d-SEPARATION IN LINEAR MODELS

Theorem 5.2.1

(Verma and Pearl 1988; Geiger et al. 1990)
If sets X and Y are d-separated by Z in a DAG G,
then X is independent of Y conditional on Z in
every Markovian model structured according to
G. Conversely, if X and Y are not d-separated
by Z in a DAG G, then X and Y are dependent
conditional on Z in almost all Markovian models
structured according to G.

Corrolary 5.2.2

In any Markovian model structured according to
a DAG G, the partial correlation pxy.z vanishes
whenever the nodes corresponding to the vari-
ables in Z d-separate node X from node Y in G,
regardless of the model’'s parameters. Moreover,
no other partial correlation would vanish for all
the model’'s parameters.

Theorem 5.2.3

(d-Separation in General Linear Model)

For any linear model structured according to a
diagram D, which may include cycles and bidi-
rected arcs, the partial correlation pxy.z van-
iIshes if the nodes corresponding to the set of
variables Z d-separate node X from node Y in
D.



5.2.1 THE TESTABLE IMPLICATIONS
OF STRUCTURAL MODELS

General structural equations

xizfi(pa'iaeia) 1= 17"'7”7 (51)
Linear structural equations
T, = Y oy + €, i=1,...,n, (5.2)
ki

To be distinguished from regression equations

T = ) rip®r +
ki
where n; 1l X;. is assumed for k =i, BY DEFINI-
TION!

The coefficient of X in the regression of Y on
X, 21y,

y=ar+bi1Z1+,...,+bpzy

IS given by

aQ=TYX-Z1Z5,....7k



5.2.2 TESTING THE TESTABLE

Definition 5.2.4 (Basis)

Let S be a set of partial correlations. A basis B
for S is a set of zero partial correlations where
(i) B implies (using the laws of probability) the
zero of every element of S and (ii) no proper
subset of B sustains such implication.

Theorem 5.2.5 (Graphical Basis)

Let (¢,7) be a pair of nonadjacent nodes in a
DAG D, and let Z;; be any set of nodes that
are closer to ¢ than j is to ¢ and such that Z;;
d-separates ¢ from 3. The set of zero partial
correlations B = {p;;.z,. = O[i > j}, consisting of
one element per nonadﬁacent pair, constitutes a
basis for the set of all zero partial correlations
entailed by D.

X2 X3 X4
X5
Figure 5.1
B = {p32.1 =0,p41.3 =0,p42.3 =0,p51.43 = 0O,
p52.43 = 0}
5.3
By = {p32.1 =0,p41.3 =0,p42.1 =0,p51.3 = 0,( )

p52.1 = 0}



PROBLEMS WITH TRADITIONAL
(GLOBAL) TESTING

. If some parameters are not identifiable, then
the first phase may fail to reach stable esti-
mates for the parameters and the investiga-
tor must simply abandon the test.

Figure 5.2

. If the model fails to pass the data-fitness
test, the investigator receives very little guid-
ance about which modeling assumptions are
wrong.
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Figure 5.3




5.2.3 MODEL EQUIVALENCE

Definition

(Observational Equivalence)

Two SEM'’s are observationally equivalent if
every probability distribution that is generated
by one can also be generated by the other.

Theorem 1.2.8 (Review)

(Verma and Pearl 1990)

Two Markovian models are observationally equiv-
alent iff they entail the same sets of conditional
independencies. Moreover, two such models are
observationally equivalent iff their corresponding
graphs have the same sets of edges and the
same sets of v-structures (two converging ar-
rows whose tails are not connected by an arrow).

Theorem 5.2.6 (Covariance Equivalence)
Two Markovian linear-normal models are covari-
ance equivalent if and only if they entail the same
sets of zero partial correlations. Moreover, two
such models are covariance equivalent if and only
if their corresponding graphs have the same sets
of edges and the same sets of v-structures.
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WHY COVARIANCE-EQUIVALENCE
IMPLIES FITNESS-EQUIVALENCE
(FOR ALL DATA)

5=f (s, £')

d=9& whenever 2" =%



THE SIGNIFICANCE OF EQUIVALENT
MODELS

What does it mean to ‘test a model”?

Some models have testable implications.

The same testable implications are shared by a
whole class of equivalent models.

“Testing a model M means ‘testing the class
of models equivalent to M”

Does this make SEM useless for causal model-
ing?

Qualitative assumptions + data = qualitative
conclusions



GENERATING EQUIVALENT MODELS
NECESSARY CONDITIONS

Rule 1: An arrow X — Y is interchangeable with
X - —--—-+Y only if every neighbor or parent
of X is inseparable from Y. (By neighbor
we mean a node connected (to X) through
a bidirected arc.)

Rule 2: An arrow X — Y can be reversed into
X «— Y only if, before reversal, (i) every
neighbor or parent of Y (excluding X) is in-
separable from X and (ii) every neighbor or
parent of X is inseparable from Y.

Figure 5.4



5.3.1 PARAMETER IDENTIFICATION IN
LINEAR MODELS

Wright Rule (1923):
rxy = Sum of products of path coefficients
along all collider-free paths between
X and Y.
If there is an edge X 2, ¥ in the model then:
rxy = o+ lyx

where Iy x is independent of «a.

Thus, a=ryx if X and Y are d-separated in G,

Figure 5.6



SINGLE LINK CRITERION
(for the direct identification
of a structural parameter)

Theorem 5.3.1

(Single-Door Criterion for Direct Effects)
Let G be any path diagram in which « is the path
coefficient associated with link X — Y, and let
G, denote the diagram that results when X — Y
is deleted from G. The coefficient o is identifi-
able if there exists a set of variables Z such that
(i) Z contains no descendant of Y and (ii) Z d-
separates X from Y in G,. If Z satisfies these
two conditions, then « is equal to the regres-
sion coefficient ry x.z. Conversely, if Z does not
satisfy these conditions, then ry x.7 is not a con-
sistent estimand of o (except in rare instances of
measure zero).

G . |G
~ ~
- - ~ 0
N

Figure 5.7: The identification of a with ry x.7.
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PARAMETER IDENTIFICATION WITH
BACK-DOOR CRITERION

Theorem 5.3.2 (Back-Door Criterion)

For any two variables X and Y in a causal dia-
gram G, the total effect of X on Y is identifiable
if there exists a set of measurements Z such that

1. no member of Z is a descendant of X; and

2. Z d-separates X from Y in the subgraph Gx
formed by deleting from G all arrows
emanating from X.

Moreover, if the two conditions are satisfied,
then the total effect of X on Y is given by ry x.7.

Figure 56.8: a+ 8y =ryx.7,
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INDIRECT IDENTIFICATION OF
STRUCTURAL PARAMETERS

e.g, Instrumental variables:

Figure 5.9: Graphical identification of a using
instrumental variable Z, a=ryz/rxz.

X ’\\\
y 2
\\\§’{Y
Figure 5.10 Graphical identification of «, g,
and ~.
af = ryx.z
B = ryx.z/Twx
Y = TYZX
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BUCKET ELIMINATION PROCEDURE

1. Start by searching for identifiable causal
effects among pairs of variables in the graph,
using the back-door criterion and Theorem 5.3.1.
These can be either direct effects, total
effects, or partial effects (i.e., effects medi-
ated by specific sets of variables).

2. For any such identified effect, collect the
path coefficients involved and put them in
a bucket.

3. Begin labeling the coefficients in the buckets
according to the following procedure:

(a) if a bucket is a singleton, label its coeffi-
cient I (denoting identifiable);

(b) if a bucket is not a singleton but contains
only a single unlabeled element, label that
element 1.

4. Repeat this process until no new labeling is
possible.

5. List all labeled coefficients; these are
identifiable.
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PRACTICAL QUESTIONS THAT
FOLLOW

. When are two structural equation models ob-
servationally indistinguishable?

. When do regression coefficients represent path
coefficients?

. When would the addition of a regressor in-
troduce bias?

. How can we tell, prior to taking any data,
which path coefficients can be identified?

. When can we dispose of the linearity-normality
assumption and still extract causal informa-
tion from the data??
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SETTLED FOUNDATIONAL
QUESTIONS

. Under what conditions can we give causal
interpretation to structural coefficients?

. What are the causal assumptions underlying
a given structural equation model?

. What are the statistical implications of any
given structural equation model?

. What is the operational meaning of a given
structural coefficient?

. What are the policy-making claims of any
given structural equation model?

. When is an equation non-structural?
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