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is randomized. We recall that this probability can be calculated from a causal model
M either directly, by simulating the intervention do(X = z), or (if P(z,s) > 0) via
the adjustment formula (equation (3.19))

P(y|do(z)) =) P(ylz,s)P(s),

where S stands for any set of variables, observed as well as unobserved, that satisfy
the back-door criterion (Definition 3.3.1). Equivalently, P(y|do(z)) can be written
P(Y(z) = y), where Y (z) is the potential-outcome variable as defined in (3.51) or in
Rubin (1974). We bear in mind that the operator do(-), and hence also effect estimates
and confounding, must be defined relative to a specific causal or data-generating model
M because these notions are not statistical in character and cannot be defined in terms
of joint distributions.

Definition 6.2.2 (No-Confounding; Associational Criterion)

Let 7' be the set of variables in a problem that are not affected by X. We say that X
and Y arenot confounded in the presence of T' if each member Z of T' satisfies at least
one of the following conditions:

(Uy) Zisnotassociated with X (i.e, P(z|z) = P(x));
(Us) Zisnotassociated with Y7, conditional on X (i.e., P(y|z,z) = P(y|x)).

Conversely, X and Y are said to be confounded if any member Z of T' violates both
(Ul) and (Uz)

Note that the associational criterion in Definition 6.2.2 is not purely statistical in that
it invokes the predicate “affected by” which is not discernible from probabilities but
rests instead on causal information. This exclusion of variables that are affected by
treatments (or exposures) is unavoidable and has long been recognized as a necessary
judgmental input to every analysis of treatment effect in observational and experimental
studies alike (Cox 1958, p. 48; Greenland and Neutra 1980). We shall assume through-
out that investigators possess the knowledge required for distinguishing variables that
are affected by the treatment X from those that are not. We shall then explore what
additional causal knowledge is needed, if any, for establishing a test of confounding.

6.3 How the Associational Criterion Fails

We will say that a criterion for no-confounding is sufficient if it never errs when it clas-
sifies a case as no-confounding and necessary if it never errs when it classifies a case
as confounding. There are several ways that the associational criterion of Definition
6.2.2 fails to match the causal criterion of Definition 6.2.1. Failures with respect to
sufficiency and necessity will be addressed in turn.
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6.3.1 Failing Sufficiency via Marginality

The criterion in Definition 6.2.2 is based on testing each element of 7" individually. A
situation may well be present where two factors, Z; and Z,, jointly confound X and Y
(in the sense of Definition 6.2.2) and yet each factor separately satisfies (U;) or (Us).
This may occur because statistical independence between X and individual members
of T does not guarantee the independence of X and groups of variables taken from
T. For example, let Z; and Z, be the outcomes of two independent fair coins, each
affecting both X and Y. Assume that X occurs when Z; and Z, are equal and that
Y occurs whenever Z; and Z, are unequal. Clearly, X and Y are highly confounded
by the pair T' = (Z;, Z,); they are, in fact, perfectly correlated (negatively) without
causally affecting each other. Yet, neither Z; nor Z, is associated with either X orY;
discovering the outcome of any one coin does not change the probability of X (or of
Y) from its initial value of 1.

An attempt to remedy Definition 6.2.2 by replacing Z with arbitrary subsets of 7" in
(Uy) and (U2) would be much too restrictive, because the set of all causes of X and Y,
when treated as a group, would almost surely fail the tests of (U; ) and (U-). In Section
6.5.2 we identify the subsets that should replace Z in (U;) and (Us) if sufficiency is to
be restored.

6.3.2 Failing Sufficiency via Closed-World Assumptions

By “closed-world” assumption | mean the assumption that our model accounts for all
relevant variables and, specifically to Definition 6.2.2, that the set 7" of variables con-
sists of all potential confounders in a problem. In order to correctly classify every case
of no-confounding, the associational criterion requires that condition (U;) or (Us) be
satisfied for every potential confounder Z in a problem. In practice, since investiga-
tors can never be sure whether a given set T' of potential confounders is complete, the
associational criterion will falsely classify certain confounded cases as unconfounded.

This limitation actually implies that any statistical test whatsoever is destined to be
insufficient. Since practical tests always involve proper subsets of 7', the most we can
hope to achieve by statistical means is necessity—that is, a test that would correctly
label cases as confounding when criteria such as (U;) and (Us) are violated by an
arbitrary subset of T'. This prospect, too, is not fulfilled by Definition 6.2.2, as we now
demonstrate.

6.3.3 Failing Necessity via Barren Proxies

Example 6.3.1 Imagine a situation where exposure (X) is influenced by a person’s
education (E), disease (V) is influenced by both exposure and age (A), and car type
(Z) is influenced by both age (A) and education (E). These relationships are shown
schematically in Figure 6.3.

The car-type variable () violates the two conditions in Definition 6.2.2 because:
(1) car typeisindicative of education and hence is associated with the exposure vari-
able; and (2) car type is indicative of age and hence is associated with the disease
among the exposed and the nonexposed. However, in this example the effect of X on Y
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& A X- exposure
Y- disease
Z Z = type of car owned by patient
E = education
A= age
X Y J

Figure 6.3: X and Y are not confounded,though Z is associated with both confounder

is not confounded; the type of car owned by a person has no effect on either exposure
or disease and is merely oneamong many irrel evant propertiesthat are associated with
both via intermediaries. The analysis of Chapter 3 establishes that, indeed, (6.10) is
satisfied in this model*? and that, moreover, adjustment for Z would generally yield a
biased result:

Y P(Y =y|X =2,2=2)P(Z =2) # P(Y =y|do(x)).

Thus we see that the traditional criterion based on statistical association fails to identify
an unconfounded effect and would tempt one to adjust for the wrong variable. This
failure occurs whenever we apply (U ) and (Us) to a variable Z that is a barren proxy—
that is, a variable that has no influence on X or Y but is a proxy for factors that do have
such influence.

Readers may not consider this failure to be too serious, because experienced epi-
demiologists would rarely regard a variable as confounder unless it is suspect of having
some influence on either X or Y. Nevertheless, adjustment for proxies is a prevailing
practice in epidemiology and should be done with great caution (Greenland and Neutra
1980; Weinberg 1993). To regiment this caution, the associational criterion must be
modified to exclude barren proxies from the test set T'. This yields the following modi-
fied criterion in which T consists only of variables that (causally) influence Y (possibly
through X).

Definition 6.3.2 (No-Confounding; Modified Associational Criterion)

Let T' be the set of variablesin a problemthat are not affected by X but may potentially
affect Y. We say that X and Y are unconfounded by the presence of 7' if and only if
every member Z of T satisfies either (Uy) or (Uz) of Definition 6.2.2.

Stone (1993) and Robins (1997) proposed alternative modifications of Definition 6.2.2
that avoid the problems created by barren proxies without requiring one to judge
whether a variable has an effect on Y. Instead of restricting the set T' to potential

12Because the (back-door) path X < E — Z + A — Y is blocked by the colliding arrows at Z (see
Definition 3.3.1).
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causes of Y, we let 7" remain the set of all variables unaffected by X ,'3 requiring
instead that 7" be composed of two disjoint subsets, T3 and T>, such that

(Uy) T is unassociated with X and
(Uy) Ts is unassociated with Y given X and 7.

In the model of Figure 6.3, for instance, conditions (U;) and (Us) are satisfied by the
choice Ty = A and T> = {Z, E'}, because (using the d-separation test) A is indepen-
dent of X, and E is independent of Y, given { X, A}.

This modification of the associational criterion further rectifies the problem asso-
ciated with marginality (see Section 6.3.1) because (U;) and (U;) treat T} and T as
compound variables. However, the modification falls short of restoring necessity. Be-
cause the set T' = (T3, T>) must include all variables unaffected by X (see note 13)
and because practical tests are limited to proper subsets of 7', we cannot conclude that
confounding is present solely upon the failure of (U5) and (U5 ), as specified in Sec-
tion 6.3.2. This criterion, too, is thus inadequate as a basis for practical detection of
confounding.

We now discuss another fundamental limitation on our ability to detect confounding
by statistical means.

6.3.4 Failing Necessity via Incidental Cancellations

Here we present a case that is devoid of barren proxies and in which the effect of X on
Y (i) is not confounded in the sense of (6.10) but (ii) is confounded according to the
modified associational criterion of Definition 6.3.2.

Example 6.3.3 Consider a causal model defined by the linear equations

r = az+e€, (6.11)

= fBr+vz+ e, (6.12)

where ¢; and e, are correlated unmeasured variables with cov(ey, e2) = r and where
Z is an exogenous variable that is uncorrelated with €; or e,. The diagram associated

with thismodel is depicted in Figure 6.4. The effect of X on Y is quantified by the path
coefficient 3, which gives the rate of change of E(Y'|do(z)) per unit changein z.14

It is not hard to show (assuming standardized variables) that the regression of Y on X
gives

y=@B+r+ay)z+e

13 Alternatively, T can be confined to any set S of variables sufficient for control of confounding:
P(y|do(z)) = > P(yla,s)P(s).
8

Again, however, we can never be sure if the measured variables in the model contain such a set, or which of
T"s subsets possess this property.
145ee Sections 3.5-3.6 or (5.24) in Section 5.4.1.



6.4. STABLE VERSUS INCIDENTAL UNBIASEDNESS 275

Z

Figure 6.4: Z is associated with both X and Y, yet the effect of X on Y is not con-
founded (when r = —ay).

where cov(z,e) = 0. Thus, whenever the equality » = —ay holds, the regression
coefficient of ryx = B + r + ay is an unbiased estimate of 3, meaning that the
effect of X on Y is unconfounded (no adjustment is necessary). Yet the associational
conditions (U;) and (Us) are both violated by the variable Z; Z is associated with X
(if @ # 0) and conditionally associated with Y, given X (except for special values of
~ for which p, .., = 0).

This example demonstrates that the condition of unbiasedness (Definition 6.2.1)
does not imply the modified criterion of Definition 6.3.2. The associational criterion
might falsely classify some unconfounded situations as confounded and, worse yet,
adjusting for the false confounder (Z in our example) will introduce bias into the effect
estimate.®

6.4 Stable versus Incidental Unbiasedness

6.4.1 Motivation

The failure of the associational criterion in the previous example calls for a reexami-
nation of the notion of confounding and unbiasedness as defined in (6.10). The reason
that X and Y were classified as unconfounded in Example 6.3.3 was that, by setting
r = —ary, we were able to make the spurious association represented by r cancel the
one mediated by Z. In practice, such perfect cancelation would be an incidental event
specific to a peculiar combination of study conditions, and it would not persist when
the parameters of the problem (i.e., a;, v, and ) undergo slight changes—say, when
the study is repeated in a different location or at a different time. In contrast, the con-
dition of no-confounding found in Example 6.3.1 does not exhibit such volatility. In
this example, the unbiasedness expressed in (6.10) would continue to hold regardless
of the strength of connection between education and exposure and regardless on how
education and age influence the type of car that a patient owns. We call this type of
unbiasedness stable, since it is robust to change in parameters and remains intact as
long as the configuration of causal connections in the model remains the same.

15Note that the Stone-Robins modifications of Definition 6.3.2 would also fail in this example, unless we
can measure the factors responsible for the correlation between ¢ and es.





