Chapter 2

A Theory of Inferred
Causation

I would rather discover one causal
law than be King of Persia.
Democritus (460-370 B.C.)

Preface

The possibility of learning causal relationships from raw data has been
on philosophers’ dream lists since the time of Hume (1711-1776). That
possibility entered the realm of formal treatment and feasible compu-
tation in the mid-1980s, when the mathematical relationships between
graphs and probabilistic dependencies came into light. The approach
described herein is an outgrowth of Pearl (1998b, Chap. 8), which de-
scribes how causal relationships can be inferred from nontemporal sta-
tistical data if one makes certain assumptions about the underlying
process of data generation (e.g., that it has a tree structure). The
prospect of inferring causal relationships from weaker structural as-
sumptions (e.g., general directed acyclic graphs) has motivated parallel
research efforts at three universities: UCLA, Carnegie Mellon Univer-
sity (CMU), and Stanford. The UCLA and CMU teams pursued an
approach based on searching the data for patterns of conditional inde-
pendencies that reveal fragments of the underlying structure and then
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68 CHAPTER 2. A THEORY OF INFERRED CAUSATION

piecing those fragments together to form a coherent causal model (or a
set of such models). On the other hand, the Stanford group pursued a
Bayesian approach, where data are used to update the posterior proba-
bilities assigned to candidate causal structures (Cooper and Herskovits
1991). The UCLA and CMU efforts have led to similar theories and
almost identical discovery algorithms, which were implemented in the
TETRAD II program (Spirtes et al. 1993). The Bayesian approach has
since been pursued by a number of research teams (Singh and Valtorta
1995; Heckerman et al. 1994) and now serves as the basis for several
graph-based learning methods (Jordan 1998). This chapter describes
the approach pursued by Tom Verma and me in the period 1988-1992,
and it briefly summarizes related extensions, refinements, and improve-
ments that have been advanced by the CMU team and others. Some
of the philosophical rationale behind this development, primarily the
assumption of minimality, are implicit in the Bayesian approach as well
(Section 2.9.1).

The basic idea of automating the discovery of causes—and the spe-
cific implementation of this idea in computer programs—came under
fierce debate in a number of forums (Cartwright 1995a; Humphreys and
Freedman 1996; Cartwright 1997; Korb and Wallace 1997; McKim and
Turner 1997; Robins and Wasserman 1999). Selected aspects of this
debate will be addressed in the discussion section at the end of this
chapter (Section 2.9.1).

Acknowledging that statistical associations do not logically imply
causation, this chapter asks whether weaker relationships exist between
the two. In particular, we ask:

1. What clues prompt people to perceive causal relationships in un-
controlled observations?

2. Is it feasible to infer causal models from these clues?

3. Would the models inferred tell us anything useful about the causal
mechanisms that underly the observations?

In Section 2.2 we define the notions of causal models and causal
structures and then describe the task of causal modeling as an inductive
game that scientists play against Nature. In Section 2.3 we formalize
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the inductive game by introducing “minimal model” semantics—the
semantical version of Occam’s razor—and exemplify how, contrary to
common folklore, causal relationships can be distinguished from spu-
rious covariations following this standard norm of inductive reasoning.
Section 2.4 identifies a condition, called stability (or faithfulness), under
which effective algorithms exist that uncover structures of casual influ-
ences as defined here. One such algorithm (called IC), introduced in
Section 2.5, uncovers the set of all causal models compatible with the
data, assuming all variables are observed. Another algorithm (IC*),
described in Section 2.6, is shown to uncover many (though not all)
valid causal relationships when some variables are not observable. In
Section 2.7 we extract from the IC* algorithm the essential conditions
under which causal influences are identified, and we offer these as in-
dependent definitions of genuine influences and spurious associations,
with and without temporal information. Section 2.8 offers an expla-
nation for the puzzling yet universal agreement between the temporal
and statistical aspects of causation. Finally, Section 2.9 summarizes the
claims made in this chapter, re-explicates the assumptions that leads to
these claims, and offers new justifications of these assumption in light
of ongoing debates.

2.1 Introduction

An autonomous intelligent system attempting to build a workable
model of its environment cannot rely exclusively on preprogrammed
causal knowledge; rather, it must be able to translate direct observa-
tions to cause-and-effect relationships. However, given that statistical
analysis is driven by covariation, not causation, and assuming that the
bulk of human knowledge derives from uncontrolled observations, we
must still identify the clues that prompt people to perceive causal re-
lationships in the data. We must also find a computational model that
emulates this perception.

Temporal precedence is normally assumed to be essential for defin-
ing causation, and it is undoubtedly one of the most important clues
that people use to distinguish causal from other types of associations.
Accordingly, most theories of causation invoke an explicit requirement
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that a cause precedes its effect in time (Reichenbach 1956; Good 1961;
Suppes 1970; Shoham 1988). Yet temporal information alone cannot
distinguish genuine causation from spurious associations caused by un-
known factors—the barometer falls before it rains yet does not cause the
rain. In fact, the statistical and philosophical literature has adamantly
warned analysts that, unless one knows in advance all causally rele-
vant factors or unless one can carefully manipulate some variables, no
genuine causal inferences are possible(Fisher 1951; Skyrms 1980; Cliff
1983; Eells and Sober 1983; Holland 1986; Gardenfors 1988; Cartwright
1989).! Neither condition is realizable in normal learning environments,
and the question remains how causal knowledge is ever acquired from
experience.

The clues that we explore in this chapter come from certain
patterns of statistical associations that are characteristic of causal
organizations—patterns that, in fact, can be given meaningful inter-
pretation only in terms of causal directionality. Consider, for example,
the following intransitive pattern of dependencies among three events:
A and B are dependent, B and C' are dependent, yet A and C are
independent. If you ask a person to supply an example of three such
events, the example would invariably portray A and C as two indepen-
dent causes and B as their common effect, namely, A - B < C. (In
my favorite example, A and C' are the outcomes of two fair coins, and
B represents a bell that rings whenever either coin comes up heads.)
Fitting this dependence pattern with a scenario in which B is the cause
and A and C are the effects is mathematically feasible but very unnat-
ural (the reader is encouraged to try this exercise).

Such thought experiments tell us that certain patterns of depen-
dency, which are totally void of temporal information, are conceptually
characteristic of certain causal directionalities and not others. Reichen-
bach (1956) suggested that this directionality is a characteristic of Na-
ture, reflective of the temporal asymmetries associated with the second
law of thermodynamics. In Section 2.8 we offer a more subjective ex-
planation, attributing the directionality to choice of language and to

1Some of the popular quotes are: “No causation without manipulation” (Holland
1986), “No causes in, no causes out” (Cartwright 1989), “No computer program can
take account of variables that are not in the analysis” (Cliff 1983).
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certain assumptions (e.g., Occam’s razor and stability) prevalent in
scientific induction. The focus of our investigation in this chapter is
to explore whether this directionality provides a significant source of
causal information and whether this information can be given formal
characterization and an algorithmic implementation.

We start by introducing a model-theoretic semantics that gives a
plausible account for how causal models could coherently be inferred
from observations. Using this semantics we show that, subject to cer-
tain plausible assumptions, genuine causal influences can in many cases
be distinguished from spurious covariations and, moreover, the direc-
tion of causal influences can often be determined without resorting to
chronological information. (Although, when available, chronological
information can significantly simplify the modeling task.)

2.2 The Causal Modeling Framework

We view the task of causal modeling as an induction game that scien-
tists play against Nature. Nature possesses stable causal mechanisms
that, on a detailed level of descriptions, are deterministic functional re-
lationships between variables, some of which are unobservable. These
mechanisms are organized in the form of an acyclic structure, which
the scientist attempts to identify from the available observations.

Definition 2.2.1 (Causal Structure)

A causal structure of a set of variables V' is a directed acyclic graph
(DAG) in which each node corresponds to a distinct element of V,
and each link represents direct functional relationship among the corre-
sponding variables.

A causal structure serves as a blueprint for forming a “causal model” —
a precise specification of how each variable is influenced by its parents
in the DAG, as in the structural equation model of (1.40). Here we
assume that Nature is at liberty to impose arbitrary functional rela-
tionships between each effect and its causes and then to perturb these
relationships by introducing arbitrary (yet mutually independent) dis-
turbances. These disturbances reflect “hidden” or unmeasurable condi-
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tions and exceptions that Nature chooses to govern by some undisclosed
probability function.

Definition 2.2.2 (Causal Model)

A causal model is a pair M = <D, ©p> consisting of a causal structure
D and a set of parameters ©p compatible with D. The parameters Op
assign a function z; = f;i(pa;,u;) to each X; € V and a probability
measure P(u;) to each u;, where PA; are the parents of X; in D and
where each U; is a random disturbance distributed according to P(u;),
independently of all other u.

As we have seen in Chapter 1 (Theorem 1.4.1), the assumption of in-
dependent disturbances renders the model Markovian in the sense that
each variable is independent of all its nondescendants, conditional on
its parents. This Markov assumption is more a convention than an as-
sumption; for it merely defines the granularity of the models we wish
to consider as candidates before we begin the search. We can start
in the deterministic extreme, where all variables are explicated in mi-
croscopic details and where the Markov condition certainly holds. As
we move up to macroscopic abstractions by aggregating variables and
introducing probabilities to summarize omitted variables, we need to
decide at what stage the abstraction has gone too far and where useful
properties of causation are lost. Evidently, the Markov condition has
been recognized by our ancestors (the authors of our causal thoughts)
as a property worth protecting in this abstraction; correlations that are
not explained by common causes are considered spurious, and models
containing such correlations are considered incomplete. The Markov
condition guides us in deciding when a set of parents PA; is considered
complete in the sense that it include all the relevant immediate causes
of variable X;. It permits us to leave some of these causes out of PA;
(and be summarized by probabilities), but not if they also affect other
variables modeled in the system. If a set PA; in a model is too narrow,
there will be disturbance terms that influence several variables simul-
taneously and the Markov property will be lost. Such disturbances
will be treated explicitly as “latent” variables (see Definition 2.3.2).
Once we acknowledge the existence of latent variables and represent
their existence explicitly as nodes in a graph, the Markov property is
restored.
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Once a causal model M is formed, it defines a joint probability
distribution P(M) over the variables in the system. This distribution
reflects some features of the causal structure (e.g., each variable must
be independent of its grandparents, given the values of its parents).
Nature then permits the scientist to inspect a select subset O C V' of
“observed” variables and to ask questions about Po;, the probability
distribution over the observables, but it hides the underlying causal
model as well as the causal structure. We investigate the feasibility of
recovering the topology D of the DAG, from features of the probability
distribution P[O].2

2.3 Model Preference (Occam’s razor)

In principle, since V' is unknown, there is an unbounded number of
models that would fit a given distribution, each invoking a different
set, of “hidden” variables and each connecting the observed variables
through different causal relationships. Therefore, with no restriction
on the type of models considered, the scientist is unable to make any
meaningful assertions about the structure underlying the phenomena.
For example, every probability distribution Pjo; can be generated by a
structure in which no observed variable is a cause of another but in-
stead all variables are consequences of one latent common cause, U.3
Likewise, assuming V = O but lacking temporal information, the sci-
entist can never rule out the possibility that the underlying structure
is a complete, acyclic, and arbitrarily ordered graph—a structure that
(with the right choice of parameters) can mimic the behavior of any
model, regardless of the variable ordering. However, following standard

2This formulation invokes several idealizations of the actual task of scientific dis-
covery. It assumes, for example, that the scientist obtains the distribution directly,
rather than events sampled from the distribution. Additionally, we assume that the
observed variables actually appear in the original causal model and are not some
aggregate thereof. Aggregation might result in feedback loops, which we do not
discuss in this chapter.

3This can be realized by letting U have as many states as O, assigning to U
the prior distribution P(u) = P(o(u)) (where o(u) is the cell of O corresponding to
state u), and letting each observed variable O; take on its corresponding value in

o(u).
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norms of scientific induction, it is reasonable to rule out any theory for
which we find a simpler, less elaborate theory that is equally consistent
with the data (see Definition 2.3.5). Theories that survive this selec-
tion process are called minimal. With this notion, we can construct
our (preliminary) definition of inferred causation as follows.

Definition 2.3.1 (Inferred Causation (Preliminary))

A wvariable X is said to have a causal influence on a variable Y if a
directed path from X to'Y exists in every minimal structure consistent
with the data.

Here we equate a causal structure with a scientific theory, since both
contain a set of free parameters that can be adjusted to fit the data.
We regard Definition 2.3.1 as preliminary because it assumes that all
variables are observed. The next few definitions generalize the concept
of minimality to structures with unobserved variables.

Definition 2.3.2 (Latent Structure)
A latent structure is a pair L = <D, O>, where D is a causal structure
over V and where O C 'V 1is a set of observed variables.

Definition 2.3.3 (Structure Preference)

One latent structure L = <D,0O> is preferred to another L' =
<D',O> (written L < L') if and only if D' can mimic D over O—
that is, if and only if for every ©p there exists a O, such that
Po|(<D',0'n>) = P)(<D,0p>). Two latent structures are equiv-
alent, written L' = L, if and only if L < L' and L = L'*

Note that the preference for simplicity imposed by Definition 2.3.3 is
gauged by the expressive power of a structure, not by its syntactic de-
scription. For example, one latent structure L; may invoke many more
parameters than L, and still be preferred if L, can accommodate a
richer set of probability distributions over the observables. One reason
scientists prefer simpler theories is that such theories are more con-
straining and thus more falsifiable; they provide the scientist with less

4We use the succinct term “preferred to” to mean “preferred or equivalent to,”
a relation that has also been named “a submodel of.”
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opportunities to overfit the data “hindsightedly” and therefore com-
mand greater credibility if a fit is found (Popper 1959; Pearl 1978;
Blumer et al. 1987).

We also note that the set of independencies entailed by a causal
structure imposes limits on its expressive power, i.e., its power to mimic
other structures. Indeed, L; cannot be preferred to L, if there is even
one observable dependency that is permitted by L; and forbidden by
L,. Thus, tests for preference and equivalence can sometimes be re-
duced to tests of induced dependencies, which in turn can be deter-
mined directly from the topology of the DAGs without ever concerning
ourselves with the set of parameters. This is the case in the absence
of hidden variables (see Theorem 1.2.8) but does not hold generally in
all latent structures. Verma and Pearl (1990) showed that some latent
structures impose numerical rather than independence constraints on
the observed distribution (see e.g. Section 8.4, equations (8.21)—(8.23));
this makes the task of verifying model preference complicated but does
still permit us to extend the semantical definition of inferred causation
(Definition 2.3.1) to latent structures.

Definition 2.3.4 (Minimality)
A latent structure L is minimal with respect to a class L of latent struc-
tures if and only if there is no member of L that is strictly preferred to

L—that is, if and only if for every L' € L we have L = L' whenever
L'<L.

Definition 2.3.5 (Consistency)

A latent structure L = <D,0O> is consistent with a distribution P
over O if D can accommodate some model that generates P—that is, if
there exists a parameterization ©p such that Poj(<D,0p>) = P.

Clearly, a necessary (and sometimes sufficient) condition for L to be

consistent with P is that L can account for all the dependencies em-
bodied in P.

Definition 2.3.6 (Inferred Causation)

Given P, a variable C has a causal influence on variable E if and only
if there exists a directed path from C to E in every minimal latent
structure consistent with P.
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Figure 2.1: Causal structures illustrating the minimality of (a) and (b)
and the justification for inferring the relationship ¢ — d. Asterics (x)
represent hidden variables with any number of states.

We view this definition as normative because it is based on one of the
least disputed norms of scientific investigation: Occam’s razor in its se-
mantical casting. However, as with any scientific inquiry, we make no
claims that this definition is guaranteed to always identify stable phys-
ical mechanisms in nature. It identifies the mechanisms we can plausi-
bly infer from nonexperimental data; moreover, it guarantees that any
alternative mechanism will be less trustworthy than the one inferred
because the alternative would require more contrived, hindsighted ad-
justment of parameters (i.e. functions) to fit the data.

As an example of a causal relation that is identified by Definition
2.3.6, imagine that observations taken over four variables {a,b,c, d}
reveal two independencies: “a is independent of b” and “d is indepen-
dent of {a, b} given ¢.” Assume further that the data reveals no other
independence besides those that logically follow from these two. This
dependence pattern would be typical, for example, of the following vari-
ables: a = having a cold, b = having hay fever, ¢ = having to sneeze,
d = having to wipe one’s nose. It is not hard to see that structures (a)
and (b) in Figure 2.1 are minimal, for they entail the observed indepen-
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dencies and none other.® Furthermore, any structure that explains the
observed dependence between ¢ and d by an arrow from d to ¢, or by
a hidden common cause (x) between the two, cannot be minimal, be-
cause any such structure would be able to “out-mimic” the one shown
in Figure 2.1(a) (or the one in Figure 2.1(b)), which reflects all observed
independencies. For example, the structure of Figure 2.1(c), unlike that
of Figure 2.1(a), accommodates distributions with arbitrary relations
between a and b. Similarly, Figure 2.1(d) is not minimal because it fails
to impose the conditional independence between d and {a, b} given c
and will therefore accommodate distributions in which d and {a, b} are
dependent given c. In contrast, Figure 2.1(e) is not consistent with the
data since it imposes an unobserved marginal independence between
{a, b} and d.

This example (taken from Pearl and Verma 1991) illustrates a re-
markable connection between causality and probability: certain pat-
terns of probabilistic dependencies (in our case, all dependencies except
(allb) and (dL1L{a,b}|c)) imply unambiguous causal dependencies (in
our case, ¢ — d) without making any assumption about the presence
or absence of latent variables.® The only assumption invoked in this
implication is minimality—models that overfit the data are ruled out.

2.4 Stable Distributions

Although the minimality principle is sufficient for forming a normative
theory of inferred causation, it does not guarantee that the structure of
the actual data-generating model would be minimal, or that the search
through the vast space of minimal structures would be computationally
practical. Some structures may admit peculiar parameterizations that
would render them indistinguishable from many other minimal models

5To verify that (a) and (b) are equivalent, we note that (b) can mimic (a) if we
let the link a « * impose equality between the two variables. Conversely, (a) can
mimic (b), since it is capable of generating every distribution that possesses the in-
dependencies entailed by (b). (For theory and methods of “reading off” conditional
independencies from graphs, see Section 1.2.3 or [Pearl, 1988b].)

6Standard probabilistic definitions of causality (e.g. Suppes 1970; Eells 1991)
invariably require knowledge of all relevant factors that may influence the observed
variables (see Section 7.5.3).
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that have totally disparate structures. For example, consider a binary
variable C' that takes the value 1 whenever the outcomes of two fair
coins (A and B) are the same and takes the value 0 otherwise. In the
trivariate distribution generated by this parameterization, each pair of
variables is marginally independent yet is dependent conditional on the
third variable. Such a dependence pattern may in fact be generated
by three minimal causal structures, each depicting one of the variables
as causally dependent on the other two, but there is no way to decide
among the three. In order to rule out such “pathological” parame-
terizations, we impose a restriction on the distribution called stability,
also known as DAG-isomorphism (Pearl 1998b, p. 128) and faithful-
ness Spirtes et al. 1993). This restriction conveys the assumption that
all the independencies embedded in P are stable; that is, they are en-
tailed by the structure of the model D and hence remain invariant to
any change in the parameters ©p. In our example, only the correct
structure (namely, A — C < B) will retain its independence pattern
in the face of changing parameterizations—say, when one of the coins
becomes slightly biased.

Definition 2.4.1 (Stability)

Let I(P) denote the set of all conditional independence relation-
ships embodied in P. A causal model M = <D,Op> gener-
ates a stable distribution if and only if P(<D,Op>) contains no ex-
traneous independences—that is, if and only if I(P(<D,©p>)) C
I(P(<D,0©"%,>)) for any set of parameters ©',.

The stability condition states that, as we vary the parameters from © to
©', no independence in P can be destroyed; hence the name “stability.”
Succinctly, P is a stable distribution if there exists a DAG D such that
(X1Y|Z)p & (X 1LY |Z)p for any three sets of variables X,Y, and Z
(see Theorem 1.2.5).

The relationship between minimality and stability can be illustrated
using the following analogy. Suppose we see a picture of a chair and
that we need to decide between two theories as follows.

Ti: The object in the picture is a chair.

T,: The object in the picture is either a chair or two chairs positioned
such that one hides the other.
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Our preference for 77 over 71, can be justified on two principles, one
based on minimality and the other on stability. The minimality princi-
ple argues that T} is preferred to 75 because the set of scenes composed
of single objects is a proper subset of scenes composed of two or fewer
objects and, unless we have evidence to the contrary, we should prefer
the more specific theory. The stability principle rules out 75 a priori,
arguing that it would be rather unlikely for two objects to align them-
selves so as to have one perfectly hide the other. Such an alignment
would be unstable relative to slight changes in environmental conditions
or viewing angle.

The analogy with independencies is clear. Some independencies are
structural, that is, they would persist for every functional-distributional
parameterization of the graph. Others are sensitive to the precise nu-
merical values of the functions and distributions. For example, in the
structure Z < X — Y, which stands for the relations

= fl(maul)a Yy = f2($au2)a (2-1)

the variables Z and Y will be independent, conditional on X, for all
functions f; and f,. In contrast, if we add an arrow Z — Y to the
structure and use a linear model

z = yr + uy, y = ax+ Bz + us, (2.2)

with @ = —f7v, then Y and X will be independent. However, the
independence between Y and X is unstable because it disappears as
soon as the equality @« = —f7 is violated. The stability assumption
presumes that this type of independence is unlikely to occur in the
data, that all independencies are structural.

To further illustrate the relations between stability and minimality,
consider the causal structure depicted in Figure 2.1(c). The minimality
principle rejects this structure on the ground that it fits a broader
set of distributions than those fitted by structure (a). The stability
principle rejects this structure on the ground that, in order to fit the
data (specifically, the independence (alLb)), the association produced
by the arrow a — b must cancel precisely the one produced by the path
a < ¢ — b. Such precise cancelation cannot be stable, for it cannot be
sustained for all functions connecting variables a, b, and c¢. In structure
(a), by contrast, the independence (alLb) is stable.
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2.5 Recovering DAG Structures

With the added assumption of stability, every distribution has a unique
minimal causal structure (up to d-separation equivalence), as long as
there are no hidden variables. This uniqueness follows from Theorem
1.2.8, which states that two causal structures are equivalent (i.e. they
can mimic each other) if and only if they relay the same dependency
information—namely, they have the same skeleton and same set of v-
structures.

In the absence of unmeasured variables, the search for the minimal
model then boils down to reconstructing the structure of a DAG D from
queries about conditional independencies, assuming that those indepen-
dencies reflect d-separation conditions in some undisclosed underlying
DAG D,. Naturally, since Dy may have equivalent structures, the re-
constructed DAG will not be unique, and the best we can do is to find
a graphical representation for the equivalence class of Dy. Such graphi-
cal representation was introduced in Verma and Pearl (1990) under the
name pattern. A pattern is a partially directed DAG, in particular, a
graph in which some edges are directed and some are nondirected. The
directed edges represent arrows that are common to every member in
the equivalence class of Dy, while the undirected edges represent am-
bivalence; they are directed one way in some equivalent structures and
another way in others.

The following algorithm, introduced in Verma dna Pearl (1990),
takes as input a stable probability distribution P generated by some
underlying DAG Dg and outputs a pattern that represents the equiva-
lence class of D,.”

IC Algorithm (Inductive Causation)

Input: P, a stable distribution on a set V' of variables.
Output: a pattern H(P) compatible with P.

1. For each pair of variables a and b in V, search for a set S,; such

"The IC algorithm, as introduced in Verma and Pearl (1990), was designed
to operate on latent structures. For clarity, we here present the algorithm in two
separate parts, IC and IC*, with IC restricted to DAGs and IC* operating on latent
structures.



2.5. RECOVERING DAG STRUCTURES 81

that (a_Lb|S,;) holds in P—in other words, a and b should be inde-
pendent in }A’, conditioned on S,;. Construct an undirected graph G
such that vertices a and b are connected with an edge if and only if
no set S, can be found.

2. For each pair of nonadjacent variables a and b with a common neigh-
bor ¢, check if ¢ € Sy.
If it is, then continue.
If it is not, then add arrowheads pointing at ¢ (i.e., a — ¢ < b).

3. In the partially directed graph that results, orient as many of the
undirected edges as possible subject to two conditions: (i) the orien-
tation should not create a new v-structure; and (ii) the orientation
should not create a directed cycle.

The IC algorithm leaves the details of steps 1 and 3 unspecified, and
several refinements have been proposed for optimizing these two steps.
Verma and Pearl (1990) noted that, in sparse graphs, the search can
be trimmed substantially if commenced with the Markov network of
15, namely, the undirected graph formed by linking only pairs that
are dependent conditionally on all other variables. In linear Gaussian
models, the Markov network can be found in polynomial time, through
matrix inversion, by assigning edges to pairs that correspond to the
nonzero entries of the inverse covariance matrix. Spirtes and Glymour
(1991) proposed a general systematic way of searching for the sets Sg
in step 1. Starting with sets S, of cardinality 0, then cardinality 1, and
so on, edges are recursively removed from a complete graph as soon as
separation is found. This refinement, called the PC algorithm (after its
sauthors, Peter and Clark), enjoys polynomial time in graphs of finite
degree because, at every stage, the search for a separating set Sy, can
be limited to nodes that are adjacent to a and b.

Step 3 of the IC algorithm can be systematized in several ways.
Verma and Pearl (1992) showed that, starting with any pattern, the
following four rules are required for obtaining a maximally oriented
pattern.

R;: Orient b—c into b — ¢ whenever there is an arrow a — b such that
a and c are non adjacent.
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Ry: Orient a—b into a — b whenever there is chain ¢ — ¢ — b.

R3: Orient a—b into a — b whenever there are two chains a—c — b and
a—d — b such that c and d are nonadjacent.

R,: Orient a-b into a — b whenever there are two chains a—c — d
and ¢ — d — b such that ¢ and b are nonadjacent.

Meek (1995) showed that these four rules are also sufficient, so that
repeated application will eventually orient all arrows that are common
to the equivalence class of Dy. Moreover, R, is not required if the
starting orientation is limited to v-structures.

Another systematization is offered by an algorithm due to Dor and
Tarsi (1992) that tests (in polynomial time) if a given partially oriented
acyclic graph can be fully oriented without creating a new wv-structure
or a directed cycle. The test is based on recursively removing any vertex
v that has the following two properties:

1. no edge is directed outward from v;

2. every neighbor of v that is connected to v through an undirected
edge is also adjacent to all the other neighbors of v.

A partially oriented acyclic graph has an admissible extension in a DAG
if and only if all its vertices can be removed in this fashion. Thus, to
find the maximally oriented pattern, we can (i) separately try the two
orientations, a — b and a < b, for every undirected edge a—b, and (ii)
test whether both orientations, or just one, have extensions. The set of
uniquely orientable arrows constitutes the desired maximally oriented
pattern. Additional refinements can be found in Chickering (1995),
Andersson et al. (1997), and Moole (1997).

Latent structures, however, require special treatment, because the
constraints that a latent structure imposes upon the distribution cannot
be completely characterized by any set of conditional independence
statements. Fortunately, certain sets of those independence constraints
can be identified [Verma and Pearl, 1990]; permits us to recover valid
fragments of latent structures.
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2.6 Recovering Latent Structures

When Nature decides to “hide” some variables, the observed distribu-
tion P need no longer be stable relative to the observable set O. That is,
we are no longer guaranteed that, among the minimal latent structures
compatible with f), there exists one that has a DAG structure. For-
tunately, rather then having to search through this unbounded space
of latent structures, the search can be confined to graphs with finite
and well-defined structures. For every latent structure L, there is a
dependency-equivalent latent structure (the projection) of L on O in
which every unobserved node is a root node with exactly two observed
children. We characterize this notion explicitly as follows.

Definition 2.6.1 (Projection)
A latent structure Lig) = <Djo;, 0> is a projection of another latent
structure L if and only if:

1. every unobservable variable of Do) is a parentless common cause
of exactly two non-adjacent observable variables.

2. for every stable distribution P generated by L, there exists a stable
distribution P' generated by Lio) such that I(Po)) = I(P,)-

Theorem 2.6.2 (Verma 1993)
Any latent structure has at least one projection.

It is convenient to represent projections using a bidirectional graph with
only the observed variables as vertices (i.e., leaving the hidden variables
implicit). Each bidirected link in such a graph represents a common
hidden cause of the variables corresponding to the link’s endpoints.
Theorem 2.6.2 renders our definition of inferred causation (Defini-
tion 2.3.6) operational; it can be shown (Verma 1993) that the existence
of a certain link in a distinguished projection of any minimal model of
P must indicate the existence of a causal path in every minimal model
of P. Thus, our search reduces to finding the distinguished protection
of any minimal model of P and identifying the appropriate links. Re-
markably, these links can be identified by a simple variant of the IC
algorithm, here called IC*, that takes a distribution P and returns a
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marked pattern, which is a partially directed acyclic graph that contains
four types of edges:

1. a marked arrow a — b, signifying a directed path from a to b in
the underlying model;

2. an unmarked arrow a — b, signifying either a directed path from
a to b or a latent common cause a <— L — b in the underlying
model;

3. a bidirected edge a +— b, signifying a latent common cause
a < L — b in the underlying model; and

4. an undirected edge a-b, standing for either a <— b or a — b or
a < L — b in the underlying model.®

IC* Algorithm (Inductive Causation with Latent Vari-
ables)

Input: P, a sampled distribution.

A

Output: core(P), a marked pattern.

1. For each pair of variables a and b, search for a set Sy, such that a
and b are independent in P, conditioned on Sap-
If there is no such Sy, place an undirected link between the two
variables, a — b.

2. For each pair of nonadjacent variables a and b with a common neigh-
bor ¢, check if ¢ € Sg.
If it is, then continue.
If it is not, then add arrowheads pointing at ¢ (i.e., a — ¢ < b).

3. In the partially directed graph that results, add (recursively) as many
arrowheads as possible, and mark as many edges as possible, accord-
ing to the following two rules:

8Spirtes et al. (1993) used a o— b to represent uncertainty about the arrowhead
at node a. Several errors in the original proof of IC* were pointed out to us by Peter
Spirtes and were corrected in Verma (1993). Alternative proofs of correctness, as
well as refinements in the algorithm, are given in Spirtes et al. (1993).
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Figure 2.2: Illustration Ry in step 3 of the IC* Algorithm.

e R;: For each pair of non-adjacent nodes a and b with a com-
mon neighbor c, if the link between @ and ¢ has an arrowhead
into ¢ and if the link between ¢ and b has no arrowhead into c,
then add an arrowhead on the link between ¢ and b pointing at
b and mark that link to obtain ¢ = b.

e Ry: If a and b are adjacent and there is a directed path (com-
posed strictly of marked links) from a to b (as in Figure 2.2),
then add an arrowhead pointing toward b on the link between
a and b.

Steps 1 and 2 of IC* are identical to those of IC, but the rules in step 3
are different; they do not orient edges but rather add arrowheads to the
individual endpoints of the edges, thus accommodating bidirectional
edges.

Figure 2.3 illustrates the operation of the IC* Algorithm on the
sprinkler example of Figure 1.2. (shown schematically in Figure 2.3(a)).

1. The conditional independencies entailed by this structure
can be read off wusing the d-separation criterion
(Definition 1.2.3), and the smallest conditioning sets correspond-
ing to these independencies are given by S,q = {b,c}, See =
{d}, Spe = {a}, Spe = {d}, and S, = {d}. Thus, step 1 of IC*
yields the undirected graph of Figure 2.3(b).

2. The triplet (b, d,c) is the only one that satisfies the condition of
step 2, since d is not in Sy.. Accordingly, we obtain the partially
directed graph of Figure 2.3(c).
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Figure 2.3: Graphs constructed by the IC* Algorithm. (a) Underlying
structure. (b) After step 1. (c) After step 2. (d) Output of IC*.
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Figure 2.4: Latent structures equivalent to those of Figure 2.3(a).

3. Rule R; of step 3 is applicable to the triplet (b,d,e) (and to
(¢,d,e)), since b and e are nonadjacent and there is an arrowhead
at d from b but not from e. We therefore add an arrowhead at e,
and mark the link, to obtain Figure 2.3(d). This is also the final
output of IC*, because R; and Ry are no longer applicable.

The absence of arrowheads on @ — b and a — ¢, and the absence of
markings on b — d and ¢ — d, correctly represent the ambiguities pre-
sented by P. Indeed, each of the latent structures shown in Figure 2.4
is observationally equivalent to that of Figure 2.3(a). Marking the link
d — e in Figure 2.3(d) advertises the existence of a directed link d — e
in each and every latent structure that is independence-equivalent to
the one in Figure 2.3(a).



2.7. LOCAL CRITERIA FOR CAUSAL RELATIONS 87

2.7 Local Criteria for Causal Relations

The IC* algorithm takes a distribution P and outputs a partially di-
rected graph. Some of the links are marked unidirectional (denoting
genuine causation), some are ynmarked unidirectional (denoting poten-
tial causation), some are bidirectional (denoting spurious association),
and some are undirected (denoting relationships that remain undeter-
mined). The conditions that give rise to these labelings can be taken
as definitions for the various kinds of causal relationships. In this sec-
tion we present explicit definitions of potential and genuine causation
as they emerge from the IC* algorithm. Note that, in all these defi-
nitions, the criterion for causation between two variables (X and Y),
will require that a third variable Z exhibit a specific pattern of depen-
dency with X and Y. This is not surprising, since the essence of causal
claims is to stipulate the behavior of X and Y under the influence of
a third variable, one that corresponds to an external control of X (or
Y)—as echoed in the paradigm of “no causation without manipulation”
(Holland 1986). The difference is only that the variable Z, acting as a
virtual control, must be identified within the data itself, as if Nature
had performed the experiment. The IC* algorithm can be regarded as
offering a systematic way of searching for variables Z that qualify as
virtual controls, given the assumption of stability.

Definition 2.7.1 (Potential Cause)
A wariable X has a potential causal influence on another variable Y
(that is inferable from P) if the following conditions hold.

1. X andY are dependent in every context.

2. There exists a variable Z and a context S such that
(i) X and Z are independent given S (i.e., X 1L Z|S) and
(il) Z and Y are dependent given S (i.e., ZJY|S).

By “context” we mean a set of variables tied to specific values. In
Figure 2.3(a), for example, variable b qualifies as a potential cause of
d by virtue of variable Z = ¢ being dependent on d and independent
of b in context S = a. Likewise, ¢ qualifies as genuine cause of d
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(with Z = b and S = a). Neither b nor ¢ qualifies as genuine cause
of d, because this pattern of dependencies is also compatible with a
latent common cause, shown as bidirected arcs in Figures 2.4(a)—(b).
However, Definition 2.7.1 disqualifies d as a cause of b (or ¢), and this
leads to the classification of d as a genuine cause of e, as formulated
in Definition 2.7.2.° Note that Definition 2.7.1 precludes a variable
X from being a potential cause of itself or of any other variable that
functionally determines X.

Definition 2.7.2 (Genuine Cause)
A wvariable X has a genuine causal influence on another variable Y if
there exists a variable Z such that either:

1. X andY are dependent in any context and there exists a context
S satisfying

(i) Z is a potential cause of X (per Definition 2.7.1),
(ii) Z and Y are dependent given S (i.e., ZLY|S), and
(iii) Z and Y are independent given SUX (i.e., Z1LY|SUX);

or

2. X and Y are in the transitive closure of the relation defined in
criterion 1.

Conditions (i)—(iii) are illustrated in Figure 2.3(a) with X =d, ¥V =
e, Z =0b,and S = (). The destruction of the dependence between b and
e through conditioning on d cannot be attributed to spurious associa-
tion between d and e; genuine causal influence is the only explanation,
as shown in the structures of Figure 2.4.

Definition 2.7.3 (Spurious Association)

Two variables X andY are spuriously associated if they are dependent
in some contert and there exist two other variables (Z1 and Z), and
two contexts (S1 and Sy), such that:

9Definition 2.7.1 was formulated in Pearl (1990) as a relation between events
(rather than variables) with the added condition P(Y|X) > P(Y) (in the spirit of
Reichenbach 1956; Suppes 1970; and Good 1961). This refinement is applicable to
any of the definitions in this section, but it will not be formulated explicitly.
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1. Zy and X are dependent given Sy (i.e., Z1 L X|S1);

2. Z1 and Y are independent given Sy (i.e., Z1 1L Y|S:);
3. Zy and 'Y are dependent given Sy (i.e., Zo LY |Ss); and
4. Zy and X are independent given Sy (i.e., Zy 1L X|S5).

Conditions 1 and 2 use Z; and S; to disqualify Y as a cause of X,
paralleling conditions (i)—(ii) of Definition 2.7.1; conditions 3 and 4 use
Zy and Sy to disqualify X as a cause of Y. This leaves the existence
of a latent common cause as the only explanation for the observed
dependence between X and Y, as exemplified in the structure Z; —
X<+—Y « 7.

When temporal information is available (as is assumed in the most
probabilistic theories of causality—Suppes 1970; Spohn 1983; Granger
1988)), Definitions 2.7.2 and 2.7.3 simplify considerably because ev-
ery variable preceding and adjacent to X now qualifies as a “potential
cause” of X. Moreover, adjacency (i.e., condition 1 of Definition 2.7.1)
is not required as long as the context S is confined to be earlier than X.
These considerations lead to simpler conditions distinguishing genuine
from spurious cause as shown next.

Definition 2.7.4 (Genuine Causation with Temporal Informa-
tion)

A variable X has a causal influence on'Y if there is a third variable Z
and a context S, both occurring before X, such that:

1. (ZLY|S);
2. (ZLLY|S U X).

The intuition behind Definition 2.7.4 is the same as for Definition 2.7.2,
except that temporal precedence is now used to establish Z as a poten-
tial cause of X. This is illustrated in Figure 2.5(a): If conditioning on
X can turn Z and Y from dependent to independent (in context S),
it must be that the dependence between Z and Y was mediated by X;
given that Z precedes X, such mediation implies that X has a causal
influence on Y.
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Figure 2.5: Illustrating how temporal information permits the inference
of genuine causation and spurious associations (between X and Y') from
the conditional independencies displayed in (a) and (b), respectively.

Definition 2.7.5 (Spurious Association with Temporal Infor-
mation)

Two wvariables X and Y are spuriously associated if they are depen-
dent in some context S, if X precedes Y, and if there exists a variable
Z satisfying:

1. (ZLY|S);
2. (ZJLX|S).

Figure 2.5(b) illustrates the intuition behind Definition 2.7.5. Here the
dependence between X and Y cannot be attributed to causal connection
between the two because such a connection would imply dependence
between Z and Y, which is ruled out by condition 1.0

Examining the definitions just presented, we see that all causal
relations are inferred from at least three variables. Specifically, the
information that permits us to conclude that one variable is not a
causal consequence of another comes in the form of an “intransitive
triplet” —for example, the variables a, b, ¢ in Figure 2.1(a) satisfying
(a1Lb|0), (ajc|@), and (bJc|@). The argument goes as follows. If we

0Recall that transitivity of causal dependencies is implied by stability. Although
it is possible to construct causal chains Z — X — Y in which Z and Y are
independent, such independence will not be sustained for all parameterizations of
the chain.
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find conditions (S,;) where the variables a and b are each correlated
with a third variable ¢ but are independent of each other, then the
third variable cannot act as a cause of a or b (recall that, in stable dis-
tributions, the presence of a common cause implies dependence among
the effects); rather, ¢ must either be their common effect (a — ¢ < b),
or be associated with a and b via common causes, forming a pattern
such as a <> ¢ <> b. This is indeed the condition that permits the IC*
algorithm to begin orienting edges in the graph (step 2), and to assign
arrowheads pointing at c. It is also this intransitive pattern that is used
to ensure that X is not a consequence of Y in Definition 2.7.1 and that
Z is not, a consequence of X in Definition 2.7.2. In Definition 2.7.3 we
have two intransitive triplets, (Z;, X,Y) and (X, Y, Z3), thus ruling out
direct causal influence between X and Y and so implying that spurious
associations are the only explanation for their dependence.

This interpretation of intransitive triples involves a virtual control of
the effect variable, rather than of the putative cause; this is analogous
to testing the null hypothesis in the manipulative view of causation
(Section 1.3). For example, one of the reasons people insist that the
rain causes the grass to become wet and not the other way around, is
that they can easily find other means of getting the grass wet that are
totally independent of the rain. Transferred to our chain a — ¢ — b,
we preclude ¢ from being a cause of a if we find another means (b) of
potentially controlling ¢ without affecting a (Pearl 1998a, p. 396). The
analogy is merely heuristic, of course, because in observational studies
we must wait for Nature to provide the appropriate control and refrain
from contaminating that control with spurious associations (with a).

2.8 Nontemporal Causation and Statisti-
cal Time

Determining the direction of causal influences from nontemporal data
raises some interesting philosophical questions about the relationships
between time and causal explanations. For example, can the orientation
assigned to the arrow X — Y in Definitions 2.7.2 or 2.7.4 ever clash
with the available temporal information (say, by a subsequent discovery
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that Y precedes X)? Since the rationale behind Definition 2.7.4 is based
on strong intuitions about the statistical aspects of causal relationships
(e.g., no correlation without some causation), it is apparent that such
clashes, if they occur, are rather rare. The question then arises: Why
should orientations determined solely by statistical dependencies have
anything to do with the flow of time?

In human discourse, causal explanations satisfy two expectations,
temporal and statistical. The temporal aspect is represented by the
understanding that a cause should precede its effect. The statistical
aspect expects a complete causal explanation to screen off its various ef-
fects (i.e., render the effects conditionally independent);!! explanations
that do not screen off their effects are considered “incomplete,” and
the residual dependencies are considered “spurious” or “unexplained.”
The clashless coexistence of these two expectations through centuries
of scientific observations imples that the statistics of natural phenom-
ena must exhibit some basic temporal bias. Indeed, we often encounter
phenomenon where knowledge of a present state renders the variables
of the future state conditionally independent (e.g., multivariate eco-
nomic time series as in (2.3)). However, we rarely find the converse
phenomenon, where knowledge of the present state would render the
components of the past state conditionally independent. Is there any
compelling reason for this temporal bias?

A convenient way to formulate this bias is through the notion of
statistical time.

Definition 2.8.1 (Statistical Time)

Given an empirical distribution P, a statistical time of P is any or-
dering of the wvariables that agrees with at least one minimal causal
structure consistent with P.

We see, for example, that a scalar Markov chain process has many
statistical times; one coinciding with the physical time, one opposite

"1 This expectation, known as Reichenbach’s “conjunctive fork” or “common-
cause” criterion (Reichenbach 1956; Suppes and Zaniotti 1981; Sober and Barrett
1992) has been criticized by Salmon (1984), who showed that some events qualify
as causal explanations though they fail to meet Reichenbach’s criterion. However,
Salmon’s examples involve incomplete explanations, as they leave out variables that
mediate between the cause and its various effects (see Section 2.9.1).
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to it, and others that correspond to orderings that agree with any
orientation of the Markov chain away from one of the nodes (arbitrarily
chosen as aroot). On the other hand, a process governed by two coupled
Markov chains, such as

Xy = aXp + Y+ &,
Y = v Xi 1 +0Ye 1+, (2.3)

has only one statistical time—the one coinciding with the physical
time.'? Indeed, running the IC algorithm on samples taken from such
a process—while suppressing all temporal information—quickly iden-
tifies the components of X; ; and Y;_; as genuine causes of X; and
Y;. This can be seen from Definition 2.7.1 (where X;_, qualifies as a
potential cause of X; ; using Z = Y, » and S = {X;_3,Y; 3}) and
Definition 2.7.2 (where X; ; qualifies as a genuine cause of X; using
Z =X, oand S ={Y; 1}).
The temporal bias postulated earlier can be expressed as follows.

Conjecture 2.8.2 (Temporal Bias)
In most natural phenomenon, the physical time coincides with at least
one statistical time.

Reichenbach (1956) attributed the asymmetry associated with his con-
junctive fork to the second law of thermodynamics. It is doubtful that
the second law can provide a full account of the temporal bias just
described, since the influence of the external noise & and 7; renders
the process in (2.3) nonconservative.!®* Moreover, the temporal bias is
language-dependent. For example, expressing (2.3) in a different coor-
dinate system—say, using a linear transformation

X! = aX,+bY,
Y, = cX,+dY;

2Here ¢; and 7; are assumed to be two independent, white-noise time series.
Also, a # 0 and v # 5.
13T am grateful to Seth Lloyd for this observation.
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—it is possible to make the statistical time in the (X', Y”) represen-
tation run contrary to the physical time; that is, X| and Y} will be
independent of each other conditional on their future values (X;,, and
Y/.,) rather than their past values. This suggests that the consistent
agreement between physical and statistical times is a byproduct of the
human choice of linguistic primitives and not a feature of physical real-
ity. For example, if X; and Y; stand for the positions of two interacting
particles at time ¢, with X the position of their center of gravity and
Y/ their relative distance, then describing the particles’ motion in the
(X,Y) versus (X', Y") coordinate system is (in principle) a matter of
choice. Evidently, however, this choice is not entirely whimsical; it
reflects a preference toward coordinate systems in which the forward
disturbances (& and 7; in (2.3)) are orthogonal to each other, rather
than the corresponding backward disturbances (£, and 7;). Pearl and
Verma (1991) speculated that this preference represents survival pres-
sure to facilitate predictions of future events, and that evolution has
evidently ranked this facility more urgent than that of finding hind-
sighted explanations for current events. Whether this or some other
force has shaped our choice of language remains to be investigated (see
discussions in Price 1996), which makes the statistical-temporal agree-
ment that much more interesting.

2.9 Conclusions

The theory presented in this chapter shows that, although statistical
analysis cannot distinguish genuine causation from spurious covariation
in every conceivable case, in many cases it can. Under the assumptions
of model minimality (and/or stability), there are patterns of dependen-
cies that should be sufficient to uncover genuine causal relationships.
These relationships cannot be attributed to hidden causes lest we vio-
late one of the basic maxims of scientific methodology: the semantical
version of Occam’s razor. Adherence to this maxim may explain why
humans reach consensus regarding the directionality and nonspurious-
ness of causal relationships, in the face of opposing alternatives, that
are perfectly consistent with experience. Echoing Cartwright (1989),
we summarize our claim with the slogan “No causes in—no causes out;
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Occam’s razor in—some causes out.”

How safe are the causal relationships inferred by the IC algorithm—
or by the TETRAD program of Spirtes et al. (1993) or the Bayesian
methods of Cooper and Herskovits (1991) or Heckerman et al. 1994)?

Recasting this question in the context of visual perception, we may
equally well ask: How safe are our predictions when we recognize three-
dimensional objects from their two-dimensional shadows, or from the
two-dimensional pictures that objects reflect on our retinas? The an-
swer is: Not absolutely safe, but good enough to tell a tree from a house
and good enough to make useful inferences without having to touch ev-
ery physical object that we see. Returning to causal inference, our
question then amounts to assessing whether there are enough discrimi-
nating clues in a typical learning environment (say, in skill acquisition
tasks or in epidemiological studies) to allow us to make reliable dis-
criminations between cause and effect. This can only be determined by
experiments—once we understand the logic behind the available clues
and once we learn to piece these clues together coherently in large pro-
grams that tackle real-life problems.

The model-theoretic semantics presented in this chapter provides a
conceptual and theoretical basis for such experiments. The IC* algo-
rithm and the algorithms developed by the TETRAD group (Spirtes
et al. 1993) demonstrate the computational feasibility of the approach.
Waldmann et al. (1995) described psychological experiments on how
humans use the causal clues discussed in this chapter.

On the practical side, we have shown that the assumption of model
minimality, together with that of “stability” (no accidental indepen-
dencies) lead to an effective algorithm for structuring candidate causal
models capable of generating the data, transparent as well as latent.
Simulation studies conducted at our laboratory in 1990 showed that
networks containing tens of variables require fewer than 5,000 samples
to have their structure recovered by the algorithm. For example, 1,000
samples taken from (a binary version of) the process shown in (2.3),
each containing ten successive X, Y pairs, were sufficient to recover its
double-chain structure (and the correct direction of time). The greater
the noise, the quicker the recovery (up to a point). In testing this
modeling scheme on real-life data, we have examined the observations
reported in Sewal Wright’s seminal paper “Corn and Hog Correlations”
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(Wright 1925). As expected, corn price (X) can clearly be identified
as a cause of hog price (Y), but not the other way around. The rea-
son lies in the existence of the variable corn crop (Z), which satisfies
the conditions of Definition 2.7.2 (with S = (}). Several applications of
the principles and algorithms discussed in this chapter are described in
Glymour and Cooper (1999, pp. 441-541).

It should be interesting to explore how the new criteria for causation
could benefit current research in machine learning and data-mining. In
some sense, our method resembles a standard, machine-learning search
through a space of hypotheses (Mitchell 1982) where each hypothesis
stands for a causal model. Unfortunately, this is where the resemblance
ends. The prevailing paradigm in the machine-learning literature has
been to define each hypothesis (or theory, or concept) as a subset of
observable instances; once we observe the entire extension of this sub-
set, the hypothesis is defined unambiguously. This is not the case in
causal modeling. Even if the training sample exhausts the hypothesis
subset (in our case, this corresponds to observing P precisely), we are
still left with a vast number of equivalent causal theories, each stipu-
lating a drastically different set of causal claims. Therefore, fitness to
data is an insufficient criterion for validating causal theories. Whereas
in traditional learning tasks we attempt to generalize from one set of
instances to another, the causal modeling task is to generalize from
behavior under one set of conditions to behavior under another set.
Causal models should therefore be chosen by a criterion that challenges
their stability against changing conditions, and these show up in the
data in the form of virtual control variables. Thus, the dependence
patterns identified by Definitions 2.7.1-2.7.4 constitute islands of sta-
bility as well as virtual validation tests for causal models. It would be
interesting to examine whether these criteria, when incorporated into
existing machine-learning and data-mining programs, would improve
the stability of relationships discovered by such programs.

2.9.1 On Minimality, Markov, and Stability

The idea of inferring causation from association cannot be expected to
go unchallenged by scientists trained along the lines of traditional doc-
trines. Naturally, the assumptions underlying the theory described in
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this chapter—minimality and stability—come under attack from statis-
ticians and philosophers. This section contains additional thoughts in
defense of these assumptions.

Although few have challenged the principle of minimality (to do
so would amount to challenging scientific induction), objections have
been voiced against the way we defined the objects of minimization—
namely, causal models. Definition 2.2.2 assumes that the stochastic
terms u; are mutually independent, an assumption that endows each
model with the Markov property: conditioned on its parents (direct
causes), each variable is independent of its nondescendants. This im-
plies, among the other ramifications of d-separation, several familiar
relationships between causation and association that are usually asso-
ciated with Reichenbach’s (1956) principle of common cause—for exam-
ple, “no correlation without causation,” “causes screen off their effects,”
“no action at a distance.”

The Markovian assumption, as explained in our discussion of Defi-
nition 2.2.2, is a matter of convention, and it has been adopted here as
a useful abstraction of the underlying physical processes because such
processes are too detailed to be of practical use. After all, investigators
are free to decide what level of abstraction is useful for a given purpose,
and Markovian models have been selected as targets of pursuit because
of their usefulness in both prediction and decision making.'* By build-
ing the Markovian assumption into the definition of complete causal
models (Definition 2.2.2) and then relaxing the assumption through la-
tent structures (Definition 2.3.2), we confess our preparedness to miss
the discovery of non-Markovian causal models that cannot be described
as latent structures. I do not consider this loss to be very serious, be-
cause such models—even if any exist in the macroscopic world—would
have limited utility as guides to decisions. For example, it is not clear
how one would predict the effects of interventions from such a model,
save for explicitly listing the effect of every conceivable intervention in
advance.

It is not surprising, therefore, that criticsism of the Markov assump-
tion, most notably those of Cartwright (1995a, 1997), and Lemmer

4Discovery algorithms for certain non-Markovian models, involving cycles and
selection bias, have been reported in Spirtes et al. (1995) and Richardson (1996).
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Figure 2.6: (a) Interactive fork. (b) Latent structure equivalent to (a).

(1993), have two characteristics in common:

1. they present macroscopic non-Markovian counterexamples that
are reducible to Markovian latent structures of the type consid-
ered by Salmon (1984), that is, interactive forks; and

2. they propose no alternative, non-Markovian models from which
one could predict the effects of actions and action combinations.

The interactive fork model is shown in Figure 2.6(a). If the inter-
mediate node d is unobserved (or unnamed), then one is tempted to
conclude that the Markov assumption is violated, since the observed
cause (a) does not screen off its effects (b and ¢). The latent structure
of Figure 2.6(b) can emulate the one of Figure 2.6(a) in all respects; the
two can be indistinguishable both observationally and experimentally.

Only quantum-mechanical phenomena exhibit associations that
cannot be attributed to latent variables, and it would be considered
a scientific miracle if anyone were to discover such peculiar associations
in the macroscopic world. Still, critics of the Markov condition insist
that certain alleged counterexamples must be modeled as P(bc|a) and
not as Y4 P(b|d, a) P(c|d, a)—assuming, perhaps, that some insight or
generality would be gained by leaving the dependency between b and
¢ unexplained. The former model, in addition to being observationally
indistinguishable from the latter, also leaves the causal effect P,.(b)
unspecified. In contrast, the latent model predicts P,.(b) = P,(b) and
thus fulfills its role as a predictor of (experimentally testable) causal
effects.

Ironically, perhaps the strongest evidence for the ubiquity of the
Markov condition can be found in the philosophical program known
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as “probabilistic causality” (see Section 7.5), of which Cartwright is a
leading proponent. In this program, causal dependence is defined as a
probabilistic dependence that persists after conditioning on some set of
relevant factors (Good 1961; Suppes, 1970; Skyrms, 1980; Cartwright,
1983; Eells, 1991). This definition rests on the assumption that condi-
tioning on the right set of factors enables one to suppress all spurious
associations—an assumption equivalent to the Markov condition. The
intellectual survival of probabilistic causality as an active philosophical
program for the past 30 years attests to the fact that counterexamples
to the Markov condition are relatively rare and can be explained away
through latent variables.

I now address the assumption of stability. The argument usually
advanced to justify stability (Spirtes et al. 1993) appeals to the fact
that strict equalities among products of parameters have zero Lebesgue
measure in any probability space in which parameters can vary indepen-
dently of one another. For example, the equality o = — (7 in the model
of (2.2) has zero probability if we consider any continuous joint density
over the parameters o, (3, and 7, unless that density somehow embod-
ies the constraint & = —(7 on a priori grounds. Freedman (1997), in
contrast, claimed that there is no reason to assume that parameters are
not in fact tied together by constraints of this sort, which would render
the resulting distribution unstable (using Definition 2.4.1).

Freedman’s critique receives unexpected support from the practice
of structural modeling itself, where equality constraints are common-
place. Indeed, the conditional independencies that a causal model ad-
vertises amount to none other than equality constraints on the joint
distribution. The chain model Y — X — Z, for example, entails the
equality

PYyz = PXz " PYX,

where pxy is the correlation coefficient between X and Y; this equality
constraint ties the three correlation coefficients in a permanent bond.
What, then, gives equalities among correlation coefficients a privileged
status over equalities among another set of parameters—say, «, 3, and
~v? Why do we consider the equality pyz = pxz - pyx “substantive”
and the equality a« = —fv “accidental,” and why do we tie the notion
of stability to the absence of the latter, not the former?
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The answer, 1 believe, rests again on the notion of autonomy
(Aldrich 1989), a notion at the heart of all causal concepts (see Sections
1.3 and 1.4). A causal model is not just another scheme of encoding
probability distribution through a set of parameters. When we come
to define mathematical objects such as causal models, we must ensure
that the definition captures the distinct ways in which these objects
are being used and conceptualized. The distinctive feature of causal
models is that each variable is determined by a set of other variables
through a relationship (called “mechanism”) that remains invariant
when those other variables are subjected to external influences. Only
by virtue of this invariance do causal models allow us to predict the
effect of changes and interventions, capitalizing on the locality of such
changes. This invariance means that mechanisms can vary indepen-
dently of one another, which in turns implies that the set of structural
coefficients (e.g., a, (3, v in our example of (2.2))—rather than other
types of parameters (e.g., pyz, pxz, pyx)—can and will vary indepen-
dently when experimental conditions change. Consequently, equality
constraints of the form o« = — [ are contrary to the idea of autonomy
and thus should not be considered part of the model.

For this reason, it has been suggested that causal modeling methods
based solely on associations, like those embodied in the IC* algorithm
or the TETRAD-II program, will find their greatest potential in lon-
gitudinal studies conducted under slightly varying conditions, where
accidental independencies are destroyed and only structural indepen-
dencies are preserved. This assumes that, under such varying condi-
tions, the parameters of the model will be perturbed while its structure
remains intact—a delicate balance that might be hard to verify. Still,
considering the alternative of depending only on controlled, randomized
experiments, such longitudinal studies are an exciting opportunity.

Relation to the Bayesian Approach

It is important to stress that elements of the principles of minimality
and stability also underlie causal discovery in the Bayesian approach.
In this approach, one assigns prior probabilities to a set of candidate
causal networks, based on their structures and parameters, and then
uses Bayes’s rule to score the degree to which a given network fits the
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data (Cooper and Herskovits 1991; Heckerman et al. 1999). A search is
then conducted over the space of possible structures to seek the one(s)
with the highest posterior score. Methods based on this approach have
the advantage of operating well under small-sample conditions, but they
encounter difficulties in coping with hidden variables. The assumption
of parameter independence, which is made in all practical implemen-
tations of the Bayesian approach, induces preferences toward models
with fewer parameters and hence toward minimality. Likewise, param-
eter independence can be justified only when the parameters represent
mechanisms that are free to change independently of one another—that
is, when the system is autonomous and hence stable.



