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6.2.1 Introduction

Confounding is a simple concept. If we undertake to estimate the effect8 of one vari-
able �X� on another �Y � by examining the statistical association between the two, we
ought to ensure that the association is not produced by factors other than the effect
under study. The presence of spurious association, due for example to the influence of
extraneous variables, is called confounding because it tends to confound our reading
and to bias our estimate of the effect studied. Conceptually, therefore, we can say that
X and Y are confounded when there is a third variable Z that influences both X and
Y ; such a variable is then called a confounder of X and Y .

As simple as this concept is, it has resisted formal treatment for decades, and for
good reason: The very notions of “effect” and “influence”—relative to which “spurious
association” must be defined—have resisted mathematical formulation. The empirical
definition of effect as an association that would prevail in a controlled randomized ex-
periment cannot easily be expressed in the standard language of probability theory,
because that theory deals with static conditions and does not permit us to predict, even
from a full specification of a population density function, what relationships would
prevail if conditions were to change—say, from observational to controlled studies.
Such predictions require extra information in the form of causal or counterfactual as-
sumptions which are not discernible from density functions (see Sections 1.3 and 1.4).
The do��� operator used in this book was devised specifically for distinguishing and
managing this extra information.

These difficulties notwithstanding, epidemiologists, biostatisticians, social scien-
tists and economists9 have made numerous attempts to define confounding in statisti-
cal terms, partly because statistical definitions—free of theoretical terms of “effect” or
“influence”—can be expressed in conventional mathematical form and partly because
such definitions may lead to practical tests of confounding and thereby alert investiga-
tors to possible bias and need for adjustment. These attempts have converged in the
following basic criterion.
Associational Criterion
Two variables X and Y are not confounded if and only if every variable Z that is not
affected by X is either:

�U�� unassociated with X or

�U�� unassociated with Y , conditional on X .

This criterion, with some variations and derivatives (often avoiding the “only if”
part), can be found in almost every epidemiology textbook (Schlesselman 1982; Roth-

8We will confine the use of the terms “effect,” “influence,” and “affect” to their causal interpretations; the
term “association” will be set aside for statistical dependencies.

9In econometrics, the difficulties have focused on the notion of “exogeneity” (Engle et al. 1983; Leamer
1985; Aldrich 1993) which stands essentially for “no confounding” (see Section 5.4.3).
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man 1986; Rothman and Greenland 1998) and in almost every article dealing with
confounding. In fact, the criterion has become so deeply entrenched in the literature
that authors (e.g. Gail 1986; Hauck et al. 1991; Becher 1992; Steyer et al. 1996) often
take it to be the definition of no-confounding, forgetting that ultimately confounding is
useful only so far as it tells us about effect bias.10

The purpose of this and the next section is to highlight several basic limitations
of the associational criterion and its derivatives. We will show that the associational
criterion neither ensures unbiased effect estimates nor follows from the requirement of
unbiasedness. After demonstrating, by examples, the absence of logical connections
between the statistical and the causal notions of confounding, we will define a stronger
notion of unbiasedness, called “stable” unbiasedness, relative to which a modified sta-
tistical criterion will be shown necessary and sufficient. The necessary part will then
yield a practical test for stable unbiasedness that, remarkably, does not require knowl-
edge of all potential confounders in a problem. Finally, we will argue that the prevailing
practice of substituting statistical criteria for the effect-based definition of confounding
is not entirely misguided, because stable unbiasedness is in fact (i) what investigators
have been (and perhaps should be) aiming to achieve and (ii) what statistical criteria
can test.

6.2.2 Causal and Associational Definitions

In order to facilitate the discussion, we shall first cast the causal and statistical defini-
tions of no-confounding in mathematical forms.11

Definition 6.2.1 (No-Confounding; Causal Definition)
Let M be a causal model of the data-generating process—that is, a formal description
of how the value of each observed variable is determined. Denote by P �yjdo�x�� the
probability of the response event Y � y under the hypothetical intervention X � x,
calculated according toM . We say that X and Y are not confounded inM if and only
if

P �yjdo�x�� � P �yjx� (6.10)

for all x and y in their respective domains, where P �yjx� is the conditional probability
generated by M .

For the purpose of our discussion here, we take this causal definition as the meaning of
the expression “no confounding.” The probabilityP �yjdo�x�� was defined in Chapter 3
(Definition 3.2.1, also abbreviatedP �yj�x�); it may also be interpreted as the conditional
probability P ��Y � yjX � x� corresponding to a controlled experiment in which X

10Hauck et al. (1991) dismiss the effect-based definition of confounding as “philosophic” and consider a
difference between two measures of association to be a “bias.” Grayson (1987) even goes so far as to skate
that the change-in-parameter method, a derivative of the associational criterion, is the only fundamental
definition of confounding (see Greenland et al. 1989 for critiques of Grayson’s position).

11For simplicity, we will limit our discussion to unadjusted confounding; extensions involving measure-
ment of auxiliary variables are straightforward and can be obtained from Section 3.3. We also use the
abbreviated expression “X and Y are not confounded,” though “the effect of X on Y is not confounded” is
more exact.
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is randomized. We recall that this probability can be calculated from a causal model
M either directly, by simulating the intervention do�X � x�, or (if P �x� s� � �) via
the adjustment formula (equation (3.19))

P �yjdo�x�� �
X

s

P �yjx� s�P �s��

where S stands for any set of variables, observed as well as unobserved, that satisfy
the back-door criterion (Definition 3.3.1). Equivalently, P �yjdo�x�� can be written
P �Y �x� � y�, where Y �x� is the potential-outcome variable as defined in (3.51) or in
Rubin (1974). We bear in mind that the operator do���, and hence also effect estimates
and confounding, must be defined relative to a specific causal or data-generating model
M because these notions are not statistical in character and cannot be defined in terms
of joint distributions.

Definition 6.2.2 (No-Confounding; Associational Criterion)
Let T be the set of variables in a problem that are not affected by X . We say that X
and Y are not confounded in the presence of T if each member Z of T satisfies at least
one of the following conditions:

�U�� Z is not associated with X �i.e., P �xjz� � P �x��;

�U�� Z is not associated with Y , conditional on X �i.e., P �yjz� x� � P �yjx��.

Conversely, X and Y are said to be confounded if any member Z of T violates both
�U�� and �U��.

Note that the associational criterion in Definition 6.2.2 is not purely statistical in that
it invokes the predicate “affected by” which is not discernible from probabilities but
rests instead on causal information. This exclusion of variables that are affected by
treatments (or exposures) is unavoidable and has long been recognized as a necessary
judgmental input to every analysis of treatment effect in observational and experimental
studies alike (Cox 1958, p. 48; Greenland and Neutra 1980). We shall assume through-
out that investigators possess the knowledge required for distinguishing variables that
are affected by the treatment X from those that are not. We shall then explore what
additional causal knowledge is needed, if any, for establishing a test of confounding.

6.3 How the Associational Criterion Fails

We will say that a criterion for no-confounding is sufficient if it never errs when it clas-
sifies a case as no-confounding and necessary if it never errs when it classifies a case
as confounding. There are several ways that the associational criterion of Definition
6.2.2 fails to match the causal criterion of Definition 6.2.1. Failures with respect to
sufficiency and necessity will be addressed in turn.




