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What, then, is an appropriate definition of identifiability for nonparametric mod-
els? One reasonable definition is that answers to interventional queries are unique, and
this is precisely how Definition 3.2.3 interprets the identification of the causal effect
P �yjdo�x��. As we have seen in Chapters 3 and 4, many aspects of nonparametric
identification can be determined graphically, almost by inspection, from the diagrams
that accompany the equations. These include tests for deciding whether a given inter-
ventional query is identifiable as well as formulas for estimating such queries.

5.4 Some Conceptual Underpinnings

5.4.1 What Do Structural Parameters Really Mean?

Every student of SEM has stumbled on the following paradox at some point in his or
her career. If we interpret the coefficient � in the equation

y � �x� �

as the change in E�Y � per unit change of X , then, after rewriting the equation as

x � �y � �����

we ought to interpret ��� as the change in E�X� per unit change of Y . But this
conflicts both with intuition and with the prediction of the model: the change in E�X�
per unit change of Y ought to be zero if Y does not appear as an independent variable
in the original, structural equation for X .

Teachers of SEM generally evade this dilemma via one of two escape routes. One
route involves denying that � has any causal reading and settling for a purely statisti-
cal interpretation, in which � measures the reduction in the variance of Y explained
by X (see e.g. Muthen 1987). The other route permits causal reading of only those
coefficients that meet the “isolation” restriction (Bollen 1989; James et al. 1982): the
explanatory variable must be uncorrelated with the error in the equation. Because �
cannot be uncorrelated with both X and Y (or so the argument goes), � and ��� can-
not both have causal meaning, and the paradox dissolves.

The first route is self-consistent, but it compromises the founders’ intent that SEM
function as an aid to policy making and clashes with the intuition of most SEM users.
The second is vulnerable to attack logically. It is well known that every pair of bivariate
normal variables, X and Y , can be expressed in two equivalent ways,

y � �x � �� and x � �y � ���

where cov�X� ��� � cov�Y� ��� � � and � � rXY � ���
X
���
Y

. Thus, if the condition
cov�X� ��� � � endows � with causal meaning, then cov�Y� ��� � � ought to endow
� with causal meaning as well. But this, too, conflicts with both intuition and the
intentions behind SEM; the change in E�X� per unit change of Y ought to be zero, not
rXY , if there is no causal path from Y to X .

What then is the meaning of a structural coefficient? Or a structural equation? Or
an error term? The interventional interpretation of causal effects, when coupled with
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the do�x� notation, provides simple answers to these questions. The answers explicate
the operational meaning of structural equations and thus should end, I hope an era of
controversy and confusion regarding these entities.

Structural Equations: Operational Definition

Definition 5.4.1 (Structural Equations)
An equation y � �x � � is said to be structural if it is to be interpreted as follows:
In an ideal experiment where we control X to x and any other set Z of variables �not
containingX or Y � to z, the value y of Y is given by �x� �, where � is not a function
of the settings x and z.

This definition is operational because all quantities are observable, albeit under con-
ditions of controlled manipulation. That manipulations cannot be performed in most
observational studies does not negate the operationality of the definition, much as our
inability to observe bacteria with the naked eye does not negate their observability
under a microscope. The challenge of SEM is to extract the maximum information
concerning what we wish to observe from the little we actually can observe.

Note that the operational reading just given makes no claim about how X (or any
other variable) will behave when we control Y . This asymmetry makes the equal-
ity signs in structural equations different from algebraic equality signs; the former act
symmetrically in relating observations on X and Y (e.g., observing Y � � implies
�x � ��), but they act asymmetrically when it comes to interventions (e.g., setting Y

to zero tells us nothing about the relation between x and �). The arrows in path dia-
grams make this dual role explicit, and this may account for the insight and inferential
power gained through the use of diagrams.

The strongest empirical claim of the equation y � �x � � is made by excluding
other variables from the r.h.s. of the equation, thus proclaiming X the only immediate
cause of Y . This translates into a testable claim of invariance: the statistics of Y under
condition do�x� should remain invariant to the manipulation of any other variable in
the model (see Section 1.3.2).16 This claim can be written symbolically as

P �yjdo�x�� do�z�� � P �yjdo�x�� (5.23)

for all Z disjoint of fX � Y g.17

Note that this invariance holds relative to manipulations, not observations, of Z.
The statistics of Y under condition do�x� given the measurement Z � z, written

16The basic notion that structural equations remain invariant to certain changes in the system goes back
to Marschak (1950) and Simon (1953), and it has received mathematical formulation at various levels of
abstraction in Hurwicz (1962), Mesarovic (1969), Sims (1977), Cartwright (1989), Hoover (1990), and
Woodward (1995). The simplicity, precision, and clarity of (5.23) is unsurpassed, however.

17This claim is, in fact, only part of the message conveyed by the equation; the other part consists of a
dynamic or counterfactual claim: If we were to control X to x� instead of x, then Y would attain the value
�x� � �. In other words, plotting the value of Y under various hypothetical controls of X, and under the
same external conditions (�), should result in a straight line with slope �. Such deterministic dynamic claims
concerning system behavior under successive control conditions can only be tested under the assumption
that �, representing external conditions or properties of experimental units, remains unaltered as we switch
from x to x�. Such counterfactual claims constitute the empirical content of every scientific law (see Section
7.2.2).
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P �yjdo�x�� z�, would certainly depend on z if the measurement were taken on a con-
sequence (i.e. descendant) of Y . Note also that the ordinary conditional probability
P �yjx� does not enjoy such a strong property of invariance, since P �yjx� is generally
sensitive to manipulations of variables other than X in the model (unless X and � are
independent). Equation (5.23), in contrast, remains valid regardless of the statistical
relationship between � and X .

Generalized to a set of several structural equations, (5.23) explicates the assump-
tions underlying a given causal diagram. IfG is the graph associated with a set of struc-
tural equations, then the assumptions are embodied in G as follows: (1) every missing
arrow—say, between X and Y —represents the assumption that X has no causal effect
on Y once we intervene and hold the parents of Y fixed; and (2) every missing bidi-
rected link between X and Y represents the assumption that the omitted factors that
(directly) influence X are uncorrelated with those that (directly) influence Y . We shall
define the operational meaning of the latter assumption in (5.25)–(5.27).

The Structural Parameters: Operational Definition

The interpretation of a structural equation as a statement about the behavior of Y under
a hypothetical intervention yields a simple definition for the structural parameters. The
meaning of � in the equation y � �x� � is simply

� �
�

�x
E�Y jdo�x�� � (5.24)

that is, the rate of change (relative to x) of the expectation of Y in an experiment where
X is held at x by external control. This interpretation holds regardless of whether � and
X are correlated in nonexperimental studies (e.g., via another equation x � �y � �).

We hardly need to add at this point that � has nothing to do with the regression co-
efficient rY X or, equivalently, with the conditional expectation E�Y jx�, as suggested
in many textbooks. The conditions under which � coincides with the regression coef-
ficient are spelled out in Theorem 5.3.1.

It is important nevertheless to compare the definition of (5.24) with theories that ac-
knowledge the invariant character of � but have difficulties explicating which changes
� is invariant to. Cartwright (1989, p. 194), for example, characterizes � as an in-
variant of nature that she calls “capacity.” She states correctly that � remains con-
stant under change but explains that, as the statistics of X changes, “it is the ratio
�� � E�Y X��E�X��� which remains fixed no matter how the variances shift.” This
characterization is imprecise on two accounts. First, � may in general not be equal
to the stated ratio nor to any other combination of statistical parameters. Second—
and this is the main point of Definition 5.4.1—structural parameters are invariant to
local interventions (i.e., changes in specific equations in the system) and not to gen-
eral changes in the statistics of the variables. If we start with cov�X� �� � � and the
variance of X changes because we (or Nature) locally modify the process that gener-
ates X , then Cartwright is correct; the ratio � � E�Y X��E�X�� will remain constant.
However, if the variance of X changes for any other reason—say, because we observed
some evidence Z � z that depends on both X and Y or because the process generat-



232CHAPTER 5. CAUSALITY AND STRUCTURAL MODELS IN SOCIAL SCIENCE AND ECONOMICS

ing X becomes dependent on a wider set of variables—then that ratio will not remain
constant.

The Mystical Error Term: Operational Definition

The interpretations given in Definition 5.4.1 and (5.24) provide an operational defini-
tion for that mystical error term

� � y �E�Y jdo�x��� (5.25)

which, despite being unobserved in nonmanipulative studies, is far from being meta-
physical or definitional as suggested by some researchers (e.g. Richard 1980; Holland
1988, p. 460; Hendry 1995, p. 62). Unlike errors in regression equations, � measures
the deviation of Y from its controlled expectation E�Y jdo�x�� and not from its condi-
tional expectation E�Y jx�. The statistics of � can therefore be measured from observa-
tions on Y once X is controlled. Alternatively, because � remains the same regardless
of whether X is manipulated or observed, the statistics of � � y��x can be measured
in observational studies if we know �.

Likewise, correlations among errors can be estimated empirically. For any two
nonadjacent variables X and Y , (5.25) yields

E��Y �X � � E�Y X jdo�paY � paX���E�Y jdo�paY ��E�X jdo�paX��� (5.26)

Once we have determined the structural coefficients, the controlled expectations
E�Y jdo�paY ��� E�X jdo�paX��, and E�Y X jdo�paY � paX�� become known linear
functions of the observed variables paY and paX ; hence, the expectations on the r.h.s.
of (5.26) can be estimated in observational studies. Alternatively, if the coefficients are
not determined, then the expression can be assessed directly in interventional studies
by holding paX and paY fixed (assuming X and Y are not in parent-child relationship)
and estimating the covariance of X and Y from data obtained under such conditions.

Finally, we are often interested not in assessing the numerical value of E��Y �X � but
rather in determining whether �Y and �X can be assumed to be uncorrelated. For this
determination, it suffices to test whether the equality

E�Y jx� do�sXY �� � E�Y jdo�x�� do�sXY �� (5.27)

holds true, where sXY stands for (any setting of) all variables in the model excluding
X and Y . This test can be applied to any two variables in the model except when Y is
a parent of X , in which case the symmetrical equation (with X and Y interchanged) is
applicable.

The Mystical Error Term: Conceptual Interpretation

The authors of SEM textbooks usually interpret error terms as representing the influ-
ence of omitted factors. Many SEM researchers are reluctant to accept this interpreta-
tion, however, partly because unspecified omitted factors open the door to metaphysical
speculations and partly because arguments based on such factors were improperly used
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as a generic, substance-free license to omit bidirected arcs from path diagrams (Mc-
Donald 1997). Such concerns are answered by the operational interpretation of error
terms, (5.25), since it prescribes how errors are measured, not how they originate.

It is important to note, though, that this operational definition is no substitute for
the omitted-factors conception when it comes to deciding whether pairs of error terms
can be assumed to be uncorrelated. Because such decisions are needed at a stage when
the model’s parameters are still “free,” they cannot be made on the basis of numerical
assessments of correlations but must rest instead on qualitative structural knowledge
about how mechanisms are tied together and how variables affect each other. Such
judgmental decisions are hardly aided by the operational criterion of (5.26), which in-
structs the investigator to assess whether two deviations—taken on two different vari-
ables under complex experimental conditions—would be correlated or uncorrelated.
Such assessments are cognitively unfeasible.

In contrast, the omitted-factors conception instructs the investigator to judge
whether there could be factors that simultaneously influence several observed vari-
ables. Such judgments are cognitively manageable because they are qualitative and
rest on purely structural knowledge—the only knowledge available during this phase
of modeling.

Another source of error correlation that should be considered by investigators is
selection bias. If two uncorrelated unobserved factors have a common effect that is
omitted from the analysis but influences the selection of samples for the study, then
the corresponding error terms will be correlated in the sampled population; hence,
the expectation in (5.26) will not vanish when taken over the sampled population (see
discussion of Berkson’s paradox in Section 1.2.3).

We should emphasize, however, that the arcs missing from the diagram, not those
in the diagram, demand the most attention and careful substantive justification. Adding
an extra bidirected arc can at worst compromise the identifiability of parameters, but
deleting an existing bidirected arc may produce erroneous conclusions as well as a false
sense of model testability. Thus, bidirected arcs should be assumed to exist, by default,
between any two nodes in the diagram. They should be deleted only by well-motivated
justifications, such as the unlikely existence of a common cause for the two variables
and the unlikely existence of selection bias. Although we can never be cognizant of all
the factors that may affect our variables, substantive knowledge sometimes permits us
to state that the influence of a possible common factor is not likely to be significant.

Thus, as often happens in the sciences, the way we measure physical entities does
not offer the best way of thinking about them. The omitted-factor conception of errors,
because it rests on structural knowledge, is a more useful guide than the operational
definition when building, evaluating, and thinking about causal models.

5.4.2 Interpretation of Effect Decomposition

Structural equation modeling prides itself, and rightly so, for providing principled
methodology for distinguishing direct from indirect effects. We have seen in Section
4.5 that such distinction is important in many applications, ranging from process con-
trol to legal disputes, and that SEM indeed provides a coherent methodology of defin-
ing, identifying, and estimating direct and indirect effects. However, the reluctance of
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most SEM researchers to admit the causal reading of structural parameters—coupled
with their preoccupation with algebraic manipulations—has resulted in inadequate def-
initions of direct and indirect effects, as pointed out by Freedman (1987) and Sobel
(1990). In this section we hope to correct this confusion by adhering to the operational
meaning of the structural coefficients.

We start with the general notion of a causal effect P �yjdo�x��, as in Definition
3.2.1. We then specialize it to define direct effect, as in Section 4.5, and finally express
the definitions in terms of structural coefficients.

Definition 5.4.2 (Total Effect)
The total effect of X on Y is given by P �yjdo�x��, namely, the distribution of Y while
X is held constant at x and all other variables are permitted to run their natural course.

Definition 5.4.3 (Direct Effect)
The direct effect of X on Y is given by P �yjdo�x�� do�sXY ��, where SXY is the set of
all observed variables in the system except X and Y .

In linear analysis, Definitions 5.4.2 and 5.4.3 yield, after differentiation with respect to
x, the familiar path coefficients in terms of which direct and indirect effects are usu-
ally defined. Yet they differ from conventional definitions in several important aspects.
First, direct effects are defined in terms of hypothetical experiments in which inter-
mediate variables are held constant by physical intervention, not by statistical adjust-
ment (which is often disguised under the misleading phrase “control for”). Figure 5.10
depicts a simple example where adjusting for the intermediate variables �Z and W �
would not give the correct value of zero for the direct effect of X on Y , whereas
�

�x
E�Y jdo�x� y� w�� does yield the correct value: �

�x
��w � �z� � �. Section 4.5.3

(Table 4.1) provides another such example, one that involves dichotomous variables.
Second, there is no need to limit control to only intermediate variables; all vari-

ables in the system may be held constant (except for X and Y ). Hypothetically, the
scientist controls for all possible conditions SXY , and measurements may commence
without knowing the structure of the diagram. Finally, our definitions differ from con-
vention by interpreting total and direct effects independently of each other, as outcomes
of two different experiments. Textbook definitions (e.g. Bollen 1989, p. 376; Mueller
1996, p. 141; Kline 1998, p. 175) usually equate the total effect with a power series
of path coefficient matrices. This algebraic definition coincides with the operational
definition (Definition 5.4.2) in recursive (semi-Markovian) systems, but it yields erro-
neous expressions in models with feedback. For instance, given the pair of equations
fy � �x � �� x � �y � �g, the total effect of X on Y is simply �, not ���� �����

as stated in Bollen (1989, p. 379). The latter has no operational significance worthy of
the phrase “effect of X .”18

We end this section of effect decomposition with a few remarks that should be of
interest to researchers dealing with dichotomous variables. The relations among such

18This error was noted by Sobel (1990) but, perhaps because constancy of path coefficients was presented
as a new and extraneous assumption, Sobel’s correction has not brought about a shift in practice or philoso-
phy.
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variables are usually nonlinear, so the results of Section 4.5 should be applicable. In
particular, the direct effect of X on Y should will depend on the levels at which we
hold the other parents of Y . If we wish to average over these values, we obtain the
expression given in Section 4.5.4.

In standard linear analysis, an indirect effect may be defined as the difference be-
tween the total effect and the direct effects (Bollen 1989). In nonlinear analysis, differ-
ences lose their significance, and one must isolate the contribution of mediating paths
in some other way. Expressions of the form P �yjdo�x�� do�z�� cannot be used to iso-
late such contributions because there is no physical means of selectively disabling a
direct causal link from X to Y by holding some variables constant. This suggests that
the notion of indirect effect has no intrinsic operational meaning apart from providing a
comparison between the direct and the total effects. In other words, a policy maker who
asks for that part of the total effect transmitted by a particular intermediate variable or
by a group Z of such variables is really asking for a comparison of the effects of two
policies, one where Z is held constant versus the other where it is not. The expressions
corresponding to these policies are P �yjdo�x�� do�z�� and P �yjdo�x��, and this pair
of distributions should be taken as the most general representation of indirect effects.
Similar conclusions have been expressed by Robins (1986) and Robins and Greenland
(1992).

5.4.3 Exogeneity, Superexogeneity, and Other Frills

Economics textbooks invariably warn readers that the distinction between exogenous
and endogenous variables is, on the one hand, “most important for model building”
(Darnell 1994, p. 127) and, on the other hand, “a subtle and sometimes controversial
complication” (Greene 1997, p. 712). Economics students would naturally expect the
concepts and tools developed in this chapter to shed some light on the subject, and
rightly so. We next offer a simple definition of exogeneity that captures the important
nuances appearing in the literature and that is both palatable and precise,

It is fashionable today to distinguish three types of exogeneity: weak, strong, and
super (Engle et al. 1983); the former two are statistical and the latter causal. However,
the importance of exogeneity—and the reason for its controversial status—lies in its
implications for policy interventions. Some economists believe, therefore, that only
the causal aspect (i.e. superexogeneity) deserves the exogenous title and that the sta-
tistical versions are unwarranted intruders that tend to confuse issues of identification
and interpretability with those of estimation efficiency (Ed Leamer, personal commu-
nication).19 I will serve both camps by starting with a simple definition of causal ex-
ogeneity and then offering a more general definition, from which both the causal and
the statistical aspects would follow as special cases. Thus, what we call “exogene-
ity” corresponds to what Engle et al. called “superexogeneity,” a notion that captures
economists’ interest in the structural invariance of certain relationships under policy
intervention.

Suppose that we consider intervening on a set of variables X and that we wish

19Similiar opinions have also been communicated by John Aldrich and James Heckman. See also Aldrich
(1993).
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to characterize the statistical behavior of a set Y of outcome variables under the in-
tervention do�X � x�. Denote the postintervention distribution of Y by the usual
expression P �yjdo�x��. If we are interested in a set � of parameters of that distribu-
tion, then our task is to estimate ��P �yjdo�x�� from the available data. However, the
data available is typically generated under a different set of conditions: X was not held
constant but instead was allowed to vary with whatever economical pressures and ex-
pectations prompted decision makers to set X in the past. Denoting the process that
generated data in the past by M and the probability distribution associated with M by
PM �v�, we ask whether ��PM �yjdo�x�� can be estimated consistently from samples
drawn from PM �v�, given our background knowledge T (connoting “theory”) about
M . This is essentially the problem of identification that we have analyzed in this and
previous chapters, with one important difference; we now ask whether ��P �yjdo�x��
can be identified from the conditional distributionP �yjx� alone, instead of from the en-
tire joint distribution P �v�. When identification holds under this restricted condition,
X is said to be exogenous relative to �Y� �� T �.

We may state this formally as follows.

Definition 5.4.4 (Exogeneity)
Let X and Y be two sets of variables, and let � be any set of parameters of the postin-
tervention probability P �yjdo�x��. We say that X is exogenous relative to �Y� �� T � if
� is identifiable from the conditional distribution P �yjx�, that is, if

PM�
�yjx� � PM�

�yjx� �� ��PM�
�yjdo�x��� � ��PM�

�yjdo�x��� (5.28)

for any two models, M� and M�, satisfying theory T .

In the special case where � constitutes a complete specification of the postintervention
probabilities, (5.28) reduces to the implication

PM�
�yjx� � PM�

�yjx� �� PM�
�yjdo�x�� � PM�

�yjdo�x��� (5.29)

If we further assume that, for every P �yjx�, our theory T does not a priori exclude
some model M� satisfying PM�

�yjdo�x�� � PM�
�yjx�,20 then (5.29) reduces to the

equality

P �yjdo�x�� � P �yjx�� (5.30)

a condition we recognize as “no confounding” (see Sections 3.3 and 6.2). Equation
(5.30) follows (from (5.29)) because (5.29) must hold for all M� in T . Note that, since
the theory T is not mentioned explicitly, (5.30) can be applied to any individual model
M and can be taken as yet another definition of exogeneity—albeit a stronger one than
(5.28).

The motivation for insisting that � be identifiable from the conditional distribu-
tion P �yjx� alone, even though the marginal distribution P �x� is available, lies in its
ramification for the process of estimation. As stated in (5.30), discovering that X is

20For example, if T stands for all models possessing the same graph structure, then suchM� is not a priori
excluded.
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exogenous permits us to predict the effect of interventions (in X) directly from passive
observations, without even adjusting for confounding factors. Our analyses in Sections
3.3 and 5.3 further provide a graphical test of exogeneity: X is exogenous for Y if there
is no unblocked back-door path from X to Y (Theorem 5.3.2). This test supplements
the declarative definition of (5.30) with a procedural definition and thus completes the
formalization of exogeneity. That the invariance properties usually attributable to su-
perexogeneity are discernible from the topology of the causal diagram should come
as no surprise, considering that each causal diagram represents a structural model and
that each structural model already embodies the invariance assumptions necessary for
policy predictions (see Definition 5.4.1).

Leamer (1985) defined X to be exogenous if P �yjx� remains invariant to changes
in the “process that generates” X . This definition coincides21 with (5.30) because
P �yjdo�x�� is governed by a structural model in which the equations determining X
are wiped out; thus, P �yjx� must be insensitive to the nature of those equations. In
contrast, Engle et al. (1983) defined exogeneity (i.e., their superexogeneity) in terms of
changes in the “marginal density” of X ; as usual, the transition from process language
to statistical terminology leads to ambiguities. According to Engle et al. (1983, p. 284),
exogeneity requires that all the parameters of the conditional distribution P �yjx� be
“invariant for any change in the distribution of the conditioning variables”22 (i.e. P �x�).
This requirement of constancy under any change in P �x� is too strong—changing con-
ditions or new observations can easily alter both P �x� and P �yjx� even whenX is per-
fectly exogenous. (To illustrate, consider a change that turns a randomized experiment,
where X is indisputably exogenous, into a nonrandomized experiment; we should not
insist on P �yjx� remaining invariant under such change.) The class of changes con-
sidered must be restricted to local modification of the mechanisms (or equations) that
determine X , as stated by Leamer, and this restriction must be incorporated into any
definition of exogeneity. In order to make this restriction precise, however, the vo-
cabulary of SEMs must be invoked as in the definition of P �yjdo�x��; the vocabulary
of marginal and conditional densities is far too coarse to properly define the changes
against which P �yjx� ought to remain invariant.

We are now ready to define a more general notion of exogeneity, one that includes
“weak” and “super” exogeneities under the same umbrella.23 Toward that end, we re-
move from Definition 5.4.4 the restriction that � must represent features of the postin-
tervention distribution. Instead, we allow � to represent any feature of the underlying
model M , including structural features such as path coefficients, causal effects, and
counterfactuals, and including statistical features (which could, of course, be ascer-
tained from the joint distribution alone). With this generalization, we also obtain a
simpler definition of exogeneity.

Definition 5.4.5 (General Exogeneity)
Let X and Y be two sets of variables, and let � be any set of parameters defined on a

21Provided that changes are confined to modification of functions without changing the set of arguments
(i.e. parents) in each function.

22This requirement is repeated verbatim in Darnell (1994, p. 131) and Maddala (1992, p. 192).
23We leave out discussion of “strong” exogeneity, which is a slightly more involved version of weak

exogeneity applicable to time-series analysis.
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structural model M in a theory T . We say that X is exogenous relative to �Y� �� T � if
� is identifiable from the conditional distribution P �yjx�, that is, if

PM�
�yjx� � PM�

�yjx� �� ��M�� � ��M�� (5.31)

for any two models, M� and M�, satisfying theory T .

When � consists of structural parameters, such as path coefficients or causal effects,
(5.31) expresses invariance to a variety of interventions, not merely do�X � x�. Al-
though the interventions themselves are not mentioned explicitly in (5.31), the equality
��M�� � ��M�� reflects such interventions through the structural character of �. In
particular, if � stands for the values of the causal effect function P �yjdo�x�� at selected
points of x and y, then (5.31) reduces to the implication

PM�
�yjx� � PM�

�yjx� �� PM�
�yjdo�x�� � PM�

�yjdo�x��� (5.32)

which is identical to (5.29). Hence the causal properties of exogeneity follow.
When � consists of strictly statistical parameters—such as means,

modes, regression coefficients, or other distributional features—the
structural features of M do not enter into consideration; we have
��M� � ��PM � and so (5.31) reduces to

P��yjx� � P��yjx� �� ��P�� � ��P�� (5.33)

for any two probability distributions P��x� y� and P��x� y� that are consistent with T .
We have thus obtained a statistical notion of exogeneity that permits us to ignore the
marginal P �x� in the estimation of � and that we may call “weak exogeneity”.24

Finally, if � consists of causal effects among variables in Y (excluding X), we
obtain a generalized definition of instrumental variables. For example, if our interest
lies in the causal effect � � P �wjdo�z��, where W and Z are two sets of variables
in Y , then the exogeneity of X relative to this parameter ensures the identification of
P �wjdo�z�� from the conditional probability P �z� wjx�. This is indeed the role of an
instrumental variable—to assist in the identification of causal effects not involving the
instrument. (See Figure 5.9, with Z� X� Y representing X� Z� W , respectively.)

A word of caution regarding the language used in most textbooks: exogeneity is
frequently defined by asking whether parameters “enter” into the expressions of the
conditional or the marginal density. For example, Maddala (1992, p. 392) defined weak
exogeneity as the requirement that the marginal distribution P �x� “does not involve”
�. Such definitions are not unambiguous, because the question of whether a parameter
“enters” a density or whether a density “involves” a parameter are syntax-dependent;
different algebraic representations may make certain parameters explicit or obscure.
For example, ifX and Y are dichotomous, then the marginal probabilityP �x� certainly
“involves” parameters such as

�� � P �x�� y�� � P �x�� y�� and �� � P �x�� y���

24Engle et al. (1983) further imposed a requirement called “variation-free,” which is satisfied by default
when dealing with genuinely structural modelsM in which mechanisms do not constrain one another.
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as well as their ratio:

� � ������

Therefore, writing P �x�� � ����whos that both � and �� are involved in the marginal
probability P �x��, and one may be tempted to conclude that X is not exogenous rel-
ative to �. Yet X is in fact exogenous relative to �, because the ratio � � ����� is
none other than P �y�jx��; hence it is determined uniquely by P �y�jx�� as required by
(5.33).25

The advantage of the definition given in (5.31) is that it depends not on the syn-
tactic representation of the density function but rather on its semantical content alone.
Parameters are treated as quantities computed from a model, and not as mathematical
symbols that describe a model. Consequently, the definition applies to both statistical
and structural parameters and, in fact, to any quantity � that can be computed from a
structural modelM , regardless of whether it serves (or may serve) in the description of
the marginal or conditional densities.

The Mystical Error Term Revisited

Historically, the definition of exogeneity that has evoked most controversy is the one
expressed in terms of correlation between variables and errors. It reads as follows.

Definition 5.4.6 (Error-Based Exogeneity)
As variable X is exogenous �relative to � � P �yjdo�x��� if X is independent of all
errors that influence Y , except those mediated by X .

This definition, which Hendry and Morgan (1995) trace to Orcutt (1952), became stan-
dard in the econometric literature between 1950 and 1970 (e.g. Christ 1966, p. 156;
Dhrymes 1970, p. 169) and still serves to guide the thoughts of most econometricians
(as in the selection of instrumental variables; Bowden and Turkington 1984). How-
ever, it came under criticism in the early 1980s when the distinction between struc-
tural errors (equation (5.25)) and regression errors became obscured (Richard 1980).
(Regression errors, by definition, are orthogonal to the regressors.) The Cowles Com-
mission logic of structural equations (see Section 5.1) has not reached full mathemat-
ical maturity and—by denying notational distinction between structural and regres-
sional parameters—has left all notions based on error terms suspect of ambiguity. The
prospect of establishing an entirely new foundation of exogeneity—seemingly free of
theoretical terms such as “errors” and “structure” (Engle et al. 1983)—has further dis-
suaded economists from tidying up the Cowles Commission logic, and criticism of the
error-based definition of exogeneity has become increasingly fashionable. For exam-
ple, Hendry and Morgan (1995) wrote that “the concept of exogeneity rapidly evolved
into a loose notion as a property of an observable variable being uncorrelated with an
unobserved error,” and Imbens (1997) readily agreed that this notion “is inadequate.” 26

25Engle et al. (1983, p. 281) and Hendry (1995, pp. 162–3) attempted to overcome this ambiguity by using
“reparameterization”—an unnecessary complication.

26Imbens prefers definitions in terms of experimental metaphors such as “random assignment assumption,”
fearing, perhaps, that “[t]ypically the researcher does not have a firm idea what these disturbances really
represent” (Angrist et al. p. 446).
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These critics are hardly justified if we consider the precision and clarity with which
structural errors can be defined when using the proper notation (e.g. (5.25)). When
applied to structural errors, the standard error-based criterion of exogeneity coincides
formally with that of (5.30), as can be verified using the back-door test of Theorem
5.3.2 (with Z � �). Consequently, the standard definition conveys the same infor-
mation as that embodied in more complicated and less communicable definitions of
exogeneity. I am therefore convinced that the standard definition will eventually regain
the acceptance and respectability that it has always deserved.

Relationships between graphical and counterfactual definitions of exogeneity and
instrumental variables will be discussed in Chapter 7 (Section 7.4.5).

5.5 Conclusion

Today the enterprise known as structural equation modeling is increasingly under
fire. The founding fathers have retired, their teachings are forgotten, and practition-
ers, teachers, and researchers currently find the methodology they inherited difficult to
either defend or supplant. Modern SEM textbooks are preoccupied with parameter es-
timation and rarely explicate the role that those parameters play in causal explanations
or in policy analysis; examples dealing with the effects of interventions are conspicu-
ously absent, for instance. Research in SEM now focuses almost exclusively on model
fitting, while issues pertaining to the meaning and usage of SEM’s models are subjects
of confusion and controversy.

I am thoroughly convinced that the contemporary crisis in SEM originates in the
lack of a mathematical language for handling the causal information embedded in struc-
tural equations. Graphical models have provided such a language. They have thus
helped us answer many of the unsettled questions that drive the current crisis:

1. Under what conditions can we give causal interpretation to structural coeffi-
cients?

2. What are the causal assumptions underlying a given structural equation model?

3. What are the statistical implications of any given structural equation model?

4. What is the operational meaning of a given structural coefficient?

5. What are the policy-making claims of any given structural equation model?

6. When is an equation not structural?

This chapter has described the conceptual developments that now resolve such
foundational questions. In addition, we have presented several tools to be used in
answering questions of practical importance:

1. When are two structural equation models observationally indistinguishable?

2. When do regression coefficients represent path coefficients?

3. When would the addition of a regressor introduce bias?


