Chapter 5

Causality and Structural
Models in Social Science and
Economics

Do two men travel together
unless they have agreed?
Amos 3:3

Preface

Structural equation modeling (SEM) has dominated causal analysis in
economics and the social sciences since the 1950s, yet the prevailing
interpretation of SEM differs substantially from the one intended by
its originators and also from the one expounded in this book. Instead
of carriers of substantive causal information, structural equations are
often interpreted as carriers of probabilistic information; economists
view them as convenient representations of density functions, and social
scientists see them as summaries of covariance matrices. The result
has been that many SEM researchers have difficulty articulating the
causal content of SEM, and the most distinctive capabilities of SEM
are currently ill understood and underutilized.

This chapter is written with the ambitious goal of reinstating the
causal interpretation of SEM. We shall demonstrate how developments
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in the areas of graphical models and the logic of intervention can alle-
viate the current difficulties and thus revitalize structural equations as
the primary language of causal modeling. Toward this end, we recast
several of the results of Chapters 3 and 4 in parametric form (the form
most familiar to SEM researchers) and demonstrate how practical and
conceptual issues of model testing and parameter identification can be
illuminated through graphical methods. We then move back to non-
parametric analysis, from which an operational semantics will evolve
that offers a coherent interpretation of what structural equations are
all about (Section 5.4). In particular, we will provide answers to the
following fundamental questions: What do structural equations claim
about the world? What portion of those claims is testable? Under
what conditions can we estimate structural parameters through regres-
sion analysis?

In Section 5.1 we survey the history of SEM and suggest an expla-
nation for the current erosion of its causal interpretation. The testable
implications of structural models are explicated in Section 5.2. For re-
cursive models (herein termed Markovian), we find that the statistical
content of a structural model can be fully characterized by a set of zero
partial correlations that are entailed by the model. These zero partial
correlations can be read off the graph using the d-separation criterion,
which in linear models, applies to graphs with cycles and correlated
errors as well (Section 5.2). The application of this criterion to model
testing is discussed in Section 5.2.2, which advocates local over global
testing strategies. Section 5.2.3 provides simple graphical tests of model
equivalence and thus clarifies the nontestable part of structural models.

In Section 5.3 we deal with the issue of determining the identifia-
bility of structural parameters prior to gathering any data. In Section
5.3.1, simple graphical tests of identifiability are developed for linear
Markovian and semi-Markovian models (i.e., acyclic diagrams with cor-
related errors). These tests result in a simple procedure for determining
when a path coefficient can be equated to a regression coefficient and,
more generally, when structural parameters can be estimated through
regression analysis. Section 5.3.2 discusses the connection between pa-
rameter identification in linear models and causal effect identification
in nonparametric models, and Section 5.3.3 offers the latter as a se-
mantical basis for the former.
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Finally, in Section 5.4 we discuss the logical foundations of SEM
and resolve a number of difficulties that were kept dormant in the past.
These include operational definitions for structural equations, struc-
tural parameters, error terms, and total and direct effects, as well as a
causal-theoretic explication of exogeneity in econometrics.

5.1 Introduction

5.1.1 Causality in Search of a Language

The word cause is not in the vocabulary of standard probability theory.
It is an embarrassing yet inescapable fact that probability theory, the
official mathematical language of many empirical sciences, does not per-
mit us to express sentences such as “Mud does not cause rain”; all we
can say is that the two events are mutually correlated, or dependent—
meaning that if we find one, we can expect to encounter the other.
Scientists seeking causal explanations for complex phenomena or ratio-
nales for policy decisions must therefore supplement the language of
probability with a vocabulary for causality, one in which the symbolic
representation for the causal relationship “Mud does not cause rain”
is distinct from the symbolic representation for “Mud is independent
of rain.” Oddly, such distinctions have yet to be incorporated into
standard scientific analysis.

Two languages for causality have been proposed: path analysis or
structural equation modeling (SEM) (Wright 1921; Haavelmo 1943);
and the Neyman-Rubin potential-outcome model (Neyman 1923; Ru-
bin 1974). The former has been adopted by economists and social
scientists (Goldberger 1972; Duncan 1975), while a group of statis-
ticians champion the latter (Rubin 1974; Robins 1986; Holland 1988).
These two languages are mathematically equivalent (see Chapter 7, Sec-
tion 7.4.4), yet neither has become standard in causal modeling—the
structural equation framework because it has been greatly misused and
inadequately formalized (Freedman 1987) and the potential-outcome
framework because it has been only partially formalized and (more sig-

LA summary of attempts by philosophers to reduce causality to probabilities is
given in Chapter 7 (Section 7.5).
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nificantly) because it rests on an esoteric and seemingly metaphysical
vocabulary of counterfactual variables that bears no apparent relation
to ordinary understanding of cause-effect processes (see Section 3.6.3).

Currently, potential-outcome models are understood by few and
used by even fewer. Structural equation models are used by many,
but their causal interpretation is generally questioned or avoided, even
by their leading practitioners. In Chapters 3 and 4 we described how
structural equation models, in nonparametric form, can provide the se-
mantic basis for theories of interventions. In Section 1.4 we outlined
how these models provide the semantical basis for a theory of coun-
terfactuals as well. It is somewhat embarrassing that these distinctive
features are hardly recognized and rarely utilized in the modern SEM
literature. The current dominating philosophy treats SEM as just a
convenient way to encode density functions (in economics) or covari-
ance information (in social science). Ironically, we are witnessing one
of the most bizarre circles in the history of science: causality in search
of a language and, simultaneously, the language of causality in search
of its meaning.

The purpose of this chapter is to formulate the causal interpretation
and outline the proper use of structural equation models, thereby re-
instating confidence in SEM as the primary formal language for causal
analysis in the social and behavioral sciences. First, however, we
present a brief analysis of the current crisis in SEM research in light of
its historical development.

5.1.2 SEM: How its Meaning Became Obscured

Structural equation modeling was developed by geneticists (Wright
1921) and economists (Haavelmo 1943; Koopmans 1950, 1953) so that
qualitative cause-effect information could be combined with statistical
data to provide quantitative assessment of cause-effect relationships
among variables of interest. Thus, to the often asked question, “Under
what conditions can we give causal interpretation to structural coeffi-
cients?” Wright and Haavelmo would have answered, “Always!” Ac-
cording to the founding fathers of SEM, the conditions that make the
equation y = [z + € structural are precisely those that make the causal
connection between X and Y have no other value but § and ensure



5.1. INTRODUCTION 205

that nothing about the statistical relationship between x and e can
ever change this interpretation of 3. Amazingly, this basic understand-
ing of SEM has all but disappeared from the literature, leaving modern
econometricians and social scientists in a quandary over (3.

Most SEM researchers today are of the opinion that extra ingre-
dients are necessary for structural equations to qualify as carriers of
causal claims. Among social scientists, James, Mulaik, and Brett (1982,
p. 45), for example, stated that a condition called self-containment is
necessary for consecrating the equation y = fBx + € with causal mean-
ing, where self-containment stands for cov(z,e) = 0. According to
James et al. (1982), if self-containment does not hold then “neither
the equation nor the functional relation represents a causal relation.”
Bollen (1989, p. 44) reiterated the necessity of self-containment (under
the rubric isolation or pseudo-isolation)—contrary to the understand-
ing that structural equations attain their causal interpretation prior
to, and independently of, any statistical relationships among their con-
stituents. Since the early 1980s, it has become exceedingly rare to find
an open endorsement of the original SEM logic: that (3 defines the sen-
sitivity of E(Y') to experimental manipulations of X; that € is defined
in terms of 3, not the other way around; and that the orthogonality
condition cov(z, €) = 0 is neither necessary nor sufficient for the causal
interpretation of 3 (see Sections 3.6.2 and 5.4.1).? Tt is therefore not
surprising that many SEM textbooks have given up on causal inter-
pretation altogether: “We often see the terms cause, effect, and causal
modeling used in the research literature. We do not endorse this prac-
tice and therefore do not use these terms here” (Schumaker and Lomax
1996, p. 90).

Econometricians have just as much difficulty with the causal read-
ing of structural parameters. Leamer (1985, p. 258) observed, “It is
my surprising conclusion that economists know very well what they
mean when they use the words ‘exogenous,” ‘structural,” and ‘causal,’
yet no textbook author has written adequate definitions.” There has
been little change since Leamer made these observations. Econometric
textbooks invariably devote most of their analysis to estimating struc-

2Tn fact, this condition is not necessary even for the identification of 3, once 3
is interpreted (see the identification of « in Figures 5.7 and 5.9).
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tural parameters, but they rarely discuss the role of these parameters
in policy evaluation. The few books that deal with policy analysis (e.g.
Goldberger 1991; Intriligator et al. 1996, p. 28) assume that policy
variables satisfy the orthogonality condition by their very nature, thus
rendering structural information superfluous. Hendry (1995, p. 62),
for instance, explicitly tied the interpretation of 3 to the orthogonality
condition, stating as follows:

the status of § may be unclear until the conditions needed to
estimate the postulated model are specified. For example,
in the model:

y; = 28 + u; where u; ~ IN[0, 02,

until the relationship between z; and wu; is specified the
meaning of 3 is uncertain since E[z;u;] could be either zero
or nonzero on the information provided.

LeRoy (1995, p. 211) goes even further: “It is a commonplace of el-
ementary instruction in economics that endogenous variables are not
generally causally ordered, implying that the question ‘What is the ef-
fect of y; on yo’ where y; and y, are endogenous variables is generally
meaningless.” According to LeRoy, causal relationships cannot be at-
tributed to any variable whose causes have separate influence on the
effect variable, a position that denies any causal reading to most of
the structural parameters that economists and social scientists labor to
estimate.

Cartwright (1995b, p. 49), a renowned philosopher of science, ad-
dresses these difficulties by initiating a renewed attack on the torment-
ing question, “Why can we assume that we can read off causes, including
causal order, from the parameters in equations whose exogenous vari-
ables are uncorrelated?” Cartwright, like SEM’s founders, recognizes
that causes cannot be derived from statistical or functional relationships
alone and that causal assumptions are prerequisite for validating any
causal conclusion. Unlike Wright and Haavelmo, however, she launches
an all-out search for the assumptions that would endow the parameter
[ in the regression equation y = fx+e¢ with a legitimate causal meaning
and endeavors to prove that the assumptions she proposes are indeed
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sufficient. What is revealing in Cartwright’s analysis is that she does
not consider the answer Haavelmo would have provided—namely, that
the assumptions needed for drawing causal conclusions from parame-
ters are communicated to us by the scientist who declared the equation
“structural”; they are already encoded in the syntaz of the equations
and can be read off the associated graph as easily as a shopping list;
they need not be searched for elsewhere, nor do they require new proofs
of sufficiency. Again, Haavelmo’s answer applies to models of any size
and shape, including models with correlated exogenous variables.

These examples bespeak an alarming tendency among economists
and social scientists to view a structural equation as an algebraic object
that carries functional and statistical assumptions but is void of causal
content. This statement from one leading social scientist is typical: “It
would be very healthy if more researchers abandoned thinking of and
using terms such as cause and effect” (Muthen 1987, p. 180). Perhaps
the boldest expression of this tendency was voiced by Holland (1995,
p. 54): “I am speaking, of course, about the equation: {y = a+bx +€}.
What does it mean? The only meaning I have ever determined for such
an equation is that it is a shorthand way of describing the conditional
distribution of {y} given {z}.”*

The founders of SEM had an entirely different conception of struc-
tures and models. Wright (1923, p. 240) declared that “prior knowl-
edge of the causal relations is assumed as prerequisite” in the theory

3These assumptions are explicated and operationalized in Section 5.4. Briefly,
if G is the graph associated with a causal model that renders a certain parameter
identifiable, then two assumptions are sufficient for authenticating the causal read-
ing of that parameter: (1) every missing arrow, say between X and Y, represents
the assumption that X has no effect on Y once we intervene and hold the parents of
Y fixed; and (2) every missing bidirected arc X <— —» Y represents the assump-
tion that all omitted factors that affect Y are uncorrelated with those that affect X.
Each of these assumptions is testable in experimental settings, where interventions
are feasible (Section 5.4.1).

4 All but forgotten, the structural interpretation of the equation (Haavelmo 1943)
poses no restriction whatsoever on the conditional distribution of {y} given {z}.
Paraphrased in our vocabulary, it reads: “In an ideal experiment where we control
X to z and any other set Z of variables (not containing X or Y) to z, Y will attain
a value y given by a + bx + ¢, where € is a random variable that is (pointwise)
independent of the settings = and 2” (see Section 5.4.1). This statement implies
that E[Y|do(x),do(z)] = a + bx + ¢ but says nothing about E(Y'|X = z).
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of path coefficients, and Haavelmo (1943) explicitly interpreted each
structural equation as a statement about a hypothetical controlled ex-
periment. Likewise, Marschak (1950), Koopmans (1953), and Simon
(1953) stated that the purpose of postulating a structure behind the
probability distribution is to cope with the hypothetical changes that
can be brought about by policy. One wonders, therefore, what has hap-
pened to SEM over the past 50 years, and why the basic (and still valid)
teachings of Wright, Haavelmo, Marschak, Koopmans, and Simon have
been forgotten.

Some economists attribute the decline in the understanding of struc-
tural equations to Lucas’s (1976) critique, according to which economic
agents anticipating policy interventions would tend to act contrary to
SEM’s predictions, which often ignore such anticipations. However,
since this critique merely shifts the model’s invariants and the bur-
den of structural modeling—from the behavioral level to a deeper level
that involves agents’ motivations and expectations—it does not exon-
erate economists from defining and representing the causal content of
structural equations at some level of discourse.

I believe that the causal content of SEM has gradually escaped the
consciousness of SEM practitioners mainly for the following reasons.

1. SEM practitioners have sought to gain respectability for SEM
by keeping causal assumptions implicit, since statisticians, the
arbiters of respectability, abhor assumptions that are not directly
testable.

2. The algebraic language that has dominated SEM lacks the nota-
tional facility needed to make causal assumptions, as distinct from
statistical assumptions, explicit. By failing to equip causal rela-
tions with precise mathematical notation, the founding fathers in
fact committed the causal foundations of SEM to oblivion. Their
disciples today are seeking foundational answers elsewhere.

Let me elaborate on the latter point. The founders of SEM under-
stood quite well that, in structural models, the equality sign conveys
the asymmetrical relation “is determined by” and hence behaves more
like an assignment symbol (:=) in programming languages than like
an algebraic equality. However, perhaps for reasons of mathematical
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purity, they refrained from introducing a symbol to represent the asym-
metry. According to Epstein (1987), in the 1940s Wright gave a semi-
nar on path diagrams to the Cowles Commission (the breeding ground
for SEM), but neither side saw particular merit in the other’s meth-
ods. Why? After all, a diagram is nothing but a set of nonparametric
structural equations in which, to avoid confusion, the equality signs are
replaced with arrows.

My explanation is that the early econometricians were extremely
careful mathematicians who thought they could keep the mathematics
in purely equational-statistical form and just reason about structure in
their heads. Indeed, they managed to do so surprisingly well, because
they were truly remarkable individuals who could do it in their heads.
The consequences surfaced in the early 1980s, when their disciples be-
gan to mistake the equality sign for an algebraic equality. The upshot
was that suddenly the “so-called disturbance terms” did not make any
sense at all (Richard 1980, p. 3). We are living with the sad end to
this tale. By failing to express their insights in mathematical notation,
the founders of SEM brought about the current difficulties surrounding
the interpretation of structural equations, as summarized by Holland’s
“What does it mean?”

5.1.3 Graphs as a Mathematical Language

Recent developments in graphical methods promise to bring causality
back into the mainstream of scientific modeling and analysis. These
developments involve an improved understanding of the relationships
between graphs and probabilities, on the one hand, and graphs and
causality, on the other. But the crucial change has been the emer-
gence of graphs as a mathematical language. This mathematical lan-
guage is not simply a heuristic mnemonic device for displaying alge-
braic relationships, as in the writings of Blalock (1962) and Duncan
(1975). Rather, graphs provide a fundamental notational system for
concepts and relationships that are not easily expressed in the stan-
dard mathematical languages of algebraic equations and probability
calculus. Moreover, graphical methods now provide a powerful sym-
bolic machinery for deriving the consequences of causal assumptions
when such assumptions are combined with statistical data.
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A concrete example that illustrates the power of the graphical
language—and that will set the stage for the discussions in Sections
5.2 and 5.3—is Simpson’s paradox, discussed in Section 3.3 and further
analyzed in Section 6.1. This paradox concerns the reversal of an as-
sociation between two variables (e.g., gender and admission to school)
that occurs when we partition a population into finer groups, (e.g.,
departments). Simpson’s reversal has been the topic of much statisti-
cal research since its discovery in 1899. This research has focused on
conditions for escaping the reversal instead of addressing the practi-
cal questions posed by the reversal: “Which association is more valid,
before or after partitioning?” In linear analysis, the problem surfaces
through the choice of regressors—for example, determining whether a
variate Z can be added to a regression equation without biasing the
result. Such an addition may easily reverse the sign of the coefficients
of the other regressors, a phenomenon known as “suppressor effect”
(Darlington 1990).

Despite a century of analysis, questions of regressor selection or
adjustment for covariates continue to be decided informally, case-by-
case, with the decision resting on folklore and intuition rather than on
hard mathematics. The standard statistical literature is remarkably
silent on this issue. Aside from noting that one should not adjust for
a covariate that is affected by the putative cause (X),° the literature
provides no guidelines as to what covariates might be admissible for
adjustment and what assumptions would be needed for making such a
determination formally. The reason for this silence is clear: the solution
to Simpson’s paradox and the covariate selection problem (as we have
seen in Sections 3.3.1 and 4.5.3) rests on causal assumptions, and such
assumptions cannot be expressed formally in the standard language of
statistics.®

In contrast, formulating the covariate selection problem in the lan-
guage of graphs immediately yields a general solution that is both nat-

5This advice, which rests on the causal relationship “not affected by,” is (to the
best of my knowledge) the only causal notion that has found a place in statistics
textbooks. The advice is neither necessary nor sufficient, as readers can verify from
the discussion of Chapter 3.

6Simpson’s reversal, as well as the supressor effect, are paradoxical only when
we attach causal reading to the associations involved; see Section 6.1.
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ural and formal. The investigator expresses causal knowledge (or as-
sumptions) in the familiar qualitative terminology of path diagrams,
and once the diagram is complete, a simple procedure decides whether
a proposed adjustment (or regression) is appropriate relative to the
quantity under evaluation. This procedure, which we called the back-
door criterion in Definition 3.3.1, was applicable when the quantity of
interest is the total effect of X on Y. If instead the direct effect is to
be evaluated, then the graphical criterion of Theorem 4.5.3 is appli-
cable. A modified criterion for identifying direct effects (i.e., a path
coefficient) in linear models will be given in Theorem 5.3.1.

This example is not an isolated instance of graphical methods afford-
ing clarity and understanding. In fact, the conceptual basis for SEM
achieves a new level of precision through graphs. What makes a set of
equations “structural,” what assumptions are expressed by the authors
of such equations, what the testable implications of those assumptions
are, and what policy claims a given set of structural equations adver-
tises are some of the questions that receive simple and mathematically
precise answers via graphical methods. These and related issues in
SEM will be discussed in the following sections.

5.2 Graphs and Model Testing

In 1919, Wright developed his “method of path coefficients,” which
allows researchers to compute the magnitudes of cause-effect relation-
ships from correlation measurements provided the path diagram rep-
resents correctly the causal processes underlying the data. Wright’s
method consists of writing a set of equations, one for each pair of vari-
ables (X, X;), and equating the (standardized) correlation coefficient
pij with a sum of products of path coefficients and residual correlations
along the various paths connecting X; and X;. One can then attempt to
solve these equations for the path coefficients in terms of the observed
correlations. Whenever the resulting equations give a unique solution
to some path coefficient p,,, that is independent of the (unobserved)
residual correlations, that coefficient is said to be identifiable. If every
set of correlation coefficients p;; is compatible with some choice of path
coefficients then the model is said to be untestable or unfalsifiable (also
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called saturated, just identified, etc.), because it is capable of perfectly
fitting any data whatsoever.

Whereas Wright’s method is partly graphical and partly algebraic,
the theory of directed graphs permits us to analyze questions of testabil-
ity and identifiability in purely graphical terms, prior to data collection,
and it also enables us to extend these analyses from linear to nonlinear
or nonparametric models. This section deals with issues of testability
in linear and nonparametric models.

5.2.1 The Testable Implications of Structural
Models

When we hypothesize a model of the data-generating process, that
model often imposes restrictions on the statistics of the data collected.
In observational studies, these restrictions provide the only view under
which the hypothesized model can be tested or falsified. In many cases,
such restrictions can be expressed in the form of zero partial correla-
tions; more significantly, the restrictions are implied by the structure
of the path diagram alone, independent of the numerical values of the
parameters, as revealed by the d-separation criterion.

Preliminary Notation

Before addressing the testable implication of structural models, let us
first review some definitions from Section 1.4 and relate them to the
standard notation used in the SEM literature.

The graphs we discuss in this chapter represent sets of structural
equations of the form

xi:fi(paiaeia) 1= ]-a""na (51)

where pa; (connoting parents) stands for the set of variables judged to be
immediate causes of X; and where the ¢; represent errors due to omitted
factors. Equation (5.1) is a nonlinear, nonparametric generalization of
the standard linear equations

Z; :Zaikxk—i-ei, 1= 1,...,TL, (52)
k#i
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in which pa; correspond to those variables on the r.h.s. of (5.2) that
have nonzero coefficients. A set of equations in the form of (5.1) will be
called a causal model if each equation represents the process by which
the value (not merely the probability) of variable X; is selected. The
graph G obtained by drawing an arrow from every member of pa; to
X, will be called a causal diagram. In addition to full arrows, a causal
diagram should contain a bidirected (i.e. double-arrowed) arc between
any pair of variables whose corresponding errors are dependent.

It is important to emphasize that causal diagrams (as well as tra-
ditional path diagrams) should be distinguished from the wide variety
of graphical models in the statistical literature whose construction and
interpretation rest solely on properties of the joint distribution (Kiiveri
et al. 1984; Whittaker 1990; Cox and Wermuth 1996; Lauritzen 1996;
Andersson et al. 1999). The missing links in those statistical mod-
els represent conditional independencies, whereas the missing links in
causal diagrams represent absence of causal connections (see note 3 and
Section 5.4), which may or may not imply conditional independencies
in the distribution.

A causal model will be called Markovian if its graph contains no
directed cycles and if its €; are mutually independent (i.e., if there are
no bidirected arcs). A model is semi-Markovian if its graph is acyclic
and if it contains dependent errors.

If the ¢; are multivariate normal (a common assumption in the SEM
literature), then the X; in (5.2) will also be multivariate normal and
will be fully characterized by the correlation coefficients p;;. A useful
property of multivariate normal distributions is that the conditional
variance ong, conditional covariance oxy|,, and conditional correla-
tion coefficient pxy|,, are all independent of the value z. These are
known as partial variance, covariance, and correlation coefficient and
are denoted by ox.z, oxy.z, and pxy.z (respectively), where X and YV
are single variables and Z is a set of variables. Moreover, the partial
correlation coefficient pxy.z is zero if and only if (X 1LY|Z) holds in
the distribution.

The partial regression coefficient is given by

Oy.z

Tyx.z = pPyx.z 5
0x.7
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it is equal to the coefficient of Y in the linear regression of ¥ on X
and Z (the order of the subscripts is essential). In other words, the
coefficient of x in the regression equation

y=ar+ bz + ...+ bpz

is given by
O =TYX-Z12Z5...Z},

These coefficients can therefore be estimated by the method of least
squares (Cramer 1946).

d-Separation and Partial Correlations

Markovian models (the parallel term in the SEM literature is recursive
models;” Bollen 1989) satisfy the Markov property of Theorem 1.2.7;
as a result, the statistical parameters of Markovian models can be esti-
mated by ordinary regression analysis. In particular, the d-separation
criterion is valid in such models (here we restate Theorem 1.2.4).

Theorem 5.2.1 (Verma and Pearl 1988; Geiger et al. 1990)

If sets X and Y are d-separated by Z in a DAG G, then X 1is inde-
pendent of Y conditional on Z in every Markovian model structured
according to G. Conversely, if X and 'Y are not d-separated by Z in a
DAG G, then X and Y are dependent conditional on Z in almost all
Markovian models structured according to G.

Because conditional independence implies zero partial correlation, The-
orem 5.2.1 translates into a graphical test for identifying those partial
correlations that must vanish in the model.

Corollary 5.2.2 In any Markovian model structured according to a
DAG G, the partial correlation pxy.z vanishes whenever the nodes cor-
responding to the variables in Z d-separate node X from node Y 1in
G, regardless of the model’s parameters. Moreover, no other partial
correlation would vanish for all the model’s parameters.

"The term recursive is ambiguous; some authors exclude correlated errors but
others do not.
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Unrestricted semi-Markovian models can always be emulated by Marko-
vian models that include latent variables, with the latter accounting for
all dependencies among error terms. Consequently, the d-separation
criterion remains valid in such models if we interpret bidirected arcs
as emanating from latent common parents. This may not be possi-
ble in some linear semi-Markovian models where each latent variable
is restricted to influence at most two observed variables (Spirtes et
al. 1996). However, it has been shown that the d-separation criterion
remains valid in such restricted systems (Spirtes et al. 1996) and, more-
over, that the validity is preserved when the network contains cycles
(Spirtes et al. 1998; Koster 1999). These results are summarized in the
next theorem.

Theorem 5.2.3 (d-Separation in General Linear Models)

For any linear model structured according to a diagram D, which may
include cycles and bidirected arcs, the partial correlation pxy.z vanishes
if the nodes corresponding to the set of variables Z d-separate node X
from node Y in D. (Each bidirected arc i <- -» j is interpreted as a
latent common parent i <— L — j.)

For linear structural equation models (see (5.2)), Theorem 5.2.3 im-
plies that those (and only those) partial correlations identified by the
d-separation test are guaranteed to vanish independent of the model
parameters a;; and independent of the error variances. This suggests a
simple and direct method for testing models: rather than going through
the standard exercise of finding a maximum likelihood estimate for the
model’s parameters and scoring those estimates for fit to the data,
we can directly test for each zero partial correlation implied by the
free model. The advantages of using such tests were noted by Shipley
(1997), who also devised implementations of these tests.

However, the question arises of whether it is feasible to test for the
vast number of zero partial correlations entailed by a given model. For-
tunately, these partial correlations are not independent of each other;
they can be derived from a relatively small number of partial correla-
tions that constitutes a basis for the entire set (Pearl and Verma 1987).

Definition 5.2.4 (Basis)
Let S be a set of partial correlations. A basis B for S is a set of zero
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partial correlations where (1) B implies (using the laws of probability)
the zero of every element of S and (ii) no proper subset of B sustains
such implication.

An obvious choice of a basis for the zero partial correlations entailed by
a DAG D is the set of equalities B = {pjj.pq; = 0|7 > j}, where i ranges
over all nodes in D and j ranges over all predecessors of 7 in any order
that agrees with the arrows of D. In fact, this set of equalities reflects
the “parent screening” property of Markovian models (Theorem 1.2.7),
which is the source of all the probabilistic information encoded in a
DAG . Testing for these equalities is therefore sufficient for testing all
the statistical claims of a linear Markovian model. Moreover, when the
parent sets P A; are large, it may be possible to select a more economical
basis, as shown in the next theorem.®

Theorem 5.2.5 (Graphical Basis)

Let (i,j) be a pair of nonadjacent nodes in a« DAG D, and let Z;; be
any set of nodes that are closer to i than j is to 1 and such that Z;;
d-separates i from j. The set of zero partial correlations B = {pij.z,;, =
0|i > j}, consisting of one element per nonadjacent pair, constitutes a
basis for the set of all zero partial correlations entailed by D.

Theorem 5.2.5 states that the set of zero partial correlations corre-
sponding to any separation between nonadjacent nodes in the diagram
encapsulates all the statistical information conveyed by a linear Marko-
vian model. A proof of Theorem 5.2.5 is given in Pearl and Meshkat
(1999).

Examining Figure 5.1, we see that each of following two sets forms
a basis for the model in the figure:

B, = {P32-1 =0, ps3 =0, pa23 =0, ps143 =0, psoa3 = 0}; (5 3)
By, = {032-1 =0, ps13=0, pgo1 =0, ps1.3 =0, psg1 = 0}- '

The basis B; employs the parent set PA; for separating i from
j, (i > j). Basis By, on the other hand, employs smaller separat-
ing sets and thus leads to tests involve fewer regressors. Note that

8The possibility that linear models may possess more economical bases came to
my awareness during a conversation with Rod McDonald.
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Figure 5.1: Model testable with two regressors for each missing link
(equation (5.3)).

each member of a basis corresponds to a missing arrow in the DAG;
therefore, the number of tests required to validate a DAG is equal to
the number of missing arrows it contains. The sparser the graph, the
more it constrains the covariance matrix and more tests are required
to verify those constraints.

5.2.2 Testing the Testable

In linear structural equation models, the hypothesized causal relation-
ships between variables can be expressed in the form of a directed graph
annotated with coefficients, some fixed a priori (usually to zero) and
some free to vary. The conventional method for testing such a model
against the data involves two stages. First, the free parameters are esti-
mated by iteratively maximizing a fitness measure such as the likelihood
function. Second, the covariance matrix implied by the estimated pa-
rameters is compared to the sample covariances and a statistical test
is applied to decide whether the latter could originate from the former
(Bollen 1989; Chou and Bentler 1995).
There are two major weaknesses to this approach:

1. if some parameters are not identifiable, then the first phase may
fail to reach stable estimates for the parameters and the investi-
gator must simply abandon the test;
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2. if the model fails to pass the data fitness test, the investigator
receives very little guidance about which modeling assumptions
are wrong.

For example, Figure 5.2 shows a path model in which the parameter
« is not identifiable if cov(ey,€;) is assumed to be unknown, which
means that the maximum likelihood method may fail to find a suitable
estimate for «, thus precluding the second phase of the test. Still,

Figure 5.2: A testable model containing unidentified parameter (c).

this model is no less testable than the one in which cov(ei, e3) = 0, «
is identifiable, and the test can proceed. These models impose the
same restrictions on the covariance matrix—namely, that the partial
correlation pxz.y should vanish (i.e., pxz = pxypyz)—yet the model
with free cov(e,€y), by virtue of a being nonidentifiable, cannot be
tested for this restriction.

Figure 5.3 illustrates the weakness associated with model diagnosis.
Suppose the true data-generating model has a direct causal connection
between X and W, as shown in Figure 5.3(a), while the hypothesized
model (Figure 5.3(b)) has no such connection. Statistically, the two
models differ in the term pxw.z, which should vanish according to
Figure 5.3(b) and is left free according to Figure 5.3(a). Once the
nature of the discrepancy is clear, the investigator must decide whether
substantive knowledge justifies alteration of the model by adding either
a link or a curved arc between X and W. However, because the effect
of the discrepancy will be spread over several covariance terms, global
fitness tests will not be able to isolate the discrepancy easily. Even
multiple fitness tests on various local modifications of the model (such
tests are provided by LISREL) may not help much, because the results
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Z w Z W

(€Y (b)
Figure 5.3: Models differing in one local test, pxw.z = 0.

may be skewed by other discrepancies in different parts of the model,
such as the subgraph rooted at Y. Thus, testing for global fitness is
often of only minor use in model debugging.

An attractive alternative to global fitness testing is local fitness test-
ing, which involves listing the restrictions implied by the model and
testing them one by one. A restriction such as pxw.z = 0, for example,
can be tested locally without measuring Y or any of its descendants,
thus keeping errors associated with those measurements from interfer-
ing with the test for pxw.z = 0, which is the real source of the lack
of fit. More generally, typical SEM models are often close to being
“saturated,” claiming but a few restrictions in the form of a few edges
missing from large, otherwise unrestrictive diagrams. Local and direct
tests for those restrictions are more reliable than global tests, since they
involve fewer degrees of freedom and are not contaminated with irrel-
evant measurement errors. The missing edges approach described in
Section 5.2.1 provides a systematic way of detecting and enumerating
the local tests needed for testing a given model.

5.2.3 Model Equivalence

In Section 2.3 (Definition 2.3.3) we defined two structural equation
models to be observationally equivalent if every probability distribution
that is generated by one of the models can also be generated by the
other. In standard SEM, models are assumed to be linear and data
are characterized by covariance matrices. Thus, two such models are
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observationally indistinguishable if they are covariance equivalent, that
is, if every covariance matrix generated by one model (through some
choice of parameters) can also be generated by the other. It can be
easily verified that the equivalence criterion of Theorem 1.2.8 extends
to covariance equivalence.

Theorem 5.2.6 Two Markovian linear-normal models are covariance
equivalent if and only if they entail the same sets of zero partial cor-
relations. Moreover, two such models are covariance equivalent if and
only if their corresponding graphs have the same sets of edges and the
same sets of v-structures.

The first part of Theorem 5.2.6 defines the testable implications of
Markovian models. It states that, in nonmanipulative studies, Marko-
vian structural equation models cannot be tested for any feature other
than those zero partial correlations that the d-separation test reveals.
It also provides a simple test for equivalence that requires, instead of
checking all the d-separation conditions, merely a comparison of corre-
sponding edges and their directionalities.

In semi-Markovian models (DAGs with correlated errors), the d-
separation criterion is still valid for testing independencies (see The-
orem 5.2.3), but independence equivalence no longer implies observa-
tional equivalence.® Two models that entail the same set of zero partial
correlations among the observed variables may yet impose different in-
equality constraints on the covariance matrix. Nevertheless, Theorems
5.2.3 and 5.2.6 still provide necessary conditions for testing equivalence.

Generating Equivalent Models

By permitting arrows to be reversed as long as no w-structures are
destroyed or created, we can use Theorem 5.2.6 to generate equivalent
alternatives to any Markovian model. Meek (1995) and Chickering
(1995) showed that X — Y can be replaced by X <— Y if and only
if all parents of X are also parents of Y. They also showed that, for
any two equivalent models, there is always some sequence of such edge

9Verma and Pearl (1990) presented an example using a nonparametric model,
and Richardson devised an example using linear models with correlated errors
(Spirtes and Richardson 1996).
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reversals that takes one model into the other. This simple rule for edge
reversal coincides with those proposed by Stelzl (1986) and Lee and
Hershberger (1990).

In semi-Markovian models, the rules for generating equivalent
models are more complicated. Nevertheless, Theorem 5.2.6 yields
convenient graphical principles for testing the correctness of edge-
replacement rules. The basic principle is that if we regard each
bidirected arc X <--» Y as representing a latent common cause
X <— L — Y, then the “if” part of Theorem 5.2.6 remains valid;
that is, any edge-replacement transformation that does not destroy or
create a v-structure is allowed. Thus, for example, an edge X — Y
can be replaced by a bidirected arc X <--» Y whenever X and Y
have no other parents, latent or observed. Likewise, an edge X — Y
can be replaced by a bidirected arc X <- -»Y whenever (1) X and Y
have no latent parents and (2) every parent of X or Y is a parent of
both. Such replacements do not introduce new v-structures. However,
since v-structures may now involve latent variables, we can tolerate the
creation or destruction of some wv-structures as long as this does not
affect partial correlations among the observed variables. Figure 5.4(a)
demonstrates that the creation of certain v-structures can be toler-
ated. By reversing the arrow X —= Y we create two converging arrows
Z — X <— Y whose tails are connected, not directly, but through
a latent common cause. This is tolerated because, although the new
convergence at X blocks the path (Z, X,Y’), the connection between Z
and Y (through the arc Z <--»Y') remains unblocked and, in fact,
cannot be blocked by any set of observed variables.

We can carry this principle further by generalizing the concept of
v-structure. Whereas in Markovian models a v-structure is defined as
two converging arrows whose tails are not connected by a link, we now
define v-structure as any two converging arrowheads whose tails are
“separable.” By separable we mean that there exists a conditioning
set, S capable of d-separating the two tails. Clearly, the two tails will
not be separable if they are connected by an arrow or by a bidirected
arc. But a pair of nodes in a semi-Markovian model can be inseparable
even when not connected by an edge (Verma and Pearl 1990). With
this generalization in mind, we can state necessary conditions for edge
replacement as follows.
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Rule 1: An arrow X — Y is interchangeable with X <--»Y only if
every neighbor or parent of X is inseparable from Y. (By neighbor
we mean a node connected (to X) through a bidirected arc.)

Rule 2: An arrow X —= Y can be reversed into X <— Y only if,
before reversal, (i) every neighbor or parent of Y (excluding X)
is inseparable from X and (ii) every neighbor or parent of X is
inseparable from Y.

For example, consider the model Z <--» X — Y. The arrow
X — Y cannot be replaced with a bidirected arc X <- -» Y because
Z (a neighbor of X) is separable from Y by the set S = {X}. Indeed,
the new v-structure created at X would render X and Y marginally
independent, contrary to the original model.

As another example, consider the graph in Figure 5.4(a). Here, it is

Figure 5.4: Models permitting ((a) and (b)) and forbidding (c) the
reversal of XY

legitimate to replace X —= Y with X <- -»Y or with a reversed arrow
X <«— Y because X has no neighbors and Z, the only parent of X, is
inseparable from Y. The same considerations apply to Figure 5.4(b);
variables Z and Y, though nonadjacent, are inseparable, because the
paths going from Z to Y through W cannot be blocked.

A more complicated example, one that demonstrates that rules 1
and 2 are not sufficient to ensure the legitimacy of a transformation, is
shown in Figure 5.4(c). Here, it appears that replacing X — Y with
X <- -»Y would be legitimate because the (latent) v-structure at X is
shunted by the arrow Z —= Y. However, the original model shows the
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path from W to Y to be d-connected given Z, whereas the postreplace-
ment model shows the same path d-separated given Z. Consequently,
the partial correlation py y.z vanishes in the postreplacement model but
not in the prereplacement model. A similar disparity also occurs rela-
tive to the partial correlation pyy.zx. The original model shows that
the path from W to Y is blocked, given {Z, X'}, but the postreplace-
ment model shows that path to be d-connected, given {Z, X'}. Conse-
quently, the partial correlation pyy.zx vanishes in the prereplacement
model but is unconstrained in the postreplacement model.}’ Evidently,
it is not enough to impose rules on the parents and neighbors of X;
remote ancestors (e.g. W) should be considered, too.

These rules are just a few of the implications of the d-separation
criterion when applied to semi-Markovian models. A necessary and
sufficient criterion for testing the d-separation equivalence of two semi-
Markovian models was devised by Spirtes and Verma (1992). Spirtes
and Richardson (1996) extended that criterion to include models with
feedback cycles. However, we should keep in mind that, because two
semi-Markovian models can be zero-partial-correlation equivalent and
yet not covariance equivalent, criteria based on d-separation can provide
merely the necessary conditions for model equivalence.

The Significance of Equivalent Models

Theorem 5.2.6 is methodologically significant because it clarifies what
it means to claim that structural models are “testable” (Bollen 1989,
p. 78).11 Tt asserts that we never test a model but rather a whole class of
observationally equivalent models from which the hypothesized model
cannot be distinguished by any statistical means. It asserts as well
that this equivalence class can be constructed (by inspection) from the
graph, which thus provides the investigator with a vivid representation
of competing alternatives for consideration. Graphs representing all

10This example was brought to my attention by Jin Tian, and a similar one by
two anonymous reviewers.

1n response to an allegation that “path analysis does not derive the causal theory
from the data, or test any major part of it against the data” (Freedman 1987, p.
112), Bollen (1989, p. 78) stated, “we can test and reject structural models.... Thus
the assertion that these models cannot be falsified has little basis.”
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models in a given equivalence class have been devised by Verma and
Pearl (1990) (see Section 2.6), Spirtes et al. (1993), and Andersson et al.
(1999). Richardson (1996) discusses the representation of equivalence
classes of models with cycles.

Although it is true that (overidentified) structural equation models
have testable implications, those implications are but a small part of
what the model represents: a set of claims, assumptions, and impli-
cations. Failure to distinguish among causal assumptions, statistical
implications, and policy claims has been one of the main reasons for
the suspicion and confusion surrounding quantitative methods in the
social sciences (Freedman 1987, p. 112; Goldberger 1992; Wermuth
1992). However, because they make the distinctions among these com-
ponents vivid and crisp, graphical methods promise to make SEM more
acceptable to researchers from a wide variety of disciplines.

By and large, the SEM literature has ignored the explicit analysis
of equivalent models. Breckler (1990), for example, found that only
one of 72 articles in the areas of social and personality psychology
even acknowledged the existence of an equivalent model. The general
attitude has been that the combination of data fitness and model over-
identification is sufficient to confirm the hypothesized model. Recently,
however, the existence of multiple equivalent models seems to have jan-
gled the nerves of some SEM researchers. MacCallum et al. (1993, p.
198) concluded that “the phenomenon of equivalent models represents
a serious problem for empirical researchers using CSM” and “a threat
to the validity of interpretation of CSM results” (CSM denotes “cxo-
variance structure modeling”; this does not differ from SEM, but the
term is used by some social scientists to disquise euphemistically the
causal content of their models). Breckler (1990, p. 262) reckoned that
“if one model is supported, so too are all of its equivalent models” and
hence ventured that “the term causal modeling is a misnomer.”

Such extremes are not justifiable. The existence of equivalent mod-
els is logically inevitable if we accept the fact that causal relations
cannot be inferred from statistical data alone; as Wright (1921) stated,
“prior knowledge of the causal relations is assumed as prerequisite” in
SEM. But this does not make SEM useless as a tool for causal mod-
eling. The move from the qualitative causal premises represented by
the structure of a path diagram (see note 3) to the quantitative causal
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conclusions advertised by the coefficients in the diagram is neither use-
less nor trivial. Consider, for example, the model depicted in Figure
5.5, which Bagozzi and Burnkrant (1979) used to illustrate problems
associated with equivalent models. Although this model is saturated
(i.e., just identified) and although it has (at least) 27 semi-Markovian
equivalent models, finding that the influence of AFFECT on BEHAVIOR
is almost three times stronger (on a standardized scale) than the influ-
ence of COGNITION on BEHAVIOR is still very illuminating—it tells
us about the relative effectiveness of different behavior modification
policies if some are known to influence AFFECT and others COGNI-
TION. The significance of this quantitative analysis on policy analysis
may be more dramatic when a path coefficient turns negative while the
corresponding correlation coefficient measures positive. Such quantita-
tive results may have profound impact on policy decisions, and learning
that these results are logically implied by the data and the qualitative
premises embedded in the diagram should make the basis for policy
decisions more transparent to defend or to criticize.

AFFECT COGNITION
.65 .23
BEHAVIOR

Figure 5.5: Untestable model displaying quantitative causal informa-
tion derived.

In summary, social scientists need not abandon SEM altogether;
they need only abandon the notion that SEM is a method of testing
causal models. Structural equation modeling is a method of testing a
tiny fraction of the premises that make up a causal model and, in cases
where that fraction is found to be compatible with the data, the method
elucidates the necessary quantitative consequences of both the premises
and the data. It follows, then, that users of SEM should concentrate
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on examining the implicit theoretical premises that enter into a model.
As we will see in Section 5.4, graphical methods make these premises
vivid and precise.

5.3 Graphs and Identifiability

5.3.1 Parameter Identification in Linear Models

Consider a directed edge X — Y embedded in a path diagram G,
and let « stand for the path coefficient associated with that edge. It
is well known that the regression coefficient ryx = pxyoy/ox can be
decomposed into the sum

ryx = a+ Iyx,

where Iyx is not a function of «, since it is computed (e.g., using
Wright’s rules) from other paths connecting X and Y excluding the
edge X — Y. (Such paths traverse both unidirected and bidirected
arcs.) Thus, if we remove the edge X — Y from the path diagram
and find that the resulting subgraph entails zero correlation between
X and Y, then we know that Iyx = 0 and a = ryx; hence, « is
identified. Such entailment can be established graphically by testing
whether X is d-separated from Y (by the empty set Z = {0}) in the
subgraph. Figure 5.6 illustrates this simple test for identification: all
paths between X and Y in the subgraph G, are blocked by converging
arrows, and « can immediately be equated with ryx.

We can extend this basic idea to cases where Iy x is not zero but can
be made zero by adjusting for a set of variables Z = {71, Z, ..., Zx}
that lie on various d-connected paths between X and Y. Consider the
partial regression coefficient ry x.7 = pyx.z0y.z/0x.7, which represents
the residual correlation between Y and X after Z is “partialled out.”
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Figure 5.6: Test of whether structural parameter o can be equated with
regression coefficient ry x.

If Z contains no descendant of Y, then again we can write'?
ryx.z =a+ Iyx.z,

where Iy x.z represents the partial correlation between X and Y result-
ing from setting « to zero, that is, the partial correlation in a model
whose graph G, lacks the edge X — Y but is otherwise identical to
G. If Z d-separates X from Y in GG, then Iy x.z would indeed be zero
in such a model and so we can conclude that, in our original model, « is
identified and is equal to ryx.z. Moreover, since ryx.z is given by the
coefficient of z in the regression of Y on X and Z, o can be estimated
using the regression

y=oax+ P1z1+...+ Brzr + €

This result provides a simple graphical answer to the questions,
alluded to in Section 5.1.3, of (i) what constitutes an adequate set of

12This can be seen when the relation between Y and its parents, ¥ =
ar + Y, Biw; + €, is substituted into the expression for ryx.z, which yields
a plus an expression Iy x.z involving partial correlations among the variables
{X,Wy,...,Wg, Z,e}. Because Y is assumed not to be an ancestor of any of these
variables, their joint density is unaffected by the equation for Y; hence, Iy x.z is
independent of a.
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regressors and (ii) when a regression coefficient provides a consistent
estimate of a path coefficient. The answers are summarized in the
following theorem.!3

Theorem 5.3.1 (Single-Door Criterion for Direct Effects)

Let G be any path diagram in which « is the path coefficient associated
with link X —= Y, and let G, denote the diagram that results when
X — Y s deleted from G. The coefficient « is identifiable if there
exists a set of variables Z such that (1) Z contains no descendant of Y
and (ii) Z d-separates X from'Y in Go. If Z satisfies these two con-
ditions, then « is equal to the regression coefficient ryx.z. Conversely,
if Z does not satisfy these conditions, then ryx.z is not a consistent
estimand of o (except in rare instances of measure zero).

The use of Theorem 5.3.1 can be illustrated as follows. Consider the
graphs G and G, in Figure 5.7. The only path connecting X and Y in

//—_\\\ G //—_\\ Ga

Figure 5.7: The identification of « (Theorem 5.3.1) in confirmed by G,,.

G, is the one traversing Z, and since that path is d-separated (blocked)
by Z, « is identifiable and is given by a = ryx.z. The coefficient
is identifiable, of course, since Z is d-separated from X in Gz (by the
empty set () and thus 8 = rxz. Note that this “single-door” test differs
slightly from the back-door criterion for total effects (Definition 3.3.1);
the set Z here must block all indirect paths from X to Y, not only
back-door paths. Condition (i) is identical to both cases, because if X
is a parent of Y then every descendant of ¥ must also be a descendant
of X.

13This result is presented in Pearl (1998a) and Spirtes et al. (1998).
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We now extend the identification of structural parameters through
the identification of total effects (rather than direct effects). Consider
the graph G in Figure 5.8. If we form the graph G, by removing the link

//’_\ 22

TN Z, PRGN Z,

/

Figure 5.8: Graphical identification of the total effect of X on Y, yield-
ing o+ ﬁ”}’ =TYX-Zs-

X — Y, we observe that there is no set Z of nodes that d-separates all
paths from X to Y. If Z contains Z;, then the path X — Z; <= -»Y
will be unblocked through the converging arrows at Z;. If Z does not
contain Z;, the path X — Z; — Y is unblocked. Thus we conclude
that a cannot be identified using our previous method. However, sup-
pose we are interested in the total effect of X on Y, which is given by
a+ (. For this sum to be identified by 7y x, there should be no contri-
bution to ryx from paths other than those leading from X to Y. How-
ever, we see that two such paths, called confounding or back-door paths,
exist in the graph—mnamely, X <— Z; — Y and X <«--» 7, — Y.
Fortunately, these paths are blocked by Z; and so we may conclude
that adjusting for Zy would render o + (7 identifiable; thus we have

o+ ﬂ’)/ =TYX.Zy-

This line of reasoning is captured by the back-door criterion of Def-
inition 3.3.1, which we restate here for completeness.
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Theorem 5.3.2 (Back-Door Criterion)

For any two variables X and Y in a causal diagram G, the total effect
of X on'Y is identifiable if there exists a set of measurements Z such
that:

1. no member of Z is a descendant of X ; and

2. Z d-separates X from'Y in the subgraph Gx formed by deleting
from G all arrows emanating from X.

Moreover, if the two conditions are satisfied, then the total effect of X
onY 1is given by ryx.z.

The two conditions of Theorem 5.3.2, as we have seen in Section 3.3.1,
are also valid in nonlinear non-Gaussian models as well as in models
with discrete variables. The test ensures that, after adjustment for Z,
the variables X and Y are not associated through confounding paths,
which means that the regression coefficient ryx.z is equal to the total
effect. In fact, we can view Theorems 5.3.1 and 5.3.2 as special cases of
a more general scheme: In order to identify any partial effect, as defined
by a select bundle of causal paths from X to Y, we ought to find a set Z
of measured variables that block all nonselected paths between X and
Y. The partial effect will then equal the regression coefficient ryx.z.

Figure 5.8 demonstrates that some total effects can be determined
directly from the graphs without having to identify their individual
components. Standard SEM methods (Bollen 1989; Chou and Bentler
1995) that focus on the identification and estimation of individual pa-
rameters may miss the identification and estimation of effects such as
the one in Figure 5.8, which can be estimated reliably even though
some of the constituents remain unidentified.

Some total effects cannot be determined directly as a unit but in-
stead require the determination of each component separately. In Fig-
ure 5.7, for example, the effect of Z on Y (= af) does not meet the
back-door criterion, yet this effect can be determined from its con-
stituents o and 3, which meet the back-door criterion individually and
evaluate to

ﬂ:sz, a=Tyx.Z-
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There is yet a third kind of causal parameter: one that cannot be
determined either directly or through its constituents but rather re-
quires the evaluation of a broader causal effect of which it is a part.
The structure shown in Figure 5.9 represents an example of this case.
The parameter o cannot be identified either directly or from its con-

Figure 5.9: Graphical identification of « using instrumental variable Z.

stituents (it has none), yet it can be determined from o3 and 3, which
represent the effect of Z on Y and of Z on X, respectively. These two
effects can be identified directly, since there are no back-door paths
from Z to either Y or X; therefore, o = ryz and 8 = rxz. It follows
that

=T YZ/ rxz,

which is familiar to us as the instrumental variable formula (Bowden
and Turkington 1984; see also Section 3.5, equation (3.46)).

The example shown in Figure 5.10 combines all three methods con-
sidered thus far. The total effect of X on Y is given by a3+ 79, which
is not identifiable because it does not meet the back-door criterion and
is not part of another identifiable structure. However, suppose we wish
to estimate 3. By conditioning on Z, we block all paths going through
Z and obtain aff = ryx.z, which is the effect of X on Y mediated
by W. Because there are no back-door paths from X to W, « itself
evaluates directly to a = ryx. We therefore obtain

5 = TYX-Z/TWX-
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Figure 5.10: Graphical identification of o, (3, and 7.

On the other hand, v can be evaluated directly by conditioning on X
(thus blocking all back-door paths from Z to Y through X), which
gives

Y=Tyzx

The methods that we have been using suggest the following system-
atic procedure for recognizing identifiable coefficients in a graph.

1. Start by searching for identifiable causal effects among pairs of
variables in the graph, using the back-door criterion and Theorem
5.3.1. These can be either direct effects, total effects, or partial
effects (i.e., effects mediated by specific sets of variables).

2. For any such identified effect, collect the path coefficients involved
and put them in a bucket.

3. Begin labeling the coefficients in the buckets according to the
following procedure:

(a) if a bucket is a singleton, label its coefficient I (denoting
identifiable).

(b) If a bucket is not a singleton but contains only a single un-
labeled element, label that element I.

4. Repeat this process until no new labeling is possible.
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5. List all labeled coefficients; these are identifiable.

The process just described is not complete, because our insistence
on labeling coefficients one at a time may cause us to miss certain
opportunities. This is shown in Figure 5.11. Starting with the pairs

Figure 5.11: Identifying 8 and ¢ using two instrumental variables.

(X,72), (X,W), (X',Z), and (X', W), we discover that a, ~, o/, and
" are identifiable. Going to (X,Y), we find that a3+ 6+ is identifiable;
likewise, from (X', Y) we see that /3 + +'d is identifiable. This does

not yet enable us to label 3 or §, but we can solve two equations for the
la 7|
unknowns (3 and § as long as the determinant |o/+'| is nonzero. Since we

are not interested in identifiability at a point but rather in identifiability
“almost everywhere” (Koopmans et al. 1950; Simon 1953), we need not
compute this determinant. We merely inspect the symbolic form of the
determinant’s rows to make sure that the equations are nonredundant;
each imposes a new constraint on the unlabeled coefficients for at least
one value of the labeled coefficients.

With a facility to detect redundancies, we can increase the power
of our procedure by adding the following rule:

3*. If there are k£ nonredundant buckets that contain at most k£ un-
labeled coefficients, label these coefficients and continue.

Another way to increase the power of our procedure is to list not
only identifiable effects but also expressions involving correlations due
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to bidirected arcs, in accordance with Wright’s rules. Finally, one can
endeavor to list effects of several variables jointly as is done in Sec-
tion 4.4. However, such enrichments tend to make the procedure more
complex and might compromise our main objective of providing inves-
tigators with a way to immediately recognize the identified coefficients
in a given model and immediately understand those features in the
model that influence the identifiability of the target quantity. We now
relate these results to the identification in nonparametric models, such
as those treated in Section 3.3.

5.3.2 Comparison to Nonparametric Identification

The identification results of the previous section are significantly more
powerful than those obtained in Chapters 3 and 4 for nonparamet-
ric models. Nonparametric models should nevertheless be studied by
parametric modelers for both practical and conceptual reasons. On the
practical side, investigators often find it hard to defend the assump-
tions of linearity and normality (or other functional-distributional as-
sumptions), especially when categorical variables are involved. Because
nonparametric results are valid for nonlinear functions and for any dis-
tribution of errors, having such results allows us to gauge how sensitive
standard techniques are to assumptions of linearity and normality. On
the conceptual side, nonparametric models illuminate the distinctions
between structural and algebraic equations. The search for nonpara-
metric quantities analogous to path coefficients forces explication of
what path coefficients really mean, why one should labor at their iden-
tification, and why structural models are not merely a convenient way
of encoding covariance information.

In this section we cast the problem of nonparametric causal effect
identification (Chapter 3) in the context of parameter identification in
linear models.

Parametric versus Nonparametric Models: An Example

Consider the set of structural equations

z = fi(u,€), (5.4)
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z = folz,€), (5.5)
y = fi(z,u,e3), (5.6)

where X, Z, Y are observed variables, f1, fa, f3 are unknown arbitrary
functions, and U, €, €3, €3 are unobservables that we can regard either
as latent variables or as disturbances. For the sake of this discussion,
we will assume that U, €y, €5, and €3 are mutually independent and ar-
bitrarily distributed. Graphically, these influences can be represented
by the path diagram of Figure 5.12.

Figure 5.12: Path diagram corresponding to equations (5.4)—(5.6),
where {X, Z, Y} are observed and {U, €1, €5, €3} are unobserved.

The problem is as follows. We have drawn a long stream of indepen-
dent samples of the process defined by (5.4)-(5.6) and have recorded
the values of the observed variables X, Z, Y; we now wish to estimate
the unspecified quantities of the model to the greatest extent possible.

To clarify the scope of the problem, we consider its linear version,
which is given by

T = u-+ ey, (5.7)
z = azr+ e, (5.8)
y = [z+yu+es, (5.9)

where U, €1, €5, €3 are uncorrelated, zero-mean disturbances.'* It is not
hard to show that parameters «, 3, and 7 can be determined uniquely

4An equivalent version of this model is obtained by eliminating U from the
equations and allowing €; and €3 to be correlated, as in Figure 5.7.
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from the correlations among the observed quantities X, Z, and Y. This
identification was demonstrated already in the example of Figure 5.7,
where the back-door criterion yielded

ﬁz’l”yz.x, a=Tzx, (510)

and hence
v=ryx —af. (5.11)

Thus, returning to the nonparametric version of the model, it is
tempting to generalize that, for the model to be identifiable, the func-
tions { f1, f2, f3} must be determined uniquely from the data. However,
the prospect of this happening is unlikely, because the mapping between
functions and distributions is known to be many-to-one. In other words,
given any nonparametric model M, if there exists one set of functions
{f1, f2, f3} compatible with a given distribution P(x,y, z), then there
are infinitely many such functions (see Figure 1.6). Thus, it seems that
nothing useful can be inferred from loosely specified models such as the
one given by (5.4)—(5.6).

Identification is not an end in itself, however, even in linear models.
Rather, it serves to answer practical questions of prediction and con-
trol. At issue is not whether the data permit us to identify the form
of the equations but, instead, whether the data permit us to provide
unambiguous answers to questions of the kind traditionally answered
by parametric models.

When the model given by (5.4)—(5.6) is used strictly for prediction
(i.e., to determine the probabilities of some variables given a set of ob-
servations on other variables), the question of identification loses much
(if not all) of its importance; all the predictions can be estimated di-
rectly from either the covariance matrices or the sample estimates of
those covariances. If dimensionality reduction is needed (e.g., to im-
prove estimation accuracy) then the covariance matrix can be encoded
in a variety of simultaneous equation models, all of the same dimen-
sionality. For example, the correlations among X, Y, and Z in the
linear model M of (5.7)—(5.9) might well be represented by the model
M' (Figure 5.13):

T = €, (5.12)
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z = dz+ e, (5.13)
y = [z+06x+es. (5.14)

This model is as compact as (5.7)—(5.9) and is covariance equivalent
to M with respect to the observed variables X, Y, Z. Upon setting
o =a, =0, and 6 = v, model M’ will yield the same probabilistic
predictions as those of the model of (5.7)-(5.9). Still, when viewed as
data-generating mechanisms, the two models are not equivalent. Each
tells a different story about the processes generating X, Y, and Z,
so naturally their predictions differ concerning the changes that would
result from subjecting these processes to external interventions.

Figure 5.13: Diagram representing model M’ of (5.12)—(5.14).

5.3.3 Causal Effects: The Interventional Interpre-
tation of Structural Equation Models

The differences between models M and M’ illustrate precisely where the
structural reading of simultaneous equation models comes into play, and
why even causally shy researchers consider structural parameters more
“meaningful” than covariances and other statistical parameters. Model
M', defined by (5.12)—(5.14), regards X as a direct participant in the
process that determines the value of Y, whereas model M, defined by
(5.7)—(5.9), views X as an indirect factor whose effect on Y is mediated
by Z. This difference is not manifested in the data itself but rather in
the way the data would change in response to outside interventions.
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For example, suppose we wish to predict the expectation of Y after we
intervene and fix the value of X to some constant x; this is denoted
E(Y|do(X = z)). After X = z is substituted into (5.13) and (5.14),
model M’ yields

ElY|do(X =z)] = FE[f'd'z+ B'es + 0z + €3] (5.15)
= (B'd/ +)x; (5.16)

model M yields

E[Y|do(X =z)] = E[Bazr+ Bes+ yu + €3] (5.17)
Ba. (5.18)

Upon setting o/ = o, ' = (8, and § = v (as required for covariance
equivalence; see (5.10) and (5.11)), we see clearly that the two models
assign different magnitudes to the (total) causal effect of X on Y: model
M predicts that a unit change in x will change E(Y') by the amount
Ba, wheras model M’ puts this amount at Sa + 7.

At this point, it is tempting to ask whether we should substitute
x — € for u in (5.9) prior to taking expectations in (5.17). If we per-
mit the substitution of (5.8) into (5.9), as we did in deriving (5.17),
why not permit the substitution of (5.7) into (5.9) as well? After all
(the argument runs), there is no harm in upholding a mathematical
equality, v = = — €, that the modeler deems valid. This argument is
fallacious, however.!5 Structural equations are not meant to be treated
as immutable mathematical equalities. Rather, they are meant to de-
fine a state of equilibrium—one that is wviolated when the equilibrium
is perturbed by outside interventions. In fact, the power of structural
equation models is that they encode not only the initial equilibrium
state but also the information necessary for determining which equa-
tions must be violated in order to account for a new state of equilibrium.
For example, if the intervention consists merely of holding X constant
at x, then the equation x = u+ ¢, which represents the preintervention
process determining X, should be overruled and replaced with the equa-
tion X = z. The solution to the new set of equations then represents

15Guch arguments have led to Newcomb’s paradox in the so-called evidential de-
cision theory (see Section 4.1.1).
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the new equilibrium. Thus, the essential characteristic of structural
equations that sets them apart from ordinary mathematical equations
is that the former stand not for one but for many sets of equations, each
corresponding to a subset of equations taken from the original model.
Every such subset represents some hypothetical physical reality that
would prevail under a given intervention.

If we take the stand that the value of structural equations lies not
in summarizing distribution functions but in encoding causal informa-
tion for predicting the effects of policies (Haavelmo 1943; Marschak
1950; Simon 1953), it is natural to view such predictions as the proper
generalization of structural coefficients. For example, the proper gen-
eralization of the coefficient 3 in the linear model M would be the
answer to the control query, “What would be the change in the ex-
pected value of Y if we were to intervene and change the value of 7
from z to z 4+ 1,” which is different, of course, from the observational
query, “What would be the difference in the expected value of Y if we
were to find Z at level z + 1 instead of level z.” Observational queries,
as we discussed in Chapter 1, can be answered directly from the joint
distribution P(z,y, z), while control queries require causal information
as well. Structural equations encode this causal information in their
syntax by treating the variable on the left-hand side of the equality
sign as the effect and treating those on the right as causes. In Chapter
3 we distinguished between the two types of queries through the symbol
do(+). For example, we wrote

E(Y|do(z)) £ E[Y|do(X = z)] (5.19)
for the controlled expectation and
E(Y|z) 2 E(Y|X = z) (5.20)

for the standard conditional or observational expectation. That
E(Y|do(z)) does not equal E(Y|z) can easily be seen in the model of
(56.7)—(5.9), where E(Y |do(z)) = afz but E(Y|z) = ryxz = (aB+7)x.
Indeed, the passive observation X = z should not violate any of the
equations, and this is the justification for substituting both (5.7) and
(5.8) into (5.9) before taking the expectation.
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In linear models, the answers to questions of direct control are en-
coded in the path (or structural) coefficients, which can be used to de-
rive the total effect of any variable on another. For example, the value of
E(Y|do(x)) in the model defined by (5.7)—(5.9) is afx, that is, x times
the product of the path coefficients along the path X — Z — Y.
Computation of E(Y|do(x)) would be more complicated in the non-
parametric case, even if we knew the functions f;, fs, and f3. Never-
theless, this computation is well-defined; it requires the solution (for the
expectation of Y) of a modified set of equations in which f; is “wiped
out” and X is replaced by the constant x:

z = folz,€), (5.21)
y = f3(2,u,€). (5.22)

Thus, computation of E(Y|do(z)) requires evaluation of

E(Y|do(z)) = E{fs|fa(x, &2), u; &3]},

where the expectation is taken over U, €y, and €3. Graphical methods
for performing this computation were discussed in Section 3.3.2.

What, then, is an appropriate definition of identifiability for non-
parametric models? One reasonable definition is that answers to in-
terventional queries are unique, and this is precisely how Definition
3.2.3 interprets the identification of the causal effect P(y|do(z)). As we
have seen in Chapters 3 and 4, many aspects of nonparametric iden-
tification can be determined graphically, almost by inspection, from
the diagrams that accompany the equations. These include tests for
deciding whether a given interventional query is identifiable as well as
formulas for estimating such queries.

5.4 Some Conceptual Underpinnings

5.4.1 What Do Structural Parameters Really
Mean?

Every student of SEM has stumbled on the following paradox at some
point in his or her career. If we interpret the coefficient 3 in the equation

y=p0x+e€
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as the change in E(Y) per unit change of X, then, after rewriting the
equation as
z=(y—€)/B,

we ought to interpret 1/4 as the change in E(X) per unit change of
Y. But this conflicts both with intuition and with the prediction of the
model: the change in F(X) per unit change of Y ought to be zero if Y’
does not appear as an independent variable in the original, structural
equation for X.

Teachers of SEM generally evade this dilemma via one of two escape
routes. One route involves denying that 3 has any causal reading and
settling for a purely statistical interpretation, in which  measures the
reduction in the variance of Y explained by X (see e.g. Muthen 1987).
The other route permits causal reading of only those coefficients that
meet the “isolation” restriction (Bollen 1989; James et al. 1982): the
explanatory variable must be uncorrelated with the error in the equa-
tion. Because e cannot be uncorrelated with both X and Y (or so the
argument goes), # and 1/ cannot both have causal meaning, and the
paradox dissolves.

The first route is self-consistent, but it compromises the founders’
intent that SEM function as an aid to policy making and clashes with
the intuition of most SEM users. The second is vulnerable to attack
logically. It is well known that every pair of bivariate normal variables,
X and Y, can be expressed in two equivalent ways,

y=pPr+ e and z = ay + €,

where cov(X,e;) = cov(Y,e) = 0 and a = rxy = fo%/o%. Thus,
if the condition cov(X,e;) = 0 endows [ with causal meaning, then
cov(Y, €2) = 0 ought to endow « with causal meaning as well. But this,
too, conflicts with both intuition and the intentions behind SEM; the
change in E(X) per unit change of Y ought to be zero, not rxy, if there
is no causal path from Y to X.

What then is the meaning of a structural coefficient? Or a structural
equation? Or an error term? The interventional interpretation of causal
effects, when coupled with the do(x) notation, provides simple answers
to these questions. The answers explicate the operational meaning of
structural equations and thus should end, I hope an era of controversy
and confusion regarding these entities.
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Structural Equations: Operational Definition

Definition 5.4.1 (Structural Equations)

An equation y = Bx + € is said to be structural if it is to be interpreted
as follows: In an ideal experiment where we control X to x and any
other set Z of variables (not containing X orY') to z, the value y of Y
s given by Bx + €, where € is not a function of the settings x and z.

This definition is operational because all quantities are observable, al-
beit under conditions of controlled manipulation. That manipulations
cannot be performed in most observational studies does not negate the
operationality of the definition, much as our inability to observe bac-
teria with the naked eye does not negate their observability under a
microscope. The challenge of SEM is to extract the maximum infor-
mation concerning what we wish to observe from the little we actually
can observe.

Note that the operational reading just given makes no claim about
how X (or any other variable) will behave when we control Y. This
asymmetry makes the equality signs in structural equations different
from algebraic equality signs; the former act symmetrically in relating
observations on X and Y (e.g., observing Y = 0 implies Sz = —¢), but
they act asymmetrically when it comes to interventions (e.g., setting Y’
to zero tells us nothing about the relation between z and €). The arrows
in path diagrams make this dual role explicit, and this may account for
the insight and inferential power gained through the use of diagrams.

The strongest empirical claim of the equation y = Bx + € is made by
excluding other variables from the r.h.s. of the equation, thus proclaim-
ing X the only immediate cause of Y. This translates into a testable
claim of invariance: the statistics of Y under condition do(z) should
remain invariant to the manipulation of any other variable in the model
(see Section 1.3.2).!% This claim can be written symbolically as

P(yldo(z), do(2)) = P(y|do(z)) (5.23)

16The basic notion that structural equations remain invariant to certain changes
in the system goes back to Marschak (1950) and Simon (1953), and it has re-
ceived mathematical formulation at various levels of abstraction in Hurwicz (1962),
Mesarovic (1969), Sims (1977), Cartwright (1989), Hoover (1990), and Woodward
(1995). The simplicity, precision, and clarity of (5.23) is unsurpassed, however.
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for all Z disjoint of {X U Y }.17

Note that this invariance holds relative to manipulations, not ob-
servations, of Z. The statistics of ¥ under condition do(z) given the
measurement Z = z, written P(y|do(x), z), would certainly depend on
z if the measurement were taken on a consequence (i.e. descendant) of
Y. Note also that the ordinary conditional probability P(y|z) does not
enjoy such a strong property of invariance, since P(y|z) is generally
sensitive to manipulations of variables other than X in the model (un-
less X and € are independent). Equation (5.23), in contrast, remains
valid regardless of the statistical relationship between € and X.

Generalized to a set of several structural equations, (5.23) explicates
the assumptions underlying a given causal diagram. If GG is the graph
associated with a set of structural equations, then the assumptions are
embodied in G as follows: (1) every missing arrow—say, between X and
Y —represents the assumption that X has no causal effect on Y once
we intervene and hold the parents of YV fixed; and (2) every missing
bidirected link between X and Y represents the assumption that the
omitted factors that (directly) influence X are uncorrelated with those
that (directly) influence Y. We shall define the operational meaning of
the latter assumption in (5.25)—(5.27).

The Structural Parameters: Operational Definition

The interpretation of a structural equation as a statement about the
behavior of Y under a hypothetical intervention yields a simple defini-
tion for the structural parameters. The meaning of 3 in the equation

1"This claim is, in fact, only part of the message conveyed by the equation; the
other part consists of a dynamic or counterfactual claim: If we were to control X to
z' instead of z, then Y would attain the value 8z’ + €. In other words, plotting the
value of Y under various hypothetical controls of X, and under the same external
conditions (€), should result in a straight line with slope 8. Such deterministic
dynamic claims concerning system behavior under successive control conditions can
only be tested under the assumption that €, representing external conditions or
properties of experimental units, remains unaltered as we switch from z to z'. Such
counterfactual claims constitute the empirical content of every scientific law (see
Section 7.2.2).
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y = Bz + € is simply

= %Emdo(x),] (5.24)

that is, the rate of change (relative to x) of the expectation of Y in an
experiment where X is held at x by external control. This interpreta-
tion holds regardless of whether ¢ and X are correlated in nonexperi-
mental studies (e.g., via another equation x = ay + 9).

We hardly need to add at this point that # has nothing to do with
the regression coefficient ry x or, equivalently, with the conditional ex-
pectation E(Y|z), as suggested in many textbooks. The conditions
under which (8 coincides with the regression coefficient are spelled out
in Theorem 5.3.1.

It is important nevertheless to compare the definition of (5.24) with
theories that acknowledge the invariant character of 3 but have diffi-
culties explicating which changes § is invariant to. Cartwright (1989,
p. 194), for example, characterizes § as an invariant of nature that she
calls “capacity.” She states correctly that § remains constant under
change but explains that, as the statistics of X changes, “it is the ratio
[ = E(YX)/E(X?)] which remains fixed no matter how the variances
shift.” This characterization is imprecise on two accounts. First, 8 may
in general not be equal to the stated ratio nor to any other combination
of statistical parameters. Second—and this is the main point of Defi-
nition 5.4.1—structural parameters are invariant to local interventions
(i.e., changes in specific equations in the system) and not to general
changes in the statistics of the variables. If we start with cov(X,e) =0
and the variance of X changes because we (or Nature) locally mod-
ify the process that generates X, then Cartwright is correct; the ratio
g = E(YX)/E(X?) will remain constant. However, if the variance of
X changes for any other reason—say, because we observed some evi-
dence 7 = z that depends on both X and Y or because the process
generating X becomes dependent on a wider set of variables—then that
ratio will not remain constant.
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The Mystical Error Term: Operational Definition

The interpretations given in Definition 5.4.1 and (5.24) provide an op-
erational definition for that mystical error term

e =y — E[Y|do(x)], (5.25)

which, despite being unobserved in nonmanipulative studies, is far from
being metaphysical or definitional as suggested by some researchers
(e.g. Richard 1980; Holland 1988, p. 460; Hendry 1995, p. 62). Un-
like errors in regression equations, ¢ measures the deviation of Y from
its controlled expectation E[Y |do(x)] and not from its conditional ex-
pectation E[Y|z]. The statistics of € can therefore be measured from
observations on Y once X is controlled. Alternatively, because 3 re-
mains the same regardless of whether X is manipulated or observed,
the statistics of € = y — B2 can be measured in observational studies if
we know [.

Likewise, correlations among errors can be estimated empirically.
For any two nonadjacent variables X and Y, (5.25) yields

Eleyex| = E]Y X|do(pay, pax)] — E[Y |do(pay)|E[X |do(pax)]. (5.26)

Once we have determined the structural coefficients, the controlled ex-
pectations E[Y|do(pay)]|, E[X|do(pax)], and E[Y X |do(pay,pax)] be-
come known linear functions of the observed variables pay and pax;
hence, the expectations on the r.h.s. of (5.26) can be estimated in ob-
servational studies. Alternatively, if the coefficients are not determined,
then the expression can be assessed directly in interventional studies
by holding pax and pay fixed (assuming X and Y are not in parent-
child relationship) and estimating the covariance of X and Y from data
obtained under such conditions.

Finally, we are often interested not in assessing the numerical value
of Eeyex| but rather in determining whether ey and ex can be assumed
to be uncorrelated. For this determination, it suffices to test whether
the equality

E[Y|z,do(sxy)] = E[Y|do(x), do(sxy)] (5.27)
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holds true, where sxy stands for (any setting of) all variables in the
model excluding X and Y. This test can be applied to any two vari-
ables in the model except when Y is a parent of X, in which case the
symmetrical equation (with X and Y interchanged) is applicable.

The Mystical Error Term: Conceptual Interpretation

The authors of SEM textbooks usually interpret error terms as rep-
resenting the influence of omitted factors. Many SEM researchers are
reluctant to accept this interpretation, however, partly because unspec-
ified omitted factors open the door to metaphysical speculations and
partly because arguments based on such factors were improperly used
as a generic, substance-free license to omit bidirected arcs from path
diagrams (McDonald 1997). Such concerns are answered by the op-
erational interpretation of error terms, (5.25), since it prescribes how
errors are measured, not how they originate.

It is important to note, though, that this operational definition is
no substitute for the omitted-factors conception when it comes to de-
ciding whether pairs of error terms can be assumed to be uncorrelated.
Because such decisions are needed at a stage when the model’s param-
eters are still “free,” they cannot be made on the basis of numerical
assessments of correlations but must rest instead on qualitative struc-
tural knowledge about how mechanisms are tied together and how vari-
ables affect each other. Such judgmental decisions are hardly aided by
the operational criterion of (5.26), which instructs the investigator to
assess whether two deviations—taken on two different variables under
complex experimental conditions—would be correlated or uncorrelated.
Such assessments are cognitively unfeasible.

In contrast, the omitted-factors conception instructs the investi-
gator to judge whether there could be factors that simultaneously
influence several observed variables. Such judgments are cognitively
manageable because they are qualitative and rest on purely structural
knowledge—the only knowledge available during this phase of model-
ing.

Another source of error correlation that should be considered by
investigators is selection bias. 1f two uncorrelated unobserved factors
have a common effect that is omitted from the analysis but influences



5.4. SOME CONCEPTUAL UNDERPINNINGS 247

the selection of samples for the study, then the corresponding error
terms will be correlated in the sampled population; hence, the expecta-
tion in (5.26) will not vanish when taken over the sampled population
(see discussion of Berkson’s paradox in Section 1.2.3).

We should emphasize, however, that the arcs missing from the dia-
gram, not those in the diagram, demand the most attention and careful
substantive justification. Adding an extra bidirected arc can at worst
compromise the identifiability of parameters, but deleting an existing
bidirected arc may produce erroneous conclusions as well as a false
sense of model testability. Thus, bidirected arcs should be assumed to
exist, by default, between any two nodes in the diagram. They should
be deleted only by well-motivated justifications, such as the unlikely
existence of a common cause for the two variables and the unlikely ex-
istence of selection bias. Although we can never be cognizant of all the
factors that may affect our variables, substantive knowledge sometimes
permits us to state that the influence of a possible common factor is
not likely to be significant.

Thus, as often happens in the sciences, the way we measure phys-
ical entities does not offer the best way of thinking about them.
The omitted-factor conception of errors, because it rests on structural
knowledge, is a more useful guide than the operational definition when
building, evaluating, and thinking about causal models.

5.4.2 Interpretation of Effect Decomposition

Structural equation modeling prides itself, and rightly so, for provid-
ing principled methodology for distinguishing direct from indirect ef-
fects. We have seen in Section 4.5 that such distinction is important
in many applications, ranging from process control to legal disputes,
and that SEM indeed provides a coherent methodology of defining,
identifying, and estimating direct and indirect effects. However, the
reluctance of most SEM researchers to admit the causal reading of
structural parameters—coupled with their preoccupation with alge-
braic manipulations—has resulted in inadequate definitions of direct
and indirect effects, as pointed out by Freedman (1987) and Sobel
(1990). In this section we hope to correct this confusion by adhering
to the operational meaning of the structural coefficients.
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We start with the general notion of a causal effect P(y|do(z)), as
in Definition 3.2.1. We then specialize it to define direct effect, as in
Section 4.5, and finally express the definitions in terms of structural
coefficients.

Definition 5.4.2 (Total Effect)

The total effect of X on Y is given by P(y|do(x)), namely, the distri-
bution of Y while X is held constant at x and all other variables are
permitted to run their natural course.

Definition 5.4.3 (Direct Effect)
The direct effect of X on Y is given by P(y|do(z), do(sxy)), where
Sxvy s the set of all observed variables in the system except X and Y.

In linear analysis, Definitions 5.4.2 and 5.4.3 yield, after differentia-
tion with respect to x, the familiar path coefficients in terms of which
direct and indirect effects are usually defined. Yet they differ from con-
ventional definitions in several important aspects. First, direct effects
are defined in terms of hypothetical experiments in which intermediate
variables are held constant by physical intervention, not by statistical
adjustment (which is often disguised under the misleading phrase “con-
trol for”). Figure 5.10 depicts a simple example where adjusting for the
intermediate variables (Z and W) would not give the correct value of
zero for the direct effect of X on Y, whereas %E(Y|d0(x, y, w)) does
yield the correct value: %(ﬂw +7z) = 0. Section 4.5.3 (Table 4.1) pro-
vides another such example, one that involves dichotomous variables.
Second, there is no need to limit control to only intermediate vari-
ables; all variables in the system may be held constant (except for X
and Y'). Hypothetically, the scientist controls for all possible conditions
Sxvy, and measurements may commence without knowing the structure
of the diagram. Finally, our definitions differ from convention by in-
terpreting total and direct effects independently of each other, as out-
comes of two different experiments. Textbook definitions (e.g. Bollen
1989, p. 376; Mueller 1996, p. 141; Kline 1998, p. 175) usually equate
the total effect with a power series of path coefficient matrices. This al-
gebraic definition coincides with the operational definition (Definition
5.4.2) in recursive (semi-Markovian) systems, but it yields erroneous
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expressions in models with feedback. For instance, given the pair of
equations {y = Bz + €, x = ay + ¢}, the total effect of X on Y is sim-
ply 8, not 3(1 — aB)~! as stated in Bollen (1989, p. 379). The latter
has no operational significance worthy of the phrase “effect of X.”!8

We end this section of effect decomposition with a few remarks that
should be of interest to researchers dealing with dichotomous variables.
The relations among such variables are usually nonlinear, so the results
of Section 4.5 should be applicable. In particular, the direct effect of
X on Y should will depend on the levels at which we hold the other
parents of Y. If we wish to average over these values, we obtain the
expression given in Section 4.5.4.

In standard linear analysis, an indirect effect may be defined as the
difference between the total effect and the direct effects (Bollen 1989).
In nonlinear analysis, differences lose their significance, and one must
isolate the contribution of mediating paths in some other way. Ex-
pressions of the form P(y|do(x),do(z)) cannot be used to isolate such
contributions because there is no physical means of selectively disabling
a direct causal link from X to Y by holding some variables constant.
This suggests that the notion of indirect effect has no intrinsic opera-
tional meaning apart from providing a comparison between the direct
and the total effects. In other words, a policy maker who asks for that
part of the total effect transmitted by a particular intermediate vari-
able or by a group Z of such variables is really asking for a comparison
of the effects of two policies, one where Z is held constant versus the
other where it is not. The expressions corresponding to these policies
are P(y|do(x), do(z)) and P(y|do(x)), and this pair of distributions
should be taken as the most general representation of indirect effects.
Similar conclusions have been expressed by Robins (1986) and Robins
and Greenland (1992).

18This error was noted by Sobel (1990) but, perhaps because constancy of path
coefficients was presented as a new and extraneous assumption, Sobel’s correction
has not brought about a shift in practice or philosophy.
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5.4.3 Exogeneity, Superexogeneity, and Other
Frills

Economics textbooks invariably warn readers that the distinction be-
tween exogenous and endogenous variables is, on the one hand, “most
important for model building” (Darnell 1994, p. 127) and, on the other
hand, “a subtle and sometimes controversial complication” (Greene
1997, p. 712). Economics students would naturally expect the con-
cepts and tools developed in this chapter to shed some light on the
subject, and rightly so. We next offer a simple definition of exogeneity
that captures the important nuances appearing in the literature and
that is both palatable and precise,

It is fashionable today to distinguish three types of exogeneity:
weak, strong, and super (Engle et al. 1983); the former two are sta-
tistical and the latter causal. However, the importance of exogeneity—
and the reason for its controversial status—Ilies in its implications for
policy interventions. Some economists believe, therefore, that only the
causal aspect (i.e. superexogeneity) deserves the exogenous title and
that the statistical versions are unwarranted intruders that tend to
confuse issues of identification and interpretability with those of esti-
mation efficiency (Ed Leamer, personal communication).'® T will serve
both camps by starting with a simple definition of causal exogeneity
and then offering a more general definition, from which both the causal
and the statistical aspects would follow as special cases. Thus, what
we call “exogeneity” corresponds to what Engle et al. called “superex-
ogeneity,” a notion that captures economists’ interest in the structural
invariance of certain relationships under policy intervention.

Suppose that we consider intervening on a set of variables X and
that we wish to characterize the statistical behavior of a set Y of out-
come variables under the intervention do(X = z). Denote the postin-
tervention distribution of Y by the usual expression P(y|do(z)). If we
are interested in a set A of parameters of that distribution, then our
task is to estimate A[P(y|do(z)] from the available data. However, the
data available is typically generated under a different set of conditions:

19Gimiliar opinions have also been communicated by John Aldrich and James
Heckman. See also Aldrich (1993).
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X was not held constant but instead was allowed to vary with what-
ever economical pressures and expectations prompted decision makers
to set X in the past. Denoting the process that generated data in
the past by M and the probability distribution associated with M by
Py(v), we ask whether A[Py/(y|do(z)] can be estimated consistently
from samples drawn from Py (v), given our background knowledge T
(connoting “theory”) about M. This is essentially the problem of iden-
tification that we have analyzed in this and previous chapters, with one
important difference; we now ask whether A\[P(y|do(x)] can be identi-
fied from the conditional distribution P(y|z) alone, instead of from the
entire joint distribution P(v). When identification holds under this
restricted condition, X is said to be ezxogenous relative to (Y, A, T).
We may state this formally as follows.

Definition 5.4.4 (Exogeneity)

Let X and Y be two sets of variables, and let \ be any set of param-
eters of the postintervention probability P(y|do(x)). We say that X is
exogenous relative to (Y, \,T) if \ is identifiable from the conditional
distribution P(y|x), that is, if

Par, (ylz) = P (ylz) = A[Par, (y|do(2))] = AlPar, (y[do(z))] (5.28)
for any two models, My and Ms, satisfying theory T'.

In the special case where A\ constitutes a complete specification of the
postintervention probabilities, (5.28) reduces to the implication

Pu (yl@) = Pus, (ylz) = Par, (yldo(z)) = Py (yldo(z)).  (5.29)

If we further assume that, for every P(y|z), our theory T does not
a priori exclude some model M, satisfying Py, (y|do(z)) = Py, (y|z),%°
then (5.29) reduces to the equality

P(y|do(z)) = P(y|z), (5.30)

a condition we recognize as “no confounding” (see Sections 3.3 and 6.2).
Equation (5.30) follows (from (5.29)) because (5.29) must hold for all

20For example, if T stands for all models possessing the same graph structure,
then such Ms is not a priori excluded.
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M; in T. Note that, since the theory 7" is not mentioned explicitly,
(5.30) can be applied to any individual model M and can be taken as
yet another definition of exogeneity—albeit a stronger one than (5.28).

The motivation for insisting that A be identifiable from the condi-
tional distribution P(y|z) alone, even though the marginal distribution
P(z) is available, lies in its ramification for the process of estimation.
As stated in (5.30), discovering that X is exogenous permits us to pre-
dict the effect of interventions (in X) directly from passive observations,
without even adjusting for confounding factors. Our analyses in Sec-
tions 3.3 and 5.3 further provide a graphical test of exogeneity: X is
exogenous for Y if there is no unblocked back-door path from X to Y
(Theorem 5.3.2). This test supplements the declarative definition of
(5.30) with a procedural definition and thus completes the formaliza-
tion of exogeneity. That the invariance properties usually attributable
to superexogeneity are discernible from the topology of the causal dia-
gram should come as no surprise, considering that each causal diagram
represents a structural model and that each structural model already
embodies the invariance assumptions necessary for policy predictions
(see Definition 5.4.1).

Leamer (1985) defined X to be exogenous if P(y|z) remains in-
variant to changes in the “process that generates” X. This defini-
tion coincides®! with (5.30) because P(y|do(z)) is governed by a struc-
tural model in which the equations determining X are wiped out; thus,
P(y|z) must be insensitive to the nature of those equations. In contrast,
Engle et al. (1983) defined exogeneity (i.e., their superexogeneity) in
terms of changes in the “marginal density” of X; as usual, the transition
from process language to statistical terminology leads to ambiguities.
According to Engle et al. (1983, p. 284), exogeneity requires that all the
parameters of the conditional distribution P(y|x) be “invariant for any
change in the distribution of the conditioning variables”?? (i.e. P(x)).
This requirement of constancy under any change in P(z) is too strong—
changing conditions or new observations can easily alter both P(z) and
P(y|z) even when X is perfectly exogenous. (To illustrate, consider a

2lProvided that changes are confined to modification of functions without chang-
ing the set of arguments (i.e. parents) in each function.

22This requirement is repeated verbatim in Darnell (1994, p. 131) and Maddala
(1992, p. 192).
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change that turns a randomized experiment, where X is indisputably
exogenous, into a nonrandomized experiment; we should not insist on
P(y|z) remaining invariant under such change.) The class of changes
considered must be restricted to local modification of the mechanisms
(or equations) that determine X, as stated by Leamer, and this restric-
tion must be incorporated into any definition of exogeneity. In order to
make this restriction precise, however, the vocabulary of SEMs must be
invoked as in the definition of P(y|do(z)); the vocabulary of marginal
and conditional densities is far too coarse to properly define the changes
against which P(y|z) ought to remain invariant.

We are now ready to define a more general notion of exogeneity,
one that includes “weak” and “super” exogeneities under the same
umbrella.?® Toward that end, we remove from Definition 5.4.4 the
restriction that A\ must represent features of the postintervention dis-
tribution. Instead, we allow A to represent any feature of the underlying
model M, including structural features such as path coefficients, causal
effects, and counterfactuals, and including statistical features (which
could, of course, be ascertained from the joint distribution alone). With
this generalization, we also obtain a simpler definition of exogeneity.

Definition 5.4.5 (General Exogeneity)

Let X andY be two sets of variables, and let A be any set of parameters
defined on a structural model M in a theory T. We say that X is
exogenous relative to (Y, \,T) if X is identifiable from the conditional
distribution P(y|x), that is, if

Py, (y|z) = Py (yla) = AMMy) = A(Mz) (5.31)
for any two models, My and Ms, satisfying theory T.

When A consists of structural parameters, such as path coefficients or
causal effects, (5.31) expresses invariance to a variety of interventions,
not merely do(X = z). Although the interventions themselves are not
mentioned explicitly in (5.31), the equality A\(M;) = A(Ms) reflects
such interventions through the structural character of A. In particular,

Z3We leave out discussion of “strong” exogeneity, which is a slightly more involved
version of weak exogeneity applicable to time-series analysis.
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if \ stands for the values of the causal effect function P(y|do(z)) at
selected points of = and y, then (5.31) reduces to the implication

Pu (yl@) = Pus, (ylx) = Par, (yldo(z)) = Py (yldo(z)),  (5.32)

which is identical to (5.29). Hence the causal properties of exogeneity
follow.

When ) consists of strictly statistical parameters—such as means,
modes, regression coefficients, or other distributional features—the
structural features of M do not enter into consideration; we have
A(M) = A(Py) and so (5.31) reduces to

Pi(yle) = Pylylz) = A(P) = A(P) (5.33)

for any two probability distributions P (x,y) and P(x,y) that are con-
sistent with 7. We have thus obtained a statistical notion of exogeneity
that permits us to ignore the marginal P(z) in the estimation of A and
that we may call “weak exogeneity”.?*

Finally, if A consists of causal effects among variables in Y (exclud-
ing X), we obtain a generalized definition of instrumental variables.
For example, if our interest lies in the causal effect A = P(w|do(z)),
where W and Z are two sets of variables in Y, then the exogeneity of X
relative to this parameter ensures the identification of P(w|do(z)) from
the conditional probability P(z, w|z). This is indeed the role of an in-
strumental variable—to assist in the identification of causal effects not
involving the instrument. (See Figure 5.9, with Z, X, Y representing
X, Z, W, respectively.)

A word of caution regarding the language used in most textbooks:
exogeneity is frequently defined by asking whether parameters “enter”
into the expressions of the conditional or the marginal density. For
example, Maddala (1992, p. 392) defined weak exogeneity as the re-
quirement that the marginal distribution P(z) “does not involve” .
Such definitions are not unambiguous, because the question of whether
a parameter “enters” a density or whether a density “involves” a pa-
rameter are syntax-dependent; different algebraic representations may

2 Engle et al. (1983) further imposed a requirement called “variation-free,” which
is satisfied by default when dealing with genuinely structural models M in which
mechanisms do not constrain one another.
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make certain parameters explicit or obscure. For example, if X and
Y are dichotomous, then the marginal probability P(x) certainly “in-
volves” parameters such as

A1 = P(20,90) + P(20,11) and Ay = P(xg, %),

as well as their ratio:
A=/

Therefore, writing P(x¢) = Ag/A whos that both A and A, are involved
in the marginal probability P(z,), and one may be tempted to conclude
that X is not exogenous relative to A. Yet X s in fact exogenous
relative to A, because the ratio A = Ay/\; is none other than P(yo|z);
hence it is determined uniquely by P(yo|7o) as required by (5.33).%
The advantage of the definition given in (5.31) is that it depends
not on the syntactic representation of the density function but rather
on its semantical content alone. Parameters are treated as quantities
computed from a model, and not as mathematical symbols that describe
a model. Consequently, the definition applies to both statistical and
structural parameters and, in fact, to any quantity A that can be com-
puted from a structural model M, regardless of whether it serves (or
may serve) in the description of the marginal or conditional densities.

The Mystical Error Term Revisited

Historically, the definition of exogeneity that has evoked most contro-
versy is the one expressed in terms of correlation between variables and
errors. It reads as follows.

Definition 5.4.6 (Error-Based Exogeneity)
As variable X is exogenous (relative to A = P(y|do(z))) if X is in-
dependent of all errors that influence Y, except those mediated by X.

This definition, which Hendry and Morgan (1995) trace to Orcutt
(1952), became standard in the econometric literature between 1950

ZEngle et al. (1983, p. 281) and Hendry (1995, pp. 162-3) attempted to overcome
this ambiguity by using “reparameterization” —an unnecessary complication.
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and 1970 (e.g. Christ 1966, p. 156; Dhrymes 1970, p. 169) and still
serves to guide the thoughts of most econometricians (as in the selec-
tion of instrumental variables; Bowden and Turkington 1984). How-
ever, it came under criticism in the early 1980s when the distinction
between structural errors (equation (5.25)) and regression errors be-
came obscured (Richard 1980). (Regression errors, by definition, are
orthogonal to the regressors.) The Cowles Commission logic of struc-
tural equations (see Section 5.1) has not reached full mathematical
maturity and—by denying notational distinction between structural
and regressional parameters—has left all notions based on error terms
suspect of ambiguity. The prospect of establishing an entirely new
foundation of exogeneity—seemingly free of theoretical terms such as
“errors” and “structure” (Engle et al. 1983)—has further dissuaded
economists from tidying up the Cowles Commission logic, and criti-
cism of the error-based definition of exogeneity has become increasingly
fashionable. For example, Hendry and Morgan (1995) wrote that “the
concept of exogeneity rapidly evolved into a loose notion as a property
of an observable variable being uncorrelated with an unobserved error,”
and Imbens (1997) readily agreed that this notion “is inadequate.”?®

These critics are hardly justified if we consider the precision and
clarity with which structural errors can be defined when using the
proper notation (e.g. (5.25)). When applied to structural errors, the
standard error-based criterion of exogeneity coincides formally with
that of (5.30), as can be verified using the back-door test of Theo-
rem 5.3.2 (with Z = ()). Consequently, the standard definition conveys
the same information as that embodied in more complicated and less
communicable definitions of exogeneity. I am therefore convinced that
the standard definition will eventually regain the acceptance and re-
spectability that it has always deserved.

Relationships between graphical and counterfactual definitions of
exogeneity and instrumental variables will be discussed in Chapter 7
(Section 7.4.5).

26Imbens prefers definitions in terms of experimental metaphors such as “random
assignment assumption,” fearing, perhaps, that “[t]ypically the researcher does not
have a firm idea what these disturbances really represent” (Angrist et al. p. 446).
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5.5 Conclusion

Today the enterprise known as structural equation modeling is increas-
ingly under fire. The founding fathers have retired, their teachings are
forgotten, and practitioners, teachers, and researchers currently find
the methodology they inherited difficult to either defend or supplant.
Modern SEM textbooks are preoccupied with parameter estimation
and rarely explicate the role that those parameters play in causal ex-
planations or in policy analysis; examples dealing with the effects of
interventions are conspicuously absent, for instance. Research in SEM
now focuses almost exclusively on model fitting, while issues pertaining
to the meaning and usage of SEM’s models are subjects of confusion
and controversy.

I am thoroughly convinced that the contemporary crisis in SEM
originates in the lack of a mathematical language for handling the causal
information embedded in structural equations. Graphical models have
provided such a language. They have thus helped us answer many of
the unsettled questions that drive the current crisis:

1. Under what conditions can we give causal interpretation to struc-
tural coefficients?

2. What are the causal assumptions underlying a given structural
equation model?

3. What are the statistical implications of any given structural equa-
tion model?

4. What is the operational meaning of a given structural coefficient?

5. What are the policy-making claims of any given structural equa-
tion model?

6. When is an equation not structural?

This chapter has described the conceptual developments that now
resolve such foundational questions. In addition, we have presented
several tools to be used in answering questions of practical importance:
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1. When are two structural equation models observationally indis-
tinguishable?

2. When do regression coefficients represent path coefficients?
3. When would the addition of a regressor introduce bias?

4. How can we tell, prior to collecting any data, which path coeffi-
cients can be identified?

5. When can we dispose of the linearity-normality assumption and
still extract causal information from the data?

I remain hopeful that researchers will recognize the benefits of these
concepts and tools and use them to revitalize causal analysis in the
social and behavioral sciences.
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