International Statistical Review (2002), 70, 2, 191214, Printed in The Netherlands
©1 ional Statistical Tnsti

Seeing and Doing: the Concept of Causation

Dennis V. Lindley

“Woodstock”, Quay Lane, Minehead, Somerset, TA24 5QU, UK. E-mail: thombayes @aol.com

Summary

This note is an extended review of the book by Judea Pearl (2000) on causality, in which the basic
concepts therein are explained in a form that statisticians will hopefully appreciate, including some
comments on their relevance to inference and decision-making.
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1 Introduction

Statisticians rarely refer to causality in their writings and, when they do, it is usually to warn of
dangers in the concept. Thus Speed (1990) says “Considerations of causality should be treated as
they have always been treated in statistics: preferably not at all but, if necessary, then with very great
care”. Cox & Wermuth (1996) remark “We did not in this book use the words causal or causality
.... Our reason for caution is that it is rare that firm conclusions about causality can be drawn
from one study”. Lindley & Novick (1981), in a paper discussed in chapter 6 of this book, say that
“causality, although widely used, does not seem to be well-defined” and therefore reject the term.
This avoidance by statisticians is strange because the term is widely used both by scientists and
laymen, who presumably base their use of it on inference from data, which topic is the preserve of
statisticians. Their preferred form of inference is association, captured in the techniques of correlation
and regression, which is a weaker idea than causation, and therefore leads to weaker results. Causality
also has a stability that association does not; a stability that is reflected in a basic assumption made
in this book.

In recent years, there have been several studies, outside the statistical profession, about the notion
of cause and, whilst progress has been made in understanding the topic, there has been no totally-
satisfactory account. What has been especially lacking is a calculus of causality so that users can
operate with the concept just as confidently as they can with probability through its own calculus.
In this book, Pearl presents a description of causality, with its accompanying calculus, through the
concept of a causal mechanism, within which it is possible to perform manipulations that lead to
interesting and effective, new results. This is a major contribution to our appreciation of causality,
not so much at the philosophical level, but more as an important tool for calculation. Statisticians
should study the work carefully with the expectation that it will alter their attitude to causation and
enable them to incorporate causal concepts into their work. The present note tries to summarize
the ideas in a form that might be appreciated by statisticians, and will hopefully encourage them to
read the book themselves and experiment with the causal calculus. The note concludes with some
comments on the form of the book and its contents.
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2 Multivariate Distributions

Whatever is meant by causation, it is clear that it refers to a relationship between quantities, a
change in one being the cause of a change in another. Ordinarily there is some uncertainty involved, -
as when it is said that the application of fertilizer will cause the crop yield to increase, the actual
yield that might result being uncertain. The tool for the study of uncertainty is probability, with
its familiar calculus, so it is there that the study begins. Pearl uses the Bayesian interpretation of
probability, as a degree of belief, but this should not deter statisticians who prefer to think in terms
of frequency, because most of the book is concerned with manipulations where the concept of a
population can equally be used. Indeed, in examples, he mostly slips from frequency to belief with
scarcely a murmur. The study of causality therefore begins with uncertain quantities, often called
random variables, and their probability specification, which can be expressed in several forms. One
form is a joint distribution but a preferred method is to place the quantities in some order and use a
sequence of univariate distributions. Thus, in a simple example with three quantities, u, x, y, when
placed in that order, may have their joint distribution written as

pW)p(xlu)p(ylu, x) ¢y

where the distribution, here expressed through a density, of each quantity is conditional on the values
of all the quantities that have preceded it in the chosen ordering. The first stage in the construction of
a causal mechanism is to select an ordering of all the quantities and to write down their probability
structure in terms of that ordering.

Whilst the introduction of an order into a set of quantities is often a useful tool in the construction
of a joint distribution, any order can be used, and it is easily possible to switch from one to another.
Thus, if the order above, u, x, y, is replaced by x, u, y, the joint distribution becomes

p(x)p(ulx)p(yix, u), )

which is equivalent to (1), passage between them being accomplished by means of the probability
calculus, here using the product rule on the first two densities in both (1) and (2). This is fine when
discussing association, for if x is associated with u, then equally « is associated with x; but it is
unsatisfactory for causation, for if x is a cause of u, it is emphatically not true that u is a cause
of x. Also p(ul|x) is easier to think about than p(x|u). Consequently a causal mechanism includes
not just a joint probability distribution of a set of quantities but also a specific ordering of them. To
anticipate, if x is a cause of u, then x precedes u in the ordering and (2) might be relevant, whereas
(1) would not be. It is important to notice that the procedures to be described later do not remain
invariant under a change of order but are heavily dependent on the order selected.

Statisticians have recognized the relevance of order in some cases; for example in passing from
correlation between y and x, to the regression of y on x, where the former is unaltered when the
quantities are interchanged but the latter is not. There is a further point about regression in that there
is a distinction between p(y|x) as part of a joint distribution, where it appears together with p(x),
and p(y|x) where x loses its uncertain status and has been selected. Pearl expresses the distinction
as one between seeing X to be equal to x, and controlling X to be x, where upper-case has been used
to denote the quantity (variable) and lower-case to describe its value. We will follow him and use the
rather imprecise, but most useful, notation p(y|x) in the former case with x random and p(y|do(x))
in the latter with x controlled. When it is useful to emphasize the distinction, he writes p(y|see(x))
instead of p(y|x). Much of the book is devoted to the ‘do’ operator and the mechanisms for handling
it, so providing the calculus of causality mentioned earlier.

It has long been recognized that there can exist real differences between p(y|see(x)), with x
uncertain, and p(y|do(x)) with x selected. A famous illustration is with x size of foot and y size
of hand. The binding of feet, practised in some societies to lessen x, has no effect on size of hand,
so that p(y|do(x)) could be p(y), certainly not p(y|x). To anticipate, in this example, x and y
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have a common, genetic cause, u, so that change in x does not influence « and the link between x
and y is broken. p(x|u) has a stability that p(u|x) does not possess. Equally there are cases where
p(ylx) = p(y|do(x)), as when X = 1(0) if a treatment is (is not) adopted in some randomized,
clinical trial; the behaviour in the trial being extended to advise about treatment, believing that if the
treatment is taken, the results will correspond to those in the trial. One might say that the treatment
caused the patients to recover. The distinction also arises in decision analysis in comparing decision
and random nodes. There can be a real difference between a decision concerning X and a random
occurrence of X; the former calling for maximization of utility, the latter for calculation of expected
utility.

3 Causal Mechanisms

With these preliminaries, it is now possible to see what is meant by a causal mechanism. We
illustrate with the case of three quantities. As explained, they are first placed in some order, say
u, x, y, and that order used to describe their joint distribution as

p@)p(xlu)p(ylu, x). ¢))
What happens if x is controlled, or selected, and replaced by do(x)? Clearly x now has no uncertainty,

and p(x|u) is no longer relevant, but it is not clear what happens to the remaining densities in (1).
Pear]l makes two assumptions:

(a) p(u) is unaffected by the control of x, and
(b) in p(ylu, x), x is replaced by the value selected by the control but otherwise remains unaltered.
In the ‘do’ notation, p(y|u, do(x)) = p(y|u, x).

As a consequence of these two assumptions, (1) is replaced by

p)p(ylu, x), 3)

where it is understood that the value of x is that selected by the control. Pearl refers to the individual,
univariate components in the product as autonomous processes being unaffected by control of one
quantity, except insofar as everywhere else that quantity is set equal to its controlled value.

In general, assumption (a) says that if a quantity is controlled, then the probabilities of all quantities
that precede it are unchanged. (b) says that the only change to all quantities that succeed it is merely
to replace the general x by the controlled value, so that, in the example, the regression of yon (u, x)
is the same whether x is seen or is controlled. Although this regression is supposed unaltered, that
of y on x alone is changed, for when x is random, (1) applies and

p(ylx) = S p@)p(xlu) p(ylu, x)du [f p(u) p(x|u)du

whereas if x is selected, (3) is operative and we reach the different conclusion that

pOIx) = [ p(w)p(ylu, x)du. “4)

Similarly it can easily be seen that the ordering of the quantities is material, for if, in place of u, x, y,
the order x, u, y is employed, (2) is relevant and a third regression of y on selected x is obtained:

pOyIx) = p(ulx) p(ylx, u)du, &)

which is the familiar rule of probability in which the conversation is extended from (x, y) to include
u, unlike (4).

An impressive illustration of these ideas is provided by the case where x is a treatment, ya

response and u a covariate which may be associated with both x and y. Clearly x influences ¥, and
so precedes it in the ordering, but whether « influences x, or the reverse, vitally affects the efficacy
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of the treatment on the response, judged by p(y|x). To see this suppose x influences u and the order
x,u, y is relevant; then from data on the three quantities, the regression p(y|x) given by (5) applies.
Hence if x = 1(0) when the treatment is (is not) applied, and y = 1(0) if the outcome is beneficial
(harmful), the treatment may be judged beneficial if

py=1lx=1)> p(y =1x =0). (6)

In the other case, where u influences x and the order is u, x, y, the efficacy of the treatment is again
determined by p(y|x), which now involves p(y|u, x) and p(u), from (4). In particular, the treatment
may be judged harmful when

py=lu,x=1) < p(y =1ju,x =0) ™

for all u. It is well-known that (6) and (7) can happen simultaneously; the phenomenon is known
as Simpson’s paradox, though, as Pearl points out, it was known to Karl Pearson. Consequently the
paradox is elegantly resolved by noticing whether x influences  or vice versa, which is reflected in
the mathematics by the order selected.

4 Alternative Approaches

The discussion has here been presented in terms of probability but there are two alternative tools
that can usefully be used. The first is to employ a directed, acyclic graph (DAG) in which each quantity
is represented by a node and a link between two nodes has a direction from x to y iff x precedes
y in the ordering. DAG’s are conceptually very useful but their advantages extend beyond that. If
(x1, x2, ..., xp) is a set of uncertain quantities in that order, the general term in the joint probability
specification will be p(x;lx1, x2, ..., x;—1) in which x; depends on its predecessors. It frequently
happens that not all of the predecessors enter into the condition, so that only some appear, called the
parents of x ;, written px ;. Equivalently, given px;, x; is independent of its other predecessors, when
the links in the DAG between x; and its non-parents may be omitted. The methods using the ‘do’
operator previously described, in particular the two basic assumptions (a) and (b), do not involve
independence; nevertheless, independence conditions do enormously simplify the calculations, so
that Pearl develops methods of handling DAG’s that occupy a significant portion of the book and are
valuable in handling complex situations.

An alternative description is offered in terms of functions, in which one writes x; = f;(px;, &;),
where f; is a deterministic function of the parents of x; and of a random disturbance ¢}, so that
the probability structure passes from the x’s to the £’s. Econometricians are fond of this sort of
representation, under the term ‘structural equation modelling’, and Pearl has valuable comments
on the practice. Personally I find the approach confusing because if, reverting to the case of three
quantities, y = f(x, &) with x preceding y, it does not make sense, within the ‘do’ calculus to invert
and write x as a function of y, corresponding to y preceding x. However, examples with y = f(x),
and simultaneously x = g(y), do appear (1.42 and 1.43) with resulting confusion. It is not always
clear what functional operations are permissible, whereas it is always clear what probability reversals
are available; though this preference may only reflect my own experiences.

5 Compliance, Counterfactuals

In constructing a model with a sensible ordering that is judged to satisfy the assumptions (a) and
(b) above, it is often necessary to introduce quantities that are unobserved. In the case above with x
treatment and y response, the covariate ¥ may not be observed, yet may influence y and perhaps x.
The influence on x is often removed by choosing x at random, implying x is independent of virtually
everything. Pearl therefore distinguishes between quantities that are observed and those that are not;
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where a major task is to determine whether, having used the ‘do’ operation to obtain the required
result, exemplified by (4), the probabilities needed can be obtained from observations. There is a
powerful example of his techniques in §8.2, dealing with a problem that is firmly within the ambit
of statistical inference. Here x, as before, is an assigned treatment, y a response and u a covariate;
but there is an additional quantity z which refers to the treatment actually used, so that comparison
between x and z indicates whether the subject, to whom the probabilities apply, complied with the
treatment x assigned. It is supposed that # influences z and y, but not x, assigned at random, and the
orderis x, u, z, y. It is not difficult to evaluate p(y|do(z)) but can it be determined from observations
onx,y,z,butnotu? It cannot but in a masterly series of calculations within the probability calculus,
it is shown that useful bounds to the probability can be evaluated.

Pearl makes an important contribution to the study of counterfactuals. In the case of binary
quantities, x and y, taking values ‘true’ and ‘false’, a counterfactual is a probability statement about
the truth of y, had x been true, when it is known that y had been false when x was false. An
example arises in medical litigation when the complaint is made that A would be alive if the doctor
had operated, when he had not and A died. The connection with causality is clear; the failure to
operate may have caused A’s death. The claim is made (p. 218) that scientists are concerned with
counterfactuals rather than predictions. To illustrate the method of solution, consider, as before, three
quantities u, x, y in that order, where p(y|x) is given by (4). Now suppose additional evidence e
becomes available that ‘x is false and y did not occur’. The effect on the probability structure is
easily handled by Bayes’s theorem to revise p(u) to p(u|e). Consequently if we set x to be true, the
regression (4) becomes

p(y|x) = [ p(ule) p(ylu, x)du

and a statement about y can be made were x true. This method depends on the introduction of the
covariate u and that it satisfies, in conjunction with x, y, the assumptions (a) and (b). An extension
of these ideas leads to probability statements about causes.

6 Commentary

The above is an inadequate summary of the book, omitting the important calculations and appli-
cations but, I think, including the key ideas. I now turn to some comments on the material. All the
procedures developed depend on the ability to order a set of quantities, observed and unobserved,
in such a way that assumptions (a) and (b) obtain; that is, setting one quantity to a chosen value
has no effect on its predecessors and only effects its successors by replacing uncertain x by chosen
x, leaving the autonomous, conditional distributions unaltered, p(ylu, x) = p(y|u, do(x)) in our
illustrative example. Such a system is termed a causal mechanism. The whole edifice constructed in
the book depends on the validity of (a) and (b), and it is interesting that Pearl does not refer to them as
assumptions, but as definitions (7.1.3 and 7.1.4). The change is not, I feel, purely linguistic. Whenever
a model is used, the presumption is being made that it is relevant to the real world and it behoves one
to make such checks as are possible to assess its relevance, perhaps even its truth. Consequently it
would appear essential in any application to check that the two assumptions are reasonable, for there
are cases where they are not: seeing someone dead is radically different from making someone dead.
For a more relevant example, a chemical engineering study may have produced data that demonstrate
that the temperature of the process in the vessel affects the quality of the final product, with the con-
sequent conclusion that the process should include a temperature control. However, this inclusion
may involve considerable changes to the vessel and it would be unreasonable to suppose p(y|x) from
the study is the same as p(y|do(x)), even when account is taken of the covariates, as (b) demands.
One response to this objection might be to say that the model used in the study is inadequate and
that a fuller one that incorporates possible changes to the engineering is required, but this presents
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further difficulties which can be illustrated on the compliance model mentioned earlier. Recall that
here u was an unobserved covariate that influenced both compliance z and response y, but not x,
with order x, u, z, y where x is the treatment assignment. With the assumption that, given (i, z), y is
independent of x, the causal mechanism requires that p(y|u, z) is unaffected by changing to do(z),
arequirement that may be impossible to verify if u is not merely unobserved but unstated. A similar
difficulty with an unspecified covariate arises in the familiar example connecting x, smoking, with
y, lung cancer, where z, tar deposit in the lungs, acts as an intermediary and « is an unspecified,
genetic covariate; the order being u, x, z, y, Figure 3.5. It is there supposed that p(z|u, x) = p(z|x),
- aresult that it is hard to see being verified.

My first reaction to the strong assumptions (a) and (b), and hence to the whole edifice here
constructed, was one of extreme scepticism, but increased exposure to the ideas and to real problems
has lessened this appreciably to one where my main reserve concerns difficulties in checking the
reasonableness of the assumptions. Extensive use of causal ideas by scientists and laymen suggests
that we do have an appreciation of order, that x influences y, rather than y influences x, and that we
do feel that some structures are autonomous enough to resist interference by control. Consequently
causal mechanisms may be easier to come by than one might initially think. What is also abundantly
clear is that if the assumptions are made, then powerful results follow. Also, to be fair, Pearl, in
chapter 2, does have useful things to say about the construction of causal mechanisms. It appears
to be reasonable to accept the assumptions and explore the rich consequences that flow from them,
rather than engage in too much speculation about their validity, which can be considered if the
consequences appear unsound. There will always exist multivariate situations which are not amenable
to this treatment, often because no causal structure can be seen and the quantities have, as a result,
no natural order or DAG.

The calculus is especially apposite for a Bayesian. In the personalistic approach adopted by
an individual ‘you’, you are free to assess p(y|see(x)) and p(y|do(x)) in any way, as separate
evaluations, without violating coherence. As someone has said, the only way to know what might
happen were you to control x, is to control x; merely seeing x can be insufficient. The causal
mechanism permits you coherently to identify the two probabilities under some circumstances, but
not others. For example, in (1), p(y|u, x) is, for you, the same for uncertain x or selected x; but as
we saw, this is not true for p(y|x), (4) obtaining when x is selected, different from the usual form
when x is uncertain. As a result the ‘do’ calculus fits neatly with its probability companion.

Statisticians will, I think, find the book difficult reading; I certainly did. One reason is that Pearl
pays little attention to the relationship between data and the models discussed; an exception is §8.5.
As aresult it may be hard for an applied statistician, used to data analysis, to appreciate the arguments
presented. Nevertheless, the principal aim of the book is to develop some powerful machinery and
that to deal, in addition, with the associated inference problem would both distract from the main
task and make an already long book even longer. There is an epilogue, in the form of a public lecture,
which is easy reading but is understandably too superficial to give a sound understanding of the
relevance of the book to statisticians.

Statisticians of a more mathematical bent will have a different difficulty for, instead of developing
his ideas in a logical order, the author scatters his pearls without the necklace’s thread. It is only in
chapter 7 that the anticipated development appears, by which time the reader is expected to have
absorbed enough ideas to dispense with the illustrative examples that even the most mathematical
treatment demands. There is a further problem that the definitions are not always well-expressed; a
feature which is not unknown amongst engineers who have high manipulative skills in mathematics
but are not so good at stating the basic concepts. An example is provided on p.189: “the condition
of unbiasedness (Definition 6.2.1) does not imply the modified criterion of Definition 6.3.2”. This
appears to be the first usage of the term ‘unbiasedness’, which does not occur in the index (which
is poorly done, even the term ‘cause’ does not appear!) and is not present in either of the definitions
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mentioned. This attitude towards definitions is in contrast to his dismissal (p. 178) of de Finetti’s
precise definition of ‘exchangeable’ as meta-statistical, a criterion that could be applied to some
in the book. Another criticism is the plethora of terms, many of which may be unnecessary, like
probabilistic, statistical and causal parameters (§1.5) which are rarely used.

Some difficulties in presentation may arise because of the modern haste to publish. Darwin only
wrote about evolution after he had thought about the ideas for decades and, as a result, we have
a masterpiece of both science and literature. Today social pressures almost force early publication
before the ideas have had time to settle, the result being books that are untidy and often not properly
understood, even by their authors. Pearl might also learn from Darwin that a clear statement of one’s
position is all that is needed, a brilliant idea can speak for itself, and attacks on others are not needed.
(Did you know that my generation of statisticians is ‘tormented’?) Another difficulty is that the author
repeats himself, sometimes using different terms. For example, the condition p(y|x) = p(y|do(x))
is referred to as unbiasedness (6.10) or as exogenous (7.46); page 206 echoes page 37. The repetition
may be the result of the book not being written afresh but formed by putting papers together.

The comparison with Darwin may be exaggerated but it is surely true that this is an important book
that ought to be read by statisticians, if only to appreciate when seeing and doing are comparable,
and to explore the wide range of consequences that follow from supposing that they do.
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