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affect Y .20 If both of the associational criteria �U�� and �U�� of Definition 6.2.2 are
violated, then �X�Y � are not stably unconfounded given AZ .

Proof
WheneverX and Y are stably unconfounded, Theorem 6.4.3 rules out the existence of
a common ancestor of X and Y in the diagram associated with the underlying model.
The absence of a common ancestor, in turn, implies the satisfaction of either �U�� or
�U�� wheneverZ satisfies AZ . This is a consequence of the d-separation rule (Section
1.2.3) for reading the conditional independence relationships entailed by a diagram.21

�

Theorem 6.4.4 implies that the traditional associational criteria �U�� and �U�� could be
used in a simple operational test for stable no-confounding, a test that does not require
us to know the causal structure of the variables in the domain or even to enumerate
the set of relevant variables. Finding just any variable Z that satisfies AZ and violates
�U�� and �U�� permits us to disqualify �X�Y � as stably unconfounded (though �X�Y �
may be incidentally unconfounded in the particular experimental conditions prevailing
in the study).

Theorem 6.4.4 communicates a formal connection between statistical associations
and confounding that is not based on the closed-world assumption.22 It is remarkable
that the connection can be formed under such weak set of added assumptions: the
qualitative assumption that a variable may have influence on Y and is not affected by
X suffices to produce a necessary statistical test for stable no-confounding.

6.5 Confounding, Collapsibility, and Exchangeability

6.5.1 Confounding and Collapsibility

Theorem 6.4.4 also establishes a formal connection between confounding and
“collapsibility”—a criterion under which a measure of association remains invariant
to the omission of certain variables.

Definition 6.5.1 (Collapsibility)
Let g	P �x� y�
 be any functional23 that measures the association between Y and X in
the joint distribution P �x� y�. We say that g is collapsible on a variable Z if

Ezg	P �x� yjz�
 � g	P �x� y�
�

20By “possibly affecting Y ” we mean: AZ does not contain the assumption that Z does not affect Y . In
other words, the diagram associated with M must contain a directed path from Z to Y .

21It also follows from Theorem 7(a) in Robins (1997).
22I am not aware of another such connection in the literature.
23A functional is an assignment of a real number to any function from a given set of functions. For

example, the mean E�x� �
P
x
xP �x� is a functional, since it assigns a real number E�X� to each

probability function P �x�.



280CHAPTER 6. SIMPSON’S PARADOX, CONFOUNDING, AND COLLAPSIBILITY

It is not hard to show that if g stands for any linear functional of P �yjx�—for exam-
ple, the risk difference P �yjx�� � P �yjx��—then collapsibility holds whenever Z is
either unassociated with X or unassociated with Y given X . Thus, any violation of
collapsibility implies violation of the two statistical criteria of Definition 6.2.2, and
that is probably why many believed noncollapsibility to be intimately connected with
confounding. However, the examples in this chapter demonstrate that violation of these
two conditions is neither sufficient nor necessary for confounding. Thus, noncollapsi-
bility and confounding are in general two distinct notions; neither implies the other.

Some authors tend to believe that this distinction is a peculiar property of nonlin-
ear effect measures g, such as the odds or likelihood ratios, and that “when the effect
measure is an expectation over population units, confounding and noncollapsibility are
algebraically equivalent” (Greenland 1998, p. 906). This chapter shows that confound-
ing and noncollapsibility need not correspond even in linear functionals. For example,
the effect measure P �yjx���P �yjx�� (the risk difference) is not collapsible overZ in
Figure 6.3 (for almost every parameterization of the graph) and yet the effect measure
is unconfounded (for every parameterization).

The logical connection between confounding and collapsibility is formed through
the notion of stable no-confounding, as formulated in Definition 6.4.2 and Theorem
6.4.4. Because, any violation of collapsibility means violation of �U�� and �U�� in
Definition 6.2.2, it also implies (by Theorem 6.4.4) violation of stable unbiasedness
(or stable no-confounding). Thus we can state the following corollary.

Corollary 6.5.2 (Stable No-Confounding Implies Collapsibility)
Let Z be any variable that is not affected by X and that may possibly affect Y . Let
g	P �x� y�
 be any linear functional that measures the association between X and Y . If
g is not collapsible on Z, then X and Y are not stably unconfounded.

This corollary provides a rationale for the widespread practice of testing confounded-
ness by the change-in-parameter method, that is, labeling a variable Z a confounder
whenever the “crude” measure of association, g	P �x� y�
, is not equal to the Z-specific
measures of association averaged over the levels of Z (Breslow and Day 1980; Klein-
baum et al. 1982; Yanagawa 1984; Grayson 1987). Theorem 6.4.4 suggests that the
intuitions responsible for this practice were shaped by a quest for a stable condition of
no-confounding, not merely an incidental one. Moreover, condition AZ in Theorem
6.4.4 justifies a requirement made by some authors that a confounder must be a causal
determinant of, and not merely associated with, the outcome variable Y .

6.5.2 Confounding versus Confounders

The focus of our discussion in this chapter has been the phenomenon of confounding,
which we equated with that of effect bias (Definition 6.2.1). Much of the literature on
this topic has been concerned with the presence or absence of confounders, presuming
that some variables possess the capacity to confound and some do not. This notion may
be misleading if interpreted literally, and caution should be exercised before we label a
variable as a confounder.

Rothman and Greenland (1998, p. 120), for example, offer this definition: “The
extraneous factors responsible for difference in disease frequency between the exposed
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and unexposed are called confounders” they go on to state that: “In general, a con-
founder must be associated with both the exposure under study and the disease under
study to be confounding” (p. 121). Rothman and Greenland qualify their statement
with “In general,” and for good reason: We have seen in (in the two-coin example of
Section 6.3.1) that each individual variable in a problem can be unassociated with both
the exposure (X) and the disease (Y ) under study and still the effect of X on Y re-
mains confounded. A similar situation can also be seen in the linear model depicted
in Figure 6.5. Although Z is clearly a confounder for the effect of X on Y and must

Y
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X

Figure 6.5: Z may be unassociated with Y and still be a confounder.

therefore be controlled, the association between Z and Y may actually vanish (at each
level of X) and the association between Z and X may vanish as well. This can occur
if the indirect association mediated by the path Z �� A �� Y happens to cancel the
direct association carried by the arrow Z �� Y . This cancellation does not imply the
absence of confounding, because the path X �� E �� Z �� Y is unblocked while
X �� E �� Z �� A �� Y is blocked. Thus, Z is a confounder that is associated
neither with the exposure �X� nor with the disease �Y �.

The intuition behind Rothman and Greenland’s statement just quoted can be ex-
plicated formally through the notion of stability: a variable that is stably unassociated
with either X or Y can safely be excluded from adjustment. Alternatively, Rothman
and Greenland’s statement can be supported (without invoking stability) by using the
notion of minimal sufficient set (Section 3.3)—a minimal set of variables for which
adjustment will remove confounding bias. It can be shown (see the end of this section)
that each such sufficient set S, taken as a unit, must indeed be associated withX and be
conditionally associated with Y , given X . Thus, Rothman and Greenland’s condition
is valid for minimal sufficient sets but not for the individual variables in a problem.

The practical ramifications of this condition are as follows. If we are given a set S of
variables that is claimed to be minimally sufficient (for removing bias by adjustment),
then that claim can be given a necessary statistical test: S as a compound variable
must be associated both with X and with Y (given X). In Figure 6.5, for example,
the minimal sufficient sets are S� � fA�Zg and S� � fE�Zg; both must satisfy the
condition stated.

Note that, although this test can be used for screening sets claimed to be minimally
sufficient, it does not constitute a test for detecting confounding. Even if we find a set S
in a problem that is associated with both X and Y , we are still unable to conclude that
X and Y are confounded. Our finding merely qualifies S as a candidate for minimally
sufficient status in case confounding exists, but we cannot rule out the possibility that
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the problem is unconfounded to start with. (The sets S � fE�Ag or S � fZg in Fig-
ure 6.1 illustrate this point.) Observing a discrepancy between adjusted and unadjusted
associations (between X and Y ) does not help us either, because (recalling our dis-
cussion of collapsibility) we do not know which—the preadjustment or postadjustment
association—is unbiased (see Figure 6.4).

Proof of Necessity

To prove that �U�� and �U�� must be violated whenever Z stands for a minimally suf-
ficient set S, consider the case where X has no effect on Y . In this case, confounding
amounts to a nonvanishing association between X and Y . A well-known property
of conditional independence, called contraction (Section 1.1.5), states that violation
of �U��, X��S, together with sufficiency, X��Y jS, implies violation of minimality,
X��Y :

X��S �X��Y jS � X��Y�

Likewise, another property of conditional independence, called intersection, states that
violation of �U��, S��Y jX , together with sufficiency,X��Y jS, also implies violation
of minimality, X��Y .

S��Y jX �X��Y jS � X��Y�

Thus, both �U�� and �U�� must be violated by any minimally sufficient set S (thus
replacing Z in Definition 6.2.2).

Note, however, that intersection holds only for strictly positive probability distri-
butions, which means that the Rothman-Greenland condition may be violated if deter-
ministic relationships hold among some variables in a problem. This can be seen from
a simple example in which both X and Y stand in a one-to-one functional relationship
to a third variable, Z. Clearly, Z is a minimally sufficient set yet is not associated with
Y given X ; once we know the value of X , the probability of Y is determined, and
would no longer change with learning the value of Z.

6.5.3 Exchangeability versus Structural Analysis of Confounding

Students of epidemiology complain bitterly about the confusing way in which the fun-
damental concept of confounding has been treated in the literature. A few authors have
acknowledged the confusion (e.g. Greenland and Robins 1986; Wickramaratne and
Holford 1987; Weinberg 1993)) and have suggested new ways of looking at the prob-
lem that might lead to more systematic analysis. Greenland and Robins (GR), in par-
ticular, have recognized the same basic principles and results that we have expounded
here in Sections 6.2 and 6.3. Their analysis represents one of the few bright spots in
the vast literature on confounding in that it treats confounding as an unknown causal
quantity that is not directly measurable from observed data. They further acknowledge
(as do Miettinen and Cook 1981) that the presence or absence of confounding should
not be equated with absence or presence of collapsibility and that confounding should
not be regarded as a parameter-dependent phenomenon.
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However, the structural analysis presented in this chapter differs in a fundamental
way from that of GR, who have pursued an approach based on judgment of “exchange-
ability.” In Section 6.1, we have encountered a related notion of exchangeability, one
with which Lindley and Novick (1981) attempted to view Simpson’s paradox; GR’s
idea of exchangeability is more concrete and more clearly applicable. Conceptually,
the connection between confounding and exchangeability is as follows. If we under-
take to assess the effect of some treatment, we ought to make sure that any response
differences between the treated and the untreated group is due to the treatment itself
and not to some intrinsic differences between the groups that are unrelated to the treat-
ment. In other words, the two groups must resemble each other in all characteristics
that have bearing on the response variable. In principle, we could have ended the def-
inition of confounding at this point, declaring simply that the effect of treatment is
unconfounded if the treated and untreated groups resemble each other in all relevant
features. This definition, however, is too verbal in the sense that it is highly sensitive
to interpretation of the terms “resemblance” and “relevance.” To make it less informal,
GR used De Finetti’s twist of hypothetical permutation; instead of judging whether two
groups are similar, the investigator is instructed to imagine a hypothetical exchange of
the two groups (the treated group becomes untreated, and vice versa) and then to judge
whether the observed data under the swap would be distinguishable from the actual
data.

One can justifiably ask what has been gained by this mental exercise, relative to
judging directly if the two groups are effectively identical. The gain is twofold. First,
people are quite good in envisioning dynamic processes and can simulate the outcome
of this swapping scenario from basic understanding of the processes that govern the re-
sponse to treatment and the factors that affect the choice of treatment. Second, moving
from judgment about resemblance to judgment about probabilities permits us to cast
those judgments in probabilistic notation and hence to invite the power and respectabil-
ity of probability calculus.

Greenland and Robins made an important first step toward this formalization by
bringing notation closer to where judgment originates—the human understanding of
causal processes. The structural approach pursued in this book takes the next, natural
step: formalizing the causal processes themselves.

Let A and B stand (respectively) for the treated and untreated groups, and let
PA��y� and PA��y� stand (respectively) for the response distribution of group A un-
der two hypothetical conditions, treatment and no treatment.24 If our interest lies in
some parameter 	 of the response distribution, we denote by 	A� and 	A� the values
of that parameter in the corresponding distribution PA��y� and PA��y�, with 	B� and
	B� defined similarly for group B. In actuality, we measure the pair �	A�� 	B��; af-
ter the hypothetical swap, we would measure �	B�� 	A��. We define the groups to be
exchangeable relative to parameter 	 if the two pairs are indistinguishable, that is, if

�	A�� 	B�� � �	B�� 	A���

In particular, if we define the causal effect by the difference CE � 	A� � 	A�, then
exchangeability permits us to replace 	A� with 	B� and so obtain CE � 	A� � 	B�,

24In do��� notation, we would write PA��y� � PA�yjdo�X � ���.
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which is measurable because both quantities are observed. Greenland and Robins thus
declare the causal effect CE to be unconfounded if 	A� � 	B�.

If we compare this definition to that of (6.10), P �yjdo�x�� � P �yjx�, we find that
the two coincide if we rewrite the latter as 		P �yjdo�x��
 � 		P �yjx�
, where 	 is
the parameter of interest in the response distribution. However, the major difference
between the structural and the GR approaches lies in the level of analysis. Structural
modeling extends the formalization of confounding in two important directions. First,
(6.10) is not submitted to direct human judgment but is derived mathematically from
more elementary judgments concerning causal processes.25 Second, the input judg-
ments needed for the structural model are both qualitative and stable.

A simple example will illustrate the benefits of these features. Consider the follow-
ing statement (Greenland 1998):

�Q�� “if the effect measure is the difference or ratio of response proportions,
then the above phenomenon—noncollapsibility without confounding—
cannot occur, nor can confounding occur without noncollapsibility.”

We have seen in this chapter that statement �Q�� should be qualified in several
ways and that, in general, noncollapsibility and confounding are two distinct notions—
neither implying the other, regardless of the effect measure (Section 6.5.1). However,
the question we wish to discuss here is methodological: What formalism would be
appropriate for validating, refuting, or qualifying statements of this sort? Clearly, since
�Q�� makes a general claim about all instances, one counterexample would suffice
to refute its general validity. But how do we construct such a counterexample? More
generally, how do we construct examples that embody properties of confounding, effect
bias, causal effects, experimental versus nonexperimental data, counterfactuals, and
other causality-based concepts?

In probability theory, if we wish to refute a general statement about parameters and
their relationship we need only present one density function f for which that relation-
ship fails to hold. In propositional logic, in order to show that a sentence is false, we
need only present one truth table T that satisfies the premises and violates the con-
clusions. What, then, is the mathematical object that should replace f or T when we
wish to refute causal claims like statement �Q��? The corresponding object used in the
exchangeability framework of Greenland and Robins is a counterfactual contingency
table (see e.g. Greenland 1999b, p. 905, or Figure 1.7 in Section 1.4.4). For instance,
to illustrate confounding, we need two such tables: one describing the hypothetical re-
sponse of the treated group A to both treatment and nontreatment, and one describing
the hypothetical response of the untreated groupB to both treatment and non-treatment.
If the tables show that the parameter 	A�, computed from the hypothetical response of
the treated group to no treatment, differs from 	B�, computed from the actual response
of the untreated group, then we have confounding on our hands.

Tables of this type can easily be constructed for simple problems involving one
treatment and one response variable, but they become a nightmare when several covari-
ates are involved or when we wish to impose certain constraints on those covariates.

25Recall that the do��� operator is defined mathematically in terms of equation deletion in structural equa-
tion models; consequently, the verification of the nonconfounding condition P �yjdo�x�� � P �yjx� in a
given model is not a matter of judgment but a subject of mathematical analysis.
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For example, we may wish to incorporate the standard assumption that a covariate Z
does not lie on the causal pathway between treatment and response, or thatZ has causal
influence on Y , but such assumptions cannot conveniently be expressed in counterfac-
tual contingency tables. As a result, the author of the claim to be refuted could always
argue that the tables used in the counterexample may be inconsistent with the agreed
assumptions.26

Such difficulties do not plague the structural representation of confounding. In
this formalism, the appropriate object for exemplifying or refuting causal statements
is a “causal model,” as defined in Chapter 3 and used throughout this book. Here,
hypothetical responses (	A� and 	B�) and contingency tables are not the primitive
quantities but rather are derivable from a set of equations that already embody the as-
sumptions we wish to respect. Every parameterization of a structural model implies
(using the do��� operator) a specific set of counterfactual contingency tables that satis-
fies the input assumptions and exhibits the statistical properties displayed in the graph.
For example, any parameterization of the graph in Figure 6.3 generates a set of coun-
terfactual contingency tables that already embodies the assumptions that Z is not on
the causal pathway between X and Y and that Z has no causal effect on Y , and almost
every such parameterization will generate a counterexample to claim �Q��. Moreover,
we can also disprove �Q�� by a casual inspection of the diagram and without generat-
ing numerical counterexamples. In Figure 6.3, for example, shows vividly that the risk
difference P �yjx��� P �yjx�� is not collapsible on Z and, simultaneously, that X and
Y are (stably) unconfounded.

The difference between the two formulations is even more pronounced when we
come to substantiate, not refute, generic claims about confounding. Here it is not
enough to present a single contingency table; instead, we must demonstrate the valid-
ity of the claim for all tables that can possibly be constructed in compliance with the
input assumptions. This task, as the reader surely realizes, is a hopeless exercise within
the framework of contingency tables; it calls for a formalism in which assumptions can
be stated succinctly and in which conclusions can be deduced by mathematical deriva-
tions. The structural semantics offers such formalism, as demonstrated by the many
generic claims proven in this book (examples include Theorem 6.4.4 and Corollary
6.5.2).

As much as I admire the rigor introduced by Greenland and Robins’s analysis
through the framework of exchangeability, I am thoroughly convinced that the opac-
ity and inflexibility of counterfactual contingency tables are largely responsible for the
slow acceptance of GR framework among epidemiologists and, as a byproduct, for
the lingering confusion that surrounds confounding in the statistical literature at large.
I am likewise convinced that formulating claims and assumptions in the language of
structural models will make the mathematical analysis of causation accessible to rank-
and-file researchers and thus lead eventually to a total and natural disconfounding of
confounding.

26Readers who attempt to construct a counterexample to statement �Q�� using counterfactual contingency
tables will certainly appreciate this difficulty.




