CAUSAL STRUCTURE

Definition 2.2.1 (Causal Structure)

A causal structure of a set of variables V is
a directed acyclic graph (DAG) in which each
node corresponds to a distinct element of V, and
each link represents direct functional relationship
among the corresponding variables.

Definition 2.2.2 (Causal Model)

A causal model is a pair M = <D,©p> con-
sisting of a causal structure D and a set of pa-
rameters ©p compatible with D. The param-
eters ©p assign a function z; = f;(pa;,u;) to
each X; € V and a probability measure P(u;) to
each u;, where PA; are the parents of X; in D
and where each U; is a random disturbance dis-
tributed according to P(u;), independently of all
other wu.

Definition 2.3.1 (Inferred Causation (Pre-
liminary))

A variable X is said to have a causal influence
on a variable Y if a directed path from X to Y
exists in every minimal structure consistent with

the data.
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LATENT STRUCTURE

Definition 2.3.2 (Latent Structure)

A latent structure is a pair L = <D, 0>, where
D is a causal structure over V and where O C V
is a set of observed variables.

Definition 2.3.3 (Structure Preference)
One latent structure L = <D,0O> is preferred
to another L' = <D’,O> (written L < L') if and
only if D' can mimic D over O—that is, if and
only if for every ©p there exists a ©',, such that
Pio)(<D',©',>) = Pip)(<D,©p>). Two latent
structures are equivalent, written L' = L, if and
only if L<L"and L > L.

Definition 2.3.4 (Minimality)

A latent structure L is minimal with respect to
a class L of latent structures if and only if there
iIs no member of £ that is strictly preferred to
L—that is, if and only if for every L' € £ we
have L = L' whenever L' < L.
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INFERRED CAUSATION

Definition 2.3.5 (Consistency)

A latent structure L = <D,0O> is consistent
with a distribution P over O if D can accom-
modate some model that generates P—that is,
If there exists a parameterization ©p such that

P[O](<D, ©p>) = P.

Definition 2.3.6 (Inferred Causation)

Given P, a variable C has a causal influence on
variable E if and only if there exists a directed
path from C to E in every minimal latent struc-
ture consistent with P.

Figure 2.1
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STABILITY

Definition 2.4.1 (Stability)

Let I(P) denote the set of all conditional inde-
pendence relationships embodied in P. A causal
model M = <D,©p> dgenerates a stable dis-
tribution if and only if P(<D,®©p>) contains no
extraneous independences—that is, if and only
if I(P(<D,©p>)) CI(P(<D,©,>)) for any set
of parameters ©7,.

Definition 2.6.1 (Projection)

A latent structure Lig) = <Djg),O> is a pro-
jection of another latent structure L if and only
if:

1. every unobservable variable of Dig; is a par-
entless common cause of exactly two non-
adjacent observable variables.

2. for every stable distribution P generated by
L, there exists a stable distribution P’ gen-
—_ /
erated by Ly such that I(P[O]) = I(P[O]).
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INDUCTIVE CAUSATION

IC Algorithm (Inductive Causation)

Input: P, a stable distribution on a set V of variables.
Output: a pattern H(P) compatible with P.

1. For each pair of variables a and b in V, search
for a set S,;, such that (allb|S,,) holds in
P—in other words, a and b should be inde-
pendent in P, conditioned on S,,. Construct
an undirected graph G such that vertices a
and b are connected with an edge if and only
if no set S, can be found.

2. For each pair of nonadjacent variables a and
b with a common neighbor ¢, check if c € S.
If it is, then continue.
If it is not, then add arrowheads pointing at
c (i.e., a— c+b).

3. In the partially directed graph that results,
orient as many of the undirected edges as
possible subject to two conditions: (i) the
orientation should not create a new v-structure;
and (ii) the orientation should not create a
directed cycle.
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RULES FOR ORIENTING EDGES

- Orient b—c into b — ¢ whenever there is an

arrow a — b such that a and ¢ are non adja-
cent.

. Orient a—b into a — b whenever there is chain

a— c—b.

- Orient a—b into a — b whenever there are two

chains a—c — b and a—d — b such that ¢ and
d are nonadjacent.

. Orient a—b into a — b whenever there are two

chains a—c — d and ¢ — d — b such that ¢ and
b are nonadjacent.
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INDUCTIVE CAUSATION WITH
LATENT VARIABLES

IC* Algorithm (Inductive Causation with La-
tent Variables)

Input:
Output:
1.

P, a sampled distribution.
core(P), a marked pattern.

For each pair of variables a and b, search for
a set S, such that a and b are independent
in P, conditioned on S,;.

If there is no such S, place an undirected
link between the two variables, a — b.

. For each pair of nonadjacent variables a and

b with a common neighbor ¢, check if c € S.
If it is, then continue.

If it is not, then add arrowheads pointing at
c (i.e., a— c+b).
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3. In the partially directed graph that results,

add (recursively) as many arrowheads as pos-

sible, and mark as many edges as possible,

a

/

according to the following two rules:

e R1:. For each pair of non-adjacent nodes

a and b with a common neighbor ¢, if the
link between a and ¢ has an arrowhead
into ¢ and if the link between ¢ and b has
no arrowhead into ¢, then add an arrow-
head on the link between ¢ and b pointing
at b and mark that link to obtain ¢ = b.

R>: If a and b are adjacent and there
is a directed path (composed strictly of
marked links) from a to b (as in Figure
2.2), then add an arrowhead pointing to-
ward b on the link between a and b.
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LOCAL CONDITIONS FOR CAUSATION

Definition 2.7.1 (Potential Cause)
A variable X has a potential causal influence
on another variable Y (that is inferable from P)

if the following conditions hold.
1. X and Y are dependent in every context.

2. There exists a variable Z and a context S
such that

(i) X and Z are independent given S (i.e.,
X1Z|S) and

(iil) Z and Y are dependent given S (i.e., ZLY|S).
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GENUINE CAUSE

Definition 2.7.2 (Genuine Cause)

A variable X has a genuine causal influence
on another variable Y if there exists a variable Z
such that either:

1. X and Y are dependent in any context and
there exists a context S satisfying

(i) Z is a potential cause of X (per Definition
2.7.1),

(il) ZandY are dependent given S (i.e., ZALY|S),
and

(iii) Z and Y are independent given SUX (i.e.,
Z1Y|SUX);

or

2. X and Y are in the transitive closure of the
relation defined in criterion 1.
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SPURIOUS ASSOCIATION

Definition 2.7.3 (Spurious Association)
Two variables X and Y are spuriously associated
if they are dependent in some context and there
exist two other variables (Z1 and Z5), and two
contexts (S1 and S5), such that:

1.
2.

Z1 and X are dependent given S (i.e., Z1 1 X|Sq);

Z1 and Y are independent given S; (i.e.,
Z1LY|S1);

. Z>and Y are dependent given Sy (i.e., Zo A Y|S5);

and

Z> and X are independent given S (i.e.,
Z> 1l X|S5).

Definition 2.7.4 (Genuine Causation with
Temporal Information)

A variable X has a causal influence on Y if there
IS a third variable Z and a context S, both oc-
curring before X, such that:

1.
2.

(ZLY]S);

(ZLY|SU X).
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SPURIOUS ASSOCIATION WITH
TEMPORAL INFORMATION

Definition 2.7.5 (Spurious Association with
Temporal Information)

Two variables X and Y are spuriously associ-
ated if they are dependent in some context S,
if X precedes Y, and if there exists a variable Z
satisfying:

1. (ZL1Y]S);
2. (ZJX|S).
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STATISTICAL TIME

Definition 2.8.1 (Statistical Time)

Given an empirical distribution P, a statistical
time of P is any ordering of the variables that
agrees with at least one minimal causal structure
consistent with P.

Conjecture 2.8.2 (Temporal Bias)
In most natural phenomenon, the physical time
coincides with at least one statistical time.
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MARKOV-EQUIVALENT MODELS
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