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6.1 Simpson’s Paradox: An Anatomy

The reversal effect known as Simpson’s paradox has briefly been dis-
cussed twice in this book: first in connection with the covariate selection
problem (Section 3.3) and then in connection with the definition of di-
rect effects (Section 4.5.3). In this section we analyze the reasons why
the reversal effect has been (and still is) considered paradoxical and
why its resolution has been so late in coming.

6.1.1 A Tale of a Non-Paradox

Simpson’s paradox (Simpson 1951; Blyth 1972), first encountered by
Pearson in 1899 (Aldrich 1995), refers to the phenomenon whereby an
event C increases the probability of F in a given population p and, at
the same time, decreases the probability of £ in every subpopulation
of p. In other words, if F' and —F are two complementary properties
describing two subpopulations, we might well encounter the inequalities

P(E|C) > P(E|-C), (6.1)
P(E|C,F) < P(E|-C, F), (6.2)
P(E|C,~F) < P(E|-C,~F). (6.3)

Although such order reversal might not surprise students of probability,
it is paradoxical when given causal interpretation. For example, if we
associate C' (connoting cause) with taking a certain drug, E (connoting
effect) with recovery, and F' with being a female then—under the causal
interpretation of (6.2)—(6.3)—the drug seems to be harmful to both
males and females yet beneficial to the population as a whole (equation
(6.1)). Intuition deems such a result impossible, and correctly so.

The tables in Figure 6.1 represent Simpson’s reversal numerically.
We see that, overall, the recovery rate for patients receiving the drug
(C) at 50% exceeds that of the control (=C') at 40% and so the drug
treatment is apparently to be preferred. However, when we inspect
the separate tables for males and females, the recovery rate for the
untreated patients is 10% higher than that for the treated ones, for
males and females both.
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The explanation for Simpson’s paradox should be clear to readers
of this book, since we have taken great care in distinguishing seeing
from doing. The conditioning operator in probability calculus stands
for the evidential conditional “given that we see,” whereas the do(-)
operator was devised to represent the causal conditional “given that
we do.” Accordingly, the inequality

P(E|C) > P(E|-C)

is not a statement about C being a positive causal factor for E, properly
written

P(E|do(C)) > P(E|do(—C)),

but rather about C' being positive evidence for E, which may be due to
spurious confounding factors that cause both C' and E. In our example,

Combined EF -F Recovery Rate
(a) Drug (C) 20 20 40 50%
No Drug (=C) 16 24 40 40%
36 44 80
Males E -F Recovery Rate
(b) Drug (C) 18 12 30 60%
No-Drug (-C) 7 3 10 70%
25 15 40
Females F -F Recovery Rate
(c) Drug (C) 2 8 10 20%
No-Drug (-C) 9 21 30 30%
11 29 40

Figure 6.1: Recovery rates under treatment (C') and control (—C) for
males, females, and combined.

the drug appears beneficial overall because the males, who recover (re-
gardless of the drug) more often than the females, are also more likely
than the females to use the drug. Indeed, finding a drug-using patient
(C) of unknown gender, we would do well inferring that the patient is
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more likely to be a male and hence more likely to recover, in perfect
harmony with (6.1)—(6.3).

The standard method for dealing with potential confounders of this
kind is to “hold them fixed,”! namely, to condition the probabilities on
any factor that might cause both C' and E. In our example, if being a
male (—F) is perceived to be a cause for both recovery (E) and drug
usage (C), then the effect of the drug needs to be evaluated separately
for men and women (as in Egs. (6.2)—(6.3)) and averaged accordingly.
Thus, assuming F' is the only confounding factor, (6.2)—(6.3) properly
represent the efficacy of the drug in the respective populations while
(6.1) represents merely its evidential weight in the absence of gender
information, and the paradox dissolves.

6.1.2 A Tale of Statistical Agony

Thus far, we have described the paradox as it is understood, or should
be understood by modern students of causality (see e.g. Cartwright
1983;2 Holland and Rubin 1983; Greenland and Robins 1986; Pearl
1993b; Spirtes et al. 1993; Meek and Glymour 1994). Most statis-
ticians, however, are reluctant to entertain the idea that Simpson’s
paradox emerges from causal considerations. The general attitude is as
follows: The reversal is real and disturbing, because it actually shows
up in the numbers and may actually mislead statisticians into incor-
rect conclusions. If something is real then it cannot be causal, because
causality is a mental construct that is not well-defined. Thus, the para-
dox must be a statistical phenomenon that can be detected, understood,
and avoided using the tools of statistical analysis. The Encyclopedia
of Statistical Sciences, for example, warns us sternly of the dangers
lurking from Simpson’s paradox with no mention of the words “cause”

!The phrases “hold F fixed” or “control for F,” used by both philosophers (e.g.,
[Eells, 1991]) and statisticians (e.g., [Pratt and Schlaifer, 1988]), connote external
interventions and may, therefore, be misleading. In statistical analysis, all one can
do is to simulate “holding F' fixed” by considering cases with equal values of F,
namely, “conditioning” on F' and —F, an operation I will call “adjusting for F.”

2Cartwright states, though, that the third factor F should be “held fixed” if
and only if F' is causally relevant to E (p. 37); the correct (back-door) criterion is
somewhat more involved (see Definition 3.3.1).
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or “causality” (Agresti 1983). The Encyclopedia of Biostatistics (Dong
1998) and The Cambridge Dictionary of Statistics in Medical Sciences
(Everitt 1995) uphold the same conception.

I know of only two articles in the statistical literature that explic-
itly attribute the peculiarity of Simpson’s reversal to causal interpre-
tations. The first is Pearson et al. (1899), where the discovery of the
phenomenon? is enunciated in these terms:

To those who persist on looking upon all correlation as cause
and effect, the fact that correlation can be produced be-
tween two quite uncorrelated characters A and B by taking
an artificial mixture of the two closely allied races, must
come as rather a shock.

Influenced by Pearson’s life-long campaign, statisticians have re-
frained from causal talk whenever possible and, for over half a century,
the reversal phenomenon has been treated as a curious mathematical
property of 2 x 2 tables, stripped of its causal origin. Finally, Lindley
and Novick (1981) analyzed the problem from a new angle, and made
the second published connection to causality:

In the last paragraph the concept of a “cause” has been
introduced. One possibility would be to use the language
of causation, rather than that of exchangeability or identi-
fication of populations. We have not chosen to do this; nor
to discuss causation, because the concept, although widely
used, does not seem to be well-defined. (p. 51)

What is amazing about the history of Simpson’s reversal is that,
from Pearson et al. to Lindley and Novick, none of the many authors
who wrote on the subject dared ask why the phenomenon should war-
rant our attention and why it evokes surprise. After all, seeing proba-
bilities change magnitude upon conditionalization is commonplace, and
seeing such changes turn into sign reversal (by taking differences and
mixtures of those probabilities) is not uncommon either. Thus, if it

3Pearson et al. (1899) and Yule (1903) reported a weaker version of the paradox
in which (6.2)—(6.3) are satisfied with equality. The reversal was discovered later
by Cohen and Nagel (1934, p. 449).
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were not, for some misguided yet persistent illusion, what is so shocking
about inequalities reversing direction?

Pearson understood that the shock originates with distorted causal
interpretations, which he set out to correct through the prisms of sta-
tistical correlations and contingency tables (see the Epilogue following
Chapter 10). His disciples took him rather seriously, and some even as-
serted that causation is none but a species of correlation (Niles 1922).
In so denying any attention to causal intuition, researchers often had
no choice but to attribute Simpson’s reversal to some evil feature of the
data, one that ought to be avoided by scrupulous researchers. Dozens
of papers have been written since the 1950s on the statistical aspects of
Simpson’s reversal; some dealt with the magnitude of the effect (Blyth
1972; Zidek 1984), some established conditions for its disappearance
(Bishop et al. 1975; Whittemore 1978; Good and Mittal 1987; Wer-
muth 1987), and some even proposed remedies as drastic as replacing
P(E|C) with P(C|E) as a measure of treatment efficacy (Barigelli and
Scozzafava 1984)—the reversal had to be avoided at all cost.

A typical treatment of the topic can be found in the influential
book of Bishop, Fienberg, and Holland (1975). Bishop et al. (1975,
pp. 41-42) presented an example whereby an apparent association be-
tween amount of prenatal care and infant survival disappears when the
data are considered separately for each clinic participating in the study.
They concluded: “If we were to look only at this [the combined] table
we would erroneously conclude that survival was related [my italics] to
the amount of care received.” Ironically, survival was in fact related to
the amount of care received in the study considered. What Bishop et
al. meant to say is that, looking uncritically at the combined table, we
would erroneously conclude that survival was causally related to the
amount of care received. However, since causal vocabulary had to be
avoided in the 1970s, researchers like Bishop et al. were forced to use
statistical surrogates such as “related” or “associated” and so naturally
fell victim to the limitations of the language; statistical surrogates could
not express the causal relationships that researchers meant to convey.

Simpson’s paradox helps us to appreciate both the agony and the
achievement of this tormented generation of statisticians. Driven by
healthy causal intuition, yet culturally forbidden from admitting it and
mathematically disabled from expressing it, they managed nevertheless
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to extract meaning from dry tables and to make statistical methods the
standard in the empirical sciences. But the spice of Simpson’s paradox
turned out to be nonstatistical after all.

6.1.3 Causality versus Exchangeability

Lindley and Novick (1981) were the first to demonstrate the nonstatisti-
cal character of Simpson’s paradox—that there is no statistical criterion
that would warn the investigator against drawing the wrong conclusions
or would indicate which table represents the correct answer.

In the tradition of Bayesian decision theory, they first shifted atten-
tion to the practical side of the phenomenon and boldly asked: A new
patient comes in; do we use the drug or do we not? Equivalently: Which
table do we consult, the combined or the gender-specific? “The appar-
ent answer is,” confesses Novick (1983, p. 45), “that when we know that
the gender of the patient is male or when we know that it is female we
do not use the treatment, but if the gender is unknown we should use
the treatment! Obviously that conclusion is ridiculous.” Lindley and
Novick then go through lengthy informal discussion, concluding (as we
did in Section 6.1.1), that we should consult the gender-specific tables
and not use the drug.

The next step was to ask whether some additional statistical in-
formation could in general point us to the right table. This question
Lindley and Novick answered in the negative by showing that, with the
very same data, we sometimes should decide the opposite and consult
the combined table. They asked: Suppose we keep the same numbers
and merely change the story behind the data, imagining that F' stands
for some property that is affected by C—say, low blood pressure, as
shown in Figure 6.2(b).* By inspecting the diagram in Fig. 6.2(b), the
reader should immediately conclude that the combined table represents
the answer we want; we should not condition on F' because it resides
on the very causal pathway that we wish to evaluate. (Equivalently,
by comparing patients with the same posttreatment blood pressure, we

“The example used in Lindley and Novick (1981) was taken from agriculture,
and the causal relationship between C' and F' was not mentioned, but the structure
was the same as in Figure 6.2(b).



6.1. SIMPSON’S PARADOX: AN ANATOMY 273

Treatment Treatment Treatmeqt/ -~ ’f’
C F C F C ( F
Gender Blood N
pressure AN
_
Recovery E Recovery E Recovery E
€Y (b) (c)

Figure 6.2: Three causal models capable of generating the data in Fig-
ure 6.1. Model (a) dictates use of the gender-specific tables, whereas
(b) and (c) dictate use of the combined table.

mask the effect of one of the two pathways through which the drug
operates to bring about recovery.)

When two causal models generate the same statistical data (Figures
6.2(a) and (b) are observationally equivalent) and in one we decide to
use the drug yet in the other not to use it, it is obvious that our decision
is driven by causal and not by statistical considerations. Some readers
might suspect that temporal information is involved in the decision,
noting that gender is established before the treatment and blood pres-
sure afterwards. But this is not the case; Figure 6.2(c) shows that F'
may occur before or after C' and still the correct decision should remain
to consult the combined table (i.e., not to condition on F', as can be
seen from the back-door criterion).

We have just demonstrated by example what we already knew in
Section 6.1.1—mnamely, that every question related to the effect of ac-
tions must be decided by causal considerations; statistical information
alone is insufficient. Moreover, the question of choosing the correct
table on which to base our decision is a special case of the covariate
selection problem that was given a general solution in Section 3.3 using
causal calculus. Lindley and Novick, on the other hand, stopped short
of this realization and attributed the difference between the two exam-
ples to a meta-statistical® concept called ezchangeability, first proposed

5By “meta-statistical” I mean a criterion—not itself discernible—from statistical
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by De Finetti (1974).

Exchangeability concerns the question of choosing an appropriate
reference class, or subpopulation, for making predictions about an indi-
vidual unit. Insurance companies, for example, would like to estimate
the life expectancy of a new customer using mortality records of a
class of persons most closely resembling the characteristics of the new
customer. De Finetti gave this question a formal twist by translating
judgment about resemblance into judgment of probabilities. According
to this criterion, an (n + 1)th unit is ezchangeable in property X, rel-
ative to a group of n other units, if the joint probability distribution
P(Xy,...,X,, X,41) is invariant under permutation. To De Finetti,
the question of how such invariance can be established was a psycho-
logical question of secondary importance; the main point was to cast
the target of this psychological exercise in the form of mathematical
expression so that it could be communicated and discussed in scientific
terms. It is this concept that Lindley and Novick tried to introduce
into Simpson’s reversal phenomenon and with which they hoped to
show that the appropriate subpopulations in the F' = female example
are the male and female, whereas, in the F' = blood pressure example,
the whole population of patients should be considered.

Readers of Lindley and Novick’s article would quickly realize that,
although these authors decorate their discussion with talks of exchange-
ability and subpopulations, what they actually do is present informal
cause-effect arguments for their intuitive conclusions. Meek and Gly-
mour (1994) keenly observed that the only comprehensible part of Lind-
ley and Novick’s discussion of exchangeability is the one based on causal
considerations, which suggests that “an explicit account of the inter-
action of causal beliefs and probabilities is necessary to understand
when exchangeability should and should not be assumed” (Meek and
Glymour 1994, p. 1013).

This is indeed the case; exchangeability in experimental studies de-
pends on causal understanding of the mechanisms that generate the
data. The determination of whether the response of a new unit should
be judged by previous response of a group of units is predicated upon
the question of whether the experimental conditions to which we con-

data for judging the adequacy of a certain statistical method.
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template subjecting the new unit are equal to those prevailing while
the group was observed. The reason we cannot use the combined ta-
ble (Figure 6.1(a)) for determining the response of a new patient (with
unknown gender) is that the experimental conditions have changed;
whereas the group was studied with patients selecting treatment by
choice, the new patient will be given treatment by decree, perhaps
against his or her natural inclination. A mechanism will therefore be
altered in the new experiment, and no judgment of exchangeability
is feasible without first making causal assumptions regarding whether
the probabilities involved would or would not remain invariant to such
alteration. The reason we could use the combined table in the blood
pressure example of Figure 6.2(b) is that the altered treatment selection
mechanism in that setup is assumed to have no effect on the conditional
probability P(E|C); that is, C is assumed to be exogenous. (This can
clearly be seen in the absence of any back-door path in the graph.)

Note that the same consideration holds if the next patient is a mem-
ber of the group under study (assuming hypothetically that treatment
and effect can be replicated and that the next patient is of unknown
gender and identity); a randomly selected sample from a population is
not “exchangeable” with that population if we subject the sample to
new experimental conditions. Alteration of causal mechanisms must be
considered in order to determine whether exchangability holds under
the new circumstances. And once causal mechanisms are considered,
separate judgment of exchangeability is not needed.

But why did Lindley and Novick choose to speak so elliptically (via
exchangeability) when they could have articulated their ideas directly
by talking openly about causal relations? They partially answered this
question as follows: “[causality]|, although widely used, does not seem
to be well-defined.” Omne may naturally wonder how exchangeability
can be more “well-defined” than the very considerations by which it
is judged! The answer can only be understood when we consider the
mathematical tools available to statisticians in 1981. When Lindley
and Novick wrote that causality is not well-defined, what they really
meant is that causality cannot be written down in any mathematical
form to which they were accustomed. The potentials of path diagrams,
structural equations, and Neyman-Rubins’s notation as mathematical
languages were generally unrecognized in 1981, for reasons described
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in Sections 5.1 and 7.4.3. Indeed, had Lindley and Novick wished to
convey their ideas in causal terms, they would have been unable to
express mathematically even the simple yet crucial fact that gender is
not affected by the drug and a fortiori to derive less obvious truths from
that fact.® The only formal language with which they were familiar was
probability calculus, but as we have seen on several occasions already,
this calculus cannot adequately handle causal relationships without the
proper extensions.

Fortunately, the mathematical tools that have been developed in
the past ten years permit a more systematic and friendly resolution of
Simpson’s paradox.

6.1.4 A Paradox Resolved (Or: What Kind of Ma-
chine is Man)

Paradoxes, like optical illusions, are often used by psychologists to re-
veal the inner workings of the mind, for paradoxes stem from (and
amplify) dormant clashes among implicit sets of assumptions. In the
case of Simpson’s paradox, we have a clash between (i) the assump-
tion that causal relationships are governed by the laws of probability
calculus and (ii) the set of implicit assumptions that drive our causal
intuitions. The first assumption tells us that the three inequalities in
(6.1)-(6.3) are consistent, and it even presents us with a probability
model to substantiate the claim (Figure 6.1). The second tells us that
no miracle drug can ever exist that is harmful to both males and females
and is simultaneously beneficial to the population at large.

To resolve the paradox we must either (a) show that our causal
intuition is misleading or incoherent or (b) deny the premise that causal
relationships are governed by the laws of standard probability calculus.

6Lindley and Novick (1981, p. 50) did try to express this fact in probabilistic
notation. But not having the do(-) operator at their disposal, they improperly wrote
P(F|C) instead of P(F|do(C)) and argued unconvincingly that we should equate
P(F|C) = P(F): “Instead [y]ou might judge that the decision to use the treatment
or the control is not affected by the unknown sex, so that F' and C are independent.”
Oddly, this decision is also not affected by the unknown blood pressure and yet,
if we write P(F|C) = P(F') in the example of Figure 6.2(b), we obtain the wrong
result.
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As the reader surely suspects by now, we will choose the second option;
our stance here, as well as in the rest of the book, is that causality is
governed by its own logic and that this logic requires a major extension
of probability calculus. This still behooves us to explicate the logic
that governs our causal intuition and to show, formally, that this logic
precludes the existence of such a miracle drug.

The logic of the do(-) operator is perfectly suitable for this purpose.
Let us first translate the statement that our miracle drug C has harm-
ful effect on both males and females into formal statements in causal
calculus:

P(E|do(C), F) < P(E|do(—=C), F), (6.4)

P(E|do(C),—F) < P(E|do(—=C),—F). (6.5)

We need to demonstrate that C must be harmful to the population at
large, that is, the inequality

P(E|do(C)) > P(E|do(—C)) (6.6)

must be shown to be inconsistent with what we know about drugs and
gender.

Theorem 6.1.1 (Sure-Thing Principle)’

An action C that increases the probability of an event E in each sub-
population must also increase the probability of E in the population as
a whole, provided that the action does not change the distribution of the
subpopulations.

Proof
We will prove Theorem 6.1.1 in the context of our example, where

"Savage (1954, p. 21) proposed the sure-thing principle as a basic postulate of
preferences (on actions), tacitly assuming the no-change provision in the theorem.
Blyth (1972) used this omission to devise an apparent counterexample. Theorem
6.1.1 shows that the sure-thing principle need not be stated as a separate postulate—
it follows logically from the semantics of actions as modifiers of structural equations
(or mechanisms). See Gibbard and Harper (1976) for a counterfactual analysis.
Note that the no-change provision is probabilistic; it permits the action toange the
classification of individual units as long as the relative sizes of the subpopulations
remain unaltered.
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the population is partitioned into males and females; generalization to
multiple partitions is straightforward. In this context, we need to prove
that the reversal in the inequalities of (6.4)—(6.6) is inconsistent with
the assumption that drugs have no effect on gender:

P(F|do(C)) = P(F|do(—C)) = P(F). (6.7)
Expanding P(F|do(C)) and using (6.7) yields

P(E|do(C)) = P(E|do(C), F)P(F|do(C))
+P(E|do(C), ~F)P(~F|do(C))
= P(E|do(C), F)P(F) + P(E|do(C), ~F)P(~F.8)

Similarly, for do(—C') we obtain

P(E|do(=C)) = P(E|do(~C), F)P(F)
+P(B|do(~C)~F)P(~F). (6.9)

Since every term on the right-hand side of (6.8) is smaller than the
corresponding term in (6.9), we conclude that

P(E|do(C)) < P(E|do(—C)),
proving Theorem 6.1.1. O

We thus see where our causal intuition comes from: an obvious but
crucial assumption in our intuitive logic has been that drugs do not in-
fluence gender. This explains why our intuition changes so drastically
when F' is interpreted as an intermediate event affected by the drug,
as in Figure 6.2(b). In this case, our intuitive logic tells us that it is
perfectly consistent to find a drug satisfying the three inequalities of
(6.4)—(6.6) and, moreover, that it would be inappropriate to adjust for
F. If F is affected by the C, (6.8) cannot be derived and the difference
P(E|do(C)) — P(E|do(—C)) may be positive or negative, depending on
the relative magnitudes of P(F'|do(C)) and P(F|do(—C)). Provided C
and F have no common cause, we should then assess the efficacy of
C directly from the combined table (equation (6.1)) and not from the
F-specific tables (equations (6.2)—(6.3)).
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Note that nowhere in our analysis have we assumed either that the
data originate from a randomized study (i.e., P(E|do(C)) = P(E|C))
or from a balanced study (i.e., P(C|F) = P(C|=F)). On the contrary;
given the tables of Figure 6.1, our causal logic accepts gracefully that we
are dealing with unbalanced study but nevertheless refuses to accept
the consistency of (6.4)-(6.6). People, likewise, can see clearly from
the tables that the males were more likely to take the drug than the
females; still, when presented with the reversal phenomenon, people are
“shocked” to discover that differences of recovery rates can be reversed
by combining tables.

The conclusions we may draw from these observations are that hu-
mans are generally oblivious to rates and proportions (which are tran-
sitory) and that they constantly search for causal relations (which are
invariant). Once people interpret proportions as causal relations, they
continue to process those relations by causal calculus and not by the
calculus of proportions. Where our minds governed by the calculus
of proportions, Figure 6.1 would have evoked no surprise at all and

Simpson’s paradox would never have generated the attention that it
did.



