 under the large sample assumption. In this section, we
demonstrate a Bayesian analysis of the following query. What is the
probability that Joe would have had an improved cholesterol reading
had he taken cholestyramine, given that: (1) Joe was in the control
group of the Lipid study; (2) Joe took the placebo as prescribed, and
(3) Joe’s cholesterol level did not improve.

This query can be answered by running the Gibbs sampler on a
model identical to that shown in Figure 8.4, except that the function
ACE(X — Y) (equation (8.10)) is replaced by another function of vg,
one that represents our query. If Joe was in the control group and
took the placebo, that means he is either a complier or a never-taker.
Furthermore, because Joe’s cholesterol level did not improve, Joe’s re-
sponse behavior is either never-recover or helped. Consequently, Joe
must be a member of one of the following four compliance-response pop-
ulations: {(ry; = 0,7y =1), (r; = 0,17y =2), (rz = 1,1y, =1), (1, =
1,7, = 2)}. Joe would have improved had he taken cholestyramine if his
response behavior is either helped (r, = 1) or always-recover (r, = 3).
It follows that the query of interest is captured by the function

Vo1 + V11
Vo1 + Voo + V11 + Voo

f(VR) =

Figures 8.9(a) and (b) show the prior distribution of f(vg) that
follows from the flat prior and the skewed prior, respectively. Figures
8.9(c) and (d) show the posterior distribution P(f(vg|X’)) obtained
from the Lipid data when using the flat prior and the skewed prior, re-
spectively. For reference, the bounds computed under the large-sample
assumption are 0.51 < f(vg|X) < 0.86.

Thus, despite 39% noncompliance in the treatment group and de-
spite having just 337 subjects, the study strongly supports the conclu-
sion that—given his specific history—Joe would have been better off
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Figure 8.9: Prior (a, b) and posterior (c, d) distributions for a subpop-
ulation f(vg) specified by the counterfactual query: “Would Joe have
improved had he taken the drug, given that he did not improve without
it.” Part (a) corresponds to the flat prior, (b) to the skewed prior.

0

0.51 0.51

(© (d)

taking the drug. Moreover, the conclusion holds for both priors.

8.6 Conclusion

This chapter has developed causal-analytic techniques for managing
one of the major problems in clinical experiments: the assessment of
treatment efficacy in the face of imperfect compliance. Estimates based
solely on intent-to-treat analysis—as well as those based on instrumen-
tal variable formulas—can be misleading in that they may lie entirely
outside the theoretical bounds. The formulas established in this chap-
ter provide instrument-independent guarantees for policy analysis and,
in addition, should enable analysts to determine the extent to which
efforts to enforce compliance may increase overall treatment effective-
ness.

The importance of indirect experimentation is not confined to stud-
ies involving human subjects. Experimental conditions equivalent to
those of imperfect compliance occur whenever the variable whose causal
effect we seek to assess cannot be manipulated directly yet could be
partially influenced by indirect means. Typical applications involve
the diagnosis of ongoing processes for which the source of malfunc-
tioning behavior must be identified using indirect means because direct



8.6. CONCLUSION 419

manipulation of suspected sources is either physically impossible or pro-
hibitively expensive. An example of the latter would be interrupting
the normal operation of a production line so as to achieve direct control
over a physical parameter that is suspected of malfunctioning. Partial
control over that parameter, in the form of indirect influence, would be
much more convenient and would allow the production to continue.

Methodologically, the message of this chapter has been to demon-
strate that, even in cases where causal quantities are not identifiable,
reasonable assumptions about the salient relationships in the domain
can be harnessed to yield useful quantitative information about the
causal forces that operate in the domain. Once such assumptions are
articulated in graphical form, they can easily be submitted to algebraic
methods that yield the desired bounds or, alternatively, invite Gibbs
sampling technique to facilitate Bayesian estimation of the causal quan-
tities of interest.
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