Chapter 1

Introduction to Probabilities,
Graphs, and Causal Models

Chance gives rise to thoughts,

and chance removes them.
Pascal (1670)

1.1 Introduction to Probability Theory

1.1.1 Why Probabilities?

Causality connotes lawlike necessity, whereas probabilities connote ex-
ceptionality, doubt, and lack of regularity. Still, there are two com-
pelling reasons for starting with, and in fact stressing, probabilistic
analysis of causality; one is fairly straightforward, the other more sub-
tle.

The simple reason rests on the observation that causal utterances
are often used in situations that are plagued with uncertainty. We
say, for example, “reckless driving causes accidents” or “you will fail
the course because of your laziness” (Suppes 1970), knowing quite well
that the antecedents merely tend to make the consequences more likely,
not absolutely certain. Any theory of causality that aims at accommo-
dating such utterances must therefore be cast in a language that dis-
tinguishes various shades of likelihood—mnamely, the language of proba-
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bilities. Connected with this observation, we note that probability the-
ory is currently the official mathematical language of most disciplines
that use causal modeling, including economics, epidemiology, sociol-
ogy, and psychology. In these disciplines, investigators are concerned
not merely with the presence or absence of causal connections, but also
with the relative strengths of those connections and with ways of in-
ferring those connections from noisy observations. Probability theory,
aided by methods of statistical analysis, provides both the principles
and the means of coping with—and drawing inferences from—such ob-
servations.

The more subtle reason concerns the fact that even the most as-
sertive causal expressions in natural language are subject to exceptions,
and those exceptions may cause major difficulties if processed by stan-
dard rules of deterministic logic. Consider for example the two plausible
premises:

1. My neighbor’s roof gets wet whenever mine does.
2. If T hose my roof it will get wet.

Taken literally, these two premises imply the implausible conclusion
that my neighbor’s roof gets wet whenever I hose mine.

Such paradoxical conclusions are normally attributed to the finite
granularity of our language, as manifested in the many exceptions that
are implicit in premise 1. Indeed, the paradox disappears once we take
the trouble of explicating those exceptions and write, for instance:

1*. My neighbor’s roof gets wet whenever mine does, except when it
is covered with plastic, or when my roof is hosed, etc.

Probability theory, by virtue of being especially equipped to tolerate
unexplicated exceptions, allows us to focus on the main issues of causal-
ity without having to cope with paradoxes of this kind.

As we shall see in subsequent chapters, tolerating exceptions solves
only part of the problems associated with causality. The remaining
problems—including issues of inference, interventions, identification,
ramification, confounding, counterfactuals, and explanation—will be
the main topic of this book. By portraying those problems in the lan-
guage of probabilities, we emphasize their universality across languages.
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Chapter 7 will recast these problems in the language of deterministic
logic and will introduce probabilities merely as a way to express uncer-
tainty about unobserved facts.

1.1.2 Basic concepts in probability theory

The bulk of the discussion in this book will focus on systems with a
finite number of discrete variables and thus will require only rudimen-
tary notation and elementary concepts in probability theory. Exten-
sions to continuous variables will be outlined but not elaborated in
full generality. Readers who want additional mathematical machinery
are invited to study the many excellent textbooks on the subject—for
example, Feller (1950), Hoel et al. (1971), or the appendix to Suppes
(1970). This section provides a brief summary of elementary proba-
bility concepts, based largely on Pearl (1988b), with special emphasis
on Bayesian inference and its connection to the psychology of human
reasoning under uncertainty. Such emphasis is generally missing from
standard textbooks.

We will adhere to the Bayesian interpretation of probability, accord-
ing to which probabilities encode degrees of belief about events in the
world and data are used to strengthen, update, or weaken those degrees
of belief. In this formalism, degrees of belief are assigned to propositions
(sentences that take on true or false values) in some language, and those
degrees of belief are combined and manipulated according to the rules
of probability calculus. We will make no distinction between sentential
propositions and the actual events represented by those propositions.
For example, if A stands for the statement “Ted Kennedy will seek
the nomination for president in year 2000,” then P(A|K) stands for
a person’s subjective belief in the event described by A given a body
of knowledge K, which might include that person’s assumptions about
American politics, specific proclamations made by Kennedy, and an
assessment of Kennedy’s past and personality. In defining probabil-
ity expressions, we often simply write P(A), leaving out the symbol
K. However, when the background information undergoes changes, we
need to identify specifically the assumptions that account for our beliefs
and explicitly articulate K or (some of its elements).

In the Bayesian formalism, belief measures obey the three basic ax-
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ioms of probability calculus:

0<P(4) <1, (1.1)
P(sure proposition) = 1, (1.2)
P(Aor B) = P(A) + P(B) if A and B are mutually exclusive. (1.3)

The third axiom states that the belief assigned to any set of events
is the sum of the beliefs assigned to its nonintersecting components.
Because any event A can be written as the union of the joint events
(A A B) and (A A —B), their associated probabilities are given by!

P(A) = P(A, B) + P(A,~B), (1.4)

where P(A, B) is short for P(A A B). More generally, if B;, i =
1, 2,...,n, is a set of exhaustive and mutually exclusive propositions
(called a partition or a wvariable), then P(A) can be computed from
P(A,B;), i=1, 2,...,n, by using the sum

P(4) = 3" P(A, B), (1.5)

which has come to be known as the “law of total probability.” The oper-
ation of summing up probabilities over all B; is also called “marginaliz-
ing over B”; and the resulting probability, P(A), is called the marginal
probability of A. For example, the probability of A, “The outcomes
of two dice are equal,” can be computed by summing over the joint
events (AA B;), i = 1,2,...,6, where B; stands for the proposition
“The outcome of the first die is 7.” This yields

P(A) = Y P(A,B) =6 x 5 =

1
Z 1.
36 6 (1.6)

A direct consequence of (1.2) and (1.4) is that a proposition and its
negation must be assigned a total belief of unity,

P(A) + P(-A4) = 1, (1.7)

!The symbols A,V,— denote the logical connectives and, or, and not,
respectively.
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because one of the two statements is certain to be true.

The basic expressions in the Bayesian formalism are statements
about conditional probabilities—for example, P(A|B)—which specify
the belief in A under the assumption that B is known with absolute
certainty. If P(A|B) = P(A), we say that A and B are independent,
since our belief in A remains unchanged upon learning the truth of B.
If P(A|B,C) = P(A|C), we say that A and B are conditionally inde-
pendent given C'; that is, once we know C, learning B would not change
our belief in A.

Contrary to the traditional practice of defining conditional proba-
bilities in terms of joint events,

P(A,B)

P(A|B) = W, (1.8)
Bayesian philosophers see the conditional relationship as more basic
than that of joint events—that is, more compatible with the organi-
zation of human knowledge. In this view, B serves as a pointer to a
context or frame of knowledge, and A|B stands for an event A in the
context specified by B (e.g., a symptom A in the context of a disease
B). Consequently, empirical knowledge invariably will be encoded in
conditional probability statements, whereas belief in joint events (if it
is ever needed) will be computed from those statements via the product

P(A, B) = P(A|B)P(B), (1.9)

which is equivalent to (1.8). For example, it was somewhat unnatural

to assess ]
P(A,B;) = —
36

directly in (1.6). The mental process underlying such assessment pre-
sumes that the two outcomes are independent, so to make this assump-
tion explicit the probability of the joint event (equality, B;) should be
assessed from the conditional event (equality|B;) via the product

P(equality|B;)P(B;) = P(outcome of second die is i|B;) P(B;)
1 1 1

= - X = = —,

6 6 36
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As in (1.5), the probability of any event A can be computed by
conditioning it on any set of exhaustive and mutually exclusive events
B;, i=1,2,...,n, and then summing:

=>_P(A[B))P(By). (1.10)

This decomposition provides the basis for hypothetical or
“assumption-based” reasoning. It states that the belief in any event
A is a weighted sum over the beliefs in all the distinct ways that A
might be realized. For example, if we wish to calculate the probability
that the outcome X of the first die will be greater than the outcome
Y of the second, we can condition the event A : X > Y on all possible
values of X and obtain

mmzzzpw<xw:@mxzn
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It is worth reemphasizing that formulas like (1.10) are always under-
stood to apply in some larger context K, which defines the assumptions
taken as common knowledge (e.g., the fairness of dice rolling). Equation
(1.10) is really a shorthand notation for the statement

P(A|K) = Y P(A[B;, K) P(Bi|K). (1.11)

This equation follows from the fact that every conditional probability
P(A|K) is itself a genuine probability function; hence it satisfies (1.10).

Another useful generalization of the product rule (equation (1.9))
is the chain rule formula. It states that if we have a set of n events,
Ei,E,, ..., E,, then the probability of the joint event (F1, Es, ..., E,)
can be written as a product of n conditional probabilities:

P(Ey, Es,...,E,) = P(Ey|En_1,. .., Es, E1) ... P(Es|Ey)P(Ey).
(1.12)
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This product can be derived by repeated application of (1.9) in any
convenient order.
The heart of Bayesian inference lies in the celebrated inversion for-
mula,
P(e|H)P(H)
Ple)

which states that the belief we accord a hypothesis H upon obtaining
evidence e can be computed by multiplying our previous belief P(H) by
the likelihood P(e|H) that e will materialize if H is true. This P(H]|e)
is sometimes called the posterior probability (or simply posterior), and
P(H) is called the prior probability (or prior). The denominator P(e)
of (1.13) hardly enters into consideration because it is merely a nor-
malizing constant P(e) = P(e|H)P(H) + P(e|~H)P(—H), which can
be computed by requiring that P(H|e) and P(—H|e) sum to unity.

Whereas formally (1.13) might be dismissed as a tautology stem-
ming from the definition of conditional probabilities,

P(Hle) = (1.13)

P(A, B)
P(B)

P(A, B)

P(A|B) = W;

and P(B|A) = (1.14)

the Bayesian subjectivist regards (1.13) as a normative rule for updat-
ing beliefs in response to evidence. In other words, although conditional
probabilities can be viewed as purely mathematical constructs, (as in
(1.14)), the Bayes adherent views them as primitives of the language
and as faithful translations of the English expression “..., given that
I know A.” Accordingly, (1.14) is not a definition but rather an em-
pirically verifiable relationship between English expressions. It asserts,
among other things, that the belief a person attributes to B after discov-
ering A is never lower than that attributed to A A B before discovering
A. Also, the ratio between these two beliefs will increase proportionally
with the degree of surprise [P(A)]™! one associates with the discovery
of A.

The importance of (1.13) is that it expresses a quantity P(H|e)—
which people often find hard to assess—in terms of quantities that
often can be drawn directly from our experiential knowledge. For ex-
ample, if a person at the next gambling table declares the outcome
“twelve,” and we wish to know whether he was rolling a pair of dice or
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spinning a roulette wheel, our models of the gambling devices readily
yield the quantities P(twelve|dice) and P(twelve|roulette): 1/36 for the
former and 1/38 for the latter. Similarly, we can judge the prior prob-
abilities P(dice) and P(roulette) by estimating the number of roulette
wheels and dice tables at the casino. Issuing a direct judgment of
P(dice|twelve) would have been much more difficult; only a specialist
in such judgments, trained at the very same casino, could do it reliably.

In order to complete this brief introduction, we must discuss the
notion of probabilistic model (also called probability space). A prob-
abilistic model is an encoding of information that permits us to com-
pute the probability of every well-formed sentence S in accordance with
the axioms of (1.1)—(1.3). Starting with a set of atomic propositions
A, B, C,..., the set of well-formed sentences consists of all Boolean
formulas involving these propositions, for example, S = (AA B) V =C.
The traditional method of specifying probabilistic models employs a
joint distribution function, which is a function that assigns nonnega-
tive weights to every elementary event in the language (an elementary
event being a conjunction in which every atomic proposition or its nega-
tion appears once) such that the sum of the weights adds up to 1. For
example, if we have three atomic propositions, A, B, and C, then a
joint distribution function should assign nonnegative weights to all eight
combinations—(AABAC), (ANBA=C),...,(mAAN-BA-C)—such
that the eight weights sum to 1.

The reader may recognize the set of elementary events as the sample
space in probability textbooks. For example, if A, B, and C correspond
to the propositions that coins 1, 2, and 3 will come up heads, then the
sample space will consist of the set {HHH, HHT, HTH,..., TTT}. In-
deed, it is sometimes convenient to view the conjunctive formulas cor-
responding to elementary events as points (or worlds or configurations),
and to regard other formulas as sets made up of these points. Since
every Boolean formula can be expressed as a disjunction of elemen-
tary events, and since the elementary events are mutually exclusive, we
can always compute P(S) using the additivity axiom (equation (1.3)).
Conditional probabilities can be computed the same way, using (1.14).
Thus, any joint probability function represents a complete probabilistic
model.

Joint distribution functions are mathematical constructs of great
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importance. They allow us to determine quickly whether we have suf-
ficient information to specify a complete probabilistic model, whether
the information we have is consistent, and at what point additional
information is needed. The criteria are simply to check (i) whether the
information available is sufficient for uniquely determining the prob-
ability of every elementary event in the domain and (ii) whether the
probabilities add up to 1.

In practice, however, joint distribution functions are rarely spec-
ified explicitly. In the analysis of continuous random variables, the
distribution functions are given by algebraic expressions such as those
describing normal or exponential distributions; for discrete variables,
indirect representation methods have been developed where the overall
distribution is inferred from local relationships among small groups of
variables. Graphical models, the most promising of these representa-
tions, provide the basis of discussion throughout this book. Their use
and formal characterization will be discussed in the next few sections.

1.1.3 Combining Predictive and Diagnostic Sup-
ports
The essence of Bayes’s Rule (equation (1.13)) is conveniently portrayed

using the odds and likelihood ratio parameters. Dividing (1.13) by the
complementary form for P(—H|e), we obtain

P(Hle) _ P(e|H) P(H)

= . 1.1
Defining the prior odds on H as
_ P(H) _ P(H)
O(H) = P(-=H) 11— P(H) (1.16)
and the likelihood ratio as
P(e|lH)
L(elH) = ———= 1.17
(e‘ ) P(€|—|H) Y ( )
the posterior odds
P(H
O(Hle) = & (1.18)

P(—Hle)
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are given by the product
O(Hle) = L(e|H)O(H). (1.19)

Thus, Bayes’s rule dictates that the overall strength of belief in a hy-
pothesis H, based on both our previous knowledge K and the observed
evidence e, should be the product of two factors: the prior odds O(H)
and the likelihood ratio L(e|H). The first factor measures the predic-
tive or prospective support accorded to H by the background knowledge
alone, while the second represents the diagnostic or retrospective sup-
port given to H by the evidence actually observed.?

Strictly speaking, the likelihood ratio L(e|H) might depend on the
content of the tacit knowledge base K. However, the power of Bayesian
techniques comes primarily from the fact that, in causal reasoning, the
relationship P(e|H) is fairly local: given that H is true, the probability
of e can be estimated naturally since it is usually not dependent on
many other propositions in the knowledge base. For example, once we
establish that a patient suffers from a given disease H, it is natural
to estimate the probability that she will develop a certain symptom
e. The organization of medical knowledge rests on the paradigm that
a symptom is a stable characteristic of the disease and should there-
fore be fairly independent of other factors, such as epidemic conditions,
previous diseases, and faulty diagnostic equipment. For this reason the
conditional probabilities P(e|H), as opposed to P(H |e), are the atomic
relationships in Bayesian analysis. The former possess modularity fea-
tures similar to logical rules. They convey a degree of confidence in
rules such as “If H then e,” a confidence that persists regardless of
what other rules or facts reside in the knowledge base.

Example 1.1.1 Imagine being awakened one night by the shrill sound
of your burglar alarm. What is your degree of belief that a burglary
attempt has taken place? For illustrative purposes we make the follow-
ing judgments: (a) There is a 95% chance that an attempted burglary
will trigger the alarm system—P(alarm|burglary) = 0.95; (b) based

2In epidemiology, if H stands for exposure and e stands for disease, then the
likelihood ratio L is called the “risk ratio” (Rothman and Greenland 1998, p. 50).
Equation (1.18) would then give the odds that a person with disease e was exposed
to H.
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on previous false alarms, there is a slight (1%) chance that the alarm
will be triggered by a mechanism other than an attempted burglary—
P(alarm|no burglary) = 0.01; (¢) previous crime patterns indicate that
there is a one in ten thousand chance that a given house will be bur-
glarized on a given night— P (burglary) = 107%.

Putting these assumptions together using (1.19), we obtain

O(burglary|alarm) = L(alarm|burglary)O(burglary)

0.95 107*
So, from
0(4)
= 1.20
(4) 1+0(A) (1.20)
we have 0.0095
P(burgl 1 =——— =0.00941.
(burglary|alarm) 1+ 0.0095 0.009

Thus, the retrospective support imparted to the burglary hypothesis
by the alarm evidence has increased its degree of belief almost a hun-
dredfold, from one in ten thousand to 94.1 in ten thousand. The fact
that the belief in burglary is still below 1% should not be surprising,
given that the system produces a false alarm almost once every three
months. Notice that it was not necessary to estimate the absolute val-
ues of the probabilities P(alarm|burglary) and P(alarm|no burglary).
Only their ratio enters the calculation, so a direct estimate of this ratio
could have been used instead.

1.1.4 Random Variables and Expectations

By a wvariable we will mean an attribute, measurement or inquiry that
may take on one of several possible outcomes, or values, from a specified
domain. If we have beliefs (i.e., probabilities) attached to the possible
values that a variable may attain, we will call that variable a random
variable.> For example, the color of the shoes that I will wear tomorrow

3This is a minor generalization of textbook definition, according to which a
random variable is a mapping from the sample space (e.g., the set of elementary
events) to the real line. In our definition, the mapping is from the sample space to
any set of objects called “values,” which may or may not be ordered.
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is a random variable named “color,” and the values it may take come
from the domain {yellow, green, red,...}.

Most of our analysis will concern a finite set V' of random variables
(also called partitions) where each variable X € V may take on values
from a finite domain Dx. We will use capital letters (e.g., X, Y, Z)
for variable names and lowercase letters (z, y, z) as generic symbols
for specific values taken by the corresponding variables. For example,
if X stands for the color of an object, then = will designate any possible
choice of an element from the set {yellow, green, red, ...}. Clearly, the
proposition X = yellow describes an event, namely, a subset of possible
states of affair that satisfy the proposition “the color of the object is
yellow.” Likewise, each variable X can be viewed as a partition of
the states of the world, since the statement X = z defines a set of
exhaustive and mutually exclusive sets of states, one for each value of
x.

In most of our discussions, we will not make notational distinc-
tion between variables and sets of variables, because a set of variables
essentially defines a compound variable whose domain is the Carte-
sian product of the domains of the individual constituents in the set.
Thus, if Z stands for the set {X, Y} then z stands for pairs (z, y) such
that + € Dx and y € Dy. When the distinction between variables
and sets of variables requires special emphasis, indexed letters (say,
X1, Xo, ..., X, or V1, Va, ..., V,) will be used to represent individual
variables.

We shall consistently use the abbreviation P(x) for the probabilities
P(X = z), © € Dx. Likewise, if Z stands for the set {X,Y}, then
P(z) will be defined as

P)E2P(Z=2=PX=zY =y), z € Dx, y € Dy.

When the values of a random variable X are real numbers, X is
called a real random variable; one can then define the mean or expected

value of X as
E(X)2Y zP(x) (1.21)

and the conditional mean of X, given event Y =y, as

E(X|y) 2 Y aP(xly). (1.22)
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The expectation of any function g of X is defined as
E[g(X)] £ 3 g(x)P(x). (1.23)

In particular, the function g(X) = (X — E(X))? has received much
attention; its expectation is called the variance of X, denoted o%;

0% = B[(X - E(X))’].

The conditional mean E(X|Y = y) is the best estimate of X, given
the observation Y = y, in the sense of minimizing the expected square
error >, (z — 2)?>P(x|y) over all .

The expectation of a function g(X,Y") of two variables, X and Y,
requires the joint probability P(z,y) and is defined as

E[g(X,Y)] 23 g(z,y)P(z,y)

T,y

(of equation (1.23)). Of special importance is the expectation of the
product ¢g(X,Y) = (X — E(X))(Y — E(Y)), which is known as the
covariance of X and Y,

OXy 2 E[(X - E(X))(Y - E(Y))],

and which is often normalized to yield the correlation coefficient

Oxy
Pxy =
O0x0y
and the regression coefficient
A 0x Oxy
Xy = PXy — — —3 -
O-Y O’Y

The conditional variance, covariance, and correlation coefficient,
given Z = z, are defined in a similar manner, using the conditional
distribution P(z,y|z) in taking expectations. In particular, the condi-
tional correlation coefficient, given Z = z, is defined as

OXY|2

PXY|z = (1.24)

0x20Y|z
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Additional properties, specific to normal distributions, will be reviewed
in Chapter 5 (Section 5.2.1).

The foregoing definitions apply to discrete random variables—that
is, variables that take on finite or denumerable sets of values on the
real line. The treatment of expectation and correlation is more often
applied to continuous random variables, which are characterized by a
density function f(x) defined as follows:

P(agxgb):/bf(x) dz

for any two real numbers a and b with a < b. If X is discrete then
f(z) coincides with the probability function P(z), once we interpret
the integral through the translation

/_z f(z) dv < 3" P(z). (1.25)

Readers accustomed to continuous analysis should bear this translation
in mind whenever summation is used in this book. For example, the
expected value of a continuous random variable X can be obtained from
(1.21), to read

E(X) = [ af() do,

with analogous translations for the variance, correlation, and so forth.
We now turn to define conditional independence relationships among
variables, a central notion in the analysis of causal models.

1.1.5 Conditional independence and graphoids

Definition 1.1.2 (Conditional Independence)

Let V.= {V1,Va,...} be a finite set of variables. Let P(-) be a joint
probability function over the variables in 'V, and let X, Y, Z stand for
any three subsets of variables in V. The sets X and Y are said to be
conditionally independent given Z if

P(zly, z) = P(z|z) whenever P(y,z) > 0. (1.26)

In words, learning the value of Y does not provide additional informa-

tion about X, once we know Z. (Metaphorically, Z “screens off” X
fromY.)
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Equation (1.26) is a terse way of saying the following: For any configu-
ration z of the variables in the set X and for any configurations y and
z of the variables in Y and Z satisfying P(Y =y, Z = z) > 0, we have

PX=z|Y =y, Z=2)=PX=z|Z=2). (1.27)

We will use Dawid’s (1979) notation (X 1LY|Z)p or simply
(X1LY'|Z) to denote the conditional independence of X and Y given
Z; thus,

(XY |Z2)p iff P(zly,z) = P(z|z) (1.28)

for all values z, y, z such that P(y, z) > 0. Unconditional independence
(also called marginal independence) will be denoted by (X 1LY|(); that

’ (X1Y|0) iff P(z|y) = P(z) whenever P(y) >0 (1.29)

(“iff” is shorthand for “if and only if”). Note that (X 1 Y|Z) implies
the conditional independence of all pairs of variables V; € X and V; €
Y, but the converse is not necessarily true.

The following is a (partial) list of properties satisfied by the condi-
tional independence relation (X 1Y|Z).

Symmetry: (X1UY|Z7) = (Y 1LX|Z).

Decomposition: (X ULYW|Z) = (X 1Y|Z).

Weak union: (X ULYW|Z)= (X LY|ZW).

Contraction: (X1UY|Z) & (XUW|ZY) = (X1LYW|Z).
Intersection: (XLUW|ZY) & (X LY |ZW) = (X LYW |Z).

(Intersection is valid in strictly positive probability distributions.)
The proof of these properties can be derived by elementary means
from (1.28) and the basic axioms of probability theory.* These proper-
ties were called graphoid azioms by Pearl and Paz (1987) and Geiger et
al. (1990) and have been shown to govern the concept of informational

“These properties were first introduced by Dawid (1979) and Spohn (1980) in a
slightly different form, and were independently proposed by Pearl and Paz (1987)
to characterize the relationships between graphs and informational relevance.
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relevance in a wide variety of interpretations (Pearl 1988b). In graphs,
for example, these properties are satisfied if we interpret (X 1L Y|Z) to
mean “all paths from a subset X of nodes to a subset Y of nodes are
intercepted by a subset Z of nodes.”

The intuitive interpretation of the graphoid axioms is as follows
(Pear] 1988b, p. 85). The symmetry axiom states that, in any state
of knowledge 7, if Y tells us nothing new about X then X tells us
nothing new about Y. The decomposition axiom asserts that if two
combined items of information are judged irrelevant to X, then each
separate item is irrelevant as well. The weak union axiom states that
learning irrelevant information W cannot help the irrelevant informa-
tion Y become relevant to X. The contraction axiom states that if we
judge W irrelevant to X after learning some irrelevant information Y,
then W must have been irrelevant before we learned Y. Together, the
weak union and contraction properties mean that irrelevant informa-
tion should not alter the relevance status of other propositions in the
system; what was relevant remains relevant, and what was irrelevant
remains irrelevant. The intersection axiom states that if Y is irrelevant
to X when we know W and if W is irrelevant to X when we know Y,
then neither W nor Y (nor their combination) is relevant to X.

1.2 Graphs and Probabilities

1.2.1 Graphical Notation and Terminology

A graph consists of a set V' of vertices (or nodes) and a set E of edges (or
links) that connect some pairs of vertices. The vertices in our graphs
will correspond to variables (whence the common symbol V') and the
edges will denote a certain relationship that holds in pairs of variables,
the interpretation of which will vary with the application. Two vari-
ables connected by an edge are called adjacent.

Each edge in a graph can be either directed (marked by a single ar-
rowhead on the edge), or undirected (unmarked links). In some appli-
cations we will also use “bidirected” edges to denote the existence of un-
observed common causes (sometimes called confounders). These edges
will be marked as dotted curved arcs with two arrowheads (see Figure
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1.1(a)). If all edges are directed (see Figure 1.1(b)), we then have a di-

Y
(b)

Figure 1.1: (a) A graph containing both directed and bidirected edges.
(b) A directed acyclic graph (DAG) with the same skeleton as (a).

rected graph. If we strip away all arrowheads from the edges in a graph
G, the resultant undirected graph is called the skeleton of G. A path
in a graph is a sequence of edges (e.g., (W, 2),(Z,Y), (Y, X), (X, Z))
in Figure 1.1(a)) such that each edge starts with the vertex ending the
preceding edge. In other words, a path is any unbroken, nonintersecting
route traced out along the edges in a graph, which may go either along
or against the arrows. If every edge in a path is an arrow that points
from the first to the second vertex of the pair, we have a directed path.
In Figure 1.1(a), for example, the path (W, Z),(Z,Y)) is directed but
the paths (W, 2), (Z,Y), (Y, X)) and (W, Z),(Z, X)) are not. If there
exists a path between two vertices in a graph then the two vertices are
said to be connected; else they are disconnected.

Directed graphs may include directed cycles (e.g., X — Y,
Y — X)), representing mutual causation or feedback processes, but
not self-loops (e.g., X — X). A graph (like the two in Figure 1.1)
that contains no directed cycles is called acyclic. A graph that is both
directed and acyclic (Figure 1.1(b)) is called a directed acyclic graph
(DAG), and such graphs will occupy much of our discussion of causal-
ity. We make free use of the terminology of kinship (e.g., parents, chil-
dren, descendants, ancestors, spouses) to denote various relationships
in a graph. These kinship relations are defined along the full arrows in
the graph, including arrows that form directed cycles but ignoring bidi-
rected and undirected edges. In Figure 1.1(a), for example, Y has two
parents (X and Z), three ancestors (X, Z, and W), and no children,
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while X has no parents (hence, no ancestors), one spouse (Z), and one
child (V). A family in a graph is a set of nodes containing a node and
all its parents. For example, {W},{Z, W}, {X}, and {Y, Z, X} are the
families in the graph of Figure 1.1(a).

A node in a directed graph is called a root if it has no parents and
a sink if it has no children. Every DAG has at least one root and at
least one sink. A connected DAG in which every node has at most
one parent is called a Zree, and a tree in which every node has at most
one child is called a chain. A graph in which every pair of nodes is
connected by an edge is called complete. The graph in Figure 1.1(a),
for instance, is connected but not complete, because the pairs (W, X)
and (W,Y") are not adjacent.

1.2.2 Bayesian Networks

The role of graphs in probabilistic and statistical modeling is threefold:

1. to provide convenient means of expressing substantive assump-
tions;

2. to facilitate economical representation of joint probability func-
tions; and

3. to facilitate efficient inferences from observations.

We will begin our discussion with item 2.

Consider the task of specifying an arbitrary joint distribution,
P(x4,...,x,), for n dichotomous variables. To store P(z1,...,%,) ex-
plicitly would require a table with 2" entries, an unthinkably large
number by any standard. Substantial economy can be achieved when
each variable depends on just a small subset of other variables. Such de-
pendence information permits us to decompose large distribution func-
tions into several small distributions—each involving a small subset of
variables—and then to piece them together coherently to answer ques-
tions of global nature. Graphs play an essential role in such decompo-
sition, for they provide a vivid representation of the sets of variables
that are relevant to each other in any given state of knowledge.

Both directed and undirected graphs have been used by researchers
to facilitate such decomposition. Undirected graphs, sometimes called
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Markov networks (Pearl 1988b), are used primarily to represent sym-
metrical spatial relationships (Isham 1981; Cox and Wermuth 1996;
Lauritzen 1996). Directed graphs, especially DAGs, have been used to
represent causal or temporal relationships (Lauritzen 1982; Wermuth
and Lauritzen 1983; Kiiveri et al. 1984) and came to be known as
Bayesian networks, a term coined in Pearl (1985) to emphasize three
aspects: (1) the subjective nature of the input information; (2) the
reliance on Bayes’s conditioning as the basis for updating information;
and (3) the distinction between causal and evidential modes of rea-
soning, a distinction that underscores Thomas Bayes’s paper of 1763.
Hybrid graphs (involving both directed and undirected edges) have also
been proposed for statistical modeling (Wermuth and Lauritzen 1990),
but in this book our main interest will focus on directed acyclic graphs,
with occasional use of directed cyclic graphs to represent feedback cy-
cles.

The basic decomposition scheme offered by directed acyclic graphs
can be illustrated as follows. Suppose we have a distribution P
defined on n discrete variables, which we may order arbitrarily as
X1, X2, ..., X, The chain rule of probability calculus (equation (1.12))
always permits us to decompose P as a product of n conditional distri-
butions:

P(J)l,...,.’bn):HP(LCj|.T1,...,$j_1). (130)
j
Now suppose that the conditional probability of some variable X is
not sensitive to all the predecessors of X; but only to a small subset
of those predecessors. In other words, suppose that X; is independent
of all other predecessors, once we know the value of a select group of
predecessors called PA;. We can then write

P(zjlzq,...,zj_1) = P(zj|pa;) (1.31)

in the product of (1.30), which will considerably simplify the input
information required. Instead of specifying the probability of X; con-
ditional on all possible realizations of its predecessors X1, ..., X;_;, we
need only concern ourselves with the possible realizations of the set
PA;. The set PA; is called the Markovian parents of X;, or parents for
short. The reason for the name becomes clear when we build graphs
around this concept.
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Definition 1.2.1 (Markovian Parents)

LetV = {Xy,..., X,} be an ordered set of variables, and let P(v) be the
joint probability distribution on these variables. A set of variables PA,;
is said to be Markovian parents of X, if PA; is a minimal set of prede-
cessors of X; that renders X; independent of all its other predecessors.
In other words, PA; is any subset of {X1,...,X;_1} satisfying

P(zjlpa;) = P(zj|x1,...,2j-1) (1.32)
and such that no proper subset of PA; satisfies (1.32).°

Definition 1.2.1 assigns to each variable X; a select set PA; of preced-
ing variables that are sufficient for determining the probability of Xj;
knowing the values of other preceding variables is redundant once we
know the values pa; of the parent set PA;. This assignment can be
represented in the form of a DAG in which variables are represented
by nodes and arrows are drawn from each node of the parent set PA;
toward the child node X;. Definition 1.2.1 also suggests a simple re-
cursive method for constructing such a DAG: Starting with the pair
(X1, X5), we draw an arrow from X; to X, if and only if the two vari-
ables are dependent. Continuing to X3, we draw no arrow in case X3
is independent of { X, X5}; otherwise, we examine whether X, screens
off X5 from X7 or X screens off X3 from X5. In the first case, we draw
an arrow from X, to Xj; in the second, we draw an arrow from X
to X3. If no screening condition is found, we draw arrows to X3 from
both X; and X5. In general: at the jth stage of the construction, we
select any minimal set of X;’s predecessors that screens off X; from its
other predecessors (as in equation (1.32)), call this set PA;, and draw
an arrow from each member in PA; to X;. The result is a directed
acyclic graph, called a Bayesian network, in which an arrow from X, to
X assigns X; as a Markovian parent of X;, consistent with Definition
1.2.1.

It can be shown (Pearl 1988b) that the set PA, is unique whenever
the distribution P(v) is strictly positive (i.e., involving no logical or
definitional constraints), so that every configuration v of variables, no

®Lowercase symbols (e.g., z;, pa;) denote particular realizations of the corre-
sponding variables (e.g., X;, PA;).
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matter how unlikely, has some finite probability of occurring. Under
such conditions, the Bayesian network associated with P(v) is unique,
given the ordering of the variables.

Figure 1.2 illustrates a simple yet typical Bayesian network. It de-
scribes relationships among the season of the year (X;), whether rain
falls (X3), whether the sprinkler is on (Xj3), whether the pavement
would get wet (X,), and whether the pavement would be slippery (X5).
All variables in this figure are binary (taking a value of either true or
false) except for the root variable X7, which can take one of four val-
ues: spring, summer, fall, or winter. The network was constructed
in accordance with Definition 1.2.1, using causal intuition as a guide.
The absence of a direct link between X; and Xj5, for example, cap-
tures our understanding that the influence of seasonal variations on the
slipperiness of the pavement is mediated by other conditions (e.g., the
wetness of the pavement). This intuition coincides with the indepen-
dence condition of (1.32), since knowing X, renders X5 independent of
{X1, Xo, X3}.

SEASON

PN
SPRINKLER @ @ RAIN
N
wer
@ SLIPPERY

Figure 1.2: A Bayesian network representing dependencies among five
variables.

The construction implied by Definition 1.2.1 defines a Bayesian net-
work as a carrier of conditional independence relationships along the
order of construction. Clearly, every distribution satisfying (1.32) must
decompose (using the chain rule of (1.30)) into the product

P(z1,...,xn) = I_IP(:EZ | pa,). (1.33)
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For example, the DAG in Figure 1.2 induces the decomposition

P(z1, 29,3, 24, x5) = P(x1) P(x2]21) P(x3|21) P(24|T0, 23) P(25|24).
(1.34)
The product decomposition in (1.33) is no longer order-specific
since, given P and G, we can test whether P decomposes into the
product given by (1.33) without making any reference to variable or-
dering. We therefore conclude that a necessary condition for a DAG
G to be a Bayesian network of probability distribution P is for P to

admit the product decomposition dictated by G, as given in (1.33).

Definition 1.2.2 (Markov Compatibility)

If a probability function P admits the factorization of (1.33) relative to
DAG G, we say that G represents P, that G and P are compatible, or
that P is Markov relative to G.%

Ascertaining compatibility between DAGs and probabilities is impor-
tant in statistical modeling primarily because compatibility is a neces-
sary and sufficient condition for a DAG G to ezplain a body of empirical
data represented by P, that is, to describe a stochastic process capa-
ble of generating P (e.g. Pearl, 1988b, pp. 210-23). If the value of each
variable X; is chosen at random with some probability P;(z;|pa;), based
solely on the values pa; previously chosen for PA;, then the overall dis-
tribution P of the generated instances xzi,zs,...,x, will be Markov
relative to G. Conversely, if P is Markov relative to G' then there exists
a set of probabilities P;(z;|pa;) according to which we can choose the
value of each variable X; such that the distribution of the generated
instances z1, T, ..., x, will be equal to P. (In fact, the correct choice
of P;(z;|pa;) would be simply P(z;|pa;).)

A convenient way of characterizing the set of distributions compati-
ble with a DAG G is to list the set of (conditional) independencies that
each such distribution must satisfy. These independencies can be read
off the DAG by using a graphical criterion called d-separation (Pearl
1988b; the d denotes directional), which will play a major role in many
discussions in this book.

6The latter expression seems to gain strength in recent literature (e.g. Spirtes et
al. 1993; Lauritzen 1996). Pearl (1988b, p. 116) used “G is an I-map of P.”
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1.2.3 The d-Separation Criterion

Consider three disjoint sets of variables, X, Y, and Z, which are rep-
resented as nodes in a directed acyclic graph G. To test whether X is
independent of Y given Z in any distribution compatible with G, we
need to test whether the nodes corresponding to variables Z “block™ all
paths from nodes in X to nodes in Y. By path we mean a sequence of
consecutive edges (of any directionality) in the graph, and blocking is
to be interpreted as stopping the flow of information (or of dependency)
between the variables that are connected by such paths, as defined next.

Definition 1.2.3 (d-Separation)
A path p is said to be d-separated (or blocked) by a set of nodes Z if
and only if

1. p contains a chain i — m — j or a fork i <— m — j such
that the middle node m is in Z, or

2. p contains an inverted fork (or collider) i — m <— j such that
the middle node m is not in Z and such that no descendant of m
18 1 7.

A set 7 is said to d-separate X from Y if and only if Z blocks every
path from a node in X to a node in'Y .

The intuition behind d-separation is simple and can best be recognized
if we attribute causal meaning to the arrows in the graph. In causal
chains 4 —= m — j and causal forks © <— m — j, the two extreme
variables are marginally dependent but become independent of each
other (i.e., blocked) once we condition on (i.e., know the value of) the
middle variable. Figuratively, conditioning on m appears to “block”
the flow of information along the path, since learning about 7 has no
effect on the probability of j, given m. Inverted forks i — m <— j,
representing two causes having a common effect, act the opposite way;
if the two extreme variables are (marginally) independent, they will
become dependent (i.e., connected through unblocked path) once we
condition on the middle variable (i.e., the common effect) or any of
its descendants. This can be confirmed in the context of Figure 1.2.
Once we know the season, X3 and X, are independent, (assuming that
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sprinklers are set in advance, according to the season); whereas finding
that the pavement is wet or slippery renders X, and X3 dependent,
because refuting one of these explanations increases the probability of
the other.

In Figure 1.2, X = {X,} and Y = {X3} are d-separated by Z =
{X1}, because both paths connecting X, and X3 are blocked by Z.
The path Xy <— X; — X3 is blocked because it is a fork in which the
middle node X is in Z, while the path Xy — X, <— X3 is blocked
because it is an inverted fork in which the middle node X, and all its
descendants are outside Z. However, X and Y are not d-separated by
the set Z' = {X1, X5}: the path Xy — X, <— X3 (an inverted fork) is
not blocked by Z’, since X5, a descendant of the middle node X}, is in
Z'. Metaphorically, learning the value of the consequence X5 renders
its causes X, and X3 dependent, as if a pathway were opened along the
arrows converging at Xjy.

At first glance, readers might find it a bit odd that conditioning on a
node not lying on a blocked path may unblock the path. However, this
corresponds to a general pattern of causal relationships: observations on
a common consequence of two independent causes tend to render those
causes dependent, because information about one of the causes tends
to make the other more or less likely, given that the consequence has
occurred. This pattern is known as selection bias or Berkson’s paradox
in the statistical literature (Berkson 1946) and as the explaining away
effect in artificial intelligence (Kim and Pearl 1983). For example, if
the admission criteria to a certain graduate school call for either high
grades as an undergraduate or special musical talents, then these two
attributes will be found to be correlated (negatively) in the student
population of that school, even if these attributes are uncorrelated in
the population at large. Indeed, students with low grades are likely
to be exceptionally gifted in music, which explains their admission to
graduate school.

Figure 1.3 illustrates more elaborate examples of d-separation: ex-
ample (a) contains a bidirected arc Z; <--» Z3 and (b) involves a
directed cycle X —= Z, — Z; — X. In Figure 1.3(a), the two paths
between X and Y are blocked when none of {7, Z,, Z3} is measured.
However, the path X — Z; <- -» Z3 <— Y becomes unblocked when
7 is measured. This is so because Z; unblocks the “colliders” at both
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Figure 1.3: Graphs illustrating d-separation. In (a), X and Y are d-
separated given Z, and d-connected given Z;. In (b), X and Y cannot
be d-separated by any set of nodes.

Z1 and Zj3; the first because Z; is the collision node of the collider,
the second because Z; is a descendant of the collision node Z3 through
the path Z; <— Z; <— Z3. In Figure 1.3(b), X and Y cannot be
d-separated by any set of nodes, including the empty set. If we con-
dition on 75, we block the path X <— 7; <— 7, <— Y yet unblock
the path X — Z, <— Y. If we condition on Z;, we again block the
path X <— 7, <— 7, <— Y and unblock the path X — Z, <— Y
because Z; is a descendant of the collision node Z,.

The connection between d-separation and conditional independence
is established through the following theorem due to Verma and Pearl
(1988; see also Geiger et al. 1990).

Theorem 1.2.4 (Probabilistic Implications of d-Separation)

If sets X and Y are d-separated by Z in a DAG G, then X is inde-
pendent of Y conditional on Z in every distribution compatible with G.
Conversely, if X and Y are not d-separated by Z in a DAG G, then
X and Y are dependent conditional on Z in at least one distribution
compatible with G.

The converse part of Theorem 1.2.4 is in fact much stronger—the ab-
sence of d-separation implies dependence in almost all distributions
compatible with G. The reason is that a precise tuning of parameters
is required to generate independency along an unblocked path in the
diagram, and such tuning is unlikely to occur in practice (see Spirtes
et al. 1993 and Sections 2.4 and 2.9.1).
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In order to distinguish between the probabilistic notion of con-
ditional independence (X 1.Y|Z)p and the graphical notion of d-
separation, for the latter we will use the notation (X1Y|Z)g. We
can thereby express Theorem 1.2.4 more succinctly as follows.

Theorem 1.2.5 For any three disjoint subsets of nodes (X,Y,Z) in a
DAG G and for all probability functions P, we have:

(i) (XLY|Z)e = (X LUY|Z)p whenever G and P are compatible,
and

(ii) of (XLLY|Z)p holds in all distributions compatible with G, it fol-
lows that (X 1LY|Z)g.

An alternative test for d-separation has been devised by Lauritzen
et al. (1990), based on the notion of ancestral graphs. To test for
(X1LY|Z)q, delete from G all nodes except those in {X, Y, Z} and
their ancestors, connect by an edge every pair of nodes that share a
common child, and remove all arrows from the arcs. Then (X 1LY|Z)¢g
holds if and only if Z intercepts all paths between X and Y in the
resulting undirected graph.

Note that the ordering with which the graph was constructed does
not enter into the d-separation criterion; it is only the topology of
the resulting graph that determines the set of independencies that the
probability P must satisfy. Indeed, the following theorem can be proven
(Pearl 1988b, p. 120).

Theorem 1.2.6 (Ordered Markov Condition)

A necessary and sufficient condition for a probability distribution P to
be Markov relative a DAG G is that, conditional on its parents in G,
each variable be independent of all its predecessors in some ordering of
the variables that agrees with the arrows of G.

A consequence of this theorem is an order-independent criterion for
determining whether a given probability P is Markov relative to a given

DAG G.

Theorem 1.2.7 (Parental Markov Condition)
A necessary and sufficient condition for a probability distribution P to
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be Markov relative a DAG G is that every variable be independent of
all its nondescendants (in G), conditional on its parents.

This condition, which Kiiveri et al. (1984) and Lauritzen (1996) called
the “local” Markov condition, is sometimes taken as the definition of
Bayesian networks (Howard and Matheson 1981). In practice, however,
the ordered Markov condition is easier to use.

Another important property that follows from d-separation is a cri-
terion for determining whether two given DAGs are observationally
equivalent—that is, whether every probability distribution that is com-
patible with one of the DAGs is also compatible with the other.

Theorem 1.2.8 (Observational Equivalence)

Two DAGs are observationally equivalent if and only if they have the
same skeletons and the same sets of v-structures, that is, two converging
arrows whose tails are not connected by an arrow (Verma and Pearl
1990).7

Observational equivalence places a limit on our ability to infer direction-
ality from probabilities alone. Two networks that are observationally
equivalent cannot be distinguished without resorting to manipulative
experimentation or temporal information. For example, reversing the
direction of the arrow between X; and X5 in Figure 1.2 would neither
introduce nor destroy a v-structure. Therefore, this reversal yields an
observationally equivalent network, and the directionality of the link
X7 — X, cannot be determined from probabilistic information. The
arrows Xo — X, and X, — X5, however, are of different nature;
there is no way of reversing their directionality without creating a new
v-structure. Thus, we see that some probability functions P (such as
the one responsible for the construction of the Bayesian network in Fig-
ure 1.2), when unaccompanied by temporal information, can constrain
the directionality of some arrows in the graph. The precise meaning of
such directionality constraints—and the possibility of using these con-
straints for inferring causal relationships from data—will be formalized
in Chapter 2.

"An identical criterion was independently derived by Frydenberg (1990) in the
context of chain graphs, where strict positivity is assumed.
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1.2.4 Inference with Bayesian Networks

Bayesian networks were developed in the early 1980s to facilitate the
tasks of prediction and “abduction” in artificial intelligence (AI) sys-
tems. In these tasks, it is necessary to find a coherent interpretation of
incoming observations that is consistent with both the observations and
the prior information at hand. Mathematically, the task boils down to
the computation of P(y|x), where X is a set of observations and Y is a
set of variables that are deemed important for prediction or diagnosis.

Given a joint distribution P, the computation of P(y|z) is concep-
tually trivial and invokes straightforward application of Bayes’s rule to
yield

> P(y,z,s)
P(y|z) = —ip(y o) (1.35)

where S stands for the set of all variables ezcluding X and Y. Because
every Bayesian network defines a joint probability P (given by the
product in (1.33)) it is clear that P(y|z) can be computed from a DAG
G and the conditional probabilities P(z;|pa;) defined on the families of
G.

The challenge, however, lies in performing these computations ef-
ficiently and within the representation level provided by the network
topology. The latter is important in systems that generate explanations
for their reasoning processes. Although such inference techniques are
not essential to our discussion of causality, we will nevertheless survey
them briefly, for they demonstrate (i) the effectiveness of organizing
probabilistic knowledge in the form of graphs and (ii) the feasibility
of performing coherent probabilistic calculations (and approximations
thereof) on such organization. Details can be found in the references
cited.

The first algorithms proposed for probabilistic calculations in
Bayesian networks used message-passing architecture and were limited
to trees (Pearl 1982; Kim and Pearl 1983). With this technique, each
variable is assigned a simple processor and permitted to pass messages
asynchronously with its neighbors until equilibrium is achieved (in a fi-
nite number of steps). Methods have since been developed that extend
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this tree propagation (and some of its synchronous variants) to gen-
eral networks. Among the most popular are Lauritzen and Spiegelhal-
ter’s (1988) method of join-tree propagation and the method of cut-set
conditioning (Pearl 1988b, pp. 204-10; Jensen 1996). In the join-tree
method, we decompose the network into clusters (e.g. cliques) that
form tree structures and then treat the set variables in each cluster as
a compound variable that is capable of passing messages to its neigh-
bors (which are also compound variables). For example, the network
of Figure 1.2 can be structured as a Markov-compatible chain of three
clusters:

{X17X2;X3} — {X2;X3,X4} — {X4,X5}-

In the cut-set conditioning method, a set of variables is instantiated
(given specific values) such that the remaining network forms a tree.
The propagation is then performed on that tree, and a new instantiation
chosen, until all instantiations have been exhausted; the results are then
averaged. In Figure 1.2, for example, if we instantiate X as any specific
value (say, X; = summer), then we break the pathway between X, and
X3 and the remaining network becomes tree-structured. The main
advantage of the cut-set conditioning method is that its storage-space
requirement is minimal (linear in the size of the network), whereas that
of the join-tree method might be exponential. Hybrid combinations
of these two basic algorithms have also been proposed (Shachter et al.
1994; Dechter 1996) to allow flexible trade-off of storage versus time.

Whereas inference in general networks is “NP-hard” (Cooper 1990),
the computational complexity for each of the methods cited here can
be estimated prior to actual processing. When the estimates exceed
reasonable bounds, an approximation method such as stochastic sim-
ulation (Pearl 1988b, pp. 210-23) can be used instead. This method
exploits the topology of the network to perform Gibbs sampling on local
subsets of variables, sequentially as well as concurrently.

Additional properties of DAGs and their applications to evidential
reasoning in expert systems are discussed in Pearl (1988b), Lauritzen
and Spiegelhalter (1988), Pearl (1993a), Spiegelhalter et al. (1993),
Heckerman et al. (1995), and Shafer (1996b, 1997).
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1.3 Causal Bayesian Networks

The interpretation of directed acyclic graphs as carriers of indepen-
dence assumptions does not necessarily imply causation; in fact, it will
be valid for any set of recursive independencies along any ordering of
the variables, not necessarily causal or chronological. However, the
ubiquity of DAG models in statistical and Al applications stems (often
unwittingly) primarily from their causal interpretation—that is, as a
system of processes, one per family, that could account for the genera-
tion of the observed data. It is this causal interpretation that explains
why DAG models are rarely used in any variable ordering other than
those which respect the direction of time and causation.

The advantages of building DAG models around causal rather than
associational information are several. First, the judgments required
in the construction of the model are more meaningful, more accessi-
ble, and hence more reliable. The reader may appreciate this point by
attempting to construct a DAG representation for the associations in
Figure 1.2 along the ordering (X5, X1, X3, X2, X4). Such exercises illus-
trate not only that some independencies are more vividly accessible to
the mind than others but also that conditional independence judgments
are accessible (hence reliable) only when they are anchored onto more
fundamental building blocks of our knowledge, such as causal relation-
ships. In the example of Figure 1.2, our willingness to assert that Xj
is independent of X, and X3 once we know X, (i.e., whether the pave-
ment is wet) is defensible because we can easily translate the assertion
into one involving causal relationships: that the influence of rain and
sprinkler on slipperiness is mediated by the wetness of the pavement.
Dependencies that are not supported by causal links are considered odd
or spurious and are even branded “paradoxical” (see the discussion of
Berkson’s paradox, Section 1.2.3).

We will have several opportunities throughout this book to demon-
strate the primacy of causal over associational knowledge. In extreme
cases, we will see that people tend to ignore probabilistic information al-
together and attend to causal information instead (see Section 6.1.4).%
This puts into question the ruling paradigm of graphical models in

8Tversky and Kahneman (1980) experiments with causal biases in probability
judgment constitute another body of evidence supporting this observation. For
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statistics (Wermuth and Lauritzen 1990; Cox and Wermuth 1996), ac-
cording to which conditional independence assumptions are the primary
vehicle for expressing substantive knowledge.’® It seems that if condi-
tional independence judgments are byproducts of stored causal rela-
tionships, then tapping and representing those relationships directly
would be a more natural and more reliable way of expressing what we
know or believe about the world. This is indeed the philosophy behind
causal Bayesian networks.

The second advantage of building Bayesian networks on causal
relationships—one that is basic to the understanding of causal
organizations—is the ability to represent and respond to external or
spontaneous changes. Any local reconfiguration of the mechanisms in
the environment can be translated, with only minor modification, into
an isomorphic reconfiguration of the network topology. For example,
to represent a disabled sprinkler in the story of Figure 1.2, we simply
delete from the network all links incident to the node Sprinkler. To
represent the policy of turning the sprinkler off if it rains, we simply
add a link between Rain and Sprinkler and revise P(x3|z1,2z2). Such
changes would require much greater remodeling efforts if the network
were not constructed