Chapter 6

SIMPSON’S PARADOX,
CONFOUNDING, AND
COLLAPSIBILITY

He who confronts the paradozical
exposes himself to reality.
Friedrick Durrenmatt (1962)

Preface

Confounding represents one of the most fundamental impediments to
the elucidation of causal inferences from empirical data. As a result, the
consideration of confounding underlies much of what has been written
or said in areas that critically rely on causal inferences; this includes
epidemiology, econometrics, biostatistics, and the social sciences. Yet,
apart from the standard analysis of randomized experiments, the topic
is given little or no discussion in most statistics texts. The reason
for this is simple: confounding is a causal concept and hence cannot
be expressed in standard statistical models. When formal statistical
analysis is attempted, it often leads to confusions or complexities that
make the topic extremely hard for the nonexpert to comprehend, let
alone master.

One of my main objectives in writing this book is to see these confu-
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sions resolved—to see problems involving the control of confounding re-
duced to simple mathematical routines. The mathematical techniques
introduced in Chapter 3 have indeed culminated in simple graphical
routines of detecting the presence of confounding and of identifying
variables that need be controlled in order to obtain unconfounded ef-
fect estimates. In this chapter, we address the difficulties encountered
when we attempt to define and control confounding by using statistical
criteria.

We start by analyzing the interesting history of Simpson’s paradox
(Section 6.1) and use it as a magnifying glass to examine the difficulties
that generations of statisticians have had in their attempts to capture
causal concepts in the language of statistics. In Sections 6.2 and 6.3, we
examine the feasibility of replacing the causal definition of confound-
ing with statistical criteria that are based solely on frequency data
and measurable statistical associations. We will show that, although
such replacement is generally not feasible (Section 6.3), a certain kind
of nonconfounding conditions, called stable, can be given statistical
or semistatistical characterization (Section 6.4). This characterization
leads to operational tests, similar to collapsibility tests, that can alert
investigators to the existence of either instability or bias in a given effect
estimate (Section 6.4.3). Finally, Section 6.5 clarifies distinctions be-
tween collapsibility and no-confounding, confounders and confounding,
and between the structural and exchangeability approaches to repre-
senting problems of confounding.

6.1 Simpson’s Paradox: An Anatomy

The reversal effect known as Simpson’s paradox has briefly been dis-
cussed twice in this book: first in connection with the covariate selection
problem (Section 3.3) and then in connection with the definition of di-
rect effects (Section 4.5.3). In this section we analyze the reasons why
the reversal effect has been (and still is) considered paradoxical and
why its resolution has been so late in coming.
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6.1.1 A Tale of a Non-Paradox

Simpson’s paradox (Simpson 1951; Blyth 1972), first encountered by
Pearson in 1899 (Aldrich 1995), refers to the phenomenon whereby an
event C increases the probability of F in a given population p and, at
the same time, decreases the probability of E in every subpopulation
of p. In other words, if F' and —F are two complementary properties
describing two subpopulations, we might well encounter the inequalities

P(E|C) > P(E|-0), (6.1)
P(E|C, F) < P(E|-C, F), (6.2)
P(E|C,~F) < P(E|-C,—F). (6.3)

Although such order reversal might not surprise students of probability,
it is paradoxical when given causal interpretation. For example, if we
associate C' (connoting cause) with taking a certain drug, E (connoting
effect) with recovery, and F' with being a female then—under the causal
interpretation of (6.2)—(6.3)—the drug seems to be harmful to both
males and females yet beneficial to the population as a whole (equation
(6.1)). Intuition deems such a result impossible, and correctly so.

The tables in Figure 6.1 represent Simpson’s reversal numerically.
We see that, overall, the recovery rate for patients receiving the drug
(C) at 50% exceeds that of the control (=C') at 40% and so the drug
treatment is apparently to be preferred. However, when we inspect
the separate tables for males and females, the recovery rate for the
untreated patients is 10% higher than that for the treated ones, for
males and females both.

The explanation for Simpson’s paradox should be clear to readers
of this book, since we have taken great care in distinguishing seeing
from doing. The conditioning operator in probability calculus stands
for the evidential conditional “given that we see,” whereas the do(-)
operator was devised to represent the causal conditional “given that
we do.” Accordingly, the inequality

P(E|C) > P(E|~C)

is not a statement about C being a positive causal factor for E, properly

written
P(E|do(C)) > P(E|do(—C)),
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but rather about C' being positive evidence for E, which may be due to
spurious confounding factors that cause both C' and E. In our example,

Combined EF -F Recovery Rate
(a) Drug (C) 20 20 40 50%
No Drug (-C) 16 24 40 40%
36 44 80
Males E -F Recovery Rate
(b) Drug (C) 18 12 30 60%
No-Drug (=C) 7 3 10 70%
25 15 40
Females FE -F Recovery Rate
(c) Drug (C) 2 8 10 20%
No-Drug (-C) 9 21 30 30%
11 29 40

Figure 6.1: Recovery rates under treatment (C) and control (—C) for
males, females, and combined.

the drug appears beneficial overall because the males, who recover (re-
gardless of the drug) more often than the females, are also more likely
than the females to use the drug. Indeed, finding a drug-using patient
(C) of unknown gender, we would do well inferring that the patient is
more likely to be a male and hence more likely to recover, in perfect
harmony with (6.1)—(6.3).

The standard method for dealing with potential confounders of this
kind is to “hold them fixed,”! namely, to condition the probabilities on
any factor that might cause both C' and E. In our example, if being a
male (—F) is perceived to be a cause for both recovery (E) and drug
usage (C), then the effect of the drug needs to be evaluated separately
for men and women (as in Egs. (6.2)-(6.3)) and averaged accordingly.

! The phrases “hold F fixed” or “control for F,” used by both philosophers (e.g.,
[Eells, 1991]) and statisticians (e.g., [Pratt and Schlaifer, 1988]), connote external
interventions and may, therefore, be misleading. In statistical analysis, all one can
do is to simulate “holding F' fixed” by considering cases with equal values of F',
namely, “conditioning” on F' and —F, an operation I will call “adjusting for F.”
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Thus, assuming F' is the only confounding factor, (6.2)—(6.3) properly
represent the efficacy of the drug in the respective populations while
(6.1) represents merely its evidential weight in the absence of gender
information, and the paradox dissolves.

6.1.2 A Tale of Statistical Agony

Thus far, we have described the paradox as it is understood, or should
be understood by modern students of causality (see e.g. Cartwright
1983;2 Holland and Rubin 1983; Greenland and Robins 1986; Pearl
1993b; Spirtes et al. 1993; Meek and Glymour 1994). Most statis-
ticians, however, are reluctant to entertain the idea that Simpson’s
paradox emerges from causal considerations. The general attitude is as
follows: The reversal is real and disturbing, because it actually shows
up in the numbers and may actually mislead statisticians into incor-
rect conclusions. If something is real then it cannot be causal, because
causality is a mental construct that is not well-defined. Thus, the para-
dox must be a statistical phenomenon that can be detected, understood,
and avoided using the tools of statistical analysis. The Encyclopedia
of Statistical Sciences, for example, warns us sternly of the dangers
lurking from Simpson’s paradox with no mention of the words “cause”
or “causality” (Agresti 1983). The Encyclopedia of Biostatistics (Dong
1998) and The Cambridge Dictionary of Statistics in Medical Sciences
(Everitt 1995) uphold the same conception.

I know of only two articles in the statistical literature that explic-
itly attribute the peculiarity of Simpson’s reversal to causal interpre-
tations. The first is Pearson et al. (1899), where the discovery of the
phenomenon? is enunciated in these terms:

To those who persist on looking upon all correlation as cause
and effect, the fact that correlation can be produced be-
tween two quite uncorrelated characters A and B by taking

2Cartwright states, though, that the third factor I should be “held fixed” if
and only if F is causally relevant to E (p. 37); the correct (back-door) criterion is
somewhat more involved (see Definition 3.3.1).

3Pearson et al. (1899) and Yule (1903) reported a weaker version of the paradox
in which (6.2)—(6.3) are satisfied with equality. The reversal was discovered later
by Cohen and Nagel (1934, p. 449).
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an artificial mixture of the two closely allied races, must
come as rather a shock.

Influenced by Pearson’s life-long campaign, statisticians have re-
frained from causal talk whenever possible and, for over half a century,
the reversal phenomenon has been treated as a curious mathematical
property of 2 x 2 tables, stripped of its causal origin. Finally, Lindley
and Novick (1981) analyzed the problem from a new angle, and made
the second published connection to causality:

In the last paragraph the concept of a “cause” has been
introduced. One possibility would be to use the language
of causation, rather than that of exchangeability or identi-
fication of populations. We have not chosen to do this; nor
to discuss causation, because the concept, although widely
used, does not seem to be well-defined. (p. 51)

What is amazing about the history of Simpson’s reversal is that,
from Pearson et al. to Lindley and Novick, none of the many authors
who wrote on the subject dared ask why the phenomenon should war-
rant our attention and why it evokes surprise. After all, seeing proba-
bilities change magnitude upon conditionalization is commonplace, and
seeing such changes turn into sign reversal (by taking differences and
mixtures of those probabilities) is not uncommon either. Thus, if it
were not, for some misguided yet persistent illusion, what is so shocking
about inequalities reversing direction?

Pearson understood that the shock originates with distorted causal
interpretations, which he set out to correct through the prisms of sta-
tistical correlations and contingency tables (see the Epilogue following
Chapter 10). His disciples took him rather seriously, and some even as-
serted that causation is none but a species of correlation (Niles 1922).
In so denying any attention to causal intuition, researchers often had
no choice but to attribute Simpson’s reversal to some evil feature of the
data, one that ought to be avoided by scrupulous researchers. Dozens
of papers have been written since the 1950s on the statistical aspects of
Simpson’s reversal; some dealt with the magnitude of the effect (Blyth
1972; Zidek 1984), some established conditions for its disappearance
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(Bishop et al. 1975; Whittemore 1978; Good and Mittal 1987; Wer-
muth 1987), and some even proposed remedies as drastic as replacing
P(FE|C) with P(C|FE) as a measure of treatment efficacy (Barigelli and
Scozzafava 1984)—the reversal had to be avoided at all cost.

A typical treatment of the topic can be found in the influential
book of Bishop, Fienberg, and Holland (1975). Bishop et al. (1975,
pp. 41-42) presented an example whereby an apparent association be-
tween amount of prenatal care and infant survival disappears when the
data are considered separately for each clinic participating in the study.
They concluded: “If we were to look only at this [the combined] table
we would erroneously conclude that survival was related [my italics] to
the amount of care received.” Ironically, survival was in fact related to
the amount of care received in the study considered. What Bishop et
al. meant to say is that, looking uncritically at the combined table, we
would erroneously conclude that survival was causally related to the
amount of care received. However, since causal vocabulary had to be
avoided in the 1970s, researchers like Bishop et al. were forced to use
statistical surrogates such as “related” or “associated” and so naturally
fell victim to the limitations of the language; statistical surrogates could
not express the causal relationships that researchers meant to convey.

Simpson’s paradox helps us to appreciate both the agony and the
achievement of this tormented generation of statisticians. Driven by
healthy causal intuition, yet culturally forbidden from admitting it and
mathematically disabled from expressing it, they managed nevertheless
to extract meaning from dry tables and to make statistical methods the
standard in the empirical sciences. But the spice of Simpson’s paradox
turned out to be nonstatistical after all.

6.1.3 Causality versus Exchangeability

Lindley and Novick (1981) were the first to demonstrate the nonstatisti-
cal character of Simpson’s paradox—that there is no statistical criterion
that would warn the investigator against drawing the wrong conclusions
or would indicate which table represents the correct answer.

In the tradition of Bayesian decision theory, they first shifted atten-
tion to the practical side of the phenomenon and boldly asked: A new
patient comes in; do we use the drug or do we not? Equivalently: Which



270CHAPTER 6. SIMPSON’S PARADOX, CONFOUNDING, AND COLLAPSIBILIT"

table do we consult, the combined or the gender-specific? “The appar-
ent answer is,” confesses Novick (1983, p. 45), “that when we know that
the gender of the patient is male or when we know that it is female we
do not use the treatment, but if the gender is unknown we should use
the treatment! Obviously that conclusion is ridiculous.” Lindley and
Novick then go through lengthy informal discussion, concluding (as we
did in Section 6.1.1), that we should consult the gender-specific tables
and not use the drug.

The next step was to ask whether some additional statistical in-
formation could in general point us to the right table. This question
Lindley and Novick answered in the negative by showing that, with the
very same data, we sometimes should decide the opposite and consult
the combined table. They asked: Suppose we keep the same numbers
and merely change the story behind the data, imagining that F' stands
for some property that is affected by C—say, low blood pressure, as
shown in Figure 6.2(b).* By inspecting the diagram in Fig. 6.2(b), the

Treatment Treatment Treatmeqt/ -~ ’f’
C F C F C ( F
Gender Blood N
pressure AN
_
Recovery E Recovery E Recovery E
€) (b) (©

Figure 6.2: Three causal models capable of generating the data in Fig-
ure 6.1. Model (a) dictates use of the gender-specific tables, whereas
(b) and (c) dictate use of the combined table.

reader should immediately conclude that the combined table represents
the answer we want; we should not condition on F' because it resides
on the very causal pathway that we wish to evaluate. (Equivalently,

“The example used in Lindley and Novick (1981) was taken from agriculture,
and the causal relationship between C' and F' was not mentioned, but the structure
was the same as in Figure 6.2(b).
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by comparing patients with the same posttreatment blood pressure, we
mask the effect of one of the two pathways through which the drug
operates to bring about recovery.)

When two causal models generate the same statistical data (Figures
6.2(a) and (b) are observationally equivalent) and in one we decide to
use the drug yet in the other not to use it, it is obvious that our decision
is driven by causal and not by statistical considerations. Some readers
might suspect that temporal information is involved in the decision,
noting that gender is established before the treatment and blood pres-
sure afterwards. But this is not the case; Figure 6.2(c) shows that F'
may occur before or after C' and still the correct decision should remain
to consult the combined table (i.e., not to condition on F', as can be
seen from the back-door criterion).

We have just demonstrated by example what we already knew in
Section 6.1.1—namely, that every question related to the effect of ac-
tions must be decided by causal considerations; statistical information
alone is insufficient. Moreover, the question of choosing the correct
table on which to base our decision is a special case of the covariate
selection problem that was given a general solution in Section 3.3 using
causal calculus. Lindley and Novick, on the other hand, stopped short
of this realization and attributed the difference between the two exam-
ples to a meta-statistical® concept called ezchangeability, first proposed
by De Finetti (1974).

Exchangeability concerns the question of choosing an appropriate
reference class, or subpopulation, for making predictions about an indi-
vidual unit. Insurance companies, for example, would like to estimate
the life expectancy of a new customer using mortality records of a
class of persons most closely resembling the characteristics of the new
customer. De Finetti gave this question a formal twist by translating
judgment about resemblance into judgment of probabilities. According
to this criterion, an (n + 1)th unit is ezchangeable in property X, rel-
ative to a group of n other units, if the joint probability distribution
P(Xy,..., Xy, Xny1) is invariant under permutation. To De Finetti,
the question of how such invariance can be established was a psycho-

5By “meta-statistical” I mean a criterion—not itself discernible—from statistical
data for judging the adequacy of a certain statistical method.
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logical question of secondary importance; the main point was to cast
the target of this psychological exercise in the form of mathematical
expression so that it could be communicated and discussed in scientific
terms. It is this concept that Lindley and Novick tried to introduce
into Simpson’s reversal phenomenon and with which they hoped to
show that the appropriate subpopulations in the F' = female example
are the male and female, whereas, in the F' = blood pressure example,
the whole population of patients should be considered.

Readers of Lindley and Novick’s article would quickly realize that,
although these authors decorate their discussion with talks of exchange-
ability and subpopulations, what they actually do is present informal
cause-effect arguments for their intuitive conclusions. Meek and Gly-
mour (1994) keenly observed that the only comprehensible part of Lind-
ley and Novick’s discussion of exchangeability is the one based on causal
considerations, which suggests that “an explicit account of the inter-
action of causal beliefs and probabilities is necessary to understand
when exchangeability should and should not be assumed” (Meek and
Glymour 1994, p. 1013).

This is indeed the case; exchangeability in experimental studies de-
pends on causal understanding of the mechanisms that generate the
data. The determination of whether the response of a new unit should
be judged by previous response of a group of units is predicated upon
the question of whether the experimental conditions to which we con-
template subjecting the new unit are equal to those prevailing while
the group was observed. The reason we cannot use the combined ta-
ble (Figure 6.1(a)) for determining the response of a new patient (with
unknown gender) is that the experimental conditions have changed:;
whereas the group was studied with patients selecting treatment by
choice, the new patient will be given treatment by decree, perhaps
against his or her natural inclination. A mechanism will therefore be
altered in the new experiment, and no judgment of exchangeability
is feasible without first making causal assumptions regarding whether
the probabilities involved would or would not remain invariant to such
alteration. The reason we could use the combined table in the blood
pressure example of Figure 6.2(b) is that the altered treatment selection
mechanism in that setup is assumed to have no effect on the conditional
probability P(E|C); that is, C is assumed to be exogenous. (This can
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clearly be seen in the absence of any back-door path in the graph.)

Note that the same consideration holds if the next patient is a mem-
ber of the group under study (assuming hypothetically that treatment
and effect can be replicated and that the next patient is of unknown
gender and identity); a randomly selected sample from a population is
not “exchangeable” with that population if we subject the sample to
new experimental conditions. Alteration of causal mechanisms must be
considered in order to determine whether exchangability holds under
the new circumstances. And once causal mechanisms are considered,
separate judgment of exchangeability is not needed.

But why did Lindley and Novick choose to speak so elliptically (via
exchangeability) when they could have articulated their ideas directly
by talking openly about causal relations? They partially answered this
question as follows: “[causality]|, although widely used, does not seem
to be well-defined.” Omne may naturally wonder how exchangeability
can be more “well-defined” than the very considerations by which it
is judged! The answer can only be understood when we consider the
mathematical tools available to statisticians in 1981. When Lindley
and Novick wrote that causality is not well-defined, what they really
meant is that causality cannot be written down in any mathematical
form to which they were accustomed. The potentials of path diagrams,
structural equations, and Neyman-Rubins’s notation as mathematical
languages were generally unrecognized in 1981, for reasons described
in Sections 5.1 and 7.4.3. Indeed, had Lindley and Novick wished to
convey their ideas in causal terms, they would have been unable to
express mathematically even the simple yet crucial fact that gender is
not affected by the drug and a fortiori to derive less obvious truths from
that fact.> The only formal language with which they were familiar was
probability calculus, but as we have seen on several occasions already,

6Lindley and Novick (1981, p. 50) did try to express this fact in probabilistic
notation. But not having the do(-) operator at their disposal, they improperly wrote
P(F|C) instead of P(F|do(C)) and argued unconvincingly that we should equate
P(F|C) = P(F): “Instead [y]ou might judge that the decision to use the treatment
or the control is not affected by the unknown sex, so that F' and C are independent.”
Oddly, this decision is also not affected by the unknown blood pressure and yet,
if we write P(F|C) = P(F') in the example of Figure 6.2(b), we obtain the wrong
result.
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this calculus cannot adequately handle causal relationships without the
proper extensions.

Fortunately, the mathematical tools that have been developed in
the past ten years permit a more systematic and friendly resolution of
Simpson’s paradox.

6.1.4 A Paradox Resolved (Or: What Kind of Ma-
chine is Man)

Paradoxes, like optical illusions, are often used by psychologists to re-
veal the inner workings of the mind, for paradoxes stem from (and
amplify) dormant clashes among implicit sets of assumptions. In the
case of Simpson’s paradox, we have a clash between (i) the assump-
tion that causal relationships are governed by the laws of probability
calculus and (ii) the set of implicit assumptions that drive our causal
intuitions. The first assumption tells us that the three inequalities in
(6.1)—(6.3) are consistent, and it even presents us with a probability
model to substantiate the claim (Figure 6.1). The second tells us that
no miracle drug can ever exist that is harmful to both males and females
and is simultaneously beneficial to the population at large.

To resolve the paradox we must either (a) show that our causal
intuition is misleading or incoherent or (b) deny the premise that causal
relationships are governed by the laws of standard probability calculus.
As the reader surely suspects by now, we will choose the second option;
our stance here, as well as in the rest of the book, is that causality is
governed by its own logic and that this logic requires a major extension
of probability calculus. This still behooves us to explicate the logic
that governs our causal intuition and to show, formally, that this logic
precludes the existence of such a miracle drug.

The logic of the do(-) operator is perfectly suitable for this purpose.
Let us first translate the statement that our miracle drug C' has harm-
ful effect on both males and females into formal statements in causal
calculus:

P(E|do(C), F) < P(E|do(=C), F), (6.4)
P(E|do(C),~F) < P(E|do(~C),~F). (6.5)
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We need to demonstrate that C' must be harmful to the population at
large, that is, the inequality

P(E|do(C)) > P(E|do(=C)) (6.6)

must be shown to be inconsistent with what we know about drugs and
gender.

Theorem 6.1.1 (Sure-Thing Principle’)

An action C that increases the probability of an event E in each sub-
population must also increase the probability of E in the population as
a whole, provided that the action does not change the distribution of the
subpopulations.

Proof
We will prove Theorem 6.1.1 in the context of our example, where
the population is partitioned into males and females; generalization to
multiple partitions is straightforward. In this context, we need to prove
that the reversal in the inequalities of (6.4)—(6.6) is inconsistent with
the assumption that drugs have no effect on gender:

P(F|do(C)) = P(F|do(—C)) = P(F). (6.7)
Expanding P(E|do(C)) and using (6.7) yields

P(E|do(C)) = P(E|do(C), F)P(F|do(C))

= P(E|do(C),F)P(F)+ P(E|do(C),~F)P(—F}p.8)

Similarly, for do(—C') we obtain
P(E|do(—=C)) = P(FE|do(—=C),F)P(F)

"Savage (1954, p. 21) proposed the sure-thing principle as a basic postulate of
preferences (on actions), tacitly assuming the no-change provision in the theorem.
Blyth (1972) used this omission to devise an apparent counterexample. Theorem
6.1.1 shows that the sure-thing principle need not be stated as a separate postulate—
it follows logically from the semantics of actions as modifiers of structural equations
(or mechanisms). See Gibbard and Harper (1976) for a counterfactual analysis.
Note that the no-change provision is probabilistic; it permits the action toange the
classification of individual units as long as the relative sizes of the subpopulations
remain unaltered.
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Since every term on the right-hand side of (6.8) is smaller than the
corresponding term in (6.9), we conclude that

P(E|do(C)) < P(E|do(—C)),
proving Theorem 6.1.1. O

We thus see where our causal intuition comes from: an obvious but
crucial assumption in our intuitive logic has been that drugs do not in-
fluence gender. This explains why our intuition changes so drastically
when F' is interpreted as an intermediate event affected by the drug,
as in Figure 6.2(b). In this case, our intuitive logic tells us that it is
perfectly consistent to find a drug satisfying the three inequalities of
(6.4)-(6.6) and, moreover, that it would be inappropriate to adjust for
F. If F is affected by the C, (6.8) cannot be derived and the difference
P(E|do(C)) — P(FE|do(—C)) may be positive or negative, depending on
the relative magnitudes of P(F|do(C)) and P(F|do(—C)). Provided C
and E have no common cause, we should then assess the efficacy of
C directly from the combined table (equation (6.1)) and not from the
F-specific tables (equations (6.2)—(6.3)).

Note that nowhere in our analysis have we assumed either that the
data originate from a randomized study (i.e., P(F|do(C)) = P(FE|C))
or from a balanced study (i.e., P(C|F) = P(C|—F)). On the contrary;
given the tables of Figure 6.1, our causal logic accepts gracefully that we
are dealing with unbalanced study but nevertheless refuses to accept
the consistency of (6.4)-(6.6). People, likewise, can see clearly from
the tables that the males were more likely to take the drug than the
females; still, when presented with the reversal phenomenon, people are
“shocked” to discover that differences of recovery rates can be reversed
by combining tables.

The conclusions we may draw from these observations are that hu-
mans are generally oblivious to rates and proportions (which are tran-
sitory) and that they constantly search for causal relations (which are
invariant). Once people interpret proportions as causal relations, they
continue to process those relations by causal calculus and not by the
calculus of proportions. Where our minds governed by the calculus
of proportions, Figure 6.1 would have evoked no surprise at all and
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Simpson’s paradox would never have generated the attention that it
did.

6.2 Why There Is No Statistical Test
For Confounding, Why Many Think
There Is, and Why They Are Almost
Right

6.2.1 Introduction

Confounding is a simple concept. If we undertake to estimate the effect®
of one variable (X) on another (Y) by examining the statistical asso-
ciation between the two, we ought to ensure that the association is not
produced by factors other than the effect under study. The presence
of spurious association, due for example to the influence of extrane-
ous variables, is called confounding because it tends to confound our
reading and to bias our estimate of the effect studied. Conceptually,
therefore, we can say that X and Y are confounded when there is a
third variable Z that influences both X and Y’; such a variable is then
called a confounder of X and Y.

As simple as this concept is, it has resisted formal treatment
for decades, and for good reason: The very notions of “effect” and
“influence” —relative to which “spurious association” must be defined—
have resisted mathematical formulation. The empirical definition of
effect as an association that would prevail in a controlled randomized
experiment cannot easily be expressed in the standard language of prob-
ability theory, because that theory deals with static conditions and does
not permit us to predict, even from a full specification of a population
density function, what relationships would prevail if conditions were
to change—say, from observational to controlled studies. Such predic-
tions require extra information in the form of causal or counterfactual

8We will confine the use of the terms “effect,” “influence,” and “affect” to
their causal interpretations; the term “association” will be set aside for statisti-
cal dependencies.
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assumptions which are not discernible from density functions (see Sec-
tions 1.3 and 1.4). The do(-) operator used in this book was devised
specifically for distinguishing and managing this extra information.
These difficulties notwithstanding, epidemiologists, biostatisticians,
social scientists and economists? have made numerous attempts to
define confounding in statistical terms, partly because statistical
definitions—free of theoretical terms of “effect” or “influence” —can be
expressed in conventional mathematical form and partly because such
definitions may lead to practical tests of confounding and thereby alert
investigators to possible bias and need for adjustment. These attempts
have converged in the following basic criterion.
Associational Criterion
Two variables X andY are not confounded if and only if every variable
7 that is not affected by X is either:

(U1) unassociated with X or

(Us) unassociated with Y, conditional on X.

This criterion, with some variations and derivatives (often avoiding
the “only if” part), can be found in almost every epidemiology textbook
(Schlesselman 1982; Rothman 1986; Rothman and Greenland 1998) and
in almost every article dealing with confounding. In fact, the criterion
has become so deeply entrenched in the literature that authors (e.g.
Gail 1986; Hauck et al. 1991; Becher 1992; Steyer et al. 1996) often
take it to be the definition of no-confounding, forgetting that ultimately
confounding is useful only so far as it tells us about effect bias.!°

The purpose of this and the next section is to highlight several ba-
sic limitations of the associational criterion and its derivatives. We
will show that the associational criterion neither ensures unbiased ef-
fect estimates nor follows from the requirement of unbiasedness. After

%In econometrics, the difficulties have focused on the notion of “exogeneity”
(Engle et al. 1983; Leamer 1985; Aldrich 1993) which stands essentially for “no
confounding” (see Section 5.4.3).

OHauck et al. (1991) dismiss the effect-based definition of confounding as “philo-
sophic” and consider a difference between two measures of association to be a “bias.”
Grayson (1987) even goes so far as to skate that the change-in-parameter method,
a derivative of the associational criterion, is the only fundamental definition of con-
founding (see Greenland et al. 1989 for critiques of Grayson’s position).
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demonstrating, by examples, the absence of logical connections between
the statistical and the causal notions of confounding, we will define a
stronger notion of unbiasedness, called “stable” unbiasedness, relative
to which a modified statistical criterion will be shown necessary and
sufficient. The necessary part will then yield a practical test for stable
unbiasedness that, remarkably, does not require knowledge of all poten-
tial confounders in a problem. Finally, we will argue that the prevailing
practice of substituting statistical criteria for the effect-based definition
of confounding is not entirely misguided, because stable unbiasedness is
in fact (i) what investigators have been (and perhaps should be) aiming
to achieve and (ii) what statistical criteria can test.

6.2.2 Causal and Associational Definitions

In order to facilitate the discussion, we shall first cast the causal and
statistical definitions of no-confounding in mathematical forms.*!

Definition 6.2.1 (No-Confounding; Causal Definition)

Let M be a causal model of the data-generating process—that is, a for-
mal description of how the value of each observed variable is determined.
Denote by P(y|do(z)) the probability of the response event Y =y under
the hypothetical intervention X = x, calculated according to M. We
say that X and Y are not confounded in M if and only if

P(yldo(z)) = P(ylz) (6.10)

for all x and y in their respective domains, where P(y|z) is the condi-
tional probability generated by M.

For the purpose of our discussion here, we take this causal definition
as the meaning of the expression “no confounding.” The probability
P(y|do(z)) was defined in Chapter 3 (Definition 3.2.1, also abbrevi-
ated P(y|Z)); it may also be interpreted as the conditional probability
P*(Y = y|X = z) corresponding to a controlled experiment in which

HFor simplicity, we will limit our discussion to unadjusted confounding; exten-
sions involving measurement of auxiliary variables are straightforward and can be
obtained from Section 3.3. We also use the abbreviated expression “X and Y are
not confounded,” though “the effect of X on Y is not confounded” is more exact.
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X is randomized. We recall that this probability can be calculated
from a causal model M either directly, by simulating the intervention
do(X = z), or (if P(x,s) > 0) via the adjustment formula (equation
(3.19))

P(yldo(x)) = Y- Pyl 5)P(s),

where S stands for any set of variables, observed as well as unobserved,
that satisfy the back-door criterion (Definition 3.3.1). Equivalently,
P(y|do(x)) can be written P(Y (z) = y), where Y (z) is the potential-
outcome variable as defined in (3.51) or in Rubin (1974). We bear
in mind that the operator do(-), and hence also effect estimates and
confounding, must be defined relative to a specific causal or data-
generating model M because these notions are not statistical in char-
acter and cannot be defined in terms of joint distributions.

Definition 6.2.2 (No-Confounding; Associational Criterion)
Let T be the set of variables in a problem that are not affected by X.
We say that X and Y are not confounded in the presence of T if each
member Z of T satisfies at least one of the following conditions:

(U1) Z is not associated with X (i.e., P(x|z) = P(x));

(Us) Z is not associated with Y, conditional on X (i.e., P(y|z,z) =
P(y|z)).

Conversely, X and Y are said to be confounded if any member Z of T
violates both (Uy) and (Us).

Note that the associational criterion in Definition 6.2.2 is not purely
statistical in that it invokes the predicate “affected by” which is not dis-
cernible from probabilities but rests instead on causal information. This
exclusion of variables that are affected by treatments (or exposures) is
unavoidable and has long been recognized as a necessary judgmental
input to every analysis of treatment effect in observational and experi-
mental studies alike (Cox 1958, p. 48; Greenland and Neutra 1980). We
shall assume throughout that investigators possess the knowledge re-
quired for distinguishing variables that are affected by the treatment X
from those that are not. We shall then explore what additional causal
knowledge is needed, if any, for establishing a test of confounding.
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6.3 How the Associational Criterion Fails

We will say that a criterion for no-confounding is sufficient if it never
errs when it classifies a case as no-confounding and necessary if it never
errs when it classifies a case as confounding. There are several ways
that the associational criterion of Definition 6.2.2 fails to match the
causal criterion of Definition 6.2.1. Failures with respect to sufficiency
and necessity will be addressed in turn.

6.3.1 Failing Sufficiency via Marginality

The criterion in Definition 6.2.2 is based on testing each element of T
individually. A situation may well be present where two factors, Z; and
Zs, jointly confound X and Y (in the sense of Definition 6.2.2) and yet
each factor separately satisfies (U;) or (Uy). This may occur because
statistical independence between X and individual members of 1" does
not guarantee the independence of X and groups of variables taken from
T. For example, let Z; and Z, be the outcomes of two independent fair
coins, each affecting both X and Y. Assume that X occurs when Z;
and Z, are equal and that Y occurs whenever Z; and Z, are unequal.
Clearly, X and Y are highly confounded by the pair T' = (Z;, Z5); they
are, in fact, perfectly correlated (negatively) without causally affecting
each other. Yet, neither Z; nor 7, is associated with either X or Y;
discovering the outcome of any one coin does not change the probability
of X (or of Y) from its initial value of 1.

An attempt to remedy Definition 6.2.2 by replacing Z with arbitrary
subsets of T in (U;) and (U;) would be much too restrictive, because
the set of all causes of X and Y, when treated as a group, would almost
surely fail the tests of (U;) and (Us). In Section 6.5.2 we identify the
subsets that should replace Z in (U;) and (Us) if sufficiency is to be
restored.

6.3.2 Failing Sufficiency via Closed-World As-
sumptions

By “closed-world” assumption I mean the assumption that our model
accounts for all relevant variables and, specifically to Definition 6.2.2,
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that the set 1" of variables consists of all potential confounders in a
problem. In order to correctly classify every case of no-confounding,
the associational criterion requires that condition (U;) or (Us) be sat-
isfied for every potential confounder Z in a problem. In practice, since
investigators can never be sure whether a given set 1" of potential con-
founders is complete, the associational criterion will falsely classify cer-
tain confounded cases as unconfounded.

This limitation actually implies that any statistical test whatsoever
is destined to be insufficient. Since practical tests always involve proper
subsets of T', the most we can hope to achieve by statistical means is
necessity—that is, a test that would correctly label cases as confounding
when criteria such as (U;) and (U;) are violated by an arbitrary subset
of T'. This prospect, too, is not fulfilled by Definition 6.2.2, as we now
demonstrate.

6.3.3 Failing Necessity via Barren Proxies

Example 6.3.1 Imagine a situation where exposure (X) is influenced
by a person’s education (F), disease (V) is influenced by both expo-
sure and age (A), and car type (Z) is influenced by both age (A) and
education (£). These relationships are shown schematically in Figure
6.3.

B A X- exposure
Y- disease
Z Z = type of car owned by patient
E = education
A= age
X Y X

Figure 6.3: X and Y are not confounded,though Z is associated with
both confounder

The car-type variable (7 ) violates the two conditions in Definition
6.2.2 because: (1) car type is indicative of education and hence is as-
sociated with the exposure variable; and (2) car type is indicative of
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age and hence is associated with the disease among the exposed and
the nonexrposed. However, in this example the effect of X on'Y s not
confounded; the type of car owned by a person has no effect on either
exposure or disease and s merely one among many irrelevant proper-
ties that are associated with both via intermediaries. The analysis of
Chapter 3 establishes that, indeed, (6.10) is satisfied in this model'? and
that, moreover, adjustment for Z would generally yield a biased result:

YN P(Y=ylX =12,Z=2)P(Z =2z #PY = yl|do(z)).

Thus we see that the traditional criterion based on statistical associa-
tion fails to identify an unconfounded effect and would tempt one to
adjust for the wrong variable. This failure occurs whenever we apply
(Uy) and (Us) to a variable Z that is a barren prozy—that is, a variable
that has no influence on X or Y but is a proxy for factors that do have
such influence.

Readers may not consider this failure to be too serious, because ex-
perienced epidemiologists would rarely regard a variable as confounder
unless it is suspect of having some influence on either X or Y. Never-
theless, adjustment for proxies is a prevailing practice in epidemiology
and should be done with great caution (Greenland and Neutra 1980;
Weinberg 1993). To regiment this caution, the associational criterion
must be modified to exclude barren proxies from the test set 7". This
yields the following modified criterion in which 7' consists only of vari-
ables that (causally) influence Y (possibly through X).

Definition 6.3.2 (No-Confounding; Modified Associational
Criterion)

Let T be the set of variables in a problem that are not affected by X but
may potentially affect Y. We say that X and Y are unconfounded by

the presence of T if and only if every member Z of T satisfies either
(Uy) or (Uz) of Definition 6.2.2.

12Because the (back-door) path X < E — Z < A — Y is blocked by the
colliding arrows at Z (see Definition 3.3.1).
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Stone (1993) and Robins (1997) proposed alternative modifications of
Definition 6.2.2 that avoid the problems created by barren proxies with-
out requiring one to judge whether a variable has an effect on Y. In-
stead of restricting the set 7" to potential causes of Y, we let 7" remain
the set of all variables unaffected by X,'? requiring instead that T be
composed of two disjoint subsets, 77 and 75, such that

(Uy) T is unassociated with X and
(U3) T3 is unassociated with Y given X and 77.

In the model of Figure 6.3, for instance, conditions (Uy) and (Uj) are
satisfied by the choice T} = A and T», = {Z, E'}, because (using the
d-separation test) A is independent of X, and F is independent of Y,
given {X, A}

This modification of the associational criterion further rectifies the
problem associated with marginality (see Section 6.3.1) because (U})
and (U;) treat 77 and T, as compound variables. However, the modi-
fication falls short of restoring necessity. Because the set T = (71, T3)
must include all variables unaffected by X (see note 13) and because
practical tests are limited to proper subsets of 1", we cannot conclude
that confounding is present solely upon the failure of (U7) and (Us),
as specified in Section 6.3.2. This criterion, too, is thus inadequate as
a basis for practical detection of confounding.

We now discuss another fundamental limitation on our ability to
detect confounding by statistical means.

6.3.4 Failing Necessity via Incidental Cancella-
tions

Here we present a case that is devoid of barren proxies and in which
the effect of X on Y (i) is not confounded in the sense of (6.10) but

13 Alternatively, T can be confined to any set S of variables sufficient for control
of confounding:

P(yldo(z)) = Y P(ylz,s)P(s).

Again, however, we can never be sure if the measured variables in the model contain
such a set, or which of T’s subsets possess this property.
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(i) is confounded according to the modified associational criterion of
Definition 6.3.2.

Example 6.3.3 Consider a causal model defined by the linear equa-
tions

= oz + €, (6.11)
= fBr+yz+ e, (6.12)

where €1 and €5 are correlated unmeasured variables with cov (e, €3) =7
and where Z is an exogenous variable that is uncorrelated with €1 or €;.
The diagram associated with this model is depicted in Figure 6.4. The
effect of X on'Y is quantified by the path coefficient 3, which gives the
rate of change of E(Y|do(z)) per unit change in z."

Figure 6.4: Z is associated with both X and Y, yet the effect of X on
Y is not confounded (when r = —avy).

It is not hard to show (assuming standardized variables) that the re-
gression of Y on X gives

y=(B+1+ay)r+e,

where cov(z,e) = 0. Thus, whenever the equality 7 = —asy holds, the
regression coefficient of ryx = 4+ r + ay is an unbiased estimate of
3, meaning that the effect of X on Y is unconfounded (no adjustment
is necessary). Yet the associational conditions (U;) and (Us) are both
violated by the variable Z; Z is associated with X (if o # 0) and

14See Sections 3.5-3.6 or (5.24) in Section 5.4.1.
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conditionally associated with Y, given X (except for special values of
7 for which p,., = 0).

This example demonstrates that the condition of unbiasedness (Def-
inition 6.2.1) does not imply the modified criterion of Definition 6.3.2.
The associational criterion might falsely classify some unconfounded sit-
uations as confounded and, worse yet, adjusting for the false confounder
(Z in our example) will introduce bias into the effect estimate.'

6.4 Stable versus Incidental Unbiasedness

6.4.1 Motivation

The failure of the associational criterion in the previous example calls
for a reexamination of the notion of confounding and unbiasedness as
defined in (6.10). The reason that X and Y were classified as un-
confounded in Example 6.3.3 was that, by setting r = —a-y, we were
able to make the spurious association represented by r cancel the one
mediated by Z. In practice, such perfect cancelation would be an inci-
dental event specific to a peculiar combination of study conditions, and
it would not persist when the parameters of the problem (i.e., o, 7,
and r) undergo slight changes—say, when the study is repeated in a
different location or at a different time. In contrast, the condition of
no-confounding found in Example 6.3.1 does not exhibit such volatility.
In this example, the unbiasedness expressed in (6.10) would continue
to hold regardless of the strength of connection between education and
exposure and regardless on how education and age influence the type
of car that a patient owns. We call this type of unbiasedness stable,
since it is robust to change in parameters and remains intact as long as
the configuration of causal connections in the model remains the same.

In light of this distinction between stable and incidental unbiased-
ness, we need to reexamine whether we should regard a criterion as
inadequate if it misclassifies (as confounded) cases that are rendered

5Note that the Stone-Robins modifications of Definition 6.3.2 would also fail
in this example, unless we can measure the factors responsible for the correlation
between €; and es.
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unconfounded by mere incidental cancelation and, more fundamentally,
whether we should insist on including such peculiar cases in the def-
inition of unbiasedness (given the precarious conditions under which
(6.10) would be satisfied in these cases). Although answers to these
questions are partly a matter of choice, there is ample evidence that
our intuition regarding confounding is driven by considerations of sta-
ble unbiasedness, not merely incidental ones. How else can we explain
why generations of epidemiologists and biostatisticians would advocate
confounding criteria that fail in cases involving incidental cancelation?
On the pragmatic side, failing to detect situations of incidental unbi-
asedness should not introduce appreciable error in observational studies
because those situations are short-lived and are likely to be refuted by
subsequent studies, under slightly different conditions.'6

Assuming that we are prepared to classify as unbiased only cases
in which unbiasedness remains robust to changes in parameters, two
questions remain: (1) How can we give this new notion of “stable un-
biasedness” a formal, nonparametric formulation? (2) Are practical
statistical criteria available for testing stable unbiasedness? Both ques-
tions can be answered using structural models.

Chapter 3 describes a graphical criterion, called the “back-door cri-
terion,” for identifying conditions of unbiasedness in a causal diagram.'”
In the simple case of no adjustment (for measured covariates), the cri-
terion states that X and Y are unconfounded if every path between X
and Y that contains an arrow pointing into X must also contain a pair
of arrows pointing head-to-head (as in Figure 6.3); this criterion is valid
whenever the missing links in the diagram represent absence of causal
connections among the corresponding variables. Because the causal as-
sumptions embedded in the missing links are so explicit, the back-door
criterion has two remarkable features. First, no statistical information
is needed; the topology of the diagram suffices for reliably determining
whether an effect is unconfounded (in the sense of Definition 6.2.1) and
whether an adjustment for a set of variables is sufficient for removing
confounding when one exists. Second, any model that meets the back-

16 As we have seen in Example 6.3.3, any statistical test capable of recognizing
such cases would require measurement of all variables in 7.

17 A gentle introduction to applications of the back-door criterion in epidemiology
can be found in Greenland et al. (1999a).



288CHAPTER 6. SIMPSON’S PARADOX, CONFOUNDING, AND COLLAPSIBILIT"

door criterion would in fact satisfy (6.10) for an infinite class of models
(or situations), each generated by assigning different parameters to the
causal connections in the diagram.

To illustrate, consider the diagram depicted in Figure 6.3. The
back-door criterion will identify the pair (X,Y’) as unconfounded, be-
cause the only path ending with an arrow into X is the one traversing
(X,E,Z,AY), and this path contains two arrows pointing head-to-
head at Z. Moreover, since the criterion is based only on graphical
relationships, it is clear that (X,Y’) will continue to be classified as
unconfounded regardless of the strength or type of causal relationships
that are represented by the arrows in the diagram. In contrast, con-
sider Figure 6.4 in Example 6.3.3, where two paths end with arrows
into X. Since none of these paths contains head-to-head arrows, the
back-door criterion will fail to classify the effect of X on Y as uncon-
founded, acknowledging that an equality r = —ay (if it prevails) would
not represent a stable case of unbiasedness.

The vulnerability of the back-door criterion to causal assumptions
can be demonstrated in the context of Figure 6.3. Assume the inves-
tigator suspects that variable Z (car type) has some influence on the
outcome variable Y. This would amount to adding an arrow from Z to
Y in the diagram, classifying the situation as confounded, and suggest-
ing an adjustment for F (or {4, Z}). Yet no adjustment is necessary
if, owing to the specific experimental conditions in the study, Z has in
fact no influence on Y. It is true that the adjustment suggested by the
back-door criterion would introduce no bias, but such adjustment could
be costly if it calls for superfluous measurements in a no-confounding
situation.'® The added cost is justified in light of (i) the causal in-
formation at hand (i.e., that Z may potentially influence V') and (ii)

180n the surface, it appears as though the Stone-Robins criterion would correctly
recognize the absence of confounding in this situation, since it is based on associ-
ations that prevail in the probability distribution that actually generates the data
(according to which {E, Z} should be independent of Y given {A, X}). However,
these associations are of no help in deciding whether certain measurements can be
avoided; such decisions must be made prior to gathering the data and must rely
therefore on subjective assumptions about the disappearance of conditional asso-
ciations. Such assumptions are normally supported by causal, not associational,
knowledge (see Section 1.3).
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insistence on ensuring stable unbiasedness—that is, avoiding bias in all
situations compatible with the information at hand.

6.4.2 Formal Definitions

To formally distinguish between stable and incidental unbiasedness, we
use the following general definition.

Definition 6.4.1 (Stable Unbiasedness)

Let A be a set of assumptions (or restrictions) on the data-generating
process, and let C'y be a class of causal models satisfying A. The
effect estimate of X on Y is said to be stably unbiased given A if
P(y|do(z)) = P(y|x) holds in every model M in Cy. Correspondingly,
we say that the pair (X,Y) is stably unconfounded given A.

The assumptions commonly used to specify causal models can be ei-
ther parametric or topological. For example, the structural equation
models used in the social sciences and economics are usually restricted
by the assumptions of linearity and normality. In this case, C4 would
consist of all models created by assigning different values to the un-
specified parameters in the equations and in the covariance matrix of
the error terms. Weaker, nonparametric assumptions emerge when we
specify merely the topological structure of the causal diagram but let
the error distributions and the functional form of the equations remain
undetermined. We now explore the statistical ramifications of these
nonparametric assumptions.

Definition 6.4.2 Let Ap be the set of assumptions embedded in a
causal diagram D. We say that X and Y are stably unconfounded
given Ap if P(y|do(z)) = P(y|z) holds in every parameterization of D.
By “parameterization” we mean an assignment of functions to the links
of the diagram and prior probabilities to the background variables in the
diagram.

Explicit interpretation of the assumptions embedded in a causal dia-
gram are given in Chapters 3 and 5. Put succinctly, if D is the diagram
associated with the causal model, then:
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1. every missing arrow (between, say X and Y') represents the as-
sumption that X has no effect on Y once we intervene and hold
the parents of Y fixed;

2. every missing bidirected link between X and Y represents the
assumption that there are no common causes for X and Y, except
those shown in D.

Whenever the diagram D is acyclic, the back-door criterion provides a
necessary and sufficient test for stable no-confounding, given Ap. In
the simple case of no adjustment for covariates, the criterion reduces to
the nonexistence of a common ancestor, observed or latent, of X and
Y.'? Thus, we have our next theorem.

Theorem 6.4.3 (Common-Cause Principle) Let Ap be the set of
assumptions embedded in an acyclic causal diagram D. Variables X
and Y are stably unconfounded given Ap if and only if X and Y have
no common ancestor in D.

Proof
The “if” part follows from the validity of the back-door criterion (The-
orem 3.3.2). The “only if” part requires the construction of a specific
model in which (6.10) is violated whenever X and Y have a common
ancestor in D. This is easily done using linear models and Wright’s
rules for path coefficients. O
Theorem 6.4.3 provides a necessary and sufficient condition for stable
no-confounding without invoking statistical data, since it relies entirely
on the information embedded in the diagram. Of course, the diagram
itself has statistical implications that can be tested (Sections 1.2.3 and
5.2.1), but those tests do not specify the diagram uniquely (see Chapter
2 and Section 5.2.3).

Suppose, however, that we do not possess all the information re-
quired for constructing a causal diagram and instead know merely for

9The colloquial term “common ancestors” should exclude nodes that have no
other connection to Y except through X (e..g., node E in Figure 6.3) and include
latent nodes for correlated errors. In the diagram of Figure 6.4, for example, X and
Y are understood to have two common ancestors; the first is Z and the second is
the (implicit) latent variable responsible for the double-arrowed arc between X and
Y (i.e., the correlation between €; and e2).
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each variable Z whether it is safe to assume that Z has no effect on Y
and whether X has no effect on Z. The question is now whether this
more modest information, together with statistical data, is sufficient to
qualify or disqualify a pair (X,Y") as stably unconfounded. The answer
is positive.

6.4.3 Operational Test for Stable No-Confounding

Theorem 6.4.4 (Stable No-Confounding)

Let Az denote the assumptions that (i) the data are generated by some
(unspecified) acyclic model M and (ii) Z is a wvariable in M that is
unaffected by X but may possibly affect Y .20 If both of the associational
criteria (Uy) and (Uy) of Definition 6.2.2 are violated, then (X,Y) are

not stably unconfounded given Ag.

Proof

Whenever X and Y are stably unconfounded, Theorem 6.4.3 rules out
the existence of a common ancestor of X and Y in the diagram asso-
ciated with the underlying model. The absence of a common ancestor,
in turn, implies the satisfaction of either (U;) or (U,) whenever Z sat-
isfies Az. This is a consequence of the d-separation rule (Section 1.2.3)
for reading the conditional independence relationships entailed by a
diagram.? O
Theorem 6.4.4 implies that the traditional associational criteria (U;)
and (Uy) could be used in a simple operational test for stable no-
confounding, a test that does not require us to know the causal struc-
ture of the variables in the domain or even to enumerate the set of
relevant variables. Finding just any variable Z that satisfies Az and
violates (U;) and (Us) permits us to disqualify (X,Y") as stably un-
confounded (though (X,Y) may be incidentally unconfounded in the
particular experimental conditions prevailing in the study).

20By “possibly affecting Y we mean: Az does not contain the assumption that
Z does not affect Y. In other words, the diagram associated with M must contain
a directed path from Z to Y.

21Tt also follows from Theorem 7(a) in Robins (1997).
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Theorem 6.4.4 communicates a formal connection between statisti-
cal associations and confounding that is not based on the closed-world
assumption.?? It is remarkable that the connection can be formed under
such weak set of added assumptions: the qualitative assumption that
a variable may have influence on Y and is not affected by X suffices to
produce a necessary statistical test for stable no-confounding.

6.5 Confounding, Collapsibility, and Ex-
changeability

6.5.1 Confounding and Collapsibility

Theorem 6.4.4 also establishes a formal connection between confound-
ing and “collapsibility” —a criterion under which a measure of associa-
tion remains invariant to the omission of certain variables.

Definition 6.5.1 (Collapsibility)

Let g[P(x,y)] be any functional’® that measures the association between
Y and X in the joint distribution P(xz,y). We say that g is collapsible
on a variable Z if

E.g[P(x,y|2)] = g[P(z,y)].

It is not hard to show that if g stands for any linear functional of
P(y|z)—for example, the risk difference P(y|z;) — P(y|z2)—then col-
lapsibility holds whenever Z is either unassociated with X or unassoci-
ated with Y given X. Thus, any violation of collapsibility implies viola-
tion of the two statistical criteria of Definition 6.2.2, and that is prob-
ably why many believed noncollapsibility to be intimately connected
with confounding. However, the examples in this chapter demonstrate
that violation of these two conditions is neither sufficient nor necessary

2T am not aware of another such connection in the literature.

BA functional is an assignment of a real number to any function from a given
set of functions. For example, the mean E(z) = )", P(z) is a functional, since it
assigns a real number E(X) to each probability function P(x).



6.5. CONFOUNDING, COLLAPSIBILITY, AND EXCHANGEABILITY?293

for confounding. Thus, noncollapsibility and confounding are in general
two distinct notions; neither implies the other.

Some authors tend to believe that this distinction is a peculiar prop-
erty of nonlinear effect measures ¢, such as the odds or likelihood ratios,
and that “when the effect measure is an expectation over population
units, confounding and noncollapsibility are algebraically equivalent”
(Greenland 1998, p. 906). This chapter shows that confounding and
noncollapsibility need not correspond even in linear functionals. For
example, the effect measure P(y|z;) — P(y|z2) (the risk difference) is
not collapsible over Z in Figure 6.3 (for almost every parameterization
of the graph) and yet the effect measure is unconfounded (for every
parameterization).

The logical connection between confounding and collapsibility is
formed through the notion of stable no-confounding, as formulated in
Definition 6.4.2 and Theorem 6.4.4. Because, any violation of collapsi-
bility means violation of (U;) and (Us) in Definition 6.2.2, it also im-
plies (by Theorem 6.4.4) violation of stable unbiasedness (or stable
no-confounding). Thus we can state the following corollary.

Corollary 6.5.2 (Stable No-Confounding Implies Collapsibil-
ity)

Let Z be any variable that is not affected by X and that may possibly
affect Y. Let g[P(x,y)] be any linear functional that measures the as-
sociation between X and Y. If g is not collapsible on Z, then X and
Y are not stably unconfounded.

This corollary provides a rationale for the widespread practice of testing
confoundedness by the change-in-parameter method, that is, labeling a
variable Z a confounder whenever the “crude” measure of association,
g[P(z,y)], is not equal to the Z-specific measures of association aver-
aged over the levels of Z (Breslow and Day 1980; Kleinbaum et al. 1982;
Yanagawa 1984; Grayson 1987). Theorem 6.4.4 suggests that the intu-
itions responsible for this practice were shaped by a quest for a stable
condition of no-confounding, not merely an incidental one. Moreover,
condition Az in Theorem 6.4.4 justifies a requirement made by some
authors that a confounder must be a causal determinant of, and not
merely associated with, the outcome variable Y.
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6.5.2 Confounding versus Confounders

The focus of our discussion in this chapter has been the phenomenon
of confounding, which we equated with that of effect bias (Definition
6.2.1). Much of the literature on this topic has been concerned with
the presence or absence of confounders, presuming that some variables
possess the capacity to confound and some do not. This notion may
be misleading if interpreted literally, and caution should be exercised
before we label a variable as a confounder.

Rothman and Greenland (1998, p. 120), for example, offer this def-
inition: “The extraneous factors responsible for difference in disease
frequency between the exposed and unexposed are called confounders’
they go on to state that: “In general, a confounder must be associated
with both the exposure under study and the disease under study to
be confounding” (p. 121). Rothman and Greenland qualify their state-
ment with “In general,” and for good reason: We have seen in (in the
two-coin example of Section 6.3.1) that each individual variable in a
problem can be unassociated with both the exposure (X) and the dis-
ease (V') under study and still the effect of X on Y remains confounded.
A similar situation can also be seen in the linear model depicted in Fig-
ure 6.5. Although Z is clearly a confounder for the effect of X on Y and

E A

X Y

Figure 6.5: Z may be unassociated with Y and still be a confounder.

must therefore be controlled, the association between Z and Y may ac-
tually vanish (at each level of X') and the association between Z and X
may vanish as well. This can occur if the indirect association mediated
by the path 7 «+— A — Y happens to cancel the direct association
carried by the arrow Z — Y. This cancellation does not imply the
absence of confounding, because the path X +— F — Z — Y is
unblocked while X +— E — Z +— A — Y is blocked. Thus, 7 is a
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confounder that is associated neither with the exposure (X) nor with
the disease (V).

The intuition behind Rothman and Greenland’s statement just
quoted can be explicated formally through the notion of stability: a
variable that is stably unassociated with either X or Y can safely be
excluded from adjustment. Alternatively, Rothman and Greenland’s
statement can be supported (without invoking stability) by using the
notion of minimal sufficient set (Section 3.3)—a minimal set of variables
for which adjustment will remove confounding bias. It can be shown
(see the end of this section) that each such sufficient set S, taken as
a unit, must indeed be associated with X and be conditionally associ-
ated with Y, given X. Thus, Rothman and Greenland’s condition is
valid for minimal sufficient sets but not for the individual variables in
a problem.

The practical ramifications of this condition are as follows. If we
are given a set S of variables that is claimed to be minimally sufficient
(for removing bias by adjustment), then that claim can be given a
necessary statistical test: S as a compound variable must be associated
both with X and with Y (given X). In Figure 6.5, for example, the
minimal sufficient sets are S; = {4, Z} and Sy = {FE, Z}; both must
satisfy the condition stated.

Note that, although this test can be used for screening sets claimed
to be minimally sufficient, it does not constitute a test for detecting
confounding. Even if we find a set S in a problem that is associated
with both X and Y, we are still unable to conclude that X and Y are
confounded. Our finding merely qualifies S as a candidate for mini-
mally sufficient status in case confounding exists, but we cannot rule
out the possibility that the problem is unconfounded to start with.
(The sets S = {E, A} or S = {Z} in Figure 6.1 illustrate this point.)
Observing a discrepancy between adjusted and unadjusted associations
(between X and Y') does not help us either, because (recalling our dis-
cussion of collapsibility) we do not know which—the preadjustment or
postadjustment association—is unbiased (see Figure 6.4).
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Proof of Necessity

To prove that (U;) and (Usz) must be violated whenever Z stands for
a minimally sufficient set S, consider the case where X has no effect
on Y. In this case, confounding amounts to a nonvanishing association
between X and Y. A well-known property of conditional indepen-
dence, called contraction (Section 1.1.5), states that violation of (Uy),
X 1L S, together with sufficiency, X Ll Y'|S, implies violation of mini-
mality, X 1L Y:
XUS&XUY|S=X1Y.

Likewise, another property of conditional independence, called intersec-
tion, states that violation of (Us), S1LY|X, together with sufficiency,
X 1LY'|S, also implies violation of minimality, X 1L Y.

SILY|X & X1Y|S = X 1Y.

Thus, both (U;) and (Usz) must be violated by any minimally sufficient
set S (thus replacing Z in Definition 6.2.2).

Note, however, that intersection holds only for strictly positive prob-
ability distributions, which means that the Rothman-Greenland condi-
tion may be violated if deterministic relationships hold among some
variables in a problem. This can be seen from a simple example in
which both X and Y stand in a one-to-one functional relationship to
a third variable, Z. Clearly, Z is a minimally sufficient set yet is not
associated with Y given X; once we know the value of X, the probabil-
ity of Y is determined, and would no longer change with learning the
value of Z.

6.5.3 Exchangeability versus Structural Analysis
of Confounding

Students of epidemiology complain bitterly about the confusing way in
which the fundamental concept of confounding has been treated in the
literature. A few authors have acknowledged the confusion (e.g. Green-
land and Robins 1986; Wickramaratne and Holford 1987; Weinberg
1993)) and have suggested new ways of looking at the problem that
might lead to more systematic analysis. Greenland and Robins (GR),
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in particular, have recognized the same basic principles and results that
we have expounded here in Sections 6.2 and 6.3. Their analysis repre-
sents one of the few bright spots in the vast literature on confounding in
that it treats confounding as an unknown causal quantity that is not di-
rectly measurable from observed data. They further acknowledge (as do
Miettinen and Cook 1981) that the presence or absence of confounding
should not be equated with absence or presence of collapsibility and
that confounding should not be regarded as a parameter-dependent
phenomenon.

However, the structural analysis presented in this chapter differs in
a fundamental way from that of GR, who have pursued an approach
based on judgment of “exchangeability.” In Section 6.1, we have en-
countered a related notion of exchangeability, one with which Lindley
and Novick (1981) attempted to view Simpson’s paradox; GR’s idea of
exchangeability is more concrete and more clearly applicable. Concep-
tually, the connection between confounding and exchangeability is as
follows. If we undertake to assess the effect of some treatment, we ought
to make sure that any response differences between the treated and the
untreated group is due to the treatment itself and not to some intrinsic
differences between the groups that are unrelated to the treatment. In
other words, the two groups must resemble each other in all charac-
teristics that have bearing on the response variable. In principle, we
could have ended the definition of confounding at this point, declaring
simply that the effect of treatment is unconfounded if the treated and
untreated groups resemble each other in all relevant features. This def-
inition, however, is too verbal in the sense that it is highly sensitive to
interpretation of the terms “resemblance” and “relevance.” To make it
less informal, GR used De Finetti’s twist of hypothetical permutation;
instead of judging whether two groups are similar, the investigator is
instructed to imagine a hypothetical exchange of the two groups (the
treated group becomes untreated, and vice versa) and then to judge
whether the observed data under the swap would be distinguishable
from the actual data.

One can justifiably ask what has been gained by this mental exercise,
relative to judging directly if the two groups are effectively identical.
The gain is twofold. First, people are quite good in envisioning dynamic
processes and can simulate the outcome of this swapping scenario from
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basic understanding of the processes that govern the response to treat-
ment and the factors that affect the choice of treatment. Second, mov-
ing from judgment about resemblance to judgment about probabilities
permits us to cast those judgments in probabilistic notation and hence
to invite the power and respectability of probability calculus.

Greenland and Robins made an important first step toward this for-
malization by bringing notation closer to where judgment originates—
the human understanding of causal processes. The structural approach
pursued in this book takes the next, natural step: formalizing the causal
processes themselves.

Let A and B stand (respectively) for the treated and untreated
groups, and let P41 (y) and Pao(y) stand (respectively) for the response
distribution of group A under two hypothetical conditions, treatment
and no treatment.?* If our interest lies in some parameter p of the
response distribution, we denote by p4; and p49 the values of that pa-
rameter in the corresponding distribution Pa;(y) and Pag(y), with up;
and ppgo defined similarly for group B. In actuality, we measure the pair
(141, 4Bo); after the hypothetical swap, we would measure (up1, f140)-
We define the groups to be exchangeable relative to parameter y if the
two pairs are indistinguishable, that is, if

(,UA1> MBO) = (,UBb ,MAO)-

In particular, if we define the causal effect by the difference CE =
a1 — Mao, then exchangeability permits us to replace p 49 with pgy and
so obtain CE = p4; — g, which is measurable because both quantities
are observed. Greenland and Robins thus declare the causal effect CE
to be unconfounded if a9 = ppo-

If we compare this definition to that of (6.10), P(y|do(z)) = P(y|x),
we find that the two coincide if we rewrite the latter as pu[P(y|do(z))] =
u[P(y|z)], where u is the parameter of interest in the response distribu-
tion. However, the major difference between the structural and the GR
approaches lies in the level of analysis. Structural modeling extends the
formalization of confounding in two important directions. First, (6.10)
is not submitted to direct human judgment but is derived mathemat-

24Tn do(-) notation, we would write Pa;(y) = Pa(y|do(X = 1)).
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ically from more elementary judgments concerning causal processes.?
Second, the input judgments needed for the structural model are both
qualitative and stable.

A simple example will illustrate the benefits of these features. Con-
sider the following statement (Greenland 1998):

(Q*) “if the effect measure is the difference or ratio of response
proportions, then the above phenomenon—noncollapsibility
without confounding—cannot occur, nor can confounding
occur without noncollapsibility.”

We have seen in this chapter that statement (Q*) should be qualified
in several ways and that, in general, noncollapsibility and confounding
are two distinct notions—neither implying the other, regardless of the
effect measure (Section 6.5.1). However, the question we wish to discuss
here is methodological: What formalism would be appropriate for val-
idating, refuting, or qualifying statements of this sort? Clearly, since
(Q*) makes a general claim about all instances, one counterexample
would suffice to refute its general validity. But how do we construct
such a counterexample? More generally, how do we construct exam-
ples that embody properties of confounding, effect bias, causal effects,
experimental versus nonexperimental data, counterfactuals, and other
causality-based concepts?

In probability theory, if we wish to refute a general statement about
parameters and their relationship we need only present one density
function f for which that relationship fails to hold. In propositional
logic, in order to show that a sentence is false, we need only present one
truth table T that satisfies the premises and violates the conclusions.
What, then, is the mathematical object that should replace f or 7" when
we wish to refute causal claims like statement (Q*)? The corresponding
object used in the exchangeability framework of Greenland and Robins
is a counterfactual contingency table (see e.g. Greenland 1999b, p. 905,
or Figure 1.7 in Section 1.4.4). For instance, to illustrate confounding,
we need two such tables: one describing the hypothetical response of

Z5Recall that the do(-) operator is defined mathematically in terms of equation
deletion in structural equation models; consequently, the verification of the non-
confounding condition P(y|do(z)) = P(y|z) in a given model is not a matter of
judgment but a subject of mathematical analysis.
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the treated group A to both treatment and nontreatment, and one
describing the hypothetical response of the untreated group B to both
treatment and non-treatment. If the tables show that the parameter
140, computed from the hypothetical response of the treated group to
no treatment, differs from ppg, computed from the actual response of
the untreated group, then we have confounding on our hands.

Tables of this type can easily be constructed for simple problems
involving one treatment and one response variable, but they become a
nightmare when several covariates are involved or when we wish to im-
pose certain constraints on those covariates. For example, we may wish
to incorporate the standard assumption that a covariate Z does not lie
on the causal pathway between treatment and response, or that Z has
causal influence on Y, but such assumptions cannot conveniently be
expressed in counterfactual contingency tables. As a result, the author
of the claim to be refuted could always argue that the tables used in the
counterexample may be inconsistent with the agreed assumptions.?

Such difficulties do not plague the structural representation of con-
founding. In this formalism, the appropriate object for exemplifying or
refuting causal statements is a “causal model,” as defined in Chapter
3 and used throughout this book. Here, hypothetical responses (149
and ppo) and contingency tables are not the primitive quantities but
rather are derivable from a set of equations that already embody the
assumptions we wish to respect. Every parameterization of a structural
model implies (using the do(-) operator) a specific set of counterfactual
contingency tables that satisfies the input assumptions and exhibits the
statistical properties displayed in the graph. For example, any param-
eterization of the graph in Figure 6.3 generates a set of counterfactual
contingency tables that already embodies the assumptions that Z is
not on the causal pathway between X and Y and that Z has no causal
effect on Y, and almost every such parameterization will generate a
counterexample to claim (Q*). Moreover, we can also disprove (Q*) by
a casual inspection of the diagram and without generating numerical
counterexamples. In Figure 6.3, for example, shows vividly that the risk
difference P(y|z1)— P(y|z2) is not collapsible on Z and, simultaneously,

Z6Readers who attempt to construct a counterexample to statement (Q*) using
counterfactual contingency tables will certainly appreciate this difficulty.
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that X and Y are (stably) unconfounded.

The difference between the two formulations is even more pro-
nounced when we come to substantiate, not refute, generic claims about
confounding. Here it is not enough to present a single contingency ta-
ble; instead, we must demonstrate the validity of the claim for all tables
that can possibly be constructed in compliance with the input assump-
tions. This task, as the reader surely realizes, is a hopeless exercise
within the framework of contingency tables; it calls for a formalism in
which assumptions can be stated succinctly and in which conclusions
can be deduced by mathematical derivations. The structural seman-
tics offers such formalism, as demonstrated by the many generic claims
proven in this book (examples include Theorem 6.4.4 and Corollary
6.5.2).

As much as [ admire the rigor introduced by Greenland and Robins’s
analysis through the framework of exchangeability, I am thoroughly
convinced that the opacity and inflexibility of counterfactual contin-
gency tables are largely responsible for the slow acceptance of GR
framework among epidemiologists and, as a byproduct, for the linger-
ing confusion that surrounds confounding in the statistical literature
at large. I am likewise convinced that formulating claims and assump-
tions in the language of structural models will make the mathematical
analysis of causation accessible to rank-and-file researchers and thus
lead eventually to a total and natural disconfounding of confounding.

6.6 Conclusions

Past efforts to establish a theoretical connection between statistical as-
sociations (or collapsibility) and confounding have been unsuccessful
for three reasons. First, the lack of mathematical language for ex-
pressing claims about causal relationships and effect bias has made it
difficult to assess the disparity between the requirement of effect unbi-
asedness (Definition 6.2.1) and statistical criteria purporting to capture
unbiasedness.?” Second, the need to exclude barren proxies (Figure 6.3)

2TThe majority of papers on collapsibility (e.g. Bishop 1971; Whittemore 1978;
Wermuth 1987; Becher 1992; Geng 1992) motivate the topic by citing Simpson’s
paradox and the dangers of obtaining confounded effect estimates. Of these, only a
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from consideration has somehow escaped the attention of researchers.
Finally, the distinction between stable and incidental unbiasedness has
not received the attention it deserves and, as we observed in Exam-
ple 6.3.3, no connection can be formed between associational criteria
(or collapsibility) and confounding without a commitment to the no-
tion of stability. Such commitment rests critically on the conception of
a causal model as an assembly of autonomous mechanisms that may
vary independently of one another (Aldrich 1989). It is only in antic-
ipation of such independent variations that we are not content with
incidental unbiasedness but rather seek conditions of stable unbiased-
ness. The mathematical formalization of this conception has led to
related notions of DAG-isomorph (Pearl 1988b, p. 128) stability (Pearl
and Verma 1991), and faithfulness (Spirtes et al. 1993), which assist in
the elucidation of causal diagrams from sparse statistical associations
(see Chapter 2). The same conception has evidently been shared by au-
thors who aspired to connect associational criteria with confounding.

The advent of structural model analysis, assisted by graphical meth-
ods, offers a mathematical framework in which considerations of con-
founding can be formulated and managed more effectively. Using this
framework, this chapter explicates the criterion of stable unbiasedness
and shows that this criterion (i) has implicitly been the target of many
investigations in epidemiology and biostatistics, and (ii) can be given
operational statistical tests similar to those invoked in testing collapsi-
bility. We further show (Section 6.5.3) that the structural framework
overcomes basic cognitive and methodological barriers that have made
confounding one of the most confused topics in the literature. It is
therefore natural to predict that this framework will become the pri-
mary mathematical basis for future studies of confounding.

handful pursue the study of confounding or effect estimates; most prefer to analyze
the more manageable phenomenon of collapsibility as a stand-alone target. Some
go as far as naming collapsibility “nonconfoundedness” (Grayson 1987; Steyer et al.
1997).
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