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Figure 6.4: Z is associated with both X and Y , yet the effect of X on Y is not con-
founded (when r � ���).

where cov�x� �� � �. Thus, whenever the equality r � ��� holds, the regression
coefficient of rY X � � � r � �� is an unbiased estimate of �, meaning that the
effect of X on Y is unconfounded (no adjustment is necessary). Yet the associational
conditions �U�� and �U�� are both violated by the variable Z� Z is associated with X
(if � �� �) and conditionally associated with Y , given X (except for special values of
� for which �yz�x � �).

This example demonstrates that the condition of unbiasedness (Definition 6.2.1)
does not imply the modified criterion of Definition 6.3.2. The associational criterion
might falsely classify some unconfounded situations as confounded and, worse yet,
adjusting for the false confounder (Z in our example) will introduce bias into the effect
estimate.15

6.4 Stable versus Incidental Unbiasedness

6.4.1 Motivation

The failure of the associational criterion in the previous example calls for a reexami-
nation of the notion of confounding and unbiasedness as defined in (6.10). The reason
that X and Y were classified as unconfounded in Example 6.3.3 was that, by setting
r � ���, we were able to make the spurious association represented by r cancel the
one mediated by Z. In practice, such perfect cancelation would be an incidental event
specific to a peculiar combination of study conditions, and it would not persist when
the parameters of the problem (i.e., �� �, and r) undergo slight changes—say, when
the study is repeated in a different location or at a different time. In contrast, the con-
dition of no-confounding found in Example 6.3.1 does not exhibit such volatility. In
this example, the unbiasedness expressed in (6.10) would continue to hold regardless
of the strength of connection between education and exposure and regardless on how
education and age influence the type of car that a patient owns. We call this type of
unbiasedness stable, since it is robust to change in parameters and remains intact as
long as the configuration of causal connections in the model remains the same.

15Note that the Stone-Robins modifications of Definition 6.3.2 would also fail in this example, unless we
can measure the factors responsible for the correlation between �� and ��.
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In light of this distinction between stable and incidental unbiasedness, we need to
reexamine whether we should regard a criterion as inadequate if it misclassifies (as
confounded) cases that are rendered unconfounded by mere incidental cancelation and,
more fundamentally, whether we should insist on including such peculiar cases in the
definition of unbiasedness (given the precarious conditions under which (6.10) would
be satisfied in these cases). Although answers to these questions are partly a matter of
choice, there is ample evidence that our intuition regarding confounding is driven by
considerations of stable unbiasedness, not merely incidental ones. How else can we
explain why generations of epidemiologists and biostatisticians would advocate con-
founding criteria that fail in cases involving incidental cancelation? On the pragmatic
side, failing to detect situations of incidental unbiasedness should not introduce ap-
preciable error in observational studies because those situations are short-lived and are
likely to be refuted by subsequent studies, under slightly different conditions.16

Assuming that we are prepared to classify as unbiased only cases in which un-
biasedness remains robust to changes in parameters, two questions remain: (1) How
can we give this new notion of “stable unbiasedness” a formal, nonparametric formu-
lation? (2) Are practical statistical criteria available for testing stable unbiasedness?
Both questions can be answered using structural models.

Chapter 3 describes a graphical criterion, called the “back-door criterion,” for iden-
tifying conditions of unbiasedness in a causal diagram.17 In the simple case of no
adjustment (for measured covariates), the criterion states that X and Y are uncon-
founded if every path between X and Y that contains an arrow pointing into X must
also contain a pair of arrows pointing head-to-head (as in Figure 6.3); this criterion is
valid whenever the missing links in the diagram represent absence of causal connec-
tions among the corresponding variables. Because the causal assumptions embedded in
the missing links are so explicit, the back-door criterion has two remarkable features.
First, no statistical information is needed; the topology of the diagram suffices for reli-
ably determining whether an effect is unconfounded (in the sense of Definition 6.2.1)
and whether an adjustment for a set of variables is sufficient for removing confounding
when one exists. Second, any model that meets the back-door criterion would in fact
satisfy (6.10) for an infinite class of models (or situations), each generated by assigning
different parameters to the causal connections in the diagram.

To illustrate, consider the diagram depicted in Figure 6.3. The back-door criterion
will identify the pair �X�Y � as unconfounded, because the only path ending with an
arrow into X is the one traversing �X�E�Z�A� Y �, and this path contains two arrows
pointing head-to-head at Z. Moreover, since the criterion is based only on graphical
relationships, it is clear that �X�Y � will continue to be classified as unconfounded
regardless of the strength or type of causal relationships that are represented by the
arrows in the diagram. In contrast, consider Figure 6.4 in Example 6.3.3, where two
paths end with arrows into X . Since none of these paths contains head-to-head arrows,
the back-door criterion will fail to classify the effect of X on Y as unconfounded,
acknowledging that an equality r � ��� (if it prevails) would not represent a stable

16As we have seen in Example 6.3.3, any statistical test capable of recognizing such cases would require
measurement of all variables in T .

17A gentle introduction to applications of the back-door criterion in epidemiology can be found in Green-
land et al. (1999a).
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case of unbiasedness.
The vulnerability of the back-door criterion to causal assumptions can be demon-

strated in the context of Figure 6.3. Assume the investigator suspects that variable Z
(car type) has some influence on the outcome variable Y . This would amount to adding
an arrow fromZ to Y in the diagram, classifying the situation as confounded, and sug-
gesting an adjustment for E (or fA�Zg). Yet no adjustment is necessary if, owing to
the specific experimental conditions in the study, Z has in fact no influence on Y . It is
true that the adjustment suggested by the back-door criterion would introduce no bias,
but such adjustment could be costly if it calls for superfluous measurements in a no-
confounding situation.18 The added cost is justified in light of (i) the causal information
at hand (i.e., that Z may potentially influence Y ) and (ii) insistence on ensuring stable
unbiasedness—that is, avoiding bias in all situations compatible with the information
at hand.

6.4.2 Formal Definitions

To formally distinguish between stable and incidental unbiasedness, we use the fol-
lowing general definition.

Definition 6.4.1 (Stable Unbiasedness)
Let A be a set of assumptions �or restrictions� on the data-generating process, and let
CA be a class of causal models satisfying A. The effect estimate of X on Y is said to
be stably unbiased given A if P �yjdo�x�� � P �yjx� holds in every model M in CA.
Correspondingly, we say that the pair �X�Y � is stably unconfounded given A.

The assumptions commonly used to specify causal models can be either parametric or
topological. For example, the structural equation models used in the social sciences
and economics are usually restricted by the assumptions of linearity and normality. In
this case, CA would consist of all models created by assigning different values to the
unspecified parameters in the equations and in the covariance matrix of the error terms.
Weaker, nonparametric assumptions emerge when we specify merely the topological
structure of the causal diagram but let the error distributions and the functional form
of the equations remain undetermined. We now explore the statistical ramifications of
these nonparametric assumptions.

Definition 6.4.2 Structurally Stable No-Confounding)
Let AD be the set of assumptions embedded in a causal diagram D. We say that X
and Y are stably unconfounded given AD if P �yjdo�x�� � P �yjx� holds in every
parameterization of D. By “parameterization” we mean an assignment of functions
to the links of the diagram and prior probabilities to the background variables in the
diagram.

18On the surface, it appears as though the Stone-Robins criterion would correctly recognize the absence
of confounding in this situation, since it is based on associations that prevail in the probability distribution
that actually generates the data (according to which fE�Zg should be independent of Y given fA�Xg).
However, these associations are of no help in deciding whether certain measurements can be avoided; such
decisions must be made prior to gathering the data and must rely therefore on subjective assumptions about
the disappearance of conditional associations. Such assumptions are normally supported by causal, not
associational, knowledge (see Section 1.3).
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Explicit interpretation of the assumptions embedded in a causal diagram are given in
Chapters 3 and 5. Put succinctly, if D is the diagram associated with the causal model,
then:

1. every missing arrow (between, say X and Y ) represents the assumption that X
has no effect on Y once we intervene and hold the parents of Y fixed;

2. every missing bidirected link between X and Y represents the assumption that
there are no common causes for X and Y , except those shown in D.

Whenever the diagram D is acyclic, the back-door criterion provides a necessary and
sufficient test for stable no-confounding, given AD. In the simple case of no adjust-
ment for covariates, the criterion reduces to the nonexistence of a common ancestor,
observed or latent, of X and Y .19 Thus, we have our next theorem.

Theorem 6.4.3 (Common-Cause Principle)
Let AD be the set of assumptions embedded in an acyclic causal diagramD. Variables
X and Y are stably unconfounded given AD if and only if X and Y have no common
ancestor in D.

Proof
The “if” part follows from the validity of the back-door criterion (Theorem 3.3.2). The
“only if” part requires the construction of a specific model in which (6.10) is violated
whenever X and Y have a common ancestor in D. This is easily done using linear
models and Wright’s rules for path coefficients. �

Theorem 6.4.3 provides a necessary and sufficient condition for stable no-confounding
without invoking statistical data, since it relies entirely on the information embedded
in the diagram. Of course, the diagram itself has statistical implications that can be
tested (Sections 1.2.3 and 5.2.1), but those tests do not specify the diagram uniquely
(see Chapter 2 and Section 5.2.3).

Suppose, however, that we do not possess all the information required for construct-
ing a causal diagram and instead know merely for each variable Z whether it is safe to
assume that Z has no effect on Y and whether X has no effect on Z. The question is
now whether this more modest information, together with statistical data, is sufficient
to qualify or disqualify a pair �X�Y � as stably unconfounded. The answer is positive.

6.4.3 Operational Test for Stable No-Confounding

Theorem 6.4.4 (Criterion for Stable No-Confounding)
Let AZ denote the assumptions that (i) the data are generated by some �unspecified�
acyclic modelM and (ii)Z is a variable inM that is unaffected byX but may possibly

19The colloquial term “common ancestors” should exclude nodes that have no other connection to Y

except through X (e..g., node E in Figure 6.3) and include latent nodes for correlated errors. In the diagram
of Figure 6.4, for example, X and Y are understood to have two common ancestors; the first is Z and the
second is the (implicit) latent variable responsible for the double-arrowed arc between X and Y (i.e., the
correlation between �� and ��).
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affect Y .20 If both of the associational criteria �U�� and �U�� of Definition 6.2.2 are
violated, then �X�Y � are not stably unconfounded given AZ .

Proof
WheneverX and Y are stably unconfounded, Theorem 6.4.3 rules out the existence of
a common ancestor of X and Y in the diagram associated with the underlying model.
The absence of a common ancestor, in turn, implies the satisfaction of either �U�� or
�U�� wheneverZ satisfies AZ . This is a consequence of the d-separation rule (Section
1.2.3) for reading the conditional independence relationships entailed by a diagram.21

�

Theorem 6.4.4 implies that the traditional associational criteria �U�� and �U�� could be
used in a simple operational test for stable no-confounding, a test that does not require
us to know the causal structure of the variables in the domain or even to enumerate
the set of relevant variables. Finding just any variable Z that satisfies AZ and violates
�U�� and �U�� permits us to disqualify �X�Y � as stably unconfounded (though �X�Y �
may be incidentally unconfounded in the particular experimental conditions prevailing
in the study).

Theorem 6.4.4 communicates a formal connection between statistical associations
and confounding that is not based on the closed-world assumption.22 It is remarkable
that the connection can be formed under such weak set of added assumptions: the
qualitative assumption that a variable may have influence on Y and is not affected by
X suffices to produce a necessary statistical test for stable no-confounding.

6.5 Confounding, Collapsibility, and Exchangeability

6.5.1 Confounding and Collapsibility

Theorem 6.4.4 also establishes a formal connection between confounding and
“collapsibility”—a criterion under which a measure of association remains invariant
to the omission of certain variables.

Definition 6.5.1 (Collapsibility)
Let g	P �x� y�
 be any functional23 that measures the association between Y and X in
the joint distribution P �x� y�. We say that g is collapsible on a variable Z if

Ezg	P �x� yjz�
 � g	P �x� y�
�

20By “possibly affecting Y ” we mean: AZ does not contain the assumption that Z does not affect Y . In
other words, the diagram associated with M must contain a directed path from Z to Y .

21It also follows from Theorem 7(a) in Robins (1997).
22I am not aware of another such connection in the literature.
23A functional is an assignment of a real number to any function from a given set of functions. For

example, the mean E�x� �
P
x
xP �x� is a functional, since it assigns a real number E�X� to each

probability function P �x�.




