Chapter 3

Causal Diagrams and the

Identification of Causal
Effects

The eye obeys exactly the action of the mind.
Emerson (1860)

Preface

In the previous chapter we dealt with ways of learning causal relation-
ships from raw data. In this chapter we explore the ways of learning
such relationships from a combination of data and qualitative causal as-
sumptions that are deemed plausible in a given domain. More broadly,
this chapter aims to help researchers communicate qualitative assump-
tions about cause-effect relationships, elucidate the ramifications of
such assumptions, and derive causal inferences from a combination of
assumptions, experiments, and data. Our major task will be to decide
whether the assumptions given are sufficient for assessing the strength
of causal effects from nonexperimental data.

Causal effects permit us to predict how systems would respond
to hypothetical interventions—for example, policy decisions or actions
performed in everyday activity. As we have seen in Chapter 1 (Sec-
tion 1.3), such predictions are the hallmark of causal modeling, since
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they are not discernible from probabilistic information alone; they rest
on—and, in fact, define—causal relationships. This chapter uses causal
diagrams to give formal semantics to the notion of intervention, and it
provides explicit formulas for postintervention probabilities in terms of
preintervention probabilities. The implication is that the effects of ev-
ery intervention can be estimated from nonexperimental data, provided
the data is supplemented with a causal diagram that is both acyclic and
contains no latent variables.

If some variables are not measured then the question of identifi-
ability arises, and this chapter develops a nonparametric framework
for analyzing the identification of causal relationships in general and
causal effects in particular. We will see that causal diagrams provide
a powerful mathematical tool in this analysis; they can be queried, us-
ing extremely simple tests, to determine if the assumptions available
are sufficient for identifying causal effects. If so, the diagrams produce
mathematical expressions for causal effects in terms of observed distri-
butions; otherwise, the diagrams can be queried to suggest additional
observations or auxiliary experiments from which the desired inferences
can be obtained.

Another tool that emerges from the graphical analysis of causal
effects is a calculus of interventions—a set of inference rules by which
sentences involving interventions and observations can be transformed
into other such sentences, thus providing a syntactic method of deriving
(or verifying) claims about interventions and the way they interact
with observations. With the help of this calculus the reader will be
able to (i) determine mathematically whether a given set of covariates
is appropriate for control of confounding, (ii) deal with measurements
that lie on the causal pathways, and (iii) trade one set of measurements
for another.

Finally, we will show how the new calculus disambiguates concepts
that have triggered controversy and miscommunication among philoso-
phers, statisticians, economists, and psychologists. These include dis-
tinctions between structural and regression equations, definitions of di-
rect and indirect effects, and relationships between structural equations
and Neyman-Rubin models.
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3.1 Introduction

The problems addressed in this chapter can best be illustrated through
a classical example due to Cochran (see Wainer 1989). Consider an ex-
periment in which soil fumigants (X ) are used to increase oat crop yields
(Y) by controlling the eelworm population (Z); the fumigants may also
have direct effects (both beneficial and adverse) on yields beside the
control of eelworms. We wish to assess the total effect of the fumigants
on yields when this typical study is complicated by several factors.
First, controlled randomized experiments are unfeasible—farmers insist
on deciding for themselves which plots are to be fumigated. Second,
farmers’ choice of treatment depends on last year’s eelworm population
(Zy), an unknown quantity that is strongly correlated with this year’s
population. Thus we have a classical case of confounding bias that
interferes with the assessment of treatment effects regardless of sam-
ple size. Fortunately, through laboratory analysis of soil samples, we
can determine the eelworm populations before and after the treatment;
furthermore, because the fumigants are known to be active for a short
period only, we can safely assume that they do not affect the growth of
eelworms surviving the treatment. Instead, eelworms’ growth depends
on the population of birds (and other predators), which is correlated
with last year’s eelworm population and hence with the treatment itself.

The method developed in this chapter permits the investigator to
translate complex considerations of this sort into a formal language and
thereby facilitate the following tasks:

1. explicating the assumptions that underlie the model;

2. deciding whether the assumptions are sufficient to obtain con-
sistent estimates of the target quantity—the total effect of the
fumigants on yields;

3. providing (if the answer to item 2 is affirmative) a closed-form
expression for the target quantity in terms of distributions of
observed quantities; and

4. suggesting (if the answer to item 2 is negative) a set of observa-
tions and experiments that, if performed, would render a consis-
tent estimate feasible.
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The first step in this analysis is to construct a causal diagram like
the one given in Figure 3.1, which represents the investigator’s under-

Figure 3.1: A causal diagram representing the effect of fumigants (X)
on yields (Y).

standing of the major causal influences among measurable quantities
in the domain. For example, the quantities Z;, Z,, Z3 represent the
eelworm population before treatment, after treatment, and at the end
of the season, respectively. The Z; term represents last year’s eelworm
population; because it is an unknown quantity, it is denoted by a hollow
circle, as is the quantity B, the population of birds and other predators.
Links in the diagram are of two kinds: those that connect unmeasured
quantities are designated by dashed arrows, those connecting measured
quantities by solid arrows. The substantive assumptions embodied in
the diagram are negative causal assertions which are conveyed through
the links missing from the diagram. For example, the missing arrow
between Z; and Y signifies the investigator’s understanding that pre-
treatment eelworms can not affect oat plants directly; their entire influ-
ence on oat yields is mediated by the posttreatment conditions, Z5 and
Z3. Our purpose is not to validate or repudiate such domain-specific
assumptions but rather to test whether a given set of assumptions is suf-
ficient for quantifying causal effects from nonexperimental data—here,
estimating the total effect of fumigants on yields.

The causal diagram in Figure 3.1 is similar in many respects to the
path diagrams devised by Wright (1921); both reflect the investigator’s
subjective and qualitative knowledge of causal influences in the domain,
both employ directed acyclic graphs, and both allow for the incorpora-
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tion of latent or unmeasured quantities. The major differences lie in the
method of analysis. First, whereas path diagrams have been analyzed
mostly in the context of linear models with Gaussian noise, causal dia-
grams permit arbitrary nonlinear interactions. In fact, our analysis of
causal effects will be entirely nonparametric, entailing no commitment
to a particular functional form for equations and distributions. Second,
causal diagrams will be used not only as a passive language to commu-
nicate assumptions but also as an active computational device through
which the desired quantities are derived. For example, the method to
be described allows an investigator to inspect the diagram of Figure 3.1
and make the following immediate conclusions.

1. The total effect of X on Y can be estimated consistently from the
observed distribution of X, 7y, Z,, Z3, and Y.

2. The total effect of X on Y (assuming discrete variables through-
out) is given by the formulal

P(ylz) = ZZZP(ZI|22, z3, T)P(2z|21, 1)

Z1 22 23

X Y P(z|z1, 22, 2')P(z1, '), (3.1)

where P(y|Z) stands for the probability of achieving a yield level
of Y = y, given that the treatment is set to level X = z by
external intervention.

3. A consistent estimation of the total effect of X on Y would not
be feasible if Y were confounded with Z3; however, confounding
Zy and Y will not invalidate the formula for P(y|Z).

These conclusions will be obtained either by analyzing the graphical
properties of the diagram or by performing a sequence of symbolic
derivations (governed by the diagram) that gives rise to causal effect
formulas such as (3.1).

1The notation P,(y) was used in Chapter 1; it is changed henceforth to P(y|%)
or P(y|do(x)) because of the inconvenience in handling subscripts. The reader need
not be intimidated if, at this point, (3.1) appears unfamiliar. After reading Section
3.4, the reader should be able to derive such formulas with greater ease than solving
algebraic equations. Note that z' is merely an index of summation that ranges over
the values of X.
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3.2 Intervention in Markovian Models

3.2.1 Graphs as Models of Interventions

In Chapter 1 (Section 1.3) we saw how causal models, unlike probabilis-
tic models, can serve to predict the effect of interventions. This added
feature requires that the joint distribution P be supplemented with a
causal diagram—that is, a directed acyclic graph G that identifies the
causal connections among the variables of interest. In this section we
elaborate on the nature of interventions and give explicit formulas for
their effects.

The connection between the causal and associational readings of
DAGs is formed through the mechanism-based account of causation,
which owes its roots to early works in econometrics (Frisch 1938;
Haavelmo 1943; Simon 1953). In this account, assertions about causal
influences, such as those specified by the links in Figure 3.1, stand for
autonomous physical mechanisms among the corresponding quantities;
these mechanisms are represented as functional relationships perturbed
by random disturbances. Echoing this tradition, Pearl and Verma
(1991) interpreted the causal reading of a DAG in terms of functional,
rather than probabilistic, relationships (see (1.40) and Definition 2.2.2);
in other words, each child-parent family in a DAG G represents a de-
terministic function

x; = fi(pa,, €), i=1,..,n, (3.2)

where pa,; are the parents of variable X; in G; the ¢; (1 < i < n)
are mutually independent, arbitrarily distributed random disturbances.
These disturbance terms represent independent background factors that
the investigator chooses not to include in the analysis. If any of these
factors is judged to be influencing two or more variables (thus violating
the independence assumption), then that factor must enter the analysis
as an unmeasured (or latent) variable and be represented in the graph
by a hollow node, such as Zy and B in Figure 3.1. For example, the
causal assumptions conveyed by the model in Figure 3.1 correspond to
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the following set of equations:

Zy = fO(GO)a B = fB(Z()’eB)’
Zy :fl(Zanl)a X :fX(ZO’GX)’ (3 3)
Z2 = fQ(X, Z1,€2), Y = fy(X, ZQ,Zg,Gy), )

Z3 = f3(B7Z2763)-

More generally, we may lump together all unobserved factors (in-
cluding the ¢;) into a set U of background variables and then summa-
rize their characteristics by a distribution function P(u)—or by some
aspects (e.g. independencies) of P(u). Thus, a full specification of a
causal model would entail two components: a set of functional rela-
tionships

ZT; :fi(pai,ui), 1= 1,...,n, (34)

and a joint distribution function P(u) on the background factors. If
the diagram G(M) associated with a causal model M is acyclic, then
M is called semi-Markovian. If, in addition, the background variables
are independent, M is called Markovian, since the resulting distribu-
tion of the observed variables would then be Markov relative to G(M)
(see Theorem 1.4.1). Thus, the model described in Figure 3.1 is semi-
Markovian if the observed variables are { X, Y, Z1, Z5, Z3}; it would turn
Markovian if Z; and B were observed as well. In Chapter 7 we will pur-
sue the analysis of general non-Markovian models, but in this chapter
all models are assumed to be either Markovian or Markovian with un-
observed variables (i.e. semi-Markovian).

Needless to state, we would seldom be in possession of P(u) or even
fi. It is important nevertheless to explicate the mathematical content
of a fully specified model in order to draw valid inferences from partially
specified models, such as the one described in Figure 3.1.

The equational model (3.2) is the nonparametric analog of the so-
called structural equations model (Wright 1921; Goldberger 1973), ex-
cept that: the functional form of the equations (as well as the distri-
bution of the disturbance terms) will remain unspecified. The equality
signs in structural equations convey the asymmetrical counterfactual
relation of “is determined by,” and each equation represents a stable
autonomous mechanism. For example, the equation for Y states that,
regardless of what we currently observe about Y and regardless of any
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changes that might occur in other equations, if variables (X, Zs, Z3, €y)
were to assume the values (z, 29, 23, €y ), respectively, then Y would take
on the value dictated by the function fy.

Recalling our discussion in Section 1.4, the functional characteriza-
tion of each child-parent relationship leads to the same recursive decom-
position of the joint distribution that characterizes Bayesian networks:

P(zy1,....,75) = l—IP(ﬁL‘Z | pa,), (3.5)

which, in our example of Figure 3.1, yields

P(ZOa‘Tazlaba 22,2'3,3/) = P(ZO)P(x|ZO)P(Zl|ZO)P(b‘Z0)
X P(23|x, 21) P(23| 22, b) P(y|x, 22, 23)(3.6)

Moreover, the functional characterization provides a convenient lan-
guage for specifying how the resulting distribution would change in
response to external interventions. This is accomplished by encoding
each intervention as an alteration on a select subset of functions while
keeping the other functions intact. Once we know the identity of the
mechanisms altered by the intervention and the nature of the alteration,
the overall effect of the intervention can be predicted by modifying the
corresponding equations in the model and using the modified model to
compute a new probability function.

The simplest type of external intervention is one in which a single
variable, say Xj;, is forced to take on some fixed value z;. Such an
intervention, which we call “atomic,” amounts to lifting X; from the
influence of the old functional mechanism z; = f;(pa;, u;) and placing
it under the influence of a new mechanism that sets the value z; while
keeping all other mechanisms unperturbed. Formally, this atomic inter-
vention, which we denote by do(X; = x;), or do(z;) for short,? amounts

2 An equivalent notation, using set(z) instead of do(z), was used in Pearl (1995a).
The do(z) notation was first used in Goldszmidt and Pearl (1992) and is gaining in
popular support. The expression P(y|do(z)) is equivalent in intent to P(Y, = y) in
the potential-outcome model introduced by Neyman (1923) and Rubin (1974) and
to the expression P[(X = z) O— (Y = y)] in the counterfactual theory of Lewis
(1973b). The semantical differences among these notions are discussed in Section
3.6.3 and in Chapter 7.
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to removing the equation z; = f;(pa;, u;) from the model and substitut-
ing X; = z; in the remaining equations. The new model thus created
represents the system’s behavior under the intervention do(X; = z;)
and, when solved for the distribution of X, yields the causal effect of
X; on Xj, which is denoted P(z;|Z;). More generally, when an inter-
vention forces a subset X of variables to attain fixed values z, then a
subset of equations is to be pruned from the model given in (3.4), one for
each member of X, thus defining a new distribution over the remaining
variables that completely characterizes the effect of the intervention.?

Definition 3.2.1 (Causal Effect)

Given two disjoint sets of variables, X and Y, the causal effect of X
on Y, denoted either as P(y|Z) or as P(y|do(z)), is a function from
X to the space of probability distributions on Y. For each realization
xz of X, P(y|z) gives the probability of Y =y induced by deleting from
the model of (3.4) all equations corresponding to variables in X and
substituting X = x n the remaining equations.

Clearly, the graph corresponding to the reduced set of equations is
a subgraph of G from which all arrows entering X have been pruned
(Spirtes et al. 1993). The difference E(Y |do(z'))— E (Y |do(z")) is some-
times taken as the definition of “causal effect” (Rosenbaum and Rubin
1983), where 2’ and z" are two distinct realizations of X. This dif-
ference can always be computed from the general function P(y|do(z)),
which is defined for every level x of X and provides a more refined
characterization of the effect of interventions.

3.2.2 Interventions as Variables

An alternative (but sometimes more appealing) account of intervention
treats the force responsible for the intervention as a variable within the

3The basic view of interventions as equation modifiers originates with Marschak
(1950) and Simon (1953). An explicit translation of interventions to “wiping out”
equations from the model was first proposed by Strotz and Wold (1960) and later
used in Fisher (1970) and Sobel (1990). Graphical ramifications of this translation
were explicated first in Spirtes et al. (1993) and later in Pearl (1993b).
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system (Pearl 1993b). This is facilitated by representing the function
fi itself as a value of a variable, F; and then writing (3.2) as

Z; = I(paiafiaui)’ (37)
where [ is a three-argument function satisfying
I(a,b,c) = fi(a,c) whenever b = f;.

This amounts to conceptualizing the intervention as an external force
F; that alters the function f; between X; and its parents. Graphically,
we can represent F; as an added parent node of X;, and the effect of
such an intervention can be analyzed by standard conditionalization—
that is, by conditioning our probability on the event that variable F;
attains the value f;.

Figure 3.2: Representing external intervention F; by an augmented
network G' = GU{F; — X;}.

!

The effect of an atomic intervention do(X; = z}) is encoded by
adding to G a link F; — X, (see Figure 3.2), where F; is a new
variable taking values in {do(x}), idle}, x} ranges over the domain of
X;, and “idle” represents no intervention. Thus, the new parent set of
X; in the augmented network is PA, = PA; U {F;}, and it is related to

X, by the conditional probability
P(z; | pa;) if F; =idle,
P(z; | pal) =< 0 if F;=do(z}) and z; #x}, (3.8)
1 if F,=do(z}) and z; = .

The effect of the intervention do(x}) is to transform the original
probability function P(x1,...,x,) into a new probability function
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P(z1,...,x,|Z}), given by
P(x1, ..,y |3}) = P'(x1, .oy Ty | F; = do(})), (3.9)

where P’ is the distribution specified by the augmented network G’ =
G U {F, — X;} and (3.8), with an arbitrary prior distribution on
F;. In general, by adding a hypothetical intervention link F; — X
to each node in GG, we can construct an augmented probability function
P'(x1,...,z,; F1, ..., F,) that contains information about richer types of
interventions. Multiple interventions would be represented by condi-
tioning P’ on a subset of the F; (taking values in their respective do(z?})
domains), and the preintervention probability function P would be
viewed as the posterior distribution induced by conditioning each F;
in P’ on the value “idle.”

One advantage of the augmented network representation is that it
is applicable to any change in the functional relationship f; and not
merely to the replacement of f; by a constant. It also displays clearly
the ramifications of spontaneous changes in f;, unmediated by external
control. Figure 3.2 predicts, for example, that only descendants of X;
would be effected by changes in f; and hence the marginal probability
P(z) will remain unaltered for every set Z of nondescendants of Xj.
Likewise, Figure 3.2 dictates that the conditional probability P(y|z;)
remains invariant to changes in f; for any set Y of descendants of X;,
provided X; d-separates F; from Y. Kevin Hoover (1990, 1999) used
such invariant features to determine the direction of causal influences
among economic variables (e.g., employment and money supply) by ob-
serving the changes induced by sudden modifications in the processes
that govern these variables (e.g., tax reform, labor dispute). Indeed,
whenever we obtain reliable information (e.g., from historical or insti-
tutional knowledge) that an abrupt local change has taken place in a
specific mechanism f; that constrains a given family (X;, PA;) of vari-
ables, we can use the observed changes in the marginal and conditional
probabilities surrounding those variables to determine whether X is in-
deed the child (or dependent variable) of that family, thus determining
the direction of causal influences in the domain. The statistical fea-
tures that remain invariant under such changes, as well as the causal
assumptions underlying this invariance, are displayed in the augmented
network G'.



114CHAPTER 3. CAUSAL DIAGRAMS AND THE IDENTIFICATION OF CAUSAL I

3.2.3 Computing the Effect of Interventions

Regardless of whether we represent interventions as a modification of
an existing model (Definition 3.2.1) or as a conditionalization in an
augmented model (equation (3.9)), the result is a well-defined transfor-
mation between the preintervention and postintervention distributions.
In the case of an atomic intervention do(X; = z}), this transforma-
tion can be expressed in a simple truncated-factorization formula that
follows immediately from (3.2) and Definition 3.2.1:*

N H#iP(:rj\paj) if z; =z,

Pz, ..., x,|Z}) —{ 0 if 2 1 (3.10)
Equation (3.10) reflects the removal of the term P(z; | pa,;) from the
product of (3.5), since pa; no longer influence X;. For example, the
intervention do(X = z') will transform the pre-intervention distribution
given in (3.6) into the product

P(zﬂazlab’ 227Z3ay|§:,) = P(ZO)P(21|ZO)P(b|ZO)
XP(z2|x,aZI)P(Z3|Z23b)P(y|$I: 22523)'

Graphically, the removal of the term P(z;|pa;) is equivalent to remov-
ing the links between PA; and X; while keeping the rest of the network
intact. Clearly, the transformation defined in (3.10) satisfies the condi-
tion of Definition 1.3.1 as well as the properties of (1.38)—(1.39).
Multiplying and dividing (3.10) by P(z}|pa;), the relationship to the
preintervention distribution becomes more transparent:
P(xy,...,zn) . p
{ PGy o=
0 if z; # .

P(zy,... 2|8} = (3.11)

If we regard a joint distribution as an assignment of mass to a collec-
tion of abstract points (z1,...,x,), each representing a possible state

“Equation (3.10) can also be obtained from the G-computation formula of Robins
(1986, p. 1423; see Section 3.6.4) and the manipulation theorem of Spirtes et
al. (1993) (according to this source, said formula was “independently conjectured
by Fienberg in a seminar in 1991”). Additional properties of the transformation
defined in (3.10) and (3.11) are given in Goldszmidt and Pearl (1992) and Pearl
(1993b).
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of the world, then the transformation described in (3.11) reveals some
interesting properties of the change in mass distribution that take place
as a result of an intervention do(X; = ) (Goldszmidt and Pearl 1992).
Each point (z1,...,x,) is seen to increase its mass by a factor equal
to the inverse of the conditional probability P(z}|pa;) corresponding
to that point. Points for which this conditional probability is low
would boost their mass value substantially, while those possessing a
pa; value that anticipates a natural (noninterventional) realization of

z} (i.e., P(z}|pa;) ~ 1) will keep their mass unaltered. In standard

(2
Bayes conditionalization, each excluded point (z; # z}) transfers its
mass to the entire set of preserved points through a renormalization
constant. However, (3.11) describes a different transformation: each
excluded point (z; # z}) transfers its mass to a select set of points
that share the same value of pa;. This can be seen from the constancy
of both the total mass assigned to each stratum pa; and the relative

masses of points within each such stratum:
P(pa;|do(z})) = P(pas);

P(sipaildo(e)) _ P(si,pa)
P(sh, paildo(el)) — P(shpai)

Here S; denotes the set of all variables excluding {PA; U X;}. This
select set of mass-receiving points can be regarded as “closest” to the
point excluded by virtue of sharing the same history, as summarized
by pa; (see Sections 4.1.3 and 7.4.3).

Another interesting form of (3.11) obtains when we interpret the
division by P(x}|pa;) as conditionalization on z} and pa;:

. P(zy,...,x,|2, pa;) P(pa;) if x; =z,
P(xl,...,a:n|a:;-):{0(1 |2, pai) P (pa:) i A (3.12)

This formula becomes familiar when used to compute the effect of an
intervention do(X; = z}) on a set of variables Y disjoint of (X; U PA;).
Summing (3.12) over all variables except Y U X; yields the following
theorem.

Theorem 3.2.2 (Adjustment for Direct Causes)
Let PA; denote the set of direct causes of variable X;, and let Y be any
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set of variables disjoint of {X; U PA;}. The effect of the intervention
do(X; =) on'Y is given by
P(y|2;) = >_ P(yla}, pai) P(pas), (3.13)
pag

where P(y|x}, pa;) and P(pa;) represent preintervention probabilities.

Equation (3.13) calls for conditioning P(y|z}) on the parents of X;
and then averaging the result, weighted by the prior probability of
PA; = pa;. The operation defined by this conditioning and averaging
is known as “adjusting for PA;.”

Variations of this adjustment have been advanced by many philoso-
phers as probabilistic definitions of causality and causal effect (see Sec-
tion 7.5). Good (1961), for example, calls for conditioning on “the state
of the universe just before” the occurrence of the cause. Suppes (1970)
calls for conditioning on the entire past, up to the occurrence of the
cause. Skyrms (1980, p. 133) calls for conditioning on “maximally spe-
cific specifications of the factors outside of our influence at the time of
the decision which are causally relevant to the outcome of our actions
...7. The aim of conditioning in these proposals is, of course, to elim-
inate spurious correlations between the cause (in our case, X; = )
and the effect (Y = y); clearly, the set of parents PA; can accom-
plish this aim with great economy. In the structural account that we
pursue in this book, causal effects are defined in a radically different
way. The conditioning operator is not introduced into (3.13) as a reme-
dial “adjustment” aimed at eradicating spurious correlations. Rather,
it emerges formally from the deeper principle represented in (3.10)—
that of preserving all the invariant information that the preintervention
distribution can provide.

The transformation of (3.10) can easily be extended to more elabo-
rate interventions in which several variables are manipulated simultane-
ously. For example, if we consider the compound intervention do(S = s)
where S is a subset of variables, then (echoing (1.37)) we should delete
from the product of (3.5) all factors P(z;|pa;) corresponding to vari-
ables in S and obtain the more general truncated factorization

II P(zilpa;) for z4,...,=, consistent with s,
P(z1,...,2,|8) = ¢ iX:¢s (3.14)
0 otherwise.
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Likewise, we need not limit ourselves to simple interventions that set
variables to constants. Instead, we may consider a more general modifi-
cation of the causal model whereby some mechanisms are replaced. For
example, if we replace the mechanism that determines the value of X
by another equation, one that involves perhaps a new set PA; of vari-
ables, then the resultant distribution would obtain by replacing the fac-
tor P(x;|pa;) with the conditional probability P*(z;|pa}) induced by the
new equation. The modified joint distribution would then be given by
P*(zy,...,2,) = P(z1,...,2,)P*(xi|pa}) /| P(xi|pa;).

An Example: Process Control

To illustrate these operations, let us consider an example involving pro-
cess control; analogous applications in the areas of health management,
economic policy making, product marketing, or robot motion planning
should follow in a straightforward way. Let the variable Z; stand for
the state of a production process at time ¢, and let X} stand for a
set of variables (at time ¢;) that is used to control that process (see
Figure 3.3). For example, Z; could stand for such measurements as

X X X Xn
CONTROLS

STATES

Y OUTCOME

Figure 3.3: Dynamic causal diagram illustrating typical dependencies
among the control variables X, ..., X,,, the state variables 71, ..., Z,,
and the outcome variable Y of a sequential process.

temperature and pressure at various location in the plant, and X could
stand for the rate at which various chemicals are permitted to flow in
strategic conduits. Assume that data are gathered while the process is
controlled by a strategy S in which each Xj is determined by (i) moni-
toring three previous variables (X;_1, Zx, and Zx_1), and (ii) choosing
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X}, = x with probability P(xy|k_1, 2k, 2k_1). The performance of S is
monitored and summarized in the form of a joint probability function
P(y,z1,22, -, 2n, %1, T2, - - ., &), where Y is an outcome variable (e.g.,
the quality of the final product). Finally, let us assume (for simplicity)
that the state Z; of the process depends only on the previous state
Z_1 and on the previous control X, ;. We wish to evaluate the merit
of replacing S with a new strategy, S*, in which X}, is chosen according
to a new conditional probability P*(xg|Tk_1, 2k, 2k_1)-

Based on our previous analysis (equation (3.14)), the performance
P*(y) of the new strategy S* will be governed by the distribution

Py, 21,20, -y Zny X1, Ty« oy Tpy) (3.15)
= P*(y‘zla B2y -9 2ny L1, T2, - - '7-7/'71)
X [T P* (2| 2k—1, Tk—1) [Tp P*(xk| k-1, 2, 26-1)-

Because the first two terms remain invariant and the third one is
known, we have

P*(y) = Z P*(yazlaZZ:"'az’n:a:be)"'axn)
Z1yesZny L1y Ty

= Z P(y|z1, 29,y Zn, T1, Ty« - ., Tpy)

2150009203 T 1500y Tn

X H P(Zk|Zk_1, :ck_l) H P*(.’L‘k|$k_1, 2k Z]c—l)- (316)
k k

In the special case where S* is deterministic and time-invariant, X
becomes a function of X;_1, Z;, and Z;_1:

T = g(xk—l, 2k Zk—l)-

Then the summation over x4, ..., x, can be performed, yielding
P*(y) = Z P(y‘zlaz%'"7Zn791792a"'7gn)
21ye0y2n,
X H P(Zk|2’k_1, gk_l), (317)
k

where g is defined recursively as

g1 = 9(21) and g, = g(gk—l, 2k, Zk—1)-
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In the special case of a strategy X* composed of elementary actions
do(Xy = xy), the function g degenerates into a constant, x, and we
obtain

P*(y) = P(y|§71,§32,...,i'n)
= Y Pyla, 22,020, &1, o, - ., Tn) [ P(2k] 25-1, T—1)

213320 k

(3.18)

which can also be obtained from (3.14).

The planning problem illustrated by this example is typical of
Markov decision processes (MDPs) (Howard 1960; Dean and Wellman
1991; Bertsekas and Tsitsiklis 1996), where the target of analysis is find-
ing the best next action do(Xy = ), given the current state Z and
past actions. In MDPs, we are normally given the transition functions
P(2k41|2k, k) and the cost function to be minimized. In the problem
we have just analyzed, neither function is given; instead, they must
be learned from data gathered under past (presumably suboptimal)
strategies. Fortunately, because all variables in the model were mea-
sured, both functions were identifiable and could be estimated directly
from the corresponding conditional probabilities as follows:

P(zpq1|2k, k) = P(2k41|2k, Tr);
P(y|21, 22y ey Znaj:l: jj?a cee 7§7n) = P(y‘zlazb vy R0y L1, T2y - - - ax’n)-

In Chapter 4 (Section 4.4) we will deal with partially observable Markov
decision processes (POMDPs), where some states Zj are unobserved;
learning the transition and cost functions in those problems will require
a more intricate method of identification.

It is worth noting that, in this example, to predict the effect of a new
strategy it is necessary first to measure variables (Z;) that are affected
by some control variables (X;_1). Such measurements are generally
shunned in the classical literature on experimental design (Cox 1958,
p. 48) because they lie on the causal pathways between treatment and
outcome and thus tend to confound the desired effect estimate. How-
ever, our analysis shows that, when properly processed, such measure-
ments may be indispensable in predicting the effect of certain control
programs. This will be especially true in semi-Markovian models (i.e.,
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DAGs involving unmeasured variables), which are analyzed in Section
3.3.2.

Summary

The immediate implication of the analysis provided in this section is
that—given a causal diagram in which all direct causes (i.e. parents)
of intervened variables are observable—one can infer postintervention
distributions from preintervention distributions; hence, under such as-
sumptions we can estimate the effects of interventions from passive
(i.e. nonexperimental) observations, using the truncated factorization
of (3.14). Yet the more challenging problem is to derive causal effects
in situations like Figure 3.1, where some members of PA; are unobserv-
able and so prevent estimation of P(z}|pa;). In Sections 3.3 and 3.4 we
provide simple graphical tests for deciding when P(z;|;) is estimable in
such models. But first we need to define more formally what it means
for a causal quantity ) to be estimable from passive observations, a
question that falls under the technical term identification.

3.2.4 Identification of Causal Quantities

Causal quantities, unlike statistical parameters, are defined relative to
a causal model M and not relative to a joint distribution Ps(v) over
the set V of observed variables. Since nonexperimental data provides
information about Pjs(v) alone, and since several models can generate
the same distribution, the danger exists that the desired quantity will
not be discernible unambiguously from the data—even when infinitely
many samples are taken. Identifiability ensures that the added assump-
tions we make about M (e.g., the causal graph or the zero coefficients
in structural equations) will supply the missing information without
explicating M in full detail.

Definition 3.2.3 (Identifiability)

Let Q(M) be any computable quantity of a model M. We say that Q
is identifiable in a class M of models if, for any pairs of models M,
and My from M, Q(M;) = Q(Ms) whenever Py, (v) = Py, (v). If our
observations are limited, and permit only a partial set Fyr of features
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(of Py (v)) to be estimated, we define @ to be identifiable from Fy, if
Q(M;) = Q(Ms) whenever Fy, = Fy,.

Identifiability is essential for integrating statistical data (summarized
by P(v)) with incomplete causal knowledge of {f;}, as it enables us
to estimate quantities () consistently from large samples of P without
specifying the details of M; the general characteristics of the class M
suffice. For the purpose of our analysis, the quantity () of interest is the
causal effect Pys(y|Z), which is certainly computable from a given model
M (using Definition 3.2.1) but which we often need to compute from
an incomplete specification of M—in the form of general characteristics
portrayed in the graph G associated with M. We will therefore consider
a class M of models that have the following characteristics in common:

(i) they share the same parent-child families (i.e., the same causal
graph G); and

(ii) they induce positive distributions on the observed variables (i.e.,
P(v) > 0).

Relative to such classes, we now have the following.

Definition 3.2.4 (Causal-Effect Identifiability)

The causal effect of X on Y 1is said to be identifiable from a graph
G if the quantity P(y|Z) can be computed uniquely from any positive
probability of the observed variables—that is, if Py (y|Z) = Pa, (y|2)
for every pair of models My and My with Py, (v) = Pu,(v) > 0 and

The identifiability of P(y|Z) ensures that it is possible to infer the effect
of action do(X = z) on Y from two sources of information:

(i) passive observations, as summarized by the probability function
P(v); and

(ii) the causal graph G, which specifies (qualitatively) which variables
make up the stable mechanisms in the domain or, alternatively,
which variables participate in the determination of each variable
in the domain.
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Restricting identifiability to positive distributions assures us that
the condition X = =z is represented in the data in the appropriate
context, thus avoiding a zero denominator in (3.10). It would be im-
possible to infer the effect of action do(X = z) from data in which X
never attains the value x in the context wherein the action is applied.
Extensions to some nonpositive distributions are feasible but will not
be treated here. Note that, to prove nonidentifiability, it is sufficient to
present two sets of structural equations that induce identical distribu-
tions over observed variables but have different causal effects.

Using the concept of identifiability, we can now summarize the re-
sults of Section 3.2.3 in the following theorem.

Theorem 3.2.5 Given a causal diagram G of any Markovian model in
which a subset V' of variables are measured, the causal effect P(y|T) is
identifiable whenever {XUYUPAx} CV, that is, whenever X, Y, and
all parents of variables in X are measured. The expression of P(y|Z)
is then obtained by adjusting for PA,, as in (3.13).

A special case of Theorem 3.2.5 holds when all variables are assumed
to be observed.

Corollary 3.2.6 Given the causal diagram G of any Markovian model
in which all variables are measured, the causal effect P(y|z) is identi-
fiable for every two subsets of variables X and Y and is obtained from
the truncated factorization of (3.14).

We now turn our attention to identification problems in semi-Markovian
models.

3.3 Controlling Confounding Bias

Whenever we undertake to evaluate the effect of one factor (X) on
another (Y'), the question arises as to whether we should adjust our
measurements for possible variations in some other factors (Z), oth-
erwise known as “covariates,” “concomitants,” or “confounders” (Cox
1958, p. 48). Adjustment amounts to partitioning the population into
groups that are homogeneous relative to Z, assessing the effect of X
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on Y in each homogeneous group, and then averaging the results (as
in (3.13)). The illusive nature of such adjustment was recognized as
early as 1899, when Karl Pearson discovered what is now called Simp-
son’s paradoz (see Section 6.1): Any statistical relationship between two
variables may be reversed by including additional factors in the analy-
sis. For example, we may find that students who smoke obtain higher
grades than those who do not smoke but, adjusting for age, smokers
obtain lower grades in every age group and, further adjusting for family
income, smokers again obtain higher grades than nonsmokers in every
income-age group, and so on.

Despite a century of analysis, Simpson’s reversal continues to “trap
the unwary” (Dawid 1979), and the practical question that it poses—
whether an adjustment for a given covariate is appropriate—has re-
sisted mathematical treatment. Epidemiologists, for example, are still
debating the meaning of “confounding” (Grayson 1987; Shapiro 1997)
and often adjust for wrong sets of covariates (Weinberg 1993; see also
Chapter 6). The potential-outcome analyses of Rosenbaum and Rubin
(1983) and Pratt and Schlaifer (1988) have led to a concept named
“ignorability,” which recasts the covariate selection problem in coun-
terfactual vocabulary but falls short of providing a workable solution.
Ignorability reads: “Z is an admissible set of covariates if, given 7,
the value that Y would obtain had X been z is independent of X.”
Since counterfactuals are not observable, and since judgments about
conditional independence of counterfactuals are not readily assertable
from ordinary understanding of causal processes, the question has re-
mained open: What criterion should one use to decide which variables
are appropriate for adjustment?

Section 3.3.1 presents a general and formal solution of the adjust-
ment problem using the language of causal graphs. In Section 3.3.2
we extend this result to nonstandard covariates that are affected by X
and hence require several steps of adjustment. (Finally, Section 3.3.3
illustrates the use of these criteria in an example.

3.3.1 The Back-Door Criterion

Assume we are given a causal diagram G, together with nonexperimen-
tal data on a subset V of observed variables in GG, and suppose we wish
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to estimate what effect the interventions do(X = z) would have on a set
of response variables Y, where X and Y are two subsets of V. In other
words, we seek to estimate P(y|z) from a sample estimate of P(v).

We show that there exists a simple graphical test, named the “back-
door criterion” in Pearl (1993b), that can be applied directly to the
causal diagram in order to test if a set Z C V of variables is sufficient
for identifying P(y|Z).°

Definition 3.3.1 (Back-Door)
A set of variables Z satisfies the back-door criterion relative to an
ordered pair of variables (X;, X;) in a DAG G if:

(1) no node in Z is a descendant of X;; and

(ii) Z blocks every path between X; and X; that contains an arrow
mto X;.

Simalarly, if X and Y are two disjoint subsets of nodes in G, then Z is
said to satisfy the back-door criterion relative to (X,Y') if it satisfies the
criterion relative to any pair (X;, X;) such that X; € X and X; € Y.

The name “back-door” echoes condition (ii), which requires that only
paths with arrows pointing at X; be blocked; these paths can be viewed
as entering X; through the back door. In Figure 3.4, for example,
the sets Z; = {X3, X4} and Zy = {X4, X5} meet the back-door cri-
terion, but Z3 = {X,} does not because X, does not block the path
(Xi,Xg,Xl,X4,X2,X5,Xj).

Theorem 3.3.2 (Back-Door Adjustment)

If a set of variables Z satisfies the back-door criterion relative to (X,Y),
then the causal effect of X on Y 1is identifiable and is given by the
formula

P(y|#) = 3_ P(ylz, 2)P(2). (3.19)

5This criterion may also be obtained from Theorem 7.1 of Spirtes et al. (1993).
An alternative criterion, using a single d-separation test, is established in Section
3.4 (see (3.37)).
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Figure 3.4: A diagram representing the back-door criterion; adjusting
for variables {X3, X4} (or {X4, X5}) yields a consistent estimate of
P(zj:).

The summation in (3.19) represents the standard formula obtained un-
der adjustment for Z; variables X for which the equality in (3.19)
is valid were named “conditionally ignorable given Z” in Rosenbaum
and Rubin (1983). Reducing ignorability conditions to the graphical
criterion of Definition 3.3.1 replaces judgments about counterfactual
dependencies with judgments about the structure of causal processes,
as represented in the diagram. The graphical criterion can be tested
by systematic procedures that are applicable to diagrams of any size
and shape. The criterion also enables the analyst to search for an op-
timal set of covariate—namely, a set Z that minimizes measurement
cost or sampling variability (Tian et al. 1998). The use of a similar
graphical criterion for identifying path coefficients in linear structural
equations is demonstrated in Chapter 5. Applications to epidemiolog-
ical research are given in Greenland et al. (1999a), where the set Z is
called “sufficient set” for control of confounding.

Proof of Theorem 3.3.2

The proof originally offered in Pearl (1993b) was based on the obser-
vation that, when Z blocks all back-door paths from X to Y, setting
(X = z) or conditioning on X = z has the same effect on Y. This can
best be seen from the augmented diagram G’ of Figure 3.2, to which
the intervention arcs Fx — X were added. If all back-door paths from
X to Y are blocked, then all paths from Fx to Y must go through the
children of X, and those would be blocked if we condition on X. The
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implication is that Y is independent of Fx given X,
P(y|z, Fx = do(z)) = P(y|z, Fx =idle) = P(y|x), (3.20)

which means that the observation X = z cannot be distinguished from
the intervention Fx = do(z).

Formally, we can prove this observation by writing P(y|Z) in terms
of the augmented probability function P’ in accordance with (3.9) and
conditioning on Z to obtain

P(ylz) = P'(y|Fy) = Y P'(ylz, Fu) P'(2|Fy)

= Y Pylz,x, F)P'(2|F,).  (3.21)

The addition of = to the last expression is licensed by the implication
F, = X = z. To eliminate F; from the two terms on the right-hand
side of (3.21), we invoke the two conditions of Definition 3.3.1. Since
F, consists of root nodes with children restricted to X, it must be
independent of all nondescendants of X, including Z. Thus, condition
(i) yields

P'(z|F,;) = P'(z) = P(2).

Invoking now the back-door condition (ii), together with (3.20), permits
us to eliminate F, from (3.21), thus proving (3.19). O

3.3.2 The Front-Door Criterion

Condition (i) of Definition 3.3.1 reflects the prevailing practice that “the
concomitant observations should be quite unaffected by the treatment”
(Cox 1958, p. 48). This section demonstrates how concomitants that are
affected by the treatment can be used to facilitate causal inference. The
emerging criterion, named the front-door criterion in Pearl (1995a), will
constitute the second building block of the general test for identifying
causal effects (Section 3.4).

Consider the diagram in Figure 3.5, which represents the model
of Figure 3.4 when the variables Xi,..., X5 are unobserved and
{Xi, X6, X} are relabeled {X,Z,Y}, respectively. Although Z does
not satisfy any of the back-door conditions, measurements of Z can
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nevertheless enable consistent estimation of P(y|Z). This will be shown
by reducing the expression for P(y|Z) to formulas that are computable
from the observed distribution function P(z,y, z).

@ (Unobserved)

Figure 3.5: A diagram representing the front-door criterion. A two-step
adjustment for Z yields a consistent estimate of P(y|z).

The joint distribution associated with Figure 3.5 can be decomposed
(equation (3.5)) into

P(z,y,z,u) = P(u)P(z|u)P(z|z)P(y|z,u). (3.22)

From (3.10), the intervention do(z) removes the factor P(z|u) and in-
duces the postintervention distribution

P(y, z,u|z) = P(y|z,u)P(z|z)P(u). (3.23)

Summing over z and u then gives
P(yI#) = X Plela) X Plyle w)P(w) (3.24)

In order to eliminate u from the r.h.s. of (3.24), we use the two condi-
tional independence assumptions encoded in the graph of Figure 3.5:

P(ulz,z) = P(ul|z), (3.25)
P(y|lz,z,u) = P(y|lz,u). (3.26)

This yields the equalities

> P(ylz,u)P(u) = ZZP ylz, u) P(ulz) P(z)
= ZZP y|z, z,u) P(u|z, 2) P(z)

= > P(y|z,z)P(z) (3.27)
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and allows the reduction of (3.24) to a form involving only observed
quantities:
Plyl#) = ¥ P(ela) ¥ Plyle', 2) P(a). (3.28)

All factors on the r.h.s. of (3.28) are consistently estimable from
nonexperimental data, so it follows that P(y|Z) is estimable as well.
Thus, we are in possession of an identifiable nonparametric estimand
for the causal effect of X on Y whenever we can find a mediating
variable Z that meets the conditions of (3.25) and (3.26).

Equation (3.28) can be interpreted as a two-step application of the
back-door formula. In the first step, we find the causal effect of X on
Z; since there is no back-door path from X to Z, we simply have

P(z|z) = P(z|z).

Next, we compute the causal effect of Z on Y, which we can no longer
equate with the conditional probability P(y|z) because there is a back-
door path Z < X <+ U — Y from Z to Y. However, since X blocks
(d-separates) this path, X can play the role of a concomitant in the
back-door criterion, which allows us to compute the causal effect of Z
on Y in accordance with (3.19), giving P(y|2) = >, P(y|2’, z) P(z').
Finally, we combine the two causal effects via

P(ylz) = > P(yl2)P(|2),

which reduces to (3.28).
We summarize this result by a theorem after formally defining the
assumptions.

Definition 3.3.3 (Front-Door)

A set of variables Z is said to satisfy the front-door criterion relative
to an ordered pair of variables (X,Y) if:

(1) Z intercepts all directed paths from X to Y,

(i) there is no back-door path from X to Z; and

(iii) all back-door paths from Z to'Y are blocked by X .
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Theorem 3.3.4 (Front-Door Adjustment)
If Z satisfies the front-door criterion relative to (X,Y") and if P(x, z) >
0, then the causal effect of X on Y 1is identifiable and is given by the

formula
P(y|z) = ZP(Z\JJ)Z’P(ylfv', z)P(a'). (3.29)

The conditions stated in Definition 3.3.3 are overly restrictive; some of
the back-door paths excluded by conditions (ii) and (iii) can actually be
allowed provided they are blocked by some concomitants. For example,
the variable Z5 in Figure 3.1 satisfies a front-door-like criterion relative
to (X, Z3) by virtue of Z; blocking all back-door paths from X to 7,
as well as those from 75 to Z5. To allow the analysis of such intricate
structures, including nested combinations of back-door and front-door
conditions, a more powerful symbolic machinery will be introduced in
Section 3.4, one that will sidestep algebraic manipulations such as those
used in the derivation of (3.28). But first let us look at an example
illustrating possible applications of the front-door condition.

3.3.3 Example: Smoking and the Genotype The-
ory

Consider the century-old debate on the relation between smoking (X)
and lung cancer (Y) (Spirtes et al. 1993, pp. 291-302). According to
many, the tobacco industry has managed to forestall antismoking leg-
islation by arguing that the observed correlation between smoking and
lung cancer could be explained by some sort of carcinogenic genotype
(U) that involves inborn craving for nicotine.

The amount of tar (Z) deposited in a person’s lungs is a variable
that promises to meet the conditions listed in Definition 3.3.3, thus fit-
ting the structure of Figure 3.5. To meet condition (i), we must assume
that smoking cigarettes has no effect on the production of lung cancer
except as mediated through tar deposits. To meet conditions (ii) and
(iii), we must assume that, even if a genotype is aggravating the pro-
duction of lung cancer, it nevertheless has no effect on the amount of
tar in the lungs except indirectly (through cigarette smoking). Like-
wise, we must assume that no other factor that affects tar deposit has
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P(z,z) P(Y = 1|z, z2)
Group Type Group Size % of Cancer Cases
(% of Population) in Group
X =0, Z =0 | Nonsmokers, No tar 47.5 10
X =1, Z =0 | Smokers, No tar 2.5 90
X =0, Z=1 | Nonsmokers, Tar 2.5 )
X =1, Z=1 | Smokers, Tar 47.5 85

Table 3.1:

any influence on smoking. Finally, condition P(z,z) > 0 of Theorem
3.3.4 requires that high levels of tar in the lungs be the result not only
of cigarette smoking but also of other factors (e.g., exposure to environ-
mental pollutants) and that tar may be absent in some smokers (owing
perhaps to an extremely efficient tar-rejecting mechanism). Satisfaction
of this last condition can be tested in the data.

To demonstrate how we can assess the degree to which cigarette
smoking increases (or decreases) lung-cancer risk, we will assume a hy-
pothetical study in which the three variables X, Y, Z were measured
simultaneously on a large, randomly selected sample of the population.
To simplify the exposition, we will further assume that all three vari-
ables are binary, taking on true (1) or false (0) values. A hypothetical
data set from a study on the relations among tar, cancer, and cigarette
smoking is presented in Table 3.1.

It shows that 95% of smokers and 5% of nonsmokers have developed
high levels of tar in their lungs. Moreover, 81% of subjects with tar de-
posits have developed lung cancer, compared to only 14% among those
with no tar deposits. Finally, within each of these two groups (tar
and no-tar), smokers show a much higher percentage of cancer than
nonsmokers.

These results seem to prove that smoking is a major contributor
to lung cancer. However, the tobacco industry might argue that the
table tells a different story—that smoking actually decreases one’s risk
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of lung cancer. Their argument goes as follows. If you decide to smoke,
then your chances of building up tar deposits are 95%, compared to 5%
if you decide not to smoke. In order to evaluate the effect of tar de-
posits, we look separately at two groups, smokers and nonsmokers. The
table shows that tar deposits have a protective effect in both groups:
in smokers, tar deposits lower cancer rates from 90% to 85%; in non-
smokers, they lower cancer rates from 10% to 5%. Thus, regardless of
whether I have a natural craving for nicotine, I should be seeking the
protective effect of tar deposits in my lungs, and smoking offers a very
effective means of acquiring those deposits.

To settle the dispute between the two interpretations, we now ap-
ply the front-door formula (equation (3.29)) to the data in Table 3.1.
We wish to calculate the probability that a randomly selected person
will develop cancer under each of the following two actions: smoking
(setting X = 1) or not smoking (setting X = 0).

Substituting the appropriate values of P(z|z), P(y|z, z), and P(z),
we have

P(Y =1|do(X =1)) = .05(.10 x .50 + .90 x .50)
+.95(.05 x .50 + .85 x .50)
= .05 % .50 + .95 x .45 = .4525,
P(Y =1|do(X =0)) = .95(.10 x .50 + .90 x .50)
+.05(.05 X .50 + .85 x .50)
= .95 x .50+ .05 x .45 = .4975. (3.30)

Thus, contrary to expectation, the data prove smoking to be somewhat
beneficial to one’s health.

The data in Table 3.1 are obviously unrealistic and were deliberately
crafted so as to support the genotype theory. However, the purpose of
this exercise was to demonstrate how reasonable qualitative assump-
tions about the workings of mechanisms, coupled with nonexperimen-
tal data, can produce precise quantitative assessments of causal effects.
In reality, we would expect observational studies involving mediating
variables to refute the genotype theory by showing, for example, that
the mediating consequences of smoking (such as tar deposits) tend to
increase, not decrease, the risk of cancer in smokers and nonsmokers
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alike. The estimand of (3.29) could then be used for quantifying the
causal effect of smoking on cancer.

3.4 A Calculus of Intervention

This section establishes a set of inference rules by which probabilistic
sentences involving interventions and observations can be transformed
into other such sentences, thus providing a syntactic method of deriv-
ing (or verifying) claims about interventions. Each inference rule will
respect the interpretation of the do(-) operator as an intervention that
modifies a select set of functions in the underlying model. The set of
inference rules that emerge from this interpretation will be called do
calculus.

We will assume that we are given the structure of a causal dia-
gram G in which some of the nodes are observable while others remain
unobserved. Our objective will be to facilitate the syntactic deriva-
tion of causal effect expressions of the form P(y|#), where X and Y
stand for any subsets of observed variables. By “derivation” we mean
stepwise reduction of the expression P(y|Z) to an equivalent expression
involving standard probabilities of observed quantities. Whenever such
reduction is feasible, the causal effect of X on Y is identifiable (see
Definition 3.2.4).

3.4.1 Preliminary Notationnotation

Let X, Y, and Z be arbitrary disjoint sets of nodes in a causal DAG
G. We denote by G the graph obtained by deleting from G all arrows
pointing to nodes in X. Likewise, we denote by G'x the graph obtained
by deleting from G all arrows emerging from nodes in X. To represent
the deletion of both incoming and outgoing arrows, we use the nota-
tion G5, (see Figure 3.6 for an illustration). Finally, the expression

P(y|#,z) £ P(y, z|&)/P(2|2) stands for the probability of ¥ = y given
that X is held constant at z and that (under this condition) Z = z is
observed.
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3.4.2 Inference Rules

The following theorem states the three basic inference rules of the pro-
posed calculus. Proofs are provided in Pearl (1995a).

Theorem 3.4.1 (Rules of do Calculus)

Let G be the directed acyclic graph associated with a causal model as
defined in (3.2), and let P(-) stand for the probability distribution in-
duced by that model. For any disjoint subsets of variables X,Y, 7, and
W we have the following rules.

Rule 1 (Insertion/deletion of observations) :
P(y|z, z,w) = P(y|z,w) if (YLZ|X,W)ac_. (3.31)
Rule 2 (Action/observation exchange) :
P(y|z, 2,w) = P(y|%,z,w) if (Y IZ|X, W)G?g‘ (3.32)
Rule 3 (Insertion/deletion of actions) :

P(yl#, 5,w) = P(yl#,w) if (YLZIX, W)e __, (3.33)

Z(W)

where Z(W) is the set of Z-nodes that are not ancestors of any
W -node in G.

Each of these inference rules follows from the basic interpretation of the
“hat” z operator as a replacement of the causal mechanism that con-
nects X to its preaction parents by a new mechanism X = x introduced
by the intervening force. The result is a submodel characterized by the
subgraph G (named “manipulated graph” in Spirtes et al. 1993).

Rule 1 reaffirms d-separation as a valid test for conditional inde-
pendence in the distribution resulting from the intervention do(X = z),
hence the graph G. This rule follows from the fact that deleting equa-
tions from the system does not introduce any dependencies among the
remaining disturbance terms (see (3.2)).

Rule 2 provides a condition for an external intervention do(Z = z)
to have the same effect on Y as the passive observation Z = z. The
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condition amounts to {X U W} blocking all back-door paths from Z to
Y (in Gx), since G, retains all (and only) such paths.

Rule 3 provides conditions for introducing (or deleting) an external
intervention do(Z = z) without affecting the probability of ¥ = y.
The validity of this rule stems, again, from simulating the intervention
do(Z = z) by the deletion of all equations corresponding to the variables
in Z (hence the graph Gw5). The reason for limiting the deletion to
nonancestors of W-nodes is provided with the proofs of Rules 1-3 in
Pearl (1995a).

Corollary 3.4.2 A causal effect ¢ = P(y1, ..., Y| T1, -y Tm) 1S identi-
fiable in a model characterized by a graph G if there exists a finite
sequence of transformations, each conforming to one of the inference
rules in Theorem 3.4.1, that reduces q into a standard (i.e. “hat”-free)
probability expression involving observed quantities.

Whether Rules 1-3 are sufficient for deriving all identifiable causal ef-
fects remains an open question. However, the task of finding a sequence
of transformations (if such exists) for reducing an arbitrary causal effect
expression can be systematized and executed by efficient algorithms
(Galles and Pearl 1995; Pearl and Robins 1995), to be discussed in
Chapter 4. As we illustrate in Section 3.4.3, symbolic derivations using
the hat notation are much more convenient than algebraic derivations
that aim at eliminating latent variables from standard probability ex-
pressions (as in Section 3.3.2, equation(3.24)).

3.4.3 Symbolic Derivation of Causal Effects: An
Example

We will now demonstrate how Rules 1-3 can be used to derive all causal
effect estimands in the structure of Figure 3.5. Figure 3.6 displays the
subgraphs that will be needed for the derivations that follow.
Task 1: Compute P(z|Z)
This task can be accomplished in one step, since GG satisfies the appli-
cability condition for Rule 2. That is, X 1L.Z in Gx (because the path
X < U =Y « Z is blocked by the converging arrows at Y) and we
can write

P(z|z) = P(z|x). (3.34)



3.4. A CALCULUS OF INTERVENTION 135

() U (Unobserved) @)

Gz G, Gxz

Figure 3.6: Subgraphs of G used in the derivation of causal effects.

Task 2: Compute P(y|z)

Here we cannot apply Rule 2 to exchange 2 with z because Gz contains
a back-door path from Zto Y: Z < X < U — Y. Naturally, we would
like to block this path by measuring variables (such as X) that reside
on that path. This involves conditioning and summing over all values
of X:

P(y|2) =) P(y|z, 2) P(z|2). (3.35)

We now have to deal with two terms involving 2, P(y|z,Z2) and
P(z|2). The latter can be readily computed by applying Rule 3 for
action deletion:

P(z]2) = P(z) if (Z1X)g,, (3.36)

since X and Z are d-separated in G. (Intuitively, manipulating Z
should have no effect on X, because Z is a descendant of X in G.) To
reduce the former term, P(y|z, 2), we consult Rule 2:

P(y|z,2) = P(ylz,2) if (Z1LY[X)q,, (3.37)

noting that X d-separates Z from Y in Gz. This allows us to write
(3.35) as

P(y|2) =Y _ P(ylz, 2)P(z) = E;P(ylz, ), (3.38)
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which is a special case of the back-door formula (equation (3.19)). The
legitimizing condition, (Z 1LY |X)¢,, offers yet another graphical test
for a set X to be sufficient for control of confounding (between Y and
Z) that is equivalent to the ignorability condition of Rosenbaum and
Rubin (1983).
Task 3: Compute P(y|z)
Writing

P(y1E) = X Pyl 3)P(:l3) (3.39)

we see that the term P(z|Z) was reduced in (3.34) but that no rule
can be applied to eliminate the hat symbol " from the term P(y|z, Z).
However, we can legitimately add this symbol via Rule 2

P(y|z, %) = P(y[2,2), (3.40)
since the applicability condition (Y 1LZ|X)q_ holds (see Figure 3.6).

We can now delete the action # from P(y|Z,%) using Rule 3, since
Y 1l X|Z holds in Gx. Thus, we have

P(ylz,2) = P(y|2), (3.41)

which was calculated in (3.38). Substituting (3.38), (3.41), and (3.34)
back into (3.39) finally yields

P(y|z) = ZP z|z) ZP ylz', z) P(x), (3.42)

which is identical to the front-door formula of (3.28).
Task 4: Compute P(y, z|Z)
We have

P(y, z|2) = P(y|z, %) P(z|2).
The two terms on the r.h.s. were derived before in (3.34) and (3.41),
from which we obtain
P(y,z|z) = P(y|2)P(z|z)
’ 3.43
= P(ela) 5 Pl 2)P(2). 34

Task 5: Compute P(z,y|Z)
We have

P(z,y|2) = P(ylz,2)P(z|?)
= P(ylz,z)P(x). (3.44)
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The first term on the r.h.s. is obtained by Rule 2 (licensed by Gz) and
the second term by Rule 3 (as in (3.36)).

Note that, in all the derivations, the graph G has provided both the
license for applying the inference rules and the guidance for choosing
the right rule to apply.

3.4.4 Causal Inference by Surrogate Experiments

Suppose we wish to learn the causal effect of X on Y when P(y|Z) is
not identifiable and, for practical reasons of cost or ethics, we cannot
control X by randomized experiment. The question arises of whether
P(y|Z) can be identified by randomizing a surrogate variable Z that is
easier to control than X. For example, if we are interested in assessing
the effect of cholesterol levels (X) on heart disease (Y), a reasonable
experiment to conduct would be to control subjects’ diet (Z), rather
than exercising direct control over cholesterol levels in subjects’ blood.

Formally, this problem amounts to transforming P(y|Z) into expres-
sions in which only members of Z obtain the hat symbol. Using The-
orem 3.4.1, it can be shown that the following conditions are sufficient
for admitting a surrogate variable Z:

(i) X intercepts all directed paths from Z to Y7 and
(ii) P(y|z) is identifiable in G.

Indeed, if condition (i) holds then we can write P(y|Z) =
P(y|#, 2), because (Y 1L Z|X)g . But P(y|#, Z) stands for the causal
effect of X on Y in a model governed by G, which—by condition (ii),
is identifiable. Translated to our cholesterol example, these condition
require that there be no direct effect of diet on heart conditions and
no confounding of cholesterol levels and heart disease, unless we can
neutralize such confounding by additional measurements.

Figures 3.9(e) and 3.9(h) (in Section 3.5.2) illustrate models in
which both conditions hold. With Figure 3.9(e), for example, we obtain
this estimand
Py, =)

P(ylz) = P(y|z, 2) = Pl

(3.45)
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This can be established directly by first applying Rule 3 to add 2,

P(y|z) = P(y|z, 2) because (Y 1.Z|X)

Gx77
and then applying Rule 2 to exchange = with z:

P(ylz, 2) = P(ylz, 2) because (Y LLX|Z)q .

According to (3.45), only one level of Z suffices for the identification
of P(y|z) for any values of y and z. In other words, Z need not be
varied at all; it can simply be held constant by external means and,
if the assumptions embodied in G are valid, the r.h.s. of (3.45) should
attain the same value regardless of the (constant) level at which Z is
being held. In practice, however, several levels of Z will be needed to
ensure that enough samples are obtained for each desired value of X.
For example, if we are interested in the difference E(Y|z) — E(Y|Z),
where z and z' are two treatment levels, then we should choose two
values z and 2’ of Z that maximize the number of samples in = and z’
(respectively) and then estimate

E(Y|3) — E(Y|3') = E(Y|z,2) — E(Y|2', 5').

3.5 Graphical Tests of Identifiability

Figure 3.7 shows simple diagrams in which P(y|%) cannot be identified
owing to the presence of a “bow” pattern—a confounding arc (dashed)
embracing a causal link between X and Y. A confounding arc repre-
sents the existence in the diagram of a back-door path that contains
only unobserved variables and has no converging arrows. For example,
the path X, Z,, B, Z3 in Figure 3.1 can be represented as a con-
founding arc between X and Z3. A bow pattern represents an equation
y = fy(x,u,ey), where U is unobserved and dependent on X. Such an
equation does not permit the identification of causal effects, since any
portion of the observed dependence between X and Y may always be
attributed to spurious dependencies mediated by U.

The presence of a bow pattern prevents the identification of P(y|z)
even when it is found in the context of a larger graph, as in Figure



3.5. GRAPHICAL TESTS OF IDENTIFIABILITY 139

3.7(b). This is in contrast to linear models, where the addition of an
arc to a bow pattern can render P(y|Z) identifiable (see Chapter 5,
Figure 5.9). For example, if Y is related to X via a linear relation
y = bx + u, where U is an unobserved disturbance possibly correlated
with X, then b = 2 F(Y'|2) is not identifiable. However, adding an arc
Z — X to the structure (i.e., finding a variable Z that is correlated
with X but not with U) would facilitate the computation of E(Y|Z)
via the instrumental variable formula (Bowden and Turkington 1984;
see also Chapter 5):

>

b

B(VI#) = Tierg = :Z (3.46)

0

Oox

In nonparametric models, adding an instrumental variable Z to
a bow pattern (Figure 3.7(b)) does not permit the identification of
P(y|Z). This is a familiar problem in the analysis of clinical trials in
which treatment assignment (Z) is randomized (hence, no link enters
Z) but compliance is imperfect (see Chapter 8). The confounding arc
between X and Y in Figure 3.7(b) represents unmeasurable factors that
influence subjects’ choice of treatment (X) as well as subjects’ response
to treatment (Y). In such trials, it is not possible to obtain an unbi-
ased estimate of the treatment effect P(y|#) without making additional
assumptions on the nature of the interactions between compliance and
response (as is done, for example, in the potential-outcome approach
to instrumental variables developed in Imbens and Angrist 1994 and
Angrist et al. 1996. Although the added arc Z — X permits us to
calculate bounds on P(y|Z) (Robins 1989; sec. 1g; Manski 1990; Balke
and Pearl 1997) and the upper and lower bounds may even coincide
for certain types of distributions P(z,vy,z) (Section 8.2.4), there is no
way of computing P(y|Z) for every positive distribution P(z,y, z), as
required by Definition 3.2.4.

In general, the addition of arcs to a causal diagram can impede, but
never assist, the identification of causal effects in nonparametric models.
This is because such addition reduces the set of d-separation conditions
carried by the diagram; hence, if a causal effect derivation fails in the
original diagram, it is bound to fail in the augmented diagram as well.
Conversely, any causal effect derivation that succeeds in the augmented
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diagram (by a sequence of symbolic transformations, as in Corollary
3.4.2) would succeed in the original diagram.

@ (b) (©

Figure 3.7: (a) A bow pattern: a confounding arc embracing a causal
link X — Y, thus preventing the identification of P(y|Z) even in the
presence of an instrumental variable Z, as in (b). (c¢) A bowless graph
that still prohibits the identification of P(y|%).

Our ability to compute P(y,|%) and P(y|%) for pairs (Y1,Ys) of
singleton variables does not ensure our ability to compute joint distri-
butions, such as P(yy, y2|2). Figure 3.7(c), for example, shows a causal
diagram where both P(z;|%) and P(z2|%) are computable yet P(z;, 20| %)
is not. Consequently, we cannot compute P(y|Z). It is interesting to
note that this diagram is the smallest graph that does not contain a
bow pattern and still presents an uncomputable causal effect.

Another interesting feature demonstrated by Figure 3.7(c) is that
computing the effect of a joint intervention is often easier than com-
puting the effects of its constituent singleton interventions.® Here, it
is possible to compute P(y|Z,z2) and P(y|z,Z;), yet there is no way
of computing P(y|Z). For example, the former can be evaluated by
invoking Rule 2 in GYZZ, giving

P(y|jaé2) = ZP(y|z17‘/2aé\2)P(zl|§:aé2)

21

= > Plyla, 2, 22) P(z2). (3.47)

21

However, Rule 2 cannot be used to convert P(z1|%, z5) into P(z|z, 23)
because, when conditioned on Z;, X and Z; are d-connected in Gx

6This was brought to my attention by James Robins, who has worked out many
of these computations in the context of sequential treatment management (Robins
1986, p. 1423).



3.5. GRAPHICAL TESTS OF IDENTIFIABILITY 141

(through the dashed lines). A general approach to computing the effect
of joint interventions is developed in Pearl and Robins (1995); this is
described in Chapter 4 (Section 4.4).

3.5.1 Identifying Models

Figure 3.8 shows simple diagrams in which the causal effect of X on Y
is identifiable (where X and Y are single variables). Such models are
called “identifying” because their structures communicate a sufficient
number of assumptions (missing links) to permit the identification of
the target quantity P(y|z). Latent variables are not shown explicitly in
these diagrams; rather, such variables are implicit in the confounding
arcs (dashed). Every causal diagram with latent variables can be con-
verted to an equivalent diagram involving measured variables intercon-
nected by arrows and confounding arcs. This conversion corresponds
to substituting out all latent variables from the structural equations of
(3.2) and then constructing a new diagram by connecting any two vari-
ables X; and X, by (i) an arrow from X, to X; whenever X, appears
in the equation for X; and (ii) a confounding arc whenever the same €
term appears in both f; and f;. The result is a diagram in which all
unmeasured variables are exogenous and mutually independent.

Several features should be noted from examining the diagrams in
Figure 3.8.

1. Since the removal of any arc or arrow from a causal diagram can
only assist the identifiability of causal effects, P(y|z) will still be
identified in any edge subgraph of the diagrams shown in Figure
3.8. Likewise, the introduction of mediating observed variables
onto any edge in a causal graph can assist, but never impede, the
identifiability of any causal effect. Therefore, P(y|z) will still be
identified from any graph obtained by adding mediating nodes to
the diagrams shown in Figure 3.8.

2. The diagrams in Figure 3.8 are maximal in the sense that the
introduction of any additional arc or arrow onto an existing pair
of nodes would render P(y|Z) no longer identifiable.
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Z ;TN Z
X X X N X
\ vz /I
% Y - Y %
@ (b) (© (d)

C) ®) @)

Figure 3.8: Typical models in which the effect of X on Y is identifiable.
Dashed arcs represent confounding paths, and Z represents observed
covariates.

3. Although most of the diagrams in Figure 3.8 contain bow pat-
terns, none of these patterns emanates from X (as is the case in
Figures 3.9(a) and (b) to follow). In general, a necessary condition
for the identifiability of P(y|Z) is the absence of a confounding
arc between X and any child of X that is an ancestor of Y.

4. Diagrams (a) and (b) in Figure 3.8 contain no back-door paths be-
tween X and Y and thus represent experimental designs in which
there is no confounding bias between the treatment (X) and the
response (Y); hence, P(y|z) = P(y|z). Likewise, diagrams (c)
and (d) in Figure 3.8 represent designs in which observed covari-
ates Z block every back-door path between X and YV (i.e., X
is “conditionally ignorable” given Z, in the language of Rosen-
baum and Rubin 1983); hence, P(y|Z) is obtained by standard
adjustment for Z (as in (3.19)):

P(y|z) =) _ P(ylz,2)P(2).
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5. For each of the diagrams in Figure 3.8, we readily obtain a formula
for P(y|z) by using symbolic derivations patterned after those
in Section 3.4.3. The derivation is often guided by the graph
topology. For example, diagram (f) in Figure 3.8 dictates the
following derivation. Writing

P(y|z) = Z P(y|z1, 22, ) P(21, 22|%),

21,22

we see that the subgraph containing {X, Z;, Z»} is identical in
structure to that of diagram (e), with (Z;, Z3) replacing (Z,Y),
respectively. Thus, P(z, 29|Z) can be obtained from (3.43). Like-
wise, the term P(y|21, 20,%) can be reduced to P(y|z1, 22, 2) by
Rule 2, since (Y 1L X |71, Z5)c,- We therefore have

P(ylz) = Z P(y|z1, 20, ) P(21])
X Z’P(zg\zl,x')P(x'). (3.48)

T

Applying a similar derivation to diagram (g) of Figure 3.8 yields

Pyli) = Y Y Plla, 2, o)P@|)

21 22 g

X P(z1|z2, ©)P(22) (3.49)

Note that the variable Z3 does not appear in (3.48), which means
that Z3 need not be measured if all one wants to learn is the
causal effect of X on Y.

6. In diagrams (e), (f), and (g) of Figure 3.8, the identifiability of
P(y|%) is rendered feasible through observed covariates Z that
are affected by the treatment X (since members of Z are descen-
dants of X). This stands contrary to the warning—repeated in
most of the literature on statistical experimentation—to refrain
from adjusting for concomitant observations that are affected by
the treatment (Cox 1958; Rosenbaum 1984; Pratt and Schlaifer
1988; Wainer 1989). It is commonly believed that a concomitant
Z that is affected by the treatment must be excluded from the
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analysis of the total effect of the treatment (Pratt and Schlaifer
1988). The reason given for the exclusion is that the calculation
of total effects amounts to integrating out Z, which is functionally
equivalent to omitting Z to begin with. Diagrams (e), (f), and
(g) show cases where the total effects of X are indeed the target
of investigation and, even so, the measurement of concomitants
that are affected by X (e.g., Z or Z7) is still necessary. However,
the adjustment needed for such concomitants is nonstandard, in-
volving two or more stages of the standard adjustment of (3.19)
(see (3.28), (3.48), and (3.49)).

7. In diagrams (b), (c), and (f) of Figure 3.8, Y has a parent whose
effect on Y is not identifiable; even so, the effect of X on Y is
identifiable. This demonstrates that local identifiability is not a
necessary condition for global identifiability. In other words, to
identify the effect of X on Y we need not insist on identifying
each and every link along the paths from X to Y.

3.5.2 Nonidentifying Models

Figure 3.9 presents typical diagrams in which the total effect of X on
Y, P(y|Z), is not identifiable. Noteworthy features of these diagrams
are as follows.

1. All graphs in Figure 3.9 contain unblockable back-door paths be-
tween X and Y, that is, paths ending with arrows pointing to X
that cannot be blocked by observed nondescendants of X. The
presence of such a path in a graph is, indeed, a necessary test
for nonidentifiability (see Theorem 3.3.2). That is not a sufficient
test is demonstrated by Figure 3.8(e), in which the back-door
path (dashed) is unblockable and yet P(y|%) is identifiable.

2. A sufficient condition for the nonidentifiability of P(y|z) is the
existence of a confounding path between X and any of its children
on a path from X to Y, as shown in Figures 3.9(b) and (c). A
stronger sufficient condition is that the graph contain any of the
patterns shown in Figure 3.9 as an edge subgraph.



3.6. DISCUSSION 145

Figure 3.9: Typical models in which P(y|%) is not identifiable.

3. Graph (g) in Figure 3.9 (same as Figure 3.7(c)) demonstrates that
local identifiability is not sufficient for global identifiability. For
example, we can identify P(z1|%), P(zq|%), P(y|21), and P(y|Z2)
but not P(y|Z). This is one of the main differences between non-
parametric and linear models; in the latter, all causal effects can
be determined from the structural coefficients and each coeffi-
cient represents the causal effect of one variable on its immediate
SUCCessor.

3.6 Discussion

3.6.1 Qualifications and Extensions

The methods developed in this chapter facilitate the drawing of quan-
titative causal inferences from a combination of qualitative causal as-
sumptions (encoded in the diagram) and nonexperimental observations.
The causal assumptions in themselves cannot generally be tested in
nonexperimental studies, unless they impose constraints on the ob-
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served distributions. The most common type of constraints appears in
the form of conditional independencies, as communicated through the
d-separation conditions in the diagrams. Another type of constraints
takes the form of numerical inequalities. In Chapter 8, for example,
we show that the assumptions associated with instrumental variables
(Figure 3.7(b)) are subject to falsification tests in the form of inequal-
ities on conditional probabilities (Pearl 1995b). Still, such constraints
permit the testing of merely a small fraction of the causal assumptions
embodied in the diagrams; the bulk of those assumptions must be sub-
stantiated from domain knowledge as obtained from either theoretical
considerations (e.g., that falling barometers do not cause rain) or re-
lated experimental studies. For example, the experimental study of
Moertel et al. (1985), which refuted the hypothesis that vitamin C is
effective against cancer, can be used as a substantive assumption in
observational studies involving vitamin C and cancer patients; it would
be represented as a missing link (between vitamin C and cancer) in
the associated diagram. In summary, the primary use of the methods
described in this chapter lies not in testing causal assumptions but in
providing an effective language for making those assumptions precise
and explicit. Assumptions can thereby be isolated for deliberation or
experimentation and then (once validated) be integrated with statisti-
cal data to yield quantitative estimates of causal effects.

An important issue that will be considered only briefly in this book
(see Section 8.5) is sampling variability. The mathematical deriva-
tion of causal effect estimands should be considered a first step toward
supplementing these estimands with confidence intervals and signifi-
cance levels, as in traditional analysis of controlled experiments. We
should remark, though, that having obtained nonparametric estimands
for causal effects does not imply that one should refrain from using
parametric forms in the estimation phase of the study. For example, if
the assumptions of Gaussian, zero-mean disturbances and additive in-
teractions are deemed reasonable, then the estimand given in (3.28) can
be converted to the product E(Y|%) = rzxryz.xx, where ryz.x is the
standardized regression coefficient (Section 5.3.1); the estimation prob-
lem then reduces to that of estimating regression coefficients (e.g., by
least squares). More sophisticated estimation techniques can be found
in Rosenbaum and Rubin (1983), Robins (1989, sec. 17), and Robins
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et al. (1992, pp. 331-3). For example, the “propensity score” method
of Rosenbaum and Rubin (1983) was found to be quite useful when
the dimensionality of the adjusted covariates is high. In a more recent
scheme called “marginal models,” Robins (1999) shows that, rather
than estimating individual factors in the adjustment formula of (3.19),
it is often more advantageous to use P(y|z) = 3, PF(‘Z?\/S)’ where the
preintervention distribution remains unfactorized. One can then sepa-
rately estimate the denominator P(z|z), weigh individual samples by
the inverse of this estimate, and treat the weighted samples as if they
were drawn at random from the postintervention distribution P(y|%).
Postintervention parameters, such as > E(Y'|2), can then be estimated
by ordinary least squares. This method is especially advantageous in
longitudinal studies with time-varying covariates, as in the process con-
trol problem discussed in Section 3.2.3 (see (3.18)).

Several extensions of the methods proposed in this chapter are note-
worthy. First, the identification analysis for atomic interventions can
be generalized to complex policies in which a set X of controlled vari-
ables is made to respond in a specified way to some set Z of covariates
via functional or stochastic strategies, as in Section 3.2.3. In Chapter
4 (Section 4.2), it is shown that identifying the effect of such policies is
equivalent to computing the expression P(y|Z, z).

A second extension concerns the use of the intervention calculus
(Theorem 3.4.1) in nonrecursive models, that is, in causal diagrams in-
volving directed cycles or feedback loops. The basic definition of causal
effects in term of “wiping out” equations from the model (Definition
3.2.1) still carries over to nonrecursive systems (Strotz and Wold 1960;
Sobel 1990), but then two issues must be addressed. First, the analysis
of identification must ensure the stability of the remaining submodels
(Fisher 1970). Second, the d-separation criterion for DAGs must be
extended to cover cyclic graphs as well. The validity of d-separation
has been established for nonrecursive linear models (Spirtes 1995) as
well as for nonlinear systems involving discrete variables (Pearl and
Dechter 1996). However, the computation of causal effect estimands
will be harder in cyclic nonlinear systems, because symbolic reduction
of P(y|z) to hat-free expressions may require the solution of nonlinear
equations. In Chapter 7 (Section 7.2.1) we demonstrate the evaluation
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of policies and counterfactuals in nonrecursive linear systems (see also
Balke and Pearl (1995)).

A third extension concerns generalizations of intervention calculus
(Theorem 3.4.1) to situations where the data available is not obtained
under i.i.d. (independent and identically distributed) sampling. One
can imagine, for instance, a physician who prescribes a certain treat-
ment to patients only when the fraction of survivors among previous
patients drops below some threshold. In such cases, it is required to esti-
mate the causal effect P(y|z) from non-independent samples. Vladimir
Vovk (1996) gave conditions under which the rules of Theorem 3.4.1
will be applicable when sampling is not i.i.d., and he went on to cast
the three inference rules as a logical production system.

3.6.2 Diagrams as a Mathematical Language

The benefit of incorporating substantive background knowledge into
probabilistic inference was recognized as far back as Thomas Bayes
(1763) and Pierre Laplace (1814), and its crucial role in the analysis and
interpretation of complex statistical studies is generally acknowledged
by most modern statisticians. However, the mathematical language
available for expressing background knowledge has remained in a rather
pitiful state of development.

Traditionally, statisticians have approved of only one way of combin-
ing substantive knowledge with statistical data: the Bayesian method
of assigning subjective priors to distributional parameters. To incorpo-
rate causal information within this framework, plain causal statements
such as “Y is not affected by X” must be converted into sentences
or events capable of receiving probability values (e.g. counterfactuals).
For instance, to communicate the innocent assumption that mud does
not cause rain, we would have to use a rather unnatural expression and
say that the probability of the counterfactual event “rain if it were not
muddy” is the same as the probability of “rain if it were muddy.” In-
deed, this is how the potential-outcome approach of Neyman and Rubin
has achieved statistical legitimacy: causal judgments are expressed as
constraints on probability functions involving counterfactual variables
(see Section 3.6.3).

Causal diagrams offer an alternative language for combining data
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with causal information. This language simplifies the Bayesian route
by accepting plain causal statements as its basic primitives. Such state-
ments, which merely indicate whether a causal connection between two
variables of interest exists, are commonly used in ordinary discourse
and provide a natural way for scientists to communicate experience
and organize knowledge.” It can be anticipated, therefore, that the
language of causal graphs will find applications in problems requiring
substantial domain knowledge.

The language is not new. The use of diagrams and structural equa-
tions models to convey causal information has been quite popular in
the social sciences and econometrics. Statisticians, however, have gen-
erally found these models suspect, perhaps because social scientists
and econometricians have failed to provide an unambiguous definition
of the empirical content of their models—that is, to specify the ex-
perimental conditions, however hypothetical, whose outcomes would
be constrained by a given structural equation. (Chapter 5 discusses
the bizarre history of structural equations in the social sciences and
economics). As a result, even such basic notions as “structural coef-
ficients” or “missing links” become the object of serious controversy
(Freedman 1987; Goldberger 1992) and misinterpretations (Whittaker
1990, p. 302; Wermuth 1992; Cox and Wermuth 1993).

To a large extent, this history of controversy and miscommunica-
tion stems from the absence of an adequate mathematical notation for
defining basic notions of causal modeling. For example, standard prob-
abilistic notation cannot express the empirical content of the coefficient
b in the structural equation y = bx + €y, even if one is prepared to as-
sume that ey (an unobserved quantity) is uncorrelated with X.# Nor
can any probabilistic meaning be attached to the analyst’s excluding

"Remarkably, many readers of this chapter (including two referees of this book)
classified the methods presented here as belonging to the “Bayesian camp” and as
depending on a “good prior.” This classification is misleading. The method does
depend on subjective assumptions (e.g., mud does not cause rain), but such as-
sumptions are causal, not statistical, and cannot be expressed as prior probabilities
on parameters of joint distributions.

8Voluminous literature on the subject of “exogeneity” (e.g. Richard 1980; Engle
et al. 1983; Hendry 1995) has emerged from economists’ struggle to give statistical
interpretation to the causal assertion “X and ey are uncorrelated” (Aldrich 1993;
see Section 5.4.3).
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from the equation variables that are highly correlated with X or Y but
do not “directly affect” Y.

The notation developed in this chapter gives these (causal) notions
a clear empirical interpretation, because it permits one to specify pre-
cisely what is being held constant and what is merely measured in
a given experiment. (The need for this distinction was recognized
by many researchers, most notably Pratt and Schlaifer 1988 and Cox
1992). The meaning of b is simply 2 F(Y'|2), that is, the rate of change
(in z) of the expectation of Y in an experiment where X is held at z
by external control. This interpretation holds regardless of whether €y
and X are correlated (e.g., via another equation z = ay + €x). Like-
wise, the analyst’s decision as to which variables should be included in
a given equation can be based on a hypothetical controlled experiment:
A variable 7 is excluded from the equation for Y if (for every level of
€y) Z has no influence on Y when all other variables (Syz), are held
constant; this implies P(y|Z, Syz) = P(y|Syz). Specifically, variables
that are excluded from the equation y = bx + €y are not conditionally
independent of Y given measurements of X but instead are causally
irrelevant to Y given settings of X. The operational meaning of the
“disturbance term” ey is likewise demystified: €y is defined as the dif-
ference Y — E(Y|$y). Two disturbance terms, ex and ey, are correlated
if P(y|z, $xy) # P(y|z,5xy), and so on (see Chapter 5, Section 5.4 for
further elaboration).

The distinctions provided by the hat notation clarify the empirical
basis of structural equations and should make causal models more ac-
ceptable to empirical researchers. Moreover, since most scientific knowl-
edge is organized around the operation of “holding X fixed” rather than
“conditioning on X,” the notation and calculus developed in this chap-
ter should provide an effective means for scientists to communicate
substantive information and to infer its logical consequences.

9The bitter controversy between Goldberger (1992) and Wermuth (1992) re-
volves around Wermuth’s insistence on giving a statistical interpretation to the
zero coefficients in structural equations (see Section 5.4.1).
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3.6.3 Translation from Graphs to Potential Out-
comes

This chapter uses two representations of causal information: graphs
and structural equations, where the former is an abstraction of the
latter. Both representations have been controversial for almost a cen-
tury. On the one hand, economists and social scientists have embraced
these modeling tools, but they continue to question and debate the
causal content of the parameters they estimate (see Sections 5.1 and
5.4 for details); as a result, the use of structural models in policy-
making contexts is often viewed with suspicion. Statisticians, on the
other hand, reject both representations as problematic (Freedman 1987)
if not meaningless (Wermuth 1992; Holland 1995), and they sometimes
resort to the Neyman-Rubin potential-outcome notation when pressed
to communicate causal information (Rubin 1990).!° A detailed for-
mal analysis of the relationships between the structural and potential-
outcome approaches is offered in Chapter 7 (Section 7.4.4) and proves
their mathematical equivalence. In this section we highlight common-
alities and differences between the two approaches as they pertain to
the elicitation of causal assumptions.

The primitive object of analysis in the potential-outcome framework
is the unit-based response variable, denoted Y (z, u) or Y;(u), read: “the
value that Y would obtain in unit u, had X been z.” This counterfac-
tual entity has natural interpretation in structural equations models.
Consider a general structural model M that contains a set of equations

z; = filpa;,wi), i=1,...,m, (3.50)

as in (3.4). Let U stand for the vector (Uy,...,U,) of background vari-
ables, let X and Y be two disjoint subsets of observed variables, and let
M, be the submodel created by replacing the equations corresponding
to variables in X with X = z, as in Definition 3.2.1. The structural
interpretation of Y (z,u) is given by

Y(z,u) £ Y, (u). (3.51)

10A parallel framework was developed in the econometrics literature under the
rubric “switching regression” (Manski 1995, p. 38), which Heckman (1996) at-
tributed to Roy (1951) and Quandt (1958).
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That is, Y (z,u) is the (unique) solution of Y under the realization
U = u in the submodel M, of M. Although the term wunit in the
potential-outcome literature normally stands for the identity of a spe-
cific individual in a population, a unit may also be thought of as the
set. of attributes that characterize that individual, the experimental
conditions under study, the time of day, and so on—all of which are
represented as components of the vector v in structural modeling. In
fact, the only requirements on U are (i) that it represent as many back-
ground factors as needed to render the relations among endogenous
variables deterministic and (ii) that the data consist of independent
samples drawn from P(u). The identity of an individual person in an
experiment is often sufficient for this purpose because it represents the
anatomical and genetic makings of that individual, which are often suf-
ficient for determining that individual’s response to treatments or other
programs of interest.

Equation (3.51) forms a connection between the opaque English
phrase “the value that Y would obtain in unit », had X been z” and
the physical processes that transfer changes in X into changesin Y. The
formation of the submodel M, explicates precisely how the hypothetical
phrase “had X been z” could be realized, as well as what process must
give in to make X = z a reality.

Given this interpretation of Y (x,u), it is instructive to contrast the
methodologies of causal inference in the counterfactual versus struc-
tural frameworks. If U is treated as a random variable then the value of
the counterfactual Y (x,u) becomes a random variable as well, denoted
as Y (z) or Y. The potential-outcome analysis proceeds by imagining
the observed distribution P(z1,...,z,) as the marginal distribution
of an augmented probability function P* defined over both observed
and counterfactual variables. Queries about causal effects (written
P(y|Z) in our structural analysis) are phrased as queries about the
marginal distribution of the counterfactual variable of interest, writ-
ten P*(Y(z) = y). The new hypothetical entities Y (x) are treated
as ordinary random variables; for example, they are assumed to obey
the axioms of probability calculus, the laws of conditioning, and the
axioms of conditional independence. Moreover, these hypothetical en-
tities are assumed to be connected to observed variables via consistency
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constraints (Robins 1986) such as'!
X=2z = Y()=Y, (3.52)

which states that, for every wu, if the actual value of X turns out to
be x, then the value that Y would take on if X were x is equal to the
actual value of Y. Thus, whereas the structural approach views the
intervention do(x) as an operation that changes the model (and the
distribution) but keeps all variables the same, the potential-outcome
approach views the variable Y under do(z) to be a different variable,
Y (z), loosely connected to Y through relations such as (3.52). In Chap-
ter 7 we show, using the structural interpretation of Y (z,u), that it is
indeed legitimate to treat counterfactuals as random variables in all
respects and, moreover, that consistency constraints like (3.52) follow
as theorems from the structural interpretation.

To communicate substantive causal knowledge, the potential-
outcome analyst must express causal assumptions as constraints on
P~ usually in the form of conditional independence assertions involving
counterfactual variables. For example, to communicate the understand-
ing that—in a randomized clinical trial with imperfect compliance (see
Figure 3.7(b))—the way subjects react (Y') to treatments (X) is sta-
tistically independent of the treatment assignment (Z), the potential-
outcome analyst would write Y (z)lLZ. Likewise, to convey the un-
derstanding that the assignment is randomized and hence independent
of how subjects comply with the assignment, the potential-outcome
analyst would use the independence constraint Z_1L X (z).

A collection of constraints of this type might sometimes be sufficient
to permit a unique solution to the query of interest; in other cases,
only bounds on the solution can be obtained. For example, if one can
plausibly assume that a set Z of covariates satisfies the conditional
independence

Y(z)lLX|Z (3.53)

(an assumption that was termed “conditional ignorability” by (Rosen-
baum and Rubin 1983), then the causal effect P*(Y (z) = y) can readily

" Gibbard and Harper (1976, p. 156) expressed this constraint as A D [(AO—
S)=39].
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be evaluated, using (3.52), to yield!2
Pr(Y(z)=y) = ;P*(Y(x) = ylz)P(2)
= ;P*(Y(w) = ylz,2)P(2)
= ZZZP*(Y = ylz,2)P(2)

= > P(ylz,2)P(2). (3.54)

The last expression contains no counterfactual quantities (thus permit-
ting us to drop the asterisk from P*) and coincides precisely with the
adjustment formula of (3.19), which obtains from the back-door cri-
terion. However, the assumption of conditional ignorability (equation
(3.53))—the key to the derivation of (3.54)—is not straightforward to
comprehend or ascertain. Paraphrased in experimental metaphors, this
assumption reads: The way an individual with attributes Z would react
to treatment X = x is independent of the treatment actually received
by that individual.

Section 3.6.2 explains why this approach may appeal to some statis-
ticians, even though the process of eliciting judgments about coun-
terfactual dependencies has been extremely difficult and error-prone;
instead of constructing new vocabulary and new logic for causal ex-
pressions, all mathematical operations in the potential-outcome frame-
work are conducted within the safe confines of probability calculus.
The drawback lies in the requirement of using independencies among
counterfactual variables to express plain causal knowledge. When coun-
terfactual variables are not viewed as byproducts of a deeper, process-
based model, it is hard to ascertain whether all relevant counterfactual
independence judgments have been articulated,'® whether the judg-
ments articulated are redundant, or whether those judgments are self-
consistent. The elicitation of such counterfactual judgments can be
systematized by using the following translation from graphs (see Sec-
tion 7.1.4 for additional relationships).

12Gibbard and Harper (1976, p. 157) used the “ignorability assumption”
Y (z)1lLX to derive the equality P(Y (z) = y) = P(y|z).

I3 A typical oversight in the example of Figure 3.7(b) has been to write Z 1LY (z)
and Z 11 X (z) instead of Z 1L {Y (z), X (2)}, as dictated by (3.56).
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Graphs encode substantive information in both the equations and
the probability function P(u); the former is encoded as missing arrows,
the latter as missing dashed arcs. Each parent-child family (PA;, X;)
in a causal diagram G corresponds to an equation in the model M of
(3.50). Hence, missing arrows encode exclusion assumptions, that is,
claims that adding excluded variables to an equation will not change
the outcome of the hypothetical experiment described by that equa-
tion. Missing dashed arcs encode independencies among disturbance
terms in two or more equations. For example, the absence of dashed
arcs between a node Y and a set of nodes {Z1,..., Z;} implies that
the corresponding background variables, Uy and {Uz,,...,Uz}, are
independent in P(u).

These assumptions can be translated into the potential-outcome
notation using two simple rules (Pearl 1995a, p. 704)pearl:95; the first
interprets the missing arrows in the graph, the second, the missing
dashed arcs.

1. Exclusion restrictions: For every variable Y having parents PA,
and for every set of variables S disjoint of PA,, we have

Y(pay) =Y (pay,s). (3.55)

2. Independence restrictions: If Zy,...,Zy is any set of nodes not
connected to Y via dashed arcs, we have'*

Y(pa’Y)J'L{Zl(pazl)’ Tt Zk(pa’zk)} (356)

The independence restriction translates the independence between
Uy and {Ug,...,Uyg} into independence between the corresponding
potential-outcome variables. This follows from the observation that,
once we set their parents, the variablesin {Y, Z1, ..., Z;} stand in func-
tional relationships to the U terms in their corresponding equations.

4The restriction is in fact stronger, jointly applying to all instantiations
of the PA wvariables. For example, X 1Y (paz) should be interpreted as
X 1u{Y(pay),Y (pa}),Y (pa),...}, where pal,,pa’,, pay, ... are the values that the
set PAz may take on.
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As an example, the model shown in Figure 3.5 displays the following
parent sets:

PA, = {0}, PA, = {X}, PA, ={Z}. (3.57)

Consequently, the exclusion restrictions translate into:

Z(x) = Z(y,x), (3.58)
Xy) = X(zy) =X(z) =X, (3.59)
Y(2) = Y(z,uz); (3.60)

the absence of a dashed arc between Z and {Y, X} translates into the
independence restriction

Z(2)AL{Y (2), X}. (3.61)

Given a sufficient number of such restrictions on P*, the analyst
attempts to compute causal effects P*(Y(z) = y) using standard
probability calculus together with the logical constraints (e.g. (3.52))
that couple counterfactual variables with their measurable counter-
parts. These constraints can be used as axioms, or rules of infer-
ence, in attempting to transform causal effect expressions of the form
P*(Y(xz) = y) into expressions involving only measurable variables.
When such a transformation is found, the corresponding causal effect
is identifiable, since P* then reduces to P.

The question naturally arises of whether the constraints used by
potential-outcome analysts are complete—that is, whether they are suf-
ficient for deriving every valid statement about causal processes, inter-
ventions, and counterfactuals. To answer this question, the validity of
counterfactual statements need be defined relative to more basic math-
ematical objects, such as possible worlds (Section 1.4.4) or structural
equations (equation (3.51)). In the standard potential-outcome frame-
work, however, the question of completeness remains open, because
Y (z,u) is taken as a primitive notion and because consistency con-
straints such as (3.52) although they appear plausible for the English
expression “had X been z”—are not derived from a deeper mathemati-
cal object. This question of completeness is settled in Chapter 7, where
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a necessary and sufficient set of axioms is derived from the structural
semantics given to Y (z,u) by (3.51).

In assessing the historical development of structural equations and
potential-outcome models, one cannot overemphasize the importance
of the conceptual clarity that structural equations offer vis-a-vis the
potential-outcome model. The reader may appreciate this importance
by attempting to judge whether the condition of (3.61) holds in a given
familiar situation. This condition reads: “the value that Z would ob-
tain had X been z is jointly independent of both X and the value that
Y would obtain had Z been z.” (In the structural representation, the
sentence reads: “Z shares no cause with either X or Y, except for X
itself, as shown in Figure 3.5.”) The thought of having to express, de-
fend, and manage formidable counterfactual relationships of this type
may explain why the enterprise of causal inference is currently viewed
with such awe and despair among rank-and-file epidemiologists and
statisticians—and why economists and social scientists continue to use
structural equations instead of the potential-outcome alternatives advo-
cated in Holland (1988), Angrist et al. (1996), and Sobel (1998). On the
other hand, the algebraic machinery offered by the potential-outcome
notation, once a problem is properly formalized, can be quite power-
ful in refining assumptions, deriving probabilities of counterfactuals,
and verifying whether conclusions follow from premises—as we demon-
strate in Chapter 9. The translation given in (3.51)—(3.56) should help
researchers combine the best features of the two approaches.

3.6.4 Relations to Robins’s G-Estimation

Among the investigations conducted in the potential-outcome frame-
work, the one closest in spirit to the structural analysis described in
this chapter is Robins’s work on “causally interpreted structured tree
graphs” (Robins 1986, 1987). Robins was the first to realize the po-
tential of Neyman’s counterfactual notation Y (z) as a general mathe-
matical language for causal inference, and he used it to extend Rubin’s
(1978) “time-independent treatment” model to studies with direct and
indirect effects and time-varying treatments, concomitants, and out-
comes.

Robins considered a set V= {Vi,...,Vy} of temporally ordered
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discrete random variables (as in Figure 3.3) and asked under what
conditions one can identify the effect of control policy g : X = z on
outcomes Y C V\X, where X = {X,..., Xx} C V are the temporally
ordered and potentially manipulable treatment variables of interest.
The causal effect of X =z on Y was expressed as the probability

P(ylg = 1) 2 P{Y(z) =y},

where the counterfactual variable Y (z) stands for the value that out-
come variables Y would take had the treatment variables X been z.
Robins showed that P(y|g = z) is identified from the distribution
P(v) if each component X; of X is “assigned at random, given the
past,” a notion explicated as follows. Let L; be the variables occur-
ring between X;_; and Xy, with L, being the variables preceding X;.
Write Ik = (Ll, .. .,Lk), L= ZK, and Yk = (Xl, ce ,Xk), and define
Xy, Lo, Vy to be identically zero. The treatment X, = z, is said to
be assigned at random, given the past, if the following relation holds:

(Y(.’L’)J_LXk‘Ik,kal = kal). (362)

Robins further proved that, if (3.62) holds for every k, then the
causal effect is given by

K
P(y\g = iL') = ZP(yHK,fK) H P(lk”kflajkfl)a (363)
Ik k=1

an expression he called the “G-computation algorithm formula.” This
expression can be derived by applying condition (3.62) iteratively, as in
the derivation of (3.54). If X is univariate, then (3.63) reduces to the
standard adjustment formula

P(y|g = z) ZPWZ (h),

paralleling (3.54). Likewise, in the special structure of Figure 3.3, (3.63)
reduces to (3.18).

To place this result in the context of our analysis in this chapter,
we note that the class of semi-Markovian models satisfying assumption
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(3.62) corresponds to complete DAGs in which all arrowheads pointing
to X} originate from observed variables. Indeed, in such models, the
parents PA, = Ly, X;_, of variable X}, satisfy the back-door condition
of Definition 3.3.1,

(Xe LY [P Ay)

Gﬁk’

which implies (3.62)."® This class of models falls under Theorem 3.2.5,
which states that all causal effects in this class are identifiable and are
given by the truncated factorization formula of (3.14); the formula co-
incides with (3.63) after marginalizing over the uncontrolled covariates.

The structural analysis introduced in this chapter supports and gen-
eralizes Robins’s result from a new theoretical perspective. First, on the
technical front, this analysis offers systematic ways of managing mod-
els with unmeasured confounders (i.e., unobserved parents of control
variables, as in Figures 3.8(d)—(g)), where Robins’s starting assump-
tion (3.62) is inapplicable. Second, on the conceptual front, the struc-
tural framework represents a fundamental shift from the vocabulary
of counterfactual independencies (e.g. (3.62)) to the vocabulary of pro-
cesses and mechanisms, from which human judgment of counterfactuals
originates. Although expressions of counterfactual independencies can
be engineered to facilitate algebraic derivations of causal effects (as in
(3.54)), articulating the right independencies for a problem or assessing
the assumptions behind such independencies may often be the hardest
part of the problem. In the structural framework, the counterfactual
expressions themselves are derived (if needed) from a mathematical
theory (as in (3.56) and (3.61)). Still, Robins’s pioneering research has
proven (i) that algebraic methods can handle causal analysis in com-
plex multistage problems and (ii) that causal effects in such problems
can be reduced to estimable quantities (see also Sections 3.6.1 and 4.4).

15 Alternatively, (3.62) can be obtained by applying the translation rule of (3.56)
to graphs with no confounding arcs between X, and {Y, PA;}. Note, however, that
the implication goes only one way; Robins’s condition is the weakest assumption
needed for identifying the causal effect.
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Postscript

The work recounted in this chapter sprang from two simple ideas that
totally changed my attitude toward causality. The first idea arose in
the summer of 1990, while I was working with Tom Verma on “A The-
ory of Inferred Causation” (Pearl and Verma 1991; see also Chapter 2).
We played around with the possibility of replacing the parents-child
relationship P(z;|pa;) with its functional counterpart x; = f;(pa;, u;)
and, suddenly, everything began to fall into place: we finally had a
mathematical object to which we could attribute familiar properties
of physical mechanisms instead of those slippery epistemic probabili-
ties P(x;|pa;) with which we had been working so long in the study
of Bayesian networks. Danny Geiger, who was writing his disserta-
tion at that time, asked with astonishment: “Deterministic equations?
Truly deterministic?” Although we knew that deterministic structural
equations have a long history in econometrics, we viewed this represen-
tation as a relic of the past. For us at UCLA in the early 1990s, the
idea of putting the semantics of Bayesian networks on a deterministic
foundation seemed a heresy of the worst kind.

The second simple idea came from Peter Spirtes’s lecture at the In-
ternational Congress of Philosophy of Science (Uppsala, Sweden, 1991).
In one of his slides, Peter illustrated how a causal diagram would change
when a variable is manipulated. To me, that slide of Spirtes’s—when
combined with the deterministic structural equations—was the key to
unfolding the manipulative account of causation and led to most of the
explorations described in this chapter.

I should really mention another incident that contributed to this
chapter. In early 1993 I read the fierce debate between Arthur Gold-
berger and Nanny Wermuth on the meaning of structural equations
(Goldberger 1992; Wermuth 1992). It suddenly hit me that the century-
old tension between economists and statisticians stems from simple
semantic confusion: Statisticians read structural equations as state-
ments about E(Y|z), while economists read them as E(Y|do(x)). This
would explain why statisticians claim that structural equations have no
meaning and why economists retort that statistics has no substance. I
wrote a technical report, “On the Statistical Interpretation of Struc-
tural Equations” (Pearl 1993c), hoping to see the two camps embrace
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in reconciliation. Nothing of the sort happened. The statisticians in
the dispute continued to insist that anything that is not interpreted as
E(Y|z) simply lacks meaning. The economists, in contrast, are still
trying to decide if it was do(z) that they have been meaning to say all
along.

Encouraging colleagues receive far too little credit in official chan-
nels, considering the immense impact they have on the encouraged. I
must take this opportunity to acknowledge four colleagues who saw
clarity shining through the do(z) operator before it gained popularity:
Steffen Lauritzen, David Freedman, James Robins, and Philip Dawid.
Phil showed special courage in printing my paper in Biometrika (Pearl
1995a), the journal founded by causality’s worst adversary—Karl Pear-
son.



