Chapter 1

Introduction to Probabilities,
Graphs, and Causal Models

Chance gives rise to thoughts,

and chance removes them.
Pascal (1670)

1.1 Introduction to Probability Theory

1.1.1 Why Probabilities?

Causality connotes lawlike necessity, whereas probabilities connote ex-
ceptionality, doubt, and lack of regularity. Still, there are two com-
pelling reasons for starting with, and in fact stressing, probabilistic
analysis of causality; one is fairly straightforward, the other more sub-
tle.

The simple reason rests on the observation that causal utterances
are often used in situations that are plagued with uncertainty. We
say, for example, “reckless driving causes accidents” or “you will fail
the course because of your laziness” (Suppes 1970), knowing quite well
that the antecedents merely tend to make the consequences more likely,
not absolutely certain. Any theory of causality that aims at accommo-
dating such utterances must therefore be cast in a language that dis-
tinguishes various shades of likelihood—mnamely, the language of proba-
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bilities. Connected with this observation, we note that probability the-
ory is currently the official mathematical language of most disciplines
that use causal modeling, including economics, epidemiology, sociol-
ogy, and psychology. In these disciplines, investigators are concerned
not merely with the presence or absence of causal connections, but also
with the relative strengths of those connections and with ways of in-
ferring those connections from noisy observations. Probability theory,
aided by methods of statistical analysis, provides both the principles
and the means of coping with—and drawing inferences from—such ob-
servations.

The more subtle reason concerns the fact that even the most as-
sertive causal expressions in natural language are subject to exceptions,
and those exceptions may cause major difficulties if processed by stan-
dard rules of deterministic logic. Consider for example the two plausible
premises:

1. My neighbor’s roof gets wet whenever mine does.
2. If T hose my roof it will get wet.

Taken literally, these two premises imply the implausible conclusion
that my neighbor’s roof gets wet whenever I hose mine.

Such paradoxical conclusions are normally attributed to the finite
granularity of our language, as manifested in the many exceptions that
are implicit in premise 1. Indeed, the paradox disappears once we take
the trouble of explicating those exceptions and write, for instance:

1*. My neighbor’s roof gets wet whenever mine does, except when it
is covered with plastic, or when my roof is hosed, etc.

Probability theory, by virtue of being especially equipped to tolerate
unexplicated exceptions, allows us to focus on the main issues of causal-
ity without having to cope with paradoxes of this kind.

As we shall see in subsequent chapters, tolerating exceptions solves
only part of the problems associated with causality. The remaining
problems—including issues of inference, interventions, identification,
ramification, confounding, counterfactuals, and explanation—will be
the main topic of this book. By portraying those problems in the lan-
guage of probabilities, we emphasize their universality across languages.
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Chapter 7 will recast these problems in the language of deterministic
logic and will introduce probabilities merely as a way to express uncer-
tainty about unobserved facts.

1.1.2 Basic concepts in probability theory

The bulk of the discussion in this book will focus on systems with a
finite number of discrete variables and thus will require only rudimen-
tary notation and elementary concepts in probability theory. Exten-
sions to continuous variables will be outlined but not elaborated in
full generality. Readers who want additional mathematical machinery
are invited to study the many excellent textbooks on the subject—for
example, Feller (1950), Hoel et al. (1971), or the appendix to Suppes
(1970). This section provides a brief summary of elementary proba-
bility concepts, based largely on Pearl (1988b), with special emphasis
on Bayesian inference and its connection to the psychology of human
reasoning under uncertainty. Such emphasis is generally missing from
standard textbooks.

We will adhere to the Bayesian interpretation of probability, accord-
ing to which probabilities encode degrees of belief about events in the
world and data are used to strengthen, update, or weaken those degrees
of belief. In this formalism, degrees of belief are assigned to propositions
(sentences that take on true or false values) in some language, and those
degrees of belief are combined and manipulated according to the rules
of probability calculus. We will make no distinction between sentential
propositions and the actual events represented by those propositions.
For example, if A stands for the statement “Ted Kennedy will seek
the nomination for president in year 2000,” then P(A|K) stands for
a person’s subjective belief in the event described by A given a body
of knowledge K, which might include that person’s assumptions about
American politics, specific proclamations made by Kennedy, and an
assessment of Kennedy’s past and personality. In defining probabil-
ity expressions, we often simply write P(A), leaving out the symbol
K. However, when the background information undergoes changes, we
need to identify specifically the assumptions that account for our beliefs
and explicitly articulate K or (some of its elements).

In the Bayesian formalism, belief measures obey the three basic ax-
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ioms of probability calculus:

0<P(4) <1, (1.1)
P(sure proposition) = 1, (1.2)
P(Aor B) = P(A) + P(B) if A and B are mutually exclusive. (1.3)

The third axiom states that the belief assigned to any set of events
is the sum of the beliefs assigned to its nonintersecting components.
Because any event A can be written as the union of the joint events
(A A B) and (A A —B), their associated probabilities are given by!

P(A) = P(A, B) + P(A,~B), (1.4)

where P(A, B) is short for P(A A B). More generally, if B;, i =
1, 2,...,n, is a set of exhaustive and mutually exclusive propositions
(called a partition or a wvariable), then P(A) can be computed from
P(A,B;), i=1, 2,...,n, by using the sum

P(4) = 3" P(A, B), (1.5)

which has come to be known as the “law of total probability.” The oper-
ation of summing up probabilities over all B; is also called “marginaliz-
ing over B”; and the resulting probability, P(A), is called the marginal
probability of A. For example, the probability of A, “The outcomes
of two dice are equal,” can be computed by summing over the joint
events (AA B;), i = 1,2,...,6, where B; stands for the proposition
“The outcome of the first die is 7.” This yields

P(A) = Y P(A,B) =6 x 5 =

1
Z 1.
36 6 (1.6)

A direct consequence of (1.2) and (1.4) is that a proposition and its
negation must be assigned a total belief of unity,

P(A) + P(-A4) = 1, (1.7)

!The symbols A,V,— denote the logical connectives and, or, and not,
respectively.
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because one of the two statements is certain to be true.

The basic expressions in the Bayesian formalism are statements
about conditional probabilities—for example, P(A|B)—which specify
the belief in A under the assumption that B is known with absolute
certainty. If P(A|B) = P(A), we say that A and B are independent,
since our belief in A remains unchanged upon learning the truth of B.
If P(A|B,C) = P(A|C), we say that A and B are conditionally inde-
pendent given C'; that is, once we know C, learning B would not change
our belief in A.

Contrary to the traditional practice of defining conditional proba-
bilities in terms of joint events,

P(A,B)

P(A|B) = W, (1.8)
Bayesian philosophers see the conditional relationship as more basic
than that of joint events—that is, more compatible with the organi-
zation of human knowledge. In this view, B serves as a pointer to a
context or frame of knowledge, and A|B stands for an event A in the
context specified by B (e.g., a symptom A in the context of a disease
B). Consequently, empirical knowledge invariably will be encoded in
conditional probability statements, whereas belief in joint events (if it
is ever needed) will be computed from those statements via the product

P(A, B) = P(A|B)P(B), (1.9)

which is equivalent to (1.8). For example, it was somewhat unnatural

to assess ]
P(A,B;) = —
36

directly in (1.6). The mental process underlying such assessment pre-
sumes that the two outcomes are independent, so to make this assump-
tion explicit the probability of the joint event (equality, B;) should be
assessed from the conditional event (equality|B;) via the product

P(equality|B;)P(B;) = P(outcome of second die is i|B;) P(B;)
1 1 1

= - X = = —,

6 6 36
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As in (1.5), the probability of any event A can be computed by
conditioning it on any set of exhaustive and mutually exclusive events
B;, i=1,2,...,n, and then summing:

=>_P(A[B))P(By). (1.10)

This decomposition provides the basis for hypothetical or
“assumption-based” reasoning. It states that the belief in any event
A is a weighted sum over the beliefs in all the distinct ways that A
might be realized. For example, if we wish to calculate the probability
that the outcome X of the first die will be greater than the outcome
Y of the second, we can condition the event A : X > Y on all possible
values of X and obtain

mmzzzpw<xw:@mxzn

I
N
~
h<
/\
Mm
*u
|

It is worth reemphasizing that formulas like (1.10) are always under-
stood to apply in some larger context K, which defines the assumptions
taken as common knowledge (e.g., the fairness of dice rolling). Equation
(1.10) is really a shorthand notation for the statement

P(A|K) = Y P(A[B;, K) P(Bi|K). (1.11)

This equation follows from the fact that every conditional probability
P(A|K) is itself a genuine probability function; hence it satisfies (1.10).

Another useful generalization of the product rule (equation (1.9))
is the chain rule formula. It states that if we have a set of n events,
Ei,E,, ..., E,, then the probability of the joint event (F1, Es, ..., E,)
can be written as a product of n conditional probabilities:

P(Ey, Es,...,E,) = P(Ey|En_1,. .., Es, E1) ... P(Es|Ey)P(Ey).
(1.12)
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This product can be derived by repeated application of (1.9) in any
convenient order.
The heart of Bayesian inference lies in the celebrated inversion for-
mula,
P(e|H)P(H)
Ple)

which states that the belief we accord a hypothesis H upon obtaining
evidence e can be computed by multiplying our previous belief P(H) by
the likelihood P(e|H) that e will materialize if H is true. This P(H]|e)
is sometimes called the posterior probability (or simply posterior), and
P(H) is called the prior probability (or prior). The denominator P(e)
of (1.13) hardly enters into consideration because it is merely a nor-
malizing constant P(e) = P(e|H)P(H) + P(e|~H)P(—H), which can
be computed by requiring that P(H|e) and P(—H|e) sum to unity.

Whereas formally (1.13) might be dismissed as a tautology stem-
ming from the definition of conditional probabilities,

P(Hle) = (1.13)

P(A, B)
P(B)

P(A, B)

P(A|B) = W;

and P(B|A) = (1.14)

the Bayesian subjectivist regards (1.13) as a normative rule for updat-
ing beliefs in response to evidence. In other words, although conditional
probabilities can be viewed as purely mathematical constructs, (as in
(1.14)), the Bayes adherent views them as primitives of the language
and as faithful translations of the English expression “..., given that
I know A.” Accordingly, (1.14) is not a definition but rather an em-
pirically verifiable relationship between English expressions. It asserts,
among other things, that the belief a person attributes to B after discov-
ering A is never lower than that attributed to A A B before discovering
A. Also, the ratio between these two beliefs will increase proportionally
with the degree of surprise [P(A)]™! one associates with the discovery
of A.

The importance of (1.13) is that it expresses a quantity P(H|e)—
which people often find hard to assess—in terms of quantities that
often can be drawn directly from our experiential knowledge. For ex-
ample, if a person at the next gambling table declares the outcome
“twelve,” and we wish to know whether he was rolling a pair of dice or
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spinning a roulette wheel, our models of the gambling devices readily
yield the quantities P(twelve|dice) and P(twelve|roulette): 1/36 for the
former and 1/38 for the latter. Similarly, we can judge the prior prob-
abilities P(dice) and P(roulette) by estimating the number of roulette
wheels and dice tables at the casino. Issuing a direct judgment of
P(dice|twelve) would have been much more difficult; only a specialist
in such judgments, trained at the very same casino, could do it reliably.

In order to complete this brief introduction, we must discuss the
notion of probabilistic model (also called probability space). A prob-
abilistic model is an encoding of information that permits us to com-
pute the probability of every well-formed sentence S in accordance with
the axioms of (1.1)—(1.3). Starting with a set of atomic propositions
A, B, C,..., the set of well-formed sentences consists of all Boolean
formulas involving these propositions, for example, S = (AA B) V =C.
The traditional method of specifying probabilistic models employs a
joint distribution function, which is a function that assigns nonnega-
tive weights to every elementary event in the language (an elementary
event being a conjunction in which every atomic proposition or its nega-
tion appears once) such that the sum of the weights adds up to 1. For
example, if we have three atomic propositions, A, B, and C, then a
joint distribution function should assign nonnegative weights to all eight
combinations—(AABAC), (ANBA=C),...,(mAAN-BA-C)—such
that the eight weights sum to 1.

The reader may recognize the set of elementary events as the sample
space in probability textbooks. For example, if A, B, and C correspond
to the propositions that coins 1, 2, and 3 will come up heads, then the
sample space will consist of the set {HHH, HHT, HTH,..., TTT}. In-
deed, it is sometimes convenient to view the conjunctive formulas cor-
responding to elementary events as points (or worlds or configurations),
and to regard other formulas as sets made up of these points. Since
every Boolean formula can be expressed as a disjunction of elemen-
tary events, and since the elementary events are mutually exclusive, we
can always compute P(S) using the additivity axiom (equation (1.3)).
Conditional probabilities can be computed the same way, using (1.14).
Thus, any joint probability function represents a complete probabilistic
model.

Joint distribution functions are mathematical constructs of great
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importance. They allow us to determine quickly whether we have suf-
ficient information to specify a complete probabilistic model, whether
the information we have is consistent, and at what point additional
information is needed. The criteria are simply to check (i) whether the
information available is sufficient for uniquely determining the prob-
ability of every elementary event in the domain and (ii) whether the
probabilities add up to 1.

In practice, however, joint distribution functions are rarely spec-
ified explicitly. In the analysis of continuous random variables, the
distribution functions are given by algebraic expressions such as those
describing normal or exponential distributions; for discrete variables,
indirect representation methods have been developed where the overall
distribution is inferred from local relationships among small groups of
variables. Graphical models, the most promising of these representa-
tions, provide the basis of discussion throughout this book. Their use
and formal characterization will be discussed in the next few sections.

1.1.3 Combining Predictive and Diagnostic Sup-
ports
The essence of Bayes’s Rule (equation (1.13)) is conveniently portrayed

using the odds and likelihood ratio parameters. Dividing (1.13) by the
complementary form for P(—H|e), we obtain

P(Hle) _ P(e|H) P(H)

= . 1.1
Defining the prior odds on H as
_ P(H) _ P(H)
O(H) = P(-=H) 11— P(H) (1.16)
and the likelihood ratio as
P(e|lH)
L(elH) = ———= 1.17
(e‘ ) P(€|—|H) Y ( )
the posterior odds
P(H
O(Hle) = & (1.18)

P(—Hle)
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are given by the product
O(Hle) = L(e|H)O(H). (1.19)

Thus, Bayes’s rule dictates that the overall strength of belief in a hy-
pothesis H, based on both our previous knowledge K and the observed
evidence e, should be the product of two factors: the prior odds O(H)
and the likelihood ratio L(e|H). The first factor measures the predic-
tive or prospective support accorded to H by the background knowledge
alone, while the second represents the diagnostic or retrospective sup-
port given to H by the evidence actually observed.?

Strictly speaking, the likelihood ratio L(e|H) might depend on the
content of the tacit knowledge base K. However, the power of Bayesian
techniques comes primarily from the fact that, in causal reasoning, the
relationship P(e|H) is fairly local: given that H is true, the probability
of e can be estimated naturally since it is usually not dependent on
many other propositions in the knowledge base. For example, once we
establish that a patient suffers from a given disease H, it is natural
to estimate the probability that she will develop a certain symptom
e. The organization of medical knowledge rests on the paradigm that
a symptom is a stable characteristic of the disease and should there-
fore be fairly independent of other factors, such as epidemic conditions,
previous diseases, and faulty diagnostic equipment. For this reason the
conditional probabilities P(e|H), as opposed to P(H |e), are the atomic
relationships in Bayesian analysis. The former possess modularity fea-
tures similar to logical rules. They convey a degree of confidence in
rules such as “If H then e,” a confidence that persists regardless of
what other rules or facts reside in the knowledge base.

Example 1.1.1 Imagine being awakened one night by the shrill sound
of your burglar alarm. What is your degree of belief that a burglary
attempt has taken place? For illustrative purposes we make the follow-
ing judgments: (a) There is a 95% chance that an attempted burglary
will trigger the alarm system—P(alarm|burglary) = 0.95; (b) based

2In epidemiology, if H stands for exposure and e stands for disease, then the
likelihood ratio L is called the “risk ratio” (Rothman and Greenland 1998, p. 50).
Equation (1.18) would then give the odds that a person with disease e was exposed
to H.
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on previous false alarms, there is a slight (1%) chance that the alarm
will be triggered by a mechanism other than an attempted burglary—
P(alarm|no burglary) = 0.01; (¢) previous crime patterns indicate that
there is a one in ten thousand chance that a given house will be bur-
glarized on a given night— P (burglary) = 107%.

Putting these assumptions together using (1.19), we obtain

O(burglary|alarm) = L(alarm|burglary)O(burglary)

0.95 107*
So, from
0(4)
= 1.20
(4) 1+0(A) (1.20)
we have 0.0095
P(burgl 1 =——— =0.00941.
(burglary|alarm) 1+ 0.0095 0.009

Thus, the retrospective support imparted to the burglary hypothesis
by the alarm evidence has increased its degree of belief almost a hun-
dredfold, from one in ten thousand to 94.1 in ten thousand. The fact
that the belief in burglary is still below 1% should not be surprising,
given that the system produces a false alarm almost once every three
months. Notice that it was not necessary to estimate the absolute val-
ues of the probabilities P(alarm|burglary) and P(alarm|no burglary).
Only their ratio enters the calculation, so a direct estimate of this ratio
could have been used instead.

1.1.4 Random Variables and Expectations

By a wvariable we will mean an attribute, measurement or inquiry that
may take on one of several possible outcomes, or values, from a specified
domain. If we have beliefs (i.e., probabilities) attached to the possible
values that a variable may attain, we will call that variable a random
variable.> For example, the color of the shoes that I will wear tomorrow

3This is a minor generalization of textbook definition, according to which a
random variable is a mapping from the sample space (e.g., the set of elementary
events) to the real line. In our definition, the mapping is from the sample space to
any set of objects called “values,” which may or may not be ordered.
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is a random variable named “color,” and the values it may take come
from the domain {yellow, green, red,...}.

Most of our analysis will concern a finite set V' of random variables
(also called partitions) where each variable X € V may take on values
from a finite domain Dx. We will use capital letters (e.g., X, Y, Z)
for variable names and lowercase letters (z, y, z) as generic symbols
for specific values taken by the corresponding variables. For example,
if X stands for the color of an object, then = will designate any possible
choice of an element from the set {yellow, green, red, ...}. Clearly, the
proposition X = yellow describes an event, namely, a subset of possible
states of affair that satisfy the proposition “the color of the object is
yellow.” Likewise, each variable X can be viewed as a partition of
the states of the world, since the statement X = z defines a set of
exhaustive and mutually exclusive sets of states, one for each value of
x.

In most of our discussions, we will not make notational distinc-
tion between variables and sets of variables, because a set of variables
essentially defines a compound variable whose domain is the Carte-
sian product of the domains of the individual constituents in the set.
Thus, if Z stands for the set {X, Y} then z stands for pairs (z, y) such
that + € Dx and y € Dy. When the distinction between variables
and sets of variables requires special emphasis, indexed letters (say,
X1, Xo, ..., X, or V1, Va, ..., V,) will be used to represent individual
variables.

We shall consistently use the abbreviation P(x) for the probabilities
P(X = z), © € Dx. Likewise, if Z stands for the set {X,Y}, then
P(z) will be defined as

P)E2P(Z=2=PX=zY =y), z € Dx, y € Dy.

When the values of a random variable X are real numbers, X is
called a real random variable; one can then define the mean or expected

value of X as
E(X)2Y zP(x) (1.21)

and the conditional mean of X, given event Y =y, as

E(X|y) 2 Y aP(xly). (1.22)
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The expectation of any function g of X is defined as
E[g(X)] £ 3 g(x)P(x). (1.23)

In particular, the function g(X) = (X — E(X))? has received much
attention; its expectation is called the variance of X, denoted o%;

0% = B[(X - E(X))’].

The conditional mean E(X|Y = y) is the best estimate of X, given
the observation Y = y, in the sense of minimizing the expected square
error >, (z — 2)?>P(x|y) over all .

The expectation of a function g(X,Y") of two variables, X and Y,
requires the joint probability P(z,y) and is defined as

E[g(X,Y)] 23 g(z,y)P(z,y)

T,y

(of equation (1.23)). Of special importance is the expectation of the
product ¢g(X,Y) = (X — E(X))(Y — E(Y)), which is known as the
covariance of X and Y,

OXy 2 E[(X - E(X))(Y - E(Y))],

and which is often normalized to yield the correlation coefficient

Oxy
Pxy =
O0x0y
and the regression coefficient
A 0x Oxy
Xy = PXy — — —3 -
O-Y O’Y

The conditional variance, covariance, and correlation coefficient,
given Z = z, are defined in a similar manner, using the conditional
distribution P(z,y|z) in taking expectations. In particular, the condi-
tional correlation coefficient, given Z = z, is defined as

OXY|2

PXY|z = (1.24)

0x20Y|z
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Additional properties, specific to normal distributions, will be reviewed
in Chapter 5 (Section 5.2.1).

The foregoing definitions apply to discrete random variables—that
is, variables that take on finite or denumerable sets of values on the
real line. The treatment of expectation and correlation is more often
applied to continuous random variables, which are characterized by a
density function f(x) defined as follows:

P(agxgb):/bf(x) dz

for any two real numbers a and b with a < b. If X is discrete then
f(z) coincides with the probability function P(z), once we interpret
the integral through the translation

/_z f(z) dv < 3" P(z). (1.25)

Readers accustomed to continuous analysis should bear this translation
in mind whenever summation is used in this book. For example, the
expected value of a continuous random variable X can be obtained from
(1.21), to read

E(X) = [ af() do,

with analogous translations for the variance, correlation, and so forth.
We now turn to define conditional independence relationships among
variables, a central notion in the analysis of causal models.

1.1.5 Conditional independence and graphoids

Definition 1.1.2 (Conditional Independence)

Let V.= {V1,Va,...} be a finite set of variables. Let P(-) be a joint
probability function over the variables in 'V, and let X, Y, Z stand for
any three subsets of variables in V. The sets X and Y are said to be
conditionally independent given Z if

P(zly, z) = P(z|z) whenever P(y,z) > 0. (1.26)

In words, learning the value of Y does not provide additional informa-

tion about X, once we know Z. (Metaphorically, Z “screens off” X
fromY.)
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Equation (1.26) is a terse way of saying the following: For any configu-
ration z of the variables in the set X and for any configurations y and
z of the variables in Y and Z satisfying P(Y =y, Z = z) > 0, we have

PX=z|Y =y, Z=2)=PX=z|Z=2). (1.27)

We will use Dawid’s (1979) notation (X 1LY|Z)p or simply
(X1LY'|Z) to denote the conditional independence of X and Y given
Z; thus,

(XY |Z2)p iff P(zly,z) = P(z|z) (1.28)

for all values z, y, z such that P(y, z) > 0. Unconditional independence
(also called marginal independence) will be denoted by (X 1LY|(); that

’ (X1Y|0) iff P(z|y) = P(z) whenever P(y) >0 (1.29)

(“iff” is shorthand for “if and only if”). Note that (X 1 Y|Z) implies
the conditional independence of all pairs of variables V; € X and V; €
Y, but the converse is not necessarily true.

The following is a (partial) list of properties satisfied by the condi-
tional independence relation (X 1Y|Z).

Symmetry: (X1UY|Z7) = (Y 1LX|Z).

Decomposition: (X ULYW|Z) = (X 1Y|Z).

Weak union: (X ULYW|Z)= (X LY|ZW).

Contraction: (X1UY|Z) & (XUW|ZY) = (X1LYW|Z).
Intersection: (XLUW|ZY) & (X LY |ZW) = (X LYW |Z).

(Intersection is valid in strictly positive probability distributions.)
The proof of these properties can be derived by elementary means
from (1.28) and the basic axioms of probability theory.* These proper-
ties were called graphoid azioms by Pearl and Paz (1987) and Geiger et
al. (1990) and have been shown to govern the concept of informational

“These properties were first introduced by Dawid (1979) and Spohn (1980) in a
slightly different form, and were independently proposed by Pearl and Paz (1987)
to characterize the relationships between graphs and informational relevance.
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relevance in a wide variety of interpretations (Pearl 1988b). In graphs,
for example, these properties are satisfied if we interpret (X 1L Y|Z) to
mean “all paths from a subset X of nodes to a subset Y of nodes are
intercepted by a subset Z of nodes.”

The intuitive interpretation of the graphoid axioms is as follows
(Pear] 1988b, p. 85). The symmetry axiom states that, in any state
of knowledge 7, if Y tells us nothing new about X then X tells us
nothing new about Y. The decomposition axiom asserts that if two
combined items of information are judged irrelevant to X, then each
separate item is irrelevant as well. The weak union axiom states that
learning irrelevant information W cannot help the irrelevant informa-
tion Y become relevant to X. The contraction axiom states that if we
judge W irrelevant to X after learning some irrelevant information Y,
then W must have been irrelevant before we learned Y. Together, the
weak union and contraction properties mean that irrelevant informa-
tion should not alter the relevance status of other propositions in the
system; what was relevant remains relevant, and what was irrelevant
remains irrelevant. The intersection axiom states that if Y is irrelevant
to X when we know W and if W is irrelevant to X when we know Y,
then neither W nor Y (nor their combination) is relevant to X.

1.2 Graphs and Probabilities

1.2.1 Graphical Notation and Terminology

A graph consists of a set V' of vertices (or nodes) and a set E of edges (or
links) that connect some pairs of vertices. The vertices in our graphs
will correspond to variables (whence the common symbol V') and the
edges will denote a certain relationship that holds in pairs of variables,
the interpretation of which will vary with the application. Two vari-
ables connected by an edge are called adjacent.

Each edge in a graph can be either directed (marked by a single ar-
rowhead on the edge), or undirected (unmarked links). In some appli-
cations we will also use “bidirected” edges to denote the existence of un-
observed common causes (sometimes called confounders). These edges
will be marked as dotted curved arcs with two arrowheads (see Figure
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1.1(a)). If all edges are directed (see Figure 1.1(b)), we then have a di-

Y
(b)

Figure 1.1: (a) A graph containing both directed and bidirected edges.
(b) A directed acyclic graph (DAG) with the same skeleton as (a).

rected graph. If we strip away all arrowheads from the edges in a graph
G, the resultant undirected graph is called the skeleton of G. A path
in a graph is a sequence of edges (e.g., (W, 2),(Z,Y), (Y, X), (X, Z))
in Figure 1.1(a)) such that each edge starts with the vertex ending the
preceding edge. In other words, a path is any unbroken, nonintersecting
route traced out along the edges in a graph, which may go either along
or against the arrows. If every edge in a path is an arrow that points
from the first to the second vertex of the pair, we have a directed path.
In Figure 1.1(a), for example, the path (W, Z),(Z,Y)) is directed but
the paths (W, 2), (Z,Y), (Y, X)) and (W, Z),(Z, X)) are not. If there
exists a path between two vertices in a graph then the two vertices are
said to be connected; else they are disconnected.

Directed graphs may include directed cycles (e.g., X — Y,
Y — X)), representing mutual causation or feedback processes, but
not self-loops (e.g., X — X). A graph (like the two in Figure 1.1)
that contains no directed cycles is called acyclic. A graph that is both
directed and acyclic (Figure 1.1(b)) is called a directed acyclic graph
(DAG), and such graphs will occupy much of our discussion of causal-
ity. We make free use of the terminology of kinship (e.g., parents, chil-
dren, descendants, ancestors, spouses) to denote various relationships
in a graph. These kinship relations are defined along the full arrows in
the graph, including arrows that form directed cycles but ignoring bidi-
rected and undirected edges. In Figure 1.1(a), for example, Y has two
parents (X and Z), three ancestors (X, Z, and W), and no children,
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while X has no parents (hence, no ancestors), one spouse (Z), and one
child (V). A family in a graph is a set of nodes containing a node and
all its parents. For example, {W},{Z, W}, {X}, and {Y, Z, X} are the
families in the graph of Figure 1.1(a).

A node in a directed graph is called a root if it has no parents and
a sink if it has no children. Every DAG has at least one root and at
least one sink. A connected DAG in which every node has at most
one parent is called a Zree, and a tree in which every node has at most
one child is called a chain. A graph in which every pair of nodes is
connected by an edge is called complete. The graph in Figure 1.1(a),
for instance, is connected but not complete, because the pairs (W, X)
and (W,Y") are not adjacent.

1.2.2 Bayesian Networks

The role of graphs in probabilistic and statistical modeling is threefold:

1. to provide convenient means of expressing substantive assump-
tions;

2. to facilitate economical representation of joint probability func-
tions; and

3. to facilitate efficient inferences from observations.

We will begin our discussion with item 2.

Consider the task of specifying an arbitrary joint distribution,
P(x4,...,x,), for n dichotomous variables. To store P(z1,...,%,) ex-
plicitly would require a table with 2" entries, an unthinkably large
number by any standard. Substantial economy can be achieved when
each variable depends on just a small subset of other variables. Such de-
pendence information permits us to decompose large distribution func-
tions into several small distributions—each involving a small subset of
variables—and then to piece them together coherently to answer ques-
tions of global nature. Graphs play an essential role in such decompo-
sition, for they provide a vivid representation of the sets of variables
that are relevant to each other in any given state of knowledge.

Both directed and undirected graphs have been used by researchers
to facilitate such decomposition. Undirected graphs, sometimes called
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Markov networks (Pearl 1988b), are used primarily to represent sym-
metrical spatial relationships (Isham 1981; Cox and Wermuth 1996;
Lauritzen 1996). Directed graphs, especially DAGs, have been used to
represent causal or temporal relationships (Lauritzen 1982; Wermuth
and Lauritzen 1983; Kiiveri et al. 1984) and came to be known as
Bayesian networks, a term coined in Pearl (1985) to emphasize three
aspects: (1) the subjective nature of the input information; (2) the
reliance on Bayes’s conditioning as the basis for updating information;
and (3) the distinction between causal and evidential modes of rea-
soning, a distinction that underscores Thomas Bayes’s paper of 1763.
Hybrid graphs (involving both directed and undirected edges) have also
been proposed for statistical modeling (Wermuth and Lauritzen 1990),
but in this book our main interest will focus on directed acyclic graphs,
with occasional use of directed cyclic graphs to represent feedback cy-
cles.

The basic decomposition scheme offered by directed acyclic graphs
can be illustrated as follows. Suppose we have a distribution P
defined on n discrete variables, which we may order arbitrarily as
X1, X2, ..., X, The chain rule of probability calculus (equation (1.12))
always permits us to decompose P as a product of n conditional distri-
butions:

P(J)l,...,.’bn):HP(LCj|.T1,...,$j_1). (130)
j
Now suppose that the conditional probability of some variable X is
not sensitive to all the predecessors of X; but only to a small subset
of those predecessors. In other words, suppose that X; is independent
of all other predecessors, once we know the value of a select group of
predecessors called PA;. We can then write

P(zjlzq,...,zj_1) = P(zj|pa;) (1.31)

in the product of (1.30), which will considerably simplify the input
information required. Instead of specifying the probability of X; con-
ditional on all possible realizations of its predecessors X1, ..., X;_;, we
need only concern ourselves with the possible realizations of the set
PA;. The set PA; is called the Markovian parents of X;, or parents for
short. The reason for the name becomes clear when we build graphs
around this concept.
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Definition 1.2.1 (Markovian Parents)

LetV = {Xy,..., X,} be an ordered set of variables, and let P(v) be the
joint probability distribution on these variables. A set of variables PA,;
is said to be Markovian parents of X, if PA; is a minimal set of prede-
cessors of X; that renders X; independent of all its other predecessors.
In other words, PA; is any subset of {X1,...,X;_1} satisfying

P(zjlpa;) = P(zj|x1,...,2j-1) (1.32)
and such that no proper subset of PA; satisfies (1.32).°

Definition 1.2.1 assigns to each variable X; a select set PA; of preced-
ing variables that are sufficient for determining the probability of Xj;
knowing the values of other preceding variables is redundant once we
know the values pa; of the parent set PA;. This assignment can be
represented in the form of a DAG in which variables are represented
by nodes and arrows are drawn from each node of the parent set PA;
toward the child node X;. Definition 1.2.1 also suggests a simple re-
cursive method for constructing such a DAG: Starting with the pair
(X1, X5), we draw an arrow from X; to X, if and only if the two vari-
ables are dependent. Continuing to X3, we draw no arrow in case X3
is independent of { X, X5}; otherwise, we examine whether X, screens
off X5 from X7 or X screens off X3 from X5. In the first case, we draw
an arrow from X, to Xj; in the second, we draw an arrow from X
to X3. If no screening condition is found, we draw arrows to X3 from
both X; and X5. In general: at the jth stage of the construction, we
select any minimal set of X;’s predecessors that screens off X; from its
other predecessors (as in equation (1.32)), call this set PA;, and draw
an arrow from each member in PA; to X;. The result is a directed
acyclic graph, called a Bayesian network, in which an arrow from X, to
X assigns X; as a Markovian parent of X;, consistent with Definition
1.2.1.

It can be shown (Pearl 1988b) that the set PA, is unique whenever
the distribution P(v) is strictly positive (i.e., involving no logical or
definitional constraints), so that every configuration v of variables, no

®Lowercase symbols (e.g., z;, pa;) denote particular realizations of the corre-
sponding variables (e.g., X;, PA;).
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matter how unlikely, has some finite probability of occurring. Under
such conditions, the Bayesian network associated with P(v) is unique,
given the ordering of the variables.

Figure 1.2 illustrates a simple yet typical Bayesian network. It de-
scribes relationships among the season of the year (X;), whether rain
falls (X3), whether the sprinkler is on (Xj3), whether the pavement
would get wet (X,), and whether the pavement would be slippery (X5).
All variables in this figure are binary (taking a value of either true or
false) except for the root variable X7, which can take one of four val-
ues: spring, summer, fall, or winter. The network was constructed
in accordance with Definition 1.2.1, using causal intuition as a guide.
The absence of a direct link between X; and Xj5, for example, cap-
tures our understanding that the influence of seasonal variations on the
slipperiness of the pavement is mediated by other conditions (e.g., the
wetness of the pavement). This intuition coincides with the indepen-
dence condition of (1.32), since knowing X, renders X5 independent of
{X1, Xo, X3}.

SEASON

PN
SPRINKLER @ @ RAIN
N
wer
@ SLIPPERY

Figure 1.2: A Bayesian network representing dependencies among five
variables.

The construction implied by Definition 1.2.1 defines a Bayesian net-
work as a carrier of conditional independence relationships along the
order of construction. Clearly, every distribution satisfying (1.32) must
decompose (using the chain rule of (1.30)) into the product

P(z1,...,xn) = I_IP(:EZ | pa,). (1.33)
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For example, the DAG in Figure 1.2 induces the decomposition

P(z1, 29,3, 24, x5) = P(x1) P(x2]21) P(x3|21) P(24|T0, 23) P(25|24).
(1.34)
The product decomposition in (1.33) is no longer order-specific
since, given P and G, we can test whether P decomposes into the
product given by (1.33) without making any reference to variable or-
dering. We therefore conclude that a necessary condition for a DAG
G to be a Bayesian network of probability distribution P is for P to

admit the product decomposition dictated by G, as given in (1.33).

Definition 1.2.2 (Markov Compatibility)

If a probability function P admits the factorization of (1.33) relative to
DAG G, we say that G represents P, that G and P are compatible, or
that P is Markov relative to G.%

Ascertaining compatibility between DAGs and probabilities is impor-
tant in statistical modeling primarily because compatibility is a neces-
sary and sufficient condition for a DAG G to ezplain a body of empirical
data represented by P, that is, to describe a stochastic process capa-
ble of generating P (e.g. Pearl, 1988b, pp. 210-23). If the value of each
variable X; is chosen at random with some probability P;(z;|pa;), based
solely on the values pa; previously chosen for PA;, then the overall dis-
tribution P of the generated instances xzi,zs,...,x, will be Markov
relative to G. Conversely, if P is Markov relative to G' then there exists
a set of probabilities P;(z;|pa;) according to which we can choose the
value of each variable X; such that the distribution of the generated
instances z1, T, ..., x, will be equal to P. (In fact, the correct choice
of P;(z;|pa;) would be simply P(z;|pa;).)

A convenient way of characterizing the set of distributions compati-
ble with a DAG G is to list the set of (conditional) independencies that
each such distribution must satisfy. These independencies can be read
off the DAG by using a graphical criterion called d-separation (Pearl
1988b; the d denotes directional), which will play a major role in many
discussions in this book.

6The latter expression seems to gain strength in recent literature (e.g. Spirtes et
al. 1993; Lauritzen 1996). Pearl (1988b, p. 116) used “G is an I-map of P.”
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1.2.3 The d-Separation Criterion

Consider three disjoint sets of variables, X, Y, and Z, which are rep-
resented as nodes in a directed acyclic graph G. To test whether X is
independent of Y given Z in any distribution compatible with G, we
need to test whether the nodes corresponding to variables Z “block™ all
paths from nodes in X to nodes in Y. By path we mean a sequence of
consecutive edges (of any directionality) in the graph, and blocking is
to be interpreted as stopping the flow of information (or of dependency)
between the variables that are connected by such paths, as defined next.

Definition 1.2.3 (d-Separation)
A path p is said to be d-separated (or blocked) by a set of nodes Z if
and only if

1. p contains a chain i — m — j or a fork i <— m — j such
that the middle node m is in Z, or

2. p contains an inverted fork (or collider) i — m <— j such that
the middle node m is not in Z and such that no descendant of m
18 1 7.

A set 7 is said to d-separate X from Y if and only if Z blocks every
path from a node in X to a node in'Y .

The intuition behind d-separation is simple and can best be recognized
if we attribute causal meaning to the arrows in the graph. In causal
chains 4 —= m — j and causal forks © <— m — j, the two extreme
variables are marginally dependent but become independent of each
other (i.e., blocked) once we condition on (i.e., know the value of) the
middle variable. Figuratively, conditioning on m appears to “block”
the flow of information along the path, since learning about 7 has no
effect on the probability of j, given m. Inverted forks i — m <— j,
representing two causes having a common effect, act the opposite way;
if the two extreme variables are (marginally) independent, they will
become dependent (i.e., connected through unblocked path) once we
condition on the middle variable (i.e., the common effect) or any of
its descendants. This can be confirmed in the context of Figure 1.2.
Once we know the season, X3 and X, are independent, (assuming that
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sprinklers are set in advance, according to the season); whereas finding
that the pavement is wet or slippery renders X, and X3 dependent,
because refuting one of these explanations increases the probability of
the other.

In Figure 1.2, X = {X,} and Y = {X3} are d-separated by Z =
{X1}, because both paths connecting X, and X3 are blocked by Z.
The path Xy <— X; — X3 is blocked because it is a fork in which the
middle node X is in Z, while the path Xy — X, <— X3 is blocked
because it is an inverted fork in which the middle node X, and all its
descendants are outside Z. However, X and Y are not d-separated by
the set Z' = {X1, X5}: the path Xy — X, <— X3 (an inverted fork) is
not blocked by Z’, since X5, a descendant of the middle node X}, is in
Z'. Metaphorically, learning the value of the consequence X5 renders
its causes X, and X3 dependent, as if a pathway were opened along the
arrows converging at Xjy.

At first glance, readers might find it a bit odd that conditioning on a
node not lying on a blocked path may unblock the path. However, this
corresponds to a general pattern of causal relationships: observations on
a common consequence of two independent causes tend to render those
causes dependent, because information about one of the causes tends
to make the other more or less likely, given that the consequence has
occurred. This pattern is known as selection bias or Berkson’s paradox
in the statistical literature (Berkson 1946) and as the explaining away
effect in artificial intelligence (Kim and Pearl 1983). For example, if
the admission criteria to a certain graduate school call for either high
grades as an undergraduate or special musical talents, then these two
attributes will be found to be correlated (negatively) in the student
population of that school, even if these attributes are uncorrelated in
the population at large. Indeed, students with low grades are likely
to be exceptionally gifted in music, which explains their admission to
graduate school.

Figure 1.3 illustrates more elaborate examples of d-separation: ex-
ample (a) contains a bidirected arc Z; <--» Z3 and (b) involves a
directed cycle X —= Z, — Z; — X. In Figure 1.3(a), the two paths
between X and Y are blocked when none of {7, Z,, Z3} is measured.
However, the path X — Z; <- -» Z3 <— Y becomes unblocked when
7 is measured. This is so because Z; unblocks the “colliders” at both
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Figure 1.3: Graphs illustrating d-separation. In (a), X and Y are d-
separated given Z, and d-connected given Z;. In (b), X and Y cannot
be d-separated by any set of nodes.

Z1 and Zj3; the first because Z; is the collision node of the collider,
the second because Z; is a descendant of the collision node Z3 through
the path Z; <— Z; <— Z3. In Figure 1.3(b), X and Y cannot be
d-separated by any set of nodes, including the empty set. If we con-
dition on 75, we block the path X <— 7; <— 7, <— Y yet unblock
the path X — Z, <— Y. If we condition on Z;, we again block the
path X <— 7, <— 7, <— Y and unblock the path X — Z, <— Y
because Z; is a descendant of the collision node Z,.

The connection between d-separation and conditional independence
is established through the following theorem due to Verma and Pearl
(1988; see also Geiger et al. 1990).

Theorem 1.2.4 (Probabilistic Implications of d-Separation)

If sets X and Y are d-separated by Z in a DAG G, then X is inde-
pendent of Y conditional on Z in every distribution compatible with G.
Conversely, if X and Y are not d-separated by Z in a DAG G, then
X and Y are dependent conditional on Z in at least one distribution
compatible with G.

The converse part of Theorem 1.2.4 is in fact much stronger—the ab-
sence of d-separation implies dependence in almost all distributions
compatible with G. The reason is that a precise tuning of parameters
is required to generate independency along an unblocked path in the
diagram, and such tuning is unlikely to occur in practice (see Spirtes
et al. 1993 and Sections 2.4 and 2.9.1).
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In order to distinguish between the probabilistic notion of con-
ditional independence (X 1.Y|Z)p and the graphical notion of d-
separation, for the latter we will use the notation (X1Y|Z)g. We
can thereby express Theorem 1.2.4 more succinctly as follows.

Theorem 1.2.5 For any three disjoint subsets of nodes (X,Y,Z) in a
DAG G and for all probability functions P, we have:

(i) (XLY|Z)e = (X LUY|Z)p whenever G and P are compatible,
and

(ii) of (XLLY|Z)p holds in all distributions compatible with G, it fol-
lows that (X 1LY|Z)g.

An alternative test for d-separation has been devised by Lauritzen
et al. (1990), based on the notion of ancestral graphs. To test for
(X1LY|Z)q, delete from G all nodes except those in {X, Y, Z} and
their ancestors, connect by an edge every pair of nodes that share a
common child, and remove all arrows from the arcs. Then (X 1LY|Z)¢g
holds if and only if Z intercepts all paths between X and Y in the
resulting undirected graph.

Note that the ordering with which the graph was constructed does
not enter into the d-separation criterion; it is only the topology of
the resulting graph that determines the set of independencies that the
probability P must satisfy. Indeed, the following theorem can be proven
(Pearl 1988b, p. 120).

Theorem 1.2.6 (Ordered Markov Condition)

A necessary and sufficient condition for a probability distribution P to
be Markov relative a DAG G is that, conditional on its parents in G,
each variable be independent of all its predecessors in some ordering of
the variables that agrees with the arrows of G.

A consequence of this theorem is an order-independent criterion for
determining whether a given probability P is Markov relative to a given

DAG G.

Theorem 1.2.7 (Parental Markov Condition)
A necessary and sufficient condition for a probability distribution P to



1.2. GRAPHS AND PROBABILITIES 35

be Markov relative a DAG G is that every variable be independent of
all its nondescendants (in G), conditional on its parents.

This condition, which Kiiveri et al. (1984) and Lauritzen (1996) called
the “local” Markov condition, is sometimes taken as the definition of
Bayesian networks (Howard and Matheson 1981). In practice, however,
the ordered Markov condition is easier to use.

Another important property that follows from d-separation is a cri-
terion for determining whether two given DAGs are observationally
equivalent—that is, whether every probability distribution that is com-
patible with one of the DAGs is also compatible with the other.

Theorem 1.2.8 (Observational Equivalence)

Two DAGs are observationally equivalent if and only if they have the
same skeletons and the same sets of v-structures, that is, two converging
arrows whose tails are not connected by an arrow (Verma and Pearl
1990).7

Observational equivalence places a limit on our ability to infer direction-
ality from probabilities alone. Two networks that are observationally
equivalent cannot be distinguished without resorting to manipulative
experimentation or temporal information. For example, reversing the
direction of the arrow between X; and X5 in Figure 1.2 would neither
introduce nor destroy a v-structure. Therefore, this reversal yields an
observationally equivalent network, and the directionality of the link
X7 — X, cannot be determined from probabilistic information. The
arrows Xo — X, and X, — X5, however, are of different nature;
there is no way of reversing their directionality without creating a new
v-structure. Thus, we see that some probability functions P (such as
the one responsible for the construction of the Bayesian network in Fig-
ure 1.2), when unaccompanied by temporal information, can constrain
the directionality of some arrows in the graph. The precise meaning of
such directionality constraints—and the possibility of using these con-
straints for inferring causal relationships from data—will be formalized
in Chapter 2.

"An identical criterion was independently derived by Frydenberg (1990) in the
context of chain graphs, where strict positivity is assumed.
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1.2.4 Inference with Bayesian Networks

Bayesian networks were developed in the early 1980s to facilitate the
tasks of prediction and “abduction” in artificial intelligence (AI) sys-
tems. In these tasks, it is necessary to find a coherent interpretation of
incoming observations that is consistent with both the observations and
the prior information at hand. Mathematically, the task boils down to
the computation of P(y|x), where X is a set of observations and Y is a
set of variables that are deemed important for prediction or diagnosis.

Given a joint distribution P, the computation of P(y|z) is concep-
tually trivial and invokes straightforward application of Bayes’s rule to
yield

> P(y,z,s)
P(y|z) = —ip(y o) (1.35)

where S stands for the set of all variables ezcluding X and Y. Because
every Bayesian network defines a joint probability P (given by the
product in (1.33)) it is clear that P(y|z) can be computed from a DAG
G and the conditional probabilities P(z;|pa;) defined on the families of
G.

The challenge, however, lies in performing these computations ef-
ficiently and within the representation level provided by the network
topology. The latter is important in systems that generate explanations
for their reasoning processes. Although such inference techniques are
not essential to our discussion of causality, we will nevertheless survey
them briefly, for they demonstrate (i) the effectiveness of organizing
probabilistic knowledge in the form of graphs and (ii) the feasibility
of performing coherent probabilistic calculations (and approximations
thereof) on such organization. Details can be found in the references
cited.

The first algorithms proposed for probabilistic calculations in
Bayesian networks used message-passing architecture and were limited
to trees (Pearl 1982; Kim and Pearl 1983). With this technique, each
variable is assigned a simple processor and permitted to pass messages
asynchronously with its neighbors until equilibrium is achieved (in a fi-
nite number of steps). Methods have since been developed that extend
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this tree propagation (and some of its synchronous variants) to gen-
eral networks. Among the most popular are Lauritzen and Spiegelhal-
ter’s (1988) method of join-tree propagation and the method of cut-set
conditioning (Pearl 1988b, pp. 204-10; Jensen 1996). In the join-tree
method, we decompose the network into clusters (e.g. cliques) that
form tree structures and then treat the set variables in each cluster as
a compound variable that is capable of passing messages to its neigh-
bors (which are also compound variables). For example, the network
of Figure 1.2 can be structured as a Markov-compatible chain of three
clusters:

{X17X2;X3} — {X2;X3,X4} — {X4,X5}-

In the cut-set conditioning method, a set of variables is instantiated
(given specific values) such that the remaining network forms a tree.
The propagation is then performed on that tree, and a new instantiation
chosen, until all instantiations have been exhausted; the results are then
averaged. In Figure 1.2, for example, if we instantiate X as any specific
value (say, X; = summer), then we break the pathway between X, and
X3 and the remaining network becomes tree-structured. The main
advantage of the cut-set conditioning method is that its storage-space
requirement is minimal (linear in the size of the network), whereas that
of the join-tree method might be exponential. Hybrid combinations
of these two basic algorithms have also been proposed (Shachter et al.
1994; Dechter 1996) to allow flexible trade-off of storage versus time.

Whereas inference in general networks is “NP-hard” (Cooper 1990),
the computational complexity for each of the methods cited here can
be estimated prior to actual processing. When the estimates exceed
reasonable bounds, an approximation method such as stochastic sim-
ulation (Pearl 1988b, pp. 210-23) can be used instead. This method
exploits the topology of the network to perform Gibbs sampling on local
subsets of variables, sequentially as well as concurrently.

Additional properties of DAGs and their applications to evidential
reasoning in expert systems are discussed in Pearl (1988b), Lauritzen
and Spiegelhalter (1988), Pearl (1993a), Spiegelhalter et al. (1993),
Heckerman et al. (1995), and Shafer (1996b, 1997).
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1.3 Causal Bayesian Networks

The interpretation of directed acyclic graphs as carriers of indepen-
dence assumptions does not necessarily imply causation; in fact, it will
be valid for any set of recursive independencies along any ordering of
the variables, not necessarily causal or chronological. However, the
ubiquity of DAG models in statistical and Al applications stems (often
unwittingly) primarily from their causal interpretation—that is, as a
system of processes, one per family, that could account for the genera-
tion of the observed data. It is this causal interpretation that explains
why DAG models are rarely used in any variable ordering other than
those which respect the direction of time and causation.

The advantages of building DAG models around causal rather than
associational information are several. First, the judgments required
in the construction of the model are more meaningful, more accessi-
ble, and hence more reliable. The reader may appreciate this point by
attempting to construct a DAG representation for the associations in
Figure 1.2 along the ordering (X5, X1, X3, X2, X4). Such exercises illus-
trate not only that some independencies are more vividly accessible to
the mind than others but also that conditional independence judgments
are accessible (hence reliable) only when they are anchored onto more
fundamental building blocks of our knowledge, such as causal relation-
ships. In the example of Figure 1.2, our willingness to assert that Xj
is independent of X, and X3 once we know X, (i.e., whether the pave-
ment is wet) is defensible because we can easily translate the assertion
into one involving causal relationships: that the influence of rain and
sprinkler on slipperiness is mediated by the wetness of the pavement.
Dependencies that are not supported by causal links are considered odd
or spurious and are even branded “paradoxical” (see the discussion of
Berkson’s paradox, Section 1.2.3).

We will have several opportunities throughout this book to demon-
strate the primacy of causal over associational knowledge. In extreme
cases, we will see that people tend to ignore probabilistic information al-
together and attend to causal information instead (see Section 6.1.4).%
This puts into question the ruling paradigm of graphical models in

8Tversky and Kahneman (1980) experiments with causal biases in probability
judgment constitute another body of evidence supporting this observation. For
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statistics (Wermuth and Lauritzen 1990; Cox and Wermuth 1996), ac-
cording to which conditional independence assumptions are the primary
vehicle for expressing substantive knowledge.’® It seems that if condi-
tional independence judgments are byproducts of stored causal rela-
tionships, then tapping and representing those relationships directly
would be a more natural and more reliable way of expressing what we
know or believe about the world. This is indeed the philosophy behind
causal Bayesian networks.

The second advantage of building Bayesian networks on causal
relationships—one that is basic to the understanding of causal
organizations—is the ability to represent and respond to external or
spontaneous changes. Any local reconfiguration of the mechanisms in
the environment can be translated, with only minor modification, into
an isomorphic reconfiguration of the network topology. For example,
to represent a disabled sprinkler in the story of Figure 1.2, we simply
delete from the network all links incident to the node Sprinkler. To
represent the policy of turning the sprinkler off if it rains, we simply
add a link between Rain and Sprinkler and revise P(x3|z1,2z2). Such
changes would require much greater remodeling efforts if the network
were not constructed along the causal direction but instead along (say)
the order (X5, X1, X3, Xo, X4). This remodeling flexibility may well be
cited as the ingredient that marks the division between deliberative and
reactive agents and that enables the former to manage novel situations
instantaneously, without requiring training or adaptation.

1.3.1 Causal Networks as Oracles for Interventions

The source of this flexibility rests on the assumption that each parent-
child relationship in the network represents a stable and autonomous
physical mechanism—in other words, that it is conceivable to change
one such relationship without changing the others. Organizing one’s
knowledge in such modular configurations permits one to predict the

example, most people believe that it is more likely for a girl to have blue eyes, given
that her mother has blue eyes, than the other way around; the two probabilities are
in fact equal.

9The author was as guilty of advocating the centrality of conditional indepen-
dence as were his colleagues in statistics; see Pearl (1988b, p. 79).
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effect of external interventions with minimum of extra information. In-
deed, causal models (assuming they are valid) are much more informa-
tive than probability models. A joint distribution tells us how probable
events are and how probabilities would change with subsequent obser-
vations, but a causal model also tells us how these probabilities would
change as a result of external interventions—such as those encountered
in policy analysis, treatment management, or planning everyday activ-
ity. Such changes cannot be deduced from a join distribution, even if
fully specified.

The connection between modularity and interventions is as follows.
Instead of specifying a new probability function for each of the many
possible interventions, we specify merely the immediate change implied
by the intervention and, by virtue of autonomy, we assume that the
change is local, and does not spread over to mechanisms other than
those specified. Once we know the identity of the mechanism altered
by an intervention and the nature of the alteration, the overall effect of
an intervention can be predicted by modifying the corresponding factors
in (1.33) and using the modified product to compute a new probability
function. For example, to represent the action “turning the sprinkler
On” in the network of Figure 1.2, we delete the link X; — X3 and
assign X3 the value On. The graph resulting from this operation is
shown in Figure 1.4, and the resulting joint distribution on the remain-
ing variables will be

PX3:On($17x2; .’E4,£E5) = P(./El)P(x2‘xl)P(x4‘x2’X3 = OII)P(.’E5|.T4),
(1.36)
in which all the factors on the right-hand side (r.h.s.), by virtue of
autonomy, are the same as in (1.34).

The deletion of the factor P(z3|z;) represents the understanding
that, whatever relationship existed between seasons and sprinklers prior
to the action, that relationship is no longer in effect while we perform
the action. Once we physically turn the sprinkler on and keep it on, a
new mechanism (in which the season has no say) determines the state
of the sprinkler.

Note the difference between the action do(X3 = On) and the ob-
servation X3 = On. The effect of the latter is obtained by ordinary
Bayesian conditioning, that is, P(z1, s, Z4, x5| X3 = On), while that of
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@ SEASON
SPRINKLER ‘ @ RAIN
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Q WET

@ SLIPPERY

Figure 1.4: Network representation of the action “turning the sprinkler
On.”

the former by conditioning a mutilated graph, with the link X; — X3
removed. This mirrors indeed the difference between seeing and doing:
after observing that the sprinkler is on, we wish to infer that the season
is dry, that it probably did not rain, and so on; no such inferences should
be drawn in evaluating the effects of a contemplated action “turning
the sprinkler On.”

The ability of causal networks to predict the effects of actions re-
quires of course a stronger set of assumptions in the construction of
those networks, assumptions that rest on causal (not merely associa-
tional) knowledge and that ensure the system would respond to inter-
ventions in accordance with the principle of autonomy. These assump-
tions are encapsulated in the following definition of causal Bayesian
networks.

Definition 1.3.1 (Causal Bayesian Network)

Let P(v) be a probability distribution on a set V of variables, and let
P,(v) denote the distribution resulting from the intervention do(X = z)
that sets a subset X of variables to constants x.'° Denote by P, the
set of all interventional distributions Py(v), X C V, including P(v),
which represents no intervention (i.e., X = (). A DAG G is said to be a
causal Bayesian network compatible with Py if and only if the following
three conditions hold for every P, € Piy:

10The notation P,(v) will be replaced in subsequent chapters with P(v|do(z))
and P(v|Z) to facilitate algebraic manipulations.
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(i) Py(v) is Markov relative to G;
(ii) Py(v;) =1 for all V; € X whenever v; is consistent with X = x;

(iii) Py(vilpa;) = P(vilpa;) for all V; ¢ X whenever pa; is consistent
with X = .

Definition 1.3.1 imposes constraints on the interventional space P, that
permit us to encode this vast space economically, in the form of a
single Bayesian network (G. These constraints enable us to compute
the distribution P,(v) resulting from any intervention do(X = z) as a
truncated factorization

P,(v)= ][ P(vilpa;) for all v consistent with z, (1.37)
{ilvigXx}

which follows from Definition 1.3.1 and justifies the family deletion
procedure on G, as in (1.36). It is not hard to show that, whenever
G is a causal Bayes network with respect to P,, the following two
properties must hold.

Property 1 For all i,

P(vilpas) = Ppa; (vi)- (1.38)

Property 2 For all i and for every subset S of variables disjoint of
{Vi, PA;}, we have
Ppai,s(vi) = P, (UZ) (1'39)

Property 1 renders every parent set PA; exogenous relative to its child
Vi, ensuring that the conditional probability P(v;|pa;) coincides with
the effect (on V;) of setting PA; to pa, by external control. Property
2 expresses the notion of invariance; once we control its direct causes
PA;, no other interventions will affect the probability of V;.



1.3. CAUSAL BAYESIAN NETWORKS 43

1.3.2 Causal Relationships and Their Stability

This mechanism-based conception of interventions provides a semanti-
cal basis for notions such as “causal effects” or “causal influence,” to be
defined formally and analyzed in Chapters 3 and 4. For example, to test
whether a variable X; has a causal influence on another variable X,
we compute (using the truncated factorization formula of (1.37)) the
(marginal) distribution of X; under the actions do(X; = z;)—namely,
Py, (z;) for all values z; of X;—and test whether that distribution is
sensitive to z;. It is easy to see from our previous examples that only
variables that are descendants of X; in the causal network can be influ-
enced by X;; deleting the factor P(z;|pa;) from the joint distribution
turns X; into a root node in the mutilated graph, and root variables
(as the d-separation criterion dictates) are independent of all other vari-
ables except their descendants.

This understanding of causal influence permits us to see precisely
why, and in what way, causal relationships are more “stable” than
probabilistic relationships. We expect such difference in stability be-
cause causal relationships are ontological, describing objective physical
constraints in our world, whereas probabilistic relationships are epis-
temic, reflecting what we know or believe about the world. Therefore,
causal relationships should remain unaltered as long as no change has
taken place in the environment, even when our knowledge about the
environment undergoes changes. To demonstrate, consider the causal
relationship S;, “Turning the sprinkler on would not affect the rain,”
and compare it to its probabilistic counterpart Sy, “The state of the
sprinkler is independent of (or unassociated with) the state of the rain.”
Figure 1.2 illustrates two obvious ways in which S, will change while
S remains intact. First, S5 changes from false to true when we learn
what season it is (X;). Second, given that we know the season, S,
changes from true to false once we observe that the pavement is wet
(X4 = true). On the other hand, S; remains true regardless of what
we learn or know about the season or about the pavement.

The example reveals a stronger sense in which causal relationships
are more stable than the corresponding probabilistic relationships, a
sense that goes beyond their basic ontological-epistemological differ-
ence. The relationship S; will remain invariant to changes in the mech-
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anism that regulates how seasons affect sprinklers. In fact, it remains
invariant to changes in all mechanisms shown in this causal graph. We
thus see that causal relationships exhibit greater robustness to ontolog-
ical changes as well; they are sensitive to a smaller set of mechanisms.
More specifically, and in marked contrast to probabilistic relationships,
causal relationships remain invariant to changes in the mechanism that
governs the causal variables (X3 in our example).

In view of this stability, it is no wonder that people prefer to encode
knowledge in causal rather than probabilistic structures. Probabilistic
relationships, such as marginal and conditional independencies, may
be helpful in hypothesizing initial causal structures from uncontrolled
observations. However, once knowledge is cast in causal structure, those
probabilistic relationships tend to be forgotten; whatever judgments
people express about conditional independencies in a given domain are
derived from the causal structure acquired. This explains why people
feel confident asserting certain conditional independencies (e.g., that
the price of beans in China is independent on the traffic in Los Angeles)
having no idea whatsoever about the numerical probabilities involved
(e.g., whether the price of beans will exceed $10 per bushel).

The element of stability (of mechanisms) is also at the heart of the
so-called explanatory accounts of causality, according to which causal
models need not encode behavior under intervention but instead aim
primarily to provide an “explanation” or “understanding” of how data
are generated.!’ Regardless of what use is eventually made of our
“understanding” of things, we surely would prefer an understanding
in terms of durable relationships, transportable across situations, over
those based on transitory relationships. The sense of “comprehensibil-
ity” that accompanies an adequate explanation is a natural byproduct
of the transportability of (and hence of our familiarity with) the causal
relationships used in the explanation. It is for reasons of stability that
we regard the falling barometer as predicting but not explaining the
rain; those predictions are not transportable to situations where the
pressure surrounding the barometer is controlled by artificial means.
True understanding enables predictions in such novel situations, where

1 Elements of this explanatory account can be found in the writings of Dempster
(1990), Cox (1992), and Shafer (1996a); see also King et al. (1994, p. 75).
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some mechanisms change and others are added. It thus seems reason-
able to suggest that, in the final analysis, the explanatory account of
causation is merely a variant of the manipulative account, albeit one
where interventions are dormant. Accordingly, we may as well view our
unsatiated quest for understanding “how data is generated” or “how
things work” as a quest for acquiring the ability to make predictions
under wider range of circumstances, including circumstances in which
things are taken apart, reconfigured, or undergo spontaneous change.

1.4 Functional Causal Models

The way we have introduced the causal interpretation of Bayesian net-
works represents a fundamental departure from the way causal models
(and causal graphs) were first introduced into genetics (Wright 1921),
econometrics (Haavelmo 1943), and the social sciences (Duncan 1975),
as well as from the way causal models are used routinely in physics and
engineering. In those models, causal relationships are expressed in the
form of deterministic, functional equations, and probabilities are intro-
duced through the assumption that certain variables in the equations
are unobserved. This reflects Laplace’s (1814) conception of natural
phenomena, according to which nature’s laws are deterministic and
randomness surfaces owing merely to our ignorance of the underlying
boundary conditions. In contrast, all relationships in the definition of
causal Bayesian networks were assumed to be inherently stochastic and
thus appeal to the modern (i.e., quantum mechanical) conception of
physics, according to which all nature’s laws are inherently probabilis-
tic and determinism is but a convenient approximation.

In this book, we shall express preference toward Laplace’s quasi-
deterministic conception of causality and will use it, often contrasted
with the stochastic conception, to define and analyze most of the causal
entities that we study. This preference is based on three considerations.
First, the Laplacian conception is more general. Every stochastic model
can be emulated by many functional relationships (with stochastic in-
puts), but not the other way around; functional relationships can only
be approximated, as a limiting case, using stochastic models. Second,
the Laplacian conception is more in tune with human intuition. The
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few esoteric quantum mechanical experiments that conflict with the
predictions of the Laplacian conception evoke surprise and disbelief,
and they demand that physicists give up deeply entrenched intuitions
about locality and causality (Maudlin 1994). Our objective is to pre-
serve, explicate, and satisfy—not destroy—those intuitions.!?

Finally, certain concepts that are ubiquitous in human discourse can
be defined only in the Laplacian framework. We shall see, for example,
that such simple concepts as “the probability that event B occured
because of event A” and “the probability that event B would have been
different if it were not for event A” cannot be defined in terms of purely
stochastic models. These so-called counterfactual concepts will require
a synthesis of the deterministic and probabilistic components embodied
in the Laplacian model.

1.4.1 Structural Equations

In its general form, a functional causal model consists of a set of equa-
tions of the form

Z; :fi(pai,ui), 1= 1,...,77,, (140)

where pa; (connoting parents) stands for the set of variables judged
to be immediate causes of X; and where the U; represent errors (or
“disturbances”) due to omitted factors. Equation (1.40) is a nonlinear,
nonparametric generalization of the linear structural equation models
(SEMs)

Z; :Zaikxk—i—ui, 1= 1,...,77,, (141)

k#i

which have become a standard tool in economics and social science
(see Chapter 5 for a detailed exposition of this enterprise). In linear

12The often heard argument that human intuitions belong in psychology and
not in science or philosophy is inapplicable when it comes to causal intuition—
the original authors of causal thoughts cannot be ignored when the meaning of
the concept is in question. Indeed, compliance with human intuition has been
the ultimate criterion of adequacy in every philosophical study of causation, and
the proper incorporation of background information into statistical studies likewise
relies on accurate interpretation of causal judgment.
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models, pa; corresponds to those variables on the r.h.s. of (1.41) that
have nonzero coeflicients.

A set of equations in the form of (1.40) and in which each equation
represents an autonomous mechanism is called structural model; if each
mechanism determines the value of just one distinct variable (called the
dependent variable), then the model is called a structural causal model
or a causal model for short.!> Mathematically, the distinction between
structural and algebraic equations is that the latter are characterized by
the set of solutions to the entire system of equations, whereas the former
are characterized by the solutions of each individual equation. The
implication is that any subset of structural equations is, in itself, a valid
model of reality—one that prevails under some set of interventions.

To illustrate, Figure 1.5 depicts a canonical econometric model re-
lating price and demand through the equations

q = blp + dll + Ui, (142)
p = baq+ dow + uo, (1.43)

where () is the quantity of household demand for a product A, P is the
unit price of product A, I is household income, W is the wage rate for
producing product A, and u; and uy represent error terms—unmodeled
factors that affect quantity and price, respectively (Goldberger 1992).
The graph associated with this model is cyclic, and the vertices asso-

G O (w) )
dp do
b2

O——

Figure 1.5: Causal diagram illustrating the relationship between price
(P), demand (Q), income (Z), and wages (V).

BFormal treatment of causal models, structural equations, and error terms are
given in Chapter 5 (Section 5.4.1) and Chapter 7 (Sections 7.1 and 7.2.5).
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ciated with the variables U;, Uy, I, and W are root nodes, convey-
ing the assumption of mutual independence. The idea of autonomy
(Aldrich 1989), in this context, means that the two equations represent
two loosely coupled segments of the economy, consumers and produc-
ers. Equation (1.42) describes how consumers decide what quantity
@ to buy, and (1.43) describes how manufacturers decide what price
P to charge. Like all feedback systems, this too represents implicit
dynamics; today’s prices are determined on the basis of yesterday’s de-
mand, and these prices will determine the demand in the next period
of transactions. The solution to such equations represents a long-term
equilibrium under the assumption that the background quantities, U;
and U,, remain constant.

The two equations are considered to be “autonomous” relative to
the dynamics of changes in the sense that external changes affecting
one equation do not imply changes to the others. For example, if gov-
ernment decides on price control and sets the price P at py, then (1.43)
will be modified to read p = py but the relationships in (1.42) will
remain intact, yielding ¢ = b1pg + di7 + u;. We thus see that by, the
“demand elasticity,” should be interpreted as the rate of change of @)
per unit controlled change in P. This is different, of course, from the
rate of change of ) per unit observed change in P (under uncontrolled
conditions), which, besides b;, is also affected by the parameters of
(1.43) (see Section 7.2.1, equation (7.14)). The difference between con-
trolled and observed changes is essential for the correct interpretation
of structural equation models in social science and economics, and it
will be discussed at length in Chapter 5. If we have reasons to believe
that consumer behavior will also change under a price control policy,
then this modified behavior would need to be modeled explicitly—for
example, by treating the coefficients b; and d; as dependent variables in
auxiliary equations involving P.!* Section 7.2.1 will present an analysis
of policy-related problems using this model.

To illustrate the workings of nonlinear functional models consider
again the causal relationships depicted in Figure 1.2. The causal model

4Indeed, consumers normally react to price fixing by hoarding goods in antic-
ipation of shortages (Lucas 1976). Such phenomena are not foreign to structural
models, though; they simply call for more elaborate equations to capture consumers’
expectations.
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associated with these relationships will consist of five functions, each
representing an autonomous mechanism governing one variable:

Ty = U,

Ty = fa(x1,u2),

3 = f3(21,u3),

Ty = fa(z3,72,u4),

x5 = f5(xq,us). (1.44)
The error variables Uy, ..., Us are not shown explicitly in the graph;

by convention, this implies that they are assumed to be mutually in-
dependent. When some disturbances are judged to be dependent, it is
customary to encode such dependencies by augmenting the graph with
double-headed arrows, as shown in Figure 1.1(a).

A typical specification of the functions {fi,..., fs} and the distur-
bance terms is given by the following Boolean model:

To [(X; = winter) V (X = fall) V uy] A —u,

z3 = [(X; =summer)V (X; = spring) V us] A —us,

Ty = (T2 Va3V ug) A-ul,

s = (z4Vus)A-wug, (1.45)

where z; stands for X; = true and where u; and u; stand for triggering
and inhibiting abnormalities, respectively. For example, u4 stands for
(unspecified) events that might cause the pavement to get wet (z4)
when the sprinkler is off (—x3) and it does not rain (—z5) (e.g., a broken
water pipe), while v} stands for (unspecified) events that would keep
the pavement dry in spite of the rain (x3), the sprinkler (z3), and uy
(e.g., pavement covered with a plastic sheet).

It is important to emphasize that, in the two models just described,
the variables placed on the left-hand side of the equality sign (the de-
pendent or output variables) act distinctly from the other variables in
each equation. The role of this distinction becomes clear when we dis-
cuss interventions, since it is only through this distinction that we can
identify which equation ought to be modified under local interventions
of the type “fix the price at py” (do(P = py)) or “turn the sprinkler
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On” (do(X3 = true)).??

We now compare the features of functional models as defined in
(1.40) with those of causal Bayesian networks defined in Section 1.3. To-
ward this end, we will consider the processing of three types of queries:

predictions (e.g., would the pavement be slippery if we find the sprin-
kler off?);

interventions (e.g., would the pavement be slippery if we make sure
that the sprinkler is off?); and

counterfactuals (e.g., would the pavement be slippery had the sprinkler
been off, given that the pavement is in fact not slippery and the
sprinkler is on?).

We shall see that these three types of queries represent a hierarchy of
three fundamentally different types of problems, demanding knowledge
with increasing level of details.

1.4.2 Probabilistic Predictions in Causal Models

Given a causal model (equation (1.40)), if we draw an arrow from each
member of PA; toward X; then the resulting graph G will be called a
causal diagram. If the causal diagram is acyclic, then the corresponding
model is called semi-Markovian and the values of the X variables will
be uniquely determined by those of the U variables. Under such condi-
tions, the joint distribution P(xy, ..., z,) is determined uniquely by the
distribution P(u) of the error variables. If, in addition to acyclicity, the
error terms are mutually independent, the model is called Markovian.

A fundamental theorem about Markovian models establishes a con-
nection between causation and probabilities via the parental Markov
condition of Theorem 1.2.7.

Theorem 1.4.1 (Causal Markov Condition)
Every Markovian causal model M induces a distribution P(xq,...,z,)

15Economists who write the supply-demand equations as {¢ = ap + u;, q¢ =
bp + us }, with ¢ appearing on the Lh.s. of both equations, are giving up the option
of analyzing price control policies unless additional symbolic machinery is used to
identify which equation will be modified by the do(P = pg) operator.
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that satisfies the parental Markov condition relative the causal diagram
G associated with M ; that s, each variable X; is independent on all its
non-descendants, given its parents PA; in G (Pearl and Verma 1991).'°

The proof is immediate. Considering that the set { PA;, U;} determines
one unique value of X, the distribution P(xy,..., Ty, u1,...,u,) is cer-
tainly Markov relative the augmented DAG G(X,U), in which the U
variables are represented explicitly. The required Markov condition
of the marginal distribution P(z1,...,z,) follows by d-separation in
G(X,U).

Theorem 1.4.1 shows that the Markov condition of Theorem 1.2.7
follows from two causal assumptions: (1) our commitment to include in
the model (not in the background) every variable that is a cause of two
or more other variables, and (2) Reichenbach’s (1956) common-cause
assumption, also known as “no correlation without causation,” stating
that, if any two variables are dependent, then one is a cause of the other
or there is a third variable causing both. These two assumptions imply
that the background factors in U are mutually independent and hence
that the causal model is Markovian. Theorem 1.4.1 explains both why
Markovian models are so frequently assumed in causal analysis and why
the parental Markov condition (Theorem 1.2.7) is so often regarded as
an inherent feature of causal models (see e.g. Kiiveri et al. 1984; Spirtes
et al. 1993).17

The causal Markov condition implies that characterizing each child-
parent relationship as a deterministic function, instead of the usual con-
ditional probability P(x;|pa;), imposes equivalent independence con-
straints on the resulting distribution and leads to the same recursive de-
composition that characterizes Bayesian networks (see equation (1.33)).

16Considering its generality and transparency, I would not be surprised if some
version of this theorem has appeared earlier in the literature.

Kiiveri et al.’s (1984) paper, entitled “Recursive Causal Models,” provides the
first proof (for strictly positive distributions) that the parental Markov condition of
Theorem 1.2.7 follows from the factorization of (1.33). This implication, however,
is purely probabilistic and invokes no aspect of causation. In order to establish
a connection between causation and probability we must first devise a model for
causation, either in terms of manipulations (as in Definition 1.3.1) or in terms of
functional relationships in structural equations (as in Theorem 1.4.1).
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More significantly, this holds regardless of the choice of functions {f;}
and regardless of the error distributions P(u;). Thus, we need not spec-
ify in advance the functional form of {f;} or the distributions P(u;);
once we measure (or estimate) P(x;|pa;), all probabilistic properties of
a Markovian causal model are determined, regardless of the mechanism
that actually generates those conditional probabilities. Druzdzel and
Simon (1993) showed that, for every Bayesian network G characterized
by a distribution P (as in (1.33)), there exists a functional model (as
in (1.40)) that generates a distribution identical to P.'® It follows that
in all probabilistic applications of Bayesian networks—including statis-
tical estimation, prediction, and diagnosis—we can use an equivalent
functional model as specified in (1.40), and we can regard functional
models as just another way of encoding joint distribution functions.
Nonetheless, the causal-functional specification has several advan-
tages over the probabilistic specification, even in purely predictive (i.e.
nonmanipulative) tasks. First and foremost, all the conditional inde-
pendencies that are displayed by the causal diagram G are guaranteed
to be stable—that is, invariant to parametric changes in the mecha-
nisms represented by the functions f; and the distributions P(u;). This
means that agents who choose to organize knowledge using Markovian
causal models can make reliable assertions about conditional indepen-
dence relations without assessing numerical probabilities—a common
ability among humanoids'® and a useful feature for inference. Second,
the functional specification is often more meaningful and natural, and
it yields a small number of parameters. Typical examples are the linear
structural equations used in social science and economics (see Chapter
5), and the “noisy OR gate” that has become quite popular in mod-
eling the effect of multiple dichotomous causes (Pear]l 1988b, p. 184).
Third (and perhaps hardest for an empiricist to accept), judgmental
assumptions of conditional independence among observable quantities
are simplified and made more reliable in functional models, because

18Tn Chapter 9 we will show that, except in some pathological cases, there actually
exist an infinite number of functional models with such a property.

9Gtatisticians who are reluctant to discuss causality yet have no hesitation ex-
pressing background information in the form of conditional independence statements
would probably be shocked to realize that such statements acquire their validity
from none other but the causal Markov condition (Theorem 1.4.1). See note 9.
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such assumptions are cast directly as judgments about the presence or
absence of unobserved common causes (e.g., why is the price of beans
in China judged to be independent of the traffic in Los Angeles?). In
the construction of Bayesian networks, for example, instead of judging
whether each variable is independent of all its nondescendants (given
its parents), we need to judge whether the parent set contains all rele-
vant immediate causes—in particular, whether no factor omitted from
the parent set is a cause of another observed variable. Such judgments
are more natural because they are discernible directly from a qualita-
tive causal structure, the very structure that our mind has selected for
storing stable aspects of experience.

Finally, there is an additional advantage to basing prediction models
on causal mechanisms that stems from considerations of stability (Sec-
tion 1.3.2). When some conditions in the environment, undergo change,
it is usually only a few causal mechanisms that are affected by the
change; the rest remain unaltered. It is simpler then to reassess (judg-
mentally) or reestimate (statistically) the model parameters knowing
that the corresponding symbolic change is also local, involving just a
few parameters, than to reestimate the entire model from scratch.?

1.4.3 Interventions and Causal Effects in Func-
tional Models

The functional characterization z; = f;(pa;, u;), like its stochastic coun-
terpart, provides a convenient language for specifying how the resulting
distribution would change in response to external interventions. This
is accomplished by encoding each intervention as an alteration on a se-
lect set of functions instead of a select set of conditional probabilities.
The overall effect of the intervention can then be predicted by modify-
ing the corresponding equations in the model and using the modified
model to compute a new probability function. Thus, all features of
causal Bayesian networks (Section 1.3) can be emulated in Markovian
functional models.

For example, to represent the action “turning the sprinkler On” in

20To the best of my knowledge, this aspect of causal models has not been studied
formally; it is suggested here as a research topic for students of adaptive systems.



54CHAPTER 1. INTRODUCTION TO PROBABILITIES, GRAPHS, AND CAUSAL N

the model of (1.44), we delete the equation x3 = f3(z1,u3) and replace
it with z3 = On. The modified model will contain all the information
needed for computing the effect of the action on other variables. For
example, the probability function induced by the modified model will
be equal to that given by (1.36), and the modified diagram will coincide
with that of Figure 1.4.

More generally, when an intervention forces a subset X of variables
to attain fixed values x, then a subset of equations is to be pruned
from the model in (1.40), one for each member of X, thus defining
a new distribution over the remaining variables that characterizes the
effect of the intervention and coincides with the truncated factorization
obtained by pruning families from a causal Bayesian network (equation
(1.37)).2

The functional model’s representation of interventions offers greater
flexibility and generality than that of a stochastic model. First, the
analysis of interventions can be extended to cyclic models, like the one
in Figure 1.5, so as to answer policy-related questions® (e.g.: What
would the demand quantity be if we control the price at py?). Second,
interventions involving the modification of equational parameters (like
b; and d; in (1.42)) are more readily comprehended than those described
as modifiers of conditional probabilities, perhaps because stable phys-
ical mechanisms are normally associated with equations and not with
conditional probabilities. Conditional probabilities are perceived to be
derivable from, not generators of, joint distributions. Third, the analy-
sis of causal effects in non-Markovian models will be greatly simplified
using functional models. The reason is: there are infinitely many con-
ditional probabilities P(z;|pa;) but only a finite number of functions
z; = fi(pa;,u;) among discrete variables X; and PA;. This fact will
enable us in Chapter 8 (Section 8.2.2) to use linear programming tech-
niques to obtain sharp bounds on causal effects in studies involving
noncompliance.

21 An explicit translation of interventions to “wiping out” equations from the
model was first proposed by Strotz and Wold (1960) and later used in Fisher (1970)
and Sobel (1990). More elaborate types of interventions, involving conditional ac-
tions and stochastic strategies, will be formulated in Chapter 4.

22Guch questions, especially those involving the control of endogenous variables,
are conspicuously absent from econometric textbooks (see Chapter 5).
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Finally, functional models permit the analysis of context-specific
actions and policies. The notion of causal effect was defined so far
is of only minor use in practical policy making. The reason is that
causal effects tell us the general tendency of an action to bring about
a response (as with the tendency of a drug to enhance recovery in the
overall population) but are not specific to actions in a given situation
characterized by a set of particular observations that may themselves be
affected by the action. A physician is usually concerned with the effect
of a treatment on a patient who has already been examined and found
to have certain symptoms. Some of those symptoms will themselves be
affected by the treatment. Likewise, an economist is concerned with
the effect of taxation in a given economical context characterized by
various economical indicators, which (again) will be affected by taxa-
tion if applied. Such context-specific causal effects cannot be computed
by simulating an intervention in a static Bayesian network, because the
context itself varies with the intervention and so the conditional prob-
abilities P(z;|pa;) are altered in the process. However, the functional
relationships z; = f;(pa;, u;) remain invariant, which enables us to com-
pute context-specific causal effects as outlined in the next section (see
Sections 7.2.1, 8.3, and 9.3.4 for full details).

1.4.4 Counterfactuals in Functional Models

We now turn to the most distinctive characteristic of functional
models—the analysis of counterfactuals. Certain counterfactual sen-
tences, as we remarked before, cannot be defined in the framework
of stochastic causal networks. To see the difficulties, let us consider
the simplest possible causal Bayesian network consisting of a pair of
independent (hence unconnected) binary variables X and Y. Such a
network ensues, for example, in a controlled (i.e. randomized) clinical
trial when we find that a treatment X has no effect on the distribution
of subjects’ response Y, which may stand for either recovery (Y = 0)
or death (Y = 1). Assume that a given subject, Joe, has taken the
treatment and died; we ask whether Joe’s death occurred because of
the treatment, despite the treatment, or regardless of the treatment. In
other words, we ask for the probability ¢ that Joe would have died had
he not been treated.
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To highlight the difficulty in answering such counterfactual ques-
tions, let us take an extreme case where 50% of the patients recover
and 50% die in both the treatment and the control groups; assume
further that the sample size approaches infinity, thus yielding

P(y|lx) =1/2 for all z and y. (1.46)

Readers versed in statistical testing will recognize immediately the im-
possibility of answering the counterfactual question from the available
data, noting that Joe, who took the treatment and died, was never
tested under the no-treatment condition. Moreover, the difficulty does
not stem from addressing the question to a particular individual, Joe,
for which we have only one data point. Rephrasing the question in
terms of population frequencies—asking what percentage @) of subjects
who died under treatment would have recovered had they not taken the
treatment—will encounter the same difficulties because none of those
subjects was tested under the no-treatment condition. Such difficulties
have prompted some statisticians to dismiss counterfactual questions
as metaphysical and to advocate the restriction of statistical analysis
to only those questions that can be answered by direct tests (Dawid
1997).

However, that our scientific, legal, and ordinary languages are
loaded with counterfactual utterances indicates clearly that counterfac-
tuals are far from being metaphysical; they must have definite testable
implications and must carry valuable substantive information. The
analysis of counterfactuals therefore represents an opportunity to any-
one who shares the aims of this book: integrating substantive knowl-
edge with statistical data so as to refine the former and interpret the
latter. Within this framework, the counterfactual issue demands an-
swers to tough, yet manageable technical questions: What is the em-
pirical content of counterfactual queries? What knowledge is required
to answer those queries? How can this knowledge be represented math-
ematically? Given such representation, what mathematical machinery
is needed for deriving the answers?

Chapter 7 (Section 7.2.2) presents an empirical explication of coun-
terfactuals as claims about the temporal persistence of certain mech-
anisms. In our example, the response to treatment of each (surviv-
ing) patient is assumed to be persistent. If the outcome Y were a
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reversible condition, rather than death, then the counterfactual claim
would translate directly into predictions about response to future treat-
ments. But even in the case of death, the counterfactual quantity @
implies not merely a speculation about the hypothetical behavior of
subjects who died but also a testable claim about surviving untreated
subjects under subsequent treatment. We leave it as an exercise for the
reader to prove that, based on (1.46) and barring sampling variations,
the percentage () of deceased subjects from the treatment group who
would have recovered had they not taken the treatment precisely equals
the percentage @' of surviving subjects in the nontreatment group who
will die if given treatment.?> Whereas Q is hypothetical, Q' is unques-
tionably testable.

Having sketched the empirical interpretation of counterfactuals, our
next step in this introductory chapter is the question of representation:
What knowledge is required to answer questions about counterfactuals?
And how should this knowledge be formulated so that counterfactual
queries be answered quickly and reliably? That such representation
exists is evident by the swiftness and consistency with which people
distinguish plausible from implausible counterfactual statements. Most
people would agree that President Clinton’s place in history would be
different had he not met Monica Lewinsky, but only a few would as-
sert that his place in history would change had he not eaten breakfast
yesterday. In the cognitive sciences, such consistency of opinion is as
close as one can get to a proof that an effective machinery for represent-
ing and manipulating counterfactuals resides someplace in the human
mind. What then are the building blocks of that machinery?

A straightforward representational scheme would (i) store counter-
factual knowledge in the form of counterfactual premises and (ii) derive
answers to counterfactual queries using some logical rules of inference
capable of taking us from premises to conclusions. This approach has
indeed been taken by the philosophers Robert Stalnaker (1968) and

BFor example, if ) equals 100% (i.e. all those who took the treatment and died
would have recovered had they not taken the treatment) then all surviving subjects
from the nontreatment group will die if given treatment (again, barring sampling
variations). Such exercises will become routine when we develop the mathematical
machinery for analyzing probabilities of causes (see Chapter 9, Theorem 9.2.11,
equations (9.11)-(9.12)).
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David Lewis (1973a,b), who constructed logics of counterfactuals us-
ing closest-world semantics (i.e., “B would be true if it were A” just
in case B is true in the closest possible world (to ours) in which A is
true). However, the closest-world semantics still leaves two questions
unanswered. (1) What choice of distance measure would make coun-
terfactual reasoning compatible with ordinary conception of cause and
effect? (2) What mental representation of interworld distances would
render the computation of counterfactuals manageable and practical
(for both humans and machines)? These two questions are answered
by the structural model approach expanded in Chapter 7.

An approach similar to Lewis’s (though somewhat less formal) has
been pursued by statisticians in the potential-outcome framework (Ru-
bin 1974; Robins 1986; Holland 1988). Here, substantive knowledge is
expressed in terms of probabilistic relationships (e.g. independence)
among counterfactual variables and then used in the estimation of
causal effects. The question of representation shifts from the closest-
world to the potential-outcome approach: How are probabilistic rela-
tionships among counterfactuals stored or inferred in the investigator’s
mind? In Chapter 7 (see also Section 3.6.3) we provide an analysis of
the closest-world and potential-outcome approaches and compare them
to the structural model approach, to be outlined next, in which coun-
terfactuals are derived from (and in fact defined by) a functional causal
model (equation (1.40)).

In order to see the connection between counterfactuals and struc-
tural equations, we should first examine why the information encoded
in a Bayesian network, even in its causal interpretation, is insufficient
to answer counterfactual queries. Consider again our example of the
controlled randomized experiment (equation 1.46), which corresponds
to an edgeless Bayesian network (Figure 1.6(a)) with two independent
binary variables and a joint probability:

P(y,z) =0.25 for all z and y. (1.47)

We now present two functional models, each generating the joint
probability of (1.47) yet each giving a different value to the quantity of
interest, () = the probability that a subject who died under treatment
(x = 1, y = 1) would have recovered (y = 0) had he or she not
been treated (z = 0).
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Figure 1.6: (a) A causal Bayesian network that represents the distribu-
tion of (1.47). (b) A causal diagram representing the process generating
the distribution in (a), according to model 1. (c) Same, according to
model 2. (Both U; and U, are unobserved.)

Model 1 (Figure 1.6(b))
Let

U,

= U2,

where U; and U, are two independent binary variables with P(u; =

1) = P(up = 1) = 1 (e.g., random coins).

Model 2 (Figure 1.6(c))
Let

e (1—2)(1 - ug), (1.48)

where, as before, U; and U, are two independent binary variables.

Model 1 corresponds to treatment (X) that has no effect on any of
the subjects; in model 2, every subject is affected by treatment. The
reason that the two models yield the same distribution is that model
2 describes a mixture of two subpopulations. In one (uy = 1), each
subject dies (y = 1) if and only if treated; in the other (uy = 0),
each subject recovers (y = 0) if and only if treated. The distributions
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Model 1 us =0 uy =1 Marginal
z=1 =0 z=1 x2=0 r=1 =0
y =1 (death) 0 0 0.25 0.25 0.25 0.25
y =0 (recovery) 0.25 0.25 0 0 0.25 0.25
Model 2 uy =0 uy =1 Marginal
z=1 =0 z=1 =0 z=1 =0
y =1 (death) 0 0.25 0.25 0 0.25 0.25
y =0 (recovery) 0.25 0 0 0.25 0.25 0.25

Figure 1.7: Contingency tables showing the distributions P(z,y, us)
and P(z,y) for the two models discussed in the text.

P(z,y,us) and P(z,y) corresponding to these two models are shown in
the tables of Figure 1.7.

The value of () differs in these two models. In model 1, () evaluates
to zero, because subjects who died correspond to us = 1 and, since the
treatment has no effect on y, changing X from 1 to 0 would still yield
y = 1. In model 2, however, () evaluates to unity, because subjects who
died under treatment must correspond to us = 1 (i.e., those who die if
treated), meaning they would recover if and only if not treated.

The first lesson of this example is that stochastic causal models are
insufficient for computing probabilities of counterfactuals; knowledge
of the actual process behind P(y|z) is needed for the computation.!
A second lesson is that a functional causal model constitutes a math-
ematical object sufficient for the computation (and definition) of such
probabilities. Consider, for example, model 2 of (1.48). The way we
concluded that a deceased treated subject (y = 1, £ = 1) would have
recovered if not treated involved three mental steps. First, we applied

241n the potential-outcome framework (Sections 3.6.3 and 7.4.4), such knowledge
obtains stochastic appearance by defining distributions over counterfactual variables
Y: and Yj, which stand for the potential response of an individual to treatment and
no treatment, respectively. These hypothetical variables play a role similar to the
functions f;(pa;,u;) in our model; they represent the deterministic assumption that
every individual possesses a definite response to treatment, regardless of whether
that treatment was realized.
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the evidence at hand, e : {y = 1, x = 1}, to the model and concluded
that e is compatible with only one realization of U; and Us;—namely,
{uy = 1, up = 1}. Second, to simulate the hypothetical condition
“had he or she not been treated,” we substituted x = 0 into (1.48)
while ignoring the first equation = u;. Finally, we solved (1.48) for
y (assuming x = 0 and uy = 1) and obtained y = 0, from which we
concluded that the probability of recovery (y = 0) is unity under the
hypothetical condition considered.

These three steps can be generalized to any causal model M as
follows. Given evidence e, to compute the probability of Y = y under
the hypothetical condition X = z (where X is a subset of variables),
apply the following three steps to M.

Step 1 (abduction): Update the probability P(u) to obtain P(ule).

Step 2 (action): Replace the equations corresponding to variables in
set X by the equations X = z.

Step 8 (prediction): Use the modified model to compute the probability
of Y =y.

In temporal metaphors, this three-step procedure can be interpreted as
follows. Step 1 explains the past (U) in light of the current evidence
e; step 2 bends the course of history (minimally) to comply with the
hypothetical condition X = z; finally, step 3 predicts the future (V)
based on our new understanding of the past and our newly established
condition, X = x.

Recalling that for each value u of U there is a unique solution for
Y, it is clear that step 3 always gives a unique solution for the needed
probability; we simply sum up the probabilities P(ule) assigned to all
those u that yield Y = y as a solution. Chapter 7 develops effective
procedures for computing probabilities of counterfactuals, procedures
that are based on probability propagation in “twin” networks (Balke
and Pearl 1995): one network represents the actual world; the other
the counterfactual world.

Note that the hypothetical condition X = x always stands in con-
tradiction to the prevailing values u of U in the model considered (else
X = z would actually be realized and thus would not be considered
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hypothetical). It is for this reason that we invoke (in step 2) an exter-
nal intervention (alternatively, a “theory change” or a “miracle”; Lewis
1973b), which modifies the model and thus explains the contradiction
away. In Chapter 7 we extend this structural-interventional model to
give a full semantical and axiomatic account both for counterfactuals
and the probability of counterfactuals. In contrast with Lewis’s the-
ory, this account is not based on abstract notion of similarity among
hypothetical worlds; rather, it rests on the actual mechanisms involved
in the production of the hypothetical worlds considered. Likewise, in
contrast with the potential-outcome framework, counterfactuals in the
structural account are not treated as undefined primitives but rather as
quantities to be derived from the more fundamental concepts of causal
mechanisms and their structure.

The three-step model of counterfactual reasoning also uncovers the
real reason why stochastic causal models are insufficient for computing
probabilities of counterfactuals. Because the U variables do not ap-
pear explicitly in stochastic models, we cannot apply step 1 so as to
update P(u) with the evidence e at hand. This implies that several
ubiquitous notions based on counterfactuals—including probabilities of
causes (given the effects), probabilities of explanations, and context-
dependent causal effect—cannot be defined in such models. For these,
we must make some assumptions about the form of the functions f;
and the probabilities of the error terms. For example, the assump-
tions of linearity, normality, and error independence are sufficient for
computing all counterfactual queries in the model of Figure 1.5 (see
Section 7.2.1). In Chapter 9, we will present conditions under which
counterfactual queries concerning probability of causation can be in-
ferred from data when f; and P(u) are unknown, and only general
features (e.g. monotonocity) of these entities are assumed. Likewise,
Chapter 8 (Section 8.3) will present methods of bounding probabilities
of counterfactuals when only stochastic models are available.

The preceding considerations further imply that the three tasks
listed in the beginning of this section—prediction, intervention, and
counterfactuals—form a natural hierarchy of causal reasoning tasks,
with increasing levels of refinement and increasing demands on the
knowledge required for accomplishing these tasks. Prediction is the
simplest of the three, requiring only a specification of a joint distribu-
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tion function. The analysis of interventions requires a causal structure
in addition to a joint distribution. Finally, processing counterfactu-
als is the hardest task because it requires some information about the
functional relationships and/or the distribution of the omitted factors.

This hierarchy also defines a natural partitioning of the chapters in
this book. Chapter 2 will deal primarily with the probabilistic aspects
of causal Bayesian networks (though the underlying causal structure
will serve as a conceptual guide). Chapters 3—6 will deal exclusively
with the interventional aspects of causal models, including the identifi-
cation of causal effects, the clarification of structural equation models,
and the relationships between confounding and collapsibility. Chapters
7-10 will deal with counterfactual analysis, including axiomatic foun-
dation, applications to policy analysis, the bounding of counterfactual
queries, the identification of probabilities of causes, and the explication
of single-event causation.

I wish the reader a smooth and rewarding journey through these
chapters. But first, an important stop for terminological distinctions.

1.5 Causal versus Statistical Terminology

This section defines fundamental terms and concepts that will be used
throughout this book. These definitions may not agree with those given
in standard sources, so it is important to refer to this section in case of
doubts regarding the interpretation of these terms.

A probabilistic parameter is any quantity that is defined in
terms?® of a joint probability function. Examples are the quantities
defined in Sections 1.1 and 1.2.

A statistical parameter is any quantity that is defined in terms
of a joint probability distribution of observed variables, making no as-
sumption whatsoever regarding the existence or nonexistence of unob-

25 A quantity Q is said to be defined in terms of an object of class C if () can be
computed uniquely from the description of any object in class C (i.e., if @ is defined
by a functional mapping from C to the domain of Q).
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served variables.

Examples : the conditional expectation F(Y|z),
the regression coefficient ryx,
the value of the density function at y =0, x = 1.

A causal parameter is any quantity that is defined in terms of a
causal model (as in (1.40)) and is not a statistical parameter.

Examples : the coefficients oy in (1.41),
whether Xy has influence on X3 for some u,
the expected value of Y under the intervention do(X = 0),
the number of parents of variable X7.

Remark: The distinction between probabilistic and statistical param-
eters is devised to exclude the construction of joint distributions that
invoke hypothetical variables (e.g., counterfactual or theological). Such
constructions, if permitted, would qualify any quantity as statistical
and would obscure the distinction between causal and noncausal as-
sumptions.

A statistical assumption is any constraint on a joint distribution of
observed variable; for example, that f is multivariate normal or that P
is Markov relative to a given DAG D.

A causal assumption is any constraint on a causal model that
cannot be realized by imposing statistical assumptions; for example,
that f; is linear, that U; and U; (unobserved) are uncorrelated, or that
x3 does not appear in fy(pay,uq). Causal assumptions may or may
not have statistical implications. In the former case we say that the
assumption is “testable” or “falsifiable.”

Remark: The distinction between causal and statistical parameters
is crisp and fundamental. Causal parameters can be discerned from
joint distributions only when special assumptions are made, and such
assumptions must have causal components to them. The formulation
and simplification of these assumptions will occupy a major part of this
book.

Remark: Temporal precedence among variables may furnish some in-
formation about (the absence of) causal relationships—a later event
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cannot be the cause of an earlier event. Temporally indexed distribu-
tions such as P(y;|y;—1,2¢), t =1,..., which are used routinely in eco-
nomic analysis, may therefore be regarded as borderline cases between
statistical and causal models. We shall nevertheless classify those mod-
els as statistical because the great majority of policy-related questions
cannot be discerned from such distributions, given our commitment to
making no assumption regarding the presence or absence of unmea-
sured variables. Consequently, econometric concepts such as “Granger
causality” (Granger 1969) and “strong exogeneity” (Engle et al. 1983)
will be classified as statistical rather than causal.?

Remark: The terms “theoretical” and “structural” are often used in-
terchangeably with “causal”; we will use the latter two, keeping in mind
that some structural models may not be causal (see Section 7.2.5).

Causal versus Statistical Concepts

The demarcation line between causal and statistical parameters ex-
tends as well to general concepts and will be supported by termino-
logical distinction. Examples of statistical concepts are: correlation,
regression, conditional independence, association, likelihood, collapsi-
bility, risk ratio, odd ratio, and so on. Examples of causal concepts
are: randomization, influence, effect, confounding, exogeneity, ignora-
bility, disturbance (e.g. (1.40)), spurious correlation, path coefficients,
instrumental variables, intervention, explanation, and so on. The pur-
pose of this demarcation line is not to exclude causal concepts from the
province of statistical analysis but, rather, to encourage investigators
into treating nonstatistical concepts with the proper set of tools.
Some readers may be surprised by the idea that textbook concepts
such as randomization, confounding, spurious correlation, or effects are
nonstatistical. Others may be shocked at the idea that controversial
concepts such as exogeneity, confounding, and counterfactuals can be
defined in terms of causal models. This book is written with these

26 Caution must also be exercised in labeling as “data-generating model” the prob-
abilistic sequence P(y:|lys—1,%¢),t =1,... (e.g. Davidson and MacKinnon 1993, p.
53; Hendry 1995). Causal assumptions of the type developed in Chapter 2 (see
Definitions 2.4.1 and 2.7.4) must be invoked before applying such sequences in
policy-related tasks.
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readers in mind, and the coming pages will demonstrate that the dis-
tinctions just made between causal and statistical concepts are essential
for clarifying both.



