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This is a remarkable volume. Winner of the Lakatos award, given biennially for the
book in the philosophy of science most highly regarded by an international committee, it is
also crammed with formulas that will be of practical importance, as well as of interest, to
epidemiologists, lawyers, economists, and other down-to-earth folk. This is not to say that
it will be easy to read, for anyone, or that it is altogether correct. I shall first offer a review
of the contents of the book, and then carp (minimally) about the viewpoint. The review of
the contents will be highly schematic, since the book is extremely rich.

Many of the results reported in the first six chapters here parallel results also achieved by
researchers at CMU [4]. The first two chapters present background, and introduce the ter-
minology of probabilistic networks. Chapter One introduces some probability, with a one
page nod to subjectivism; conditional probability is glossed as “. . . given that I know A”
[p. 5]. Subsequently the references are to the first person plural, which suggests a relatively
objective conception of probability. Most often we encounter relations among probabilities
(such as P(y | x, z) = P(y | z)) which make perfectly good sense as objective frequencies.
The issue of subjectivism is one to which we will return later.

Among the basic ideas introduced in the first chapter are these: Directed Acyclic
Graphs (DAG’s); conditional independence; Bayesian networks; the Markov property, and
d-separation. The very important operator do(X = x) that introduces a way of treating
actions is introduced on p. 23. This operator sets a subset X of variables to constants x,
yielding an interventional distribution. Let P∗ be the set of all interventional distributions
Px = P(v | do(X = x)) (including the empty intervention). A DAG G is a causal Bayesian
network compatible with P∗ if and only if the following three conditions hold for every Px

in P∗:

1. Px(v) is Markov relative to G;
2. Px(vi) = 1 for all Vi ∈ X whenever vi is consistent with X = x;
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3. Px(vi | pai ) = P(vi | pai ) for all Vi /∈ X whenever pai (the set of parents of Xi ) is
consistent with X = x.

Given a DAG the simplest interventional distribution is produced by deleting the arrows
into X, making the variables in X exogenous. The do(·) operator represents the most im-
portant idea in the book. It is used heavily in chapters three through six, concerned with
identifying and computing the results of interventions, and is crucial in the final four chap-
ters of the book, concerned with counterfactuals.

Section 1.4 introduces functional models, characterized by a set of structural equations:
xi = fi(pai , ui), according to which the value of the quantity Xi is a deterministic function
fi of the values of the parents of Xi and the random (unmeasured) error ui . Druzdel and
Simon [1] (cited by Pearl, p. 31) showed that for every Bayesian network G characterized
by a probability distribution P , there exists a functional model that generates a distribution
identical to P . Pearl makes much use of this fact in the subsequent parts of the book.

The effect of the do(X = x) operator on a set of functional equations is easy to represent:
Merely delete the equations giving the values of the variables in X as a function of the
values of their parents, replacing them with the values x.

The second chapter contains two important algorithms, IC and IC∗, that parallel algo-
rithms presented by [4]. IC takes as input a stable (“faithful” in the terminology of [4])
distribution on a set of variables and produces a partially directed graph G. A stable distri-
bution is one in which no independencies arise due to numerical coincidence. IC∗ takes as
input a stable distribution (with respect to some latent structure) and yields a marked pat-
tern that is a core of this distribution. The pattern produced, in either case, singles out only
an equivalence class of structures. These algorithms provide the basic connection between
statistical data and causal graphs. Pearl puts it thus: “. . . we have shown that the assumption
of model minimality, together with that of ‘stability’ (no accidental dependencies) lead to
an effective algorithm for structuring candidate causal models capable of generating the
data, transparent as well as latent” [3, p. 60]. Note that “the data” consist of statistical
observations, not psychological assessments.

Chapters Three, Four, Five, and Six contain the computational heart of the book. Chap-
ter Three, Causal Diagrams and the Identification of Causal Effects, is the meatiest chapter
in the book. It provides a formal semantics for intervention (the do(·) operator) in terms
of causal diagrams and probability distributions, and it gives formulas for postintervention
probabilities in terms of preintervention probabilities. The effects of every intervention can
be calculated if we have a DAG and none of the variables are latent. When some variables
are latent the matter is not so simple; but conditions can be given for identifying causal
relations. A bonus in Chapter Three is a calculus of interventions: a set of rules “. . . by
which sentences involving interventions and observations can be transformed into other
such sentences . . . ” [3, p. 65].

Chapter Four is primarily an extension and elaboration of some of the results of Chapter
Three. It deals with actions, plans, and the distinction between direct and indirect effects
of actions. Chapter Five is focused on structural models in Social Science and Economics.
Causality has been regarded as problematic in the social sciences, despite the fact that one
of the things we would like is that our empirical knowledge in these areas should inform
our decisions—that is, that we should be able to anticipate the causal consequences of
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our actions, such as raising taxes. The chapter is rich with historical asides, and Pearl’s
methods do throw light on a number of controversies in econometrics, epidemiology, and
law. Section 5.4 approaches the question of the meaning of structural equations head on,
and provides an explanation of the asymmetry of structural equations (y = βx + ε is not at
all the same as x = (y−ε)/β) and of the relevance of structural equations to policy making.
Lacking background in either economics or the social sciences, I found this chapter hard
going, and would have benefited from more, and more detailed, examples. Yet it was clear
to me that the machinery introduced in chapters three and four had a great deal to offer the
disciplines of the social sciences.

Chapter Six concerns the important topic of confounding: when is the apparent associ-
ation between X and Y really due to (caused by) a third variable Z that influences both
X and Y ? The topic is introduced by a fascinating and thorough discussion of Simpson’s
“paradox”, in which a drug proves beneficial to a mixed group of males and females, but
deleterious to the males in the group and deleterious to the females in the group. As Pearl
notes, there is nothing shocking about the existence of a probability distribution that rep-
resents the facts. What may be a bit unsettling is the fact that if we were to know only the
general data, we would prescribe the drug. If we know the details, we would not prescribe
the drug to women, and we would not prescribe the drug to men. What should we prescribe
for Robin, a patient of unspecified sex? The answer in this case is that we should not pre-
scribe the drug, but this reflects the causal structure we reasonably attribute to the process
underlying the data. There are numerically similar cases in which a different causal struc-
ture leads to a different prescription. This chapter, as contrasted with the previous one, is
rich in detailed examples that are readily accessible to the nonspecialist.

The last four chapters contain some of the most original and daring of the material in the
book. They are concerned with “structure based counterfactuals”. The general idea is that
we can define the do(·) operator on causal models; that the effect of an action do(X = x)

is a submodel Mx in which X has been set to x; and that the effect on Y of that action is
the value of Y in the submodel Mx ; this is denoted by Yx . In other words, “If X were x,
then Y would be y” in model M holds just in case Y = y is the solution of the equations
characterizing Mx , the submodel reflecting the action do(X = x).

After presenting an example (from econometrics), and some discussion of the value
of counterfactual talk in explanation, Pearl presents (in 7.3) a set of axioms characteriz-
ing counterfactuals. These axioms are provably sound and complete for causal models.
Of greater interest to philosophers (even fellow travelers) will be the comparison between
structural counterfactuals and David Lewis’s similarity based counterfactuals. Pearl shows
that for recursive systems, Lewis’s logic (as extracted from [2] by Pearl) satisfies the con-
straints imposed by Pearl’s construction of counterfactual logic. Pearl’s logic is narrower,
since actions in structural models are limited to conjunctions of literals. Whether this is
a loss is an open question. In terms of probabilities, actions, for Lewis, require the rela-
tion of imaging: given that an action rules out some worlds, the corresponding probability
mass is transferred to the “closest” possible worlds, rather than being distributed among
all the surviving worlds; but this is just what is done by updating a probability by the do(·)
operator.

Thus Pearl’s treatment of counterfactuals parallels much of what has been discussed
in Philosophy. My own feeling is that while the differences may be of interest to those
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philosophers who have found the sentential operator �→ useful and its interpretation in
possible worlds illuminating, most philosophers, and all scientists, will find Pearl’s for-
malism far more accessible and natural. Surely from an intuitive standpoint it is natural
to think of the consequent of a counterfactual as what will (would) be true when the an-
tecedent is forced to be true. That is, causes seem, intuitively, to precede counterfactuals.

Less important than the main content of the book (but fun to read) are Pearl’s pronounce-
ments on Philosophy. For example, “Evidential decision theory was a passing episode in
the philosophical literature” [3, p. 109]. But there are minor errors as well: nobody since
Frege’s attack on psychologism in logic has thought of deductive argument as argument
“from beliefs to beliefs” [3, p. 209].

Chapter Eight primarily concerns the analysis of experiments in medical research.
Chapter Nine returns us to the world of Philosophy and the treatment of necessary and
sufficient conditions. Curiously, given how successfully thorough Pearl has been in his
philosophical enquiries in the rest of the book, the formal work of G.H. von Wright [5]
on necessary and sufficient conditions is overlooked. Of course Pearl is interested in the
probabilities of necessary and sufficient conditions, which is not what von Wright was
concerned with. A number of theorems are presented bearing on the identifiability of the
probability of necessary and sufficient conditions, and helpful examples are discussed.

The last chapter, The Actual Cause, concerns singular causal claims: “Joe was killed in a
car crash”, as opposed to “Car crashes kill people”. To make sense of this, it behooves us to
think again of the nodes in the causal graph. The set U is the set of latent variables or quan-
tities. They play the role of God; they are responsible for everything that happens. The do(·)
operator changes the world, but in terms of the causal graph this fact is miraculous. The set
V is the set of measured quantities. There is nothing bizarre about a measured quantity D

that takes the value 1 if Joe is dead, and the value 0 otherwise. The use that Pearl makes of
causal graphs depends on the assumption that there is a probability function defined on the
nodes of the graph that is Markov (or semi-Markov). There is thus a perfectly well defined
probability P(D = 1), and a perfectly well defined conditional probability based on what
we know, e: P(D = 1 | e). The latter, of course, is 1, since we know that Joe is dead. What
we need to do is to construct a model Mu—a “beam” in Pearl’s terminology—in which
D = 1 holds, given do(Carcrash = 1), but D �= 1 given do(Carcrash �= 1).

The recipe for constructing a “natural beam” in terms of which we can define actual
cause in a given causal model 〈U,V, {fi}〉 and state u, is this: for each variable Vi select
a subset Si of its parents, where Si is sufficient to ensure the actual value of Vi regardless
of the values of PAi/Si . We say that X = x is an actual cause of Y = y if and only if there
is a natural beam Mu such that Yx = y (or P(Y = y | do(X = x)) = 1) and Yx′ �= y (or
P(Y �= y | do(X = x′)) = 1) in Mu for x �= x′. With a somewhat broader notion of causal
beam, we can also define “contributory cause”. This is all relative to a specific model u. If
Uxy is the set of states in which “x is the actual cause of y” is true, and Ue is the set of
states compatible with the evidence e, the probability that x is the actual cause of y is just
the conditional probability P(Uxy | Ue) = P(Uxy ∩ Ue)/P (Ue).

The basic idea around which the whole book is built is that of a DAG, or, alternatively,
a set of structural equations. These structures are tied to Bayes nets. As we have just seen,
even in explicating causality we suppose that there is a single probability function P de-
fined over the set of structures with which we are concerned. The machinery employed by
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Pearl begins with directed graphs having probabilities defined on their nodes. It is in terms
of such objects that causality is defined.

It is thus mildly disturbing to be told, on p. 25, that causal relations are more stable than
probabilistic relations, “. . . because causal relationships are ontological, describing phys-
ical constraints in our world, whereas probabilistic relationships are epistemic reflecting
what we know or believe about the world”. While holding a subjective view of probability
may incline one to talk this way, it rather undermines the force of being able to say some-
thing about the consequences of actions on the basis of mere beliefs. Does what we can
say depend on “belief” in the sense of opinion? Are relative frequencies not just as “on-
tological” as causal relations? The relevant difference between causes and probabilities is
that a causal relations hold always, and probabilistic relations hold only a certain fraction
of the time. But there need be nothing “subjective” about that fraction; and that is exactly
why the techniques provided by Pearl are objectively useful.

To be sure, “subjective” is ambiguous: it may mean produced by the mind or it may
mean resulting from the feelings or temperament of the subject. In the former sense the
objective measurement of length is subjective, in that at some point it involves a perceiving
subject. In the latter sense it is contrasted with “objective” and is something we seek to
purge from science. In the writings of “subjective Bayesians” subjectivity often seems
to reflect a naive belief in subjective idealism—the extreme doctrine that nature has no
objective existence independent of the perceiving mind. Pearl is much too smart and much
too good a scientist to become trapped in the extreme view, but there are many instances
in which he comes very close to endorsing the subjective Bayesian view.

“Traditionally, statisticians have approved of only one way of combining substantive
knowledge with statistical data: the Bayesian method of assigning subjective priors to
distributional parameters” [3, p. 96]. Before 1950 no respectable statistician would have
approved of this, and even now it is probably safe to say that most statisticians would not
approve of this approach. Nor should they.

“If . . . the variance of X changes because we (or Nature) locally modify the process that
generates X, then . . . the ratio β = E(YX)/E(X2) will remain constant. However if the
variance of X changes . . . because we observed some evidence Z = z that depends on both
X and Y . . . then that ratio will not remain constant” [3, p. 162]. In much of the volume
probabilistic values represent relative frequencies. Relative frequencies do not change in
response to our observations (though what we assert about them may).

“The conditioning operator in probability calculus stands for the evidential conditional
‘given that we see,’ whereas the do(·) operator was devised to represent the causal con-
ditional ‘given that we do’ [3, p. 174]. Isn’t it more plausible to take the conditioning
operator to be representing submodels of a given model than to infuse probability theory
with psychology? The do(·) operator modifies our model in a different way.

In introducing probabilistic causality, Pearl refers to “. . . the assumption that human
experience is encoded in the form of a probability function . . . ” [3, p. 249]. True, he admits
that this assumption is not entirely compelling, though as stated it is either patently false
or a very deep theorem in the psychology of the unconscious.

Where it really counts, Pearl’s thought, even in these dangerous waters, flies straight as
an arrow. For example, discussing attempts to characterize causality subjectively, he writes
“By far the most critical and least defensible paradigm underlying probabilistic causality
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rests on the assumption that one is in possession of a probability function on all variables
relevant to a given domain” [3, p. 252]. Again, the definitions that concern causal models
[3, pp. 203–205] invoke no trace of the subjective point of view. Introducing the chapter on
action, Pearl writes “In principle actions are not part of probability theory . . . probabilities
capture normal relationships in the world, whereas actions represent interventions that
perturb those relationships” [3, p. 109, my italics]. This seems to me clear and precise and
unexceptionable; it invokes no confusion between the psyche and the building blocks of the
objective world. The “normal relationships” in the world might more clearly be captured
in terms of relative frequencies. To apply the structures that Pearl has given us then would
require the forging of a connection between relative frequencies and probabilities in the
sense that probabilities are a guide to life, and that is not part of Pearl’s program.

It would also be useful to discuss sets of models that would allow us to represent ap-
proximate relative frequencies. These, after all, are what we have good reason to accept.
For example, we should take the relative frequency of heads on ordinary coin tosses to
be about a half, rather than 0.5000. . . . We might represent the behavior of n tosses of the
coin by a set of binomial models with a parameter close to 0.5. Note that although the fre-
quency of HH in these models may be as low as 0.45 ∗ 0.45, the frequency of HT cannot
be higher than 0.5 ∗ 0.5.

Am I carping? I am not just fishing for things to complain about; these are matters that
seem to me very important in the application of Pearl’s formalism. It is precisely because
the models to which he introduces us reflect both the causal structure of the world and
relative frequencies in the world that they are so useful. If the “probabilities” were merely
subjective (personal, whimsical, temperamental) that would deprive Pearl’s machinery of
some of its most important uses. On the whole, this is a profound and enormously im-
portant book. It is not easy going, but it is perpetually rewarding. The subjectivism that
occasionally rears its foggy spector does not seriously impede the clear-headed reader.
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