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5.3 Graphsand Identifiability

5.3.1 Parameter Identification in Linear M odels

Consider a directed edge X — Y embedded in a path diagram G, and let « stand
for the path coefficient associated with that edge. It is well known that the regression
coefficient ry x = pxyoy /ox can be decomposed into the sum

ryx =a+Iyx,

where Iy x is not a function of «, since it is computed (e.g., using Wright’s rules) from
other paths connecting X and Y excluding the edge X — Y. (Such paths traverse
both unidirected and bidirected arcs.) Thus, if we remove the edge X — Y from
the path diagram and find that the resulting subgraph entails zero correlation between
X and Y, then we know that Iy x = 0 and @ = ryx; hence, « is identified. Such
entailment can be established graphically by testing whether X is d-separated from
Y (by the empty set Z = {(}) in the subgraph. Figure 5.6 illustrates this simple
test for identification: all paths between X and Y in the subgraph G, are blocked by
converging arrows, and « can immediately be equated with ry x.

We can extend this basic idea to cases where Iy x is not zero but can be made
zero by adjusting for a set of variables Z = {Z;,Z,,...,Z;} that lie on vari-
ous d-connected paths between X and Y. Consider the partial regression coefficient
Ty x.z = pyx.-z0y.z/ox.z, Which represents the residual correlation between Y and
X after Z is “partialled out.” If Z contains no descendant of Y, then again we can
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Figure 5.6: Test of whether structural parameter « can be equated with regression
coefficient ry x .

write!?

ryx.z =a+ Iyx.z,

where Iy x.z represents the partial correlation between X and Y resulting from setting
« to zero, that is, the partial correlation in a model whose graph G, lacks the edge
X — Y but is otherwise identical to G. If Z d-separates X from Y in G, then
Iy x.z would indeed be zero in such a model and so we can conclude that, in our
original model, « is identified and is equal to ry x.z. Moreover, since ry x.z is given
by the coefficient of z in the regression of Y on X and Z, « can be estimated using the
regression

y=ar+ Piz1+ ...+ PBrzr + €.

This result provides a simple graphical answer to the questions, alluded to in Sec-
tion 5.1.3, of (i) what constitutes an adequate set of regressors and (ii) when a regres-
sion coefficient provides a consistent estimate of a path coefficient. The answers are
summarized in the following theorem.*3

Theorem 5.3.1 (Single-Door Criterion for Direct Effects)

Let G be any path diagram in which « is the path coefficient associated with link
X — Y, andlet G, denotethe diagramthat results when X — Y isdeleted from
G. The coefficient « is identifiable if there exists a set of variables Z such that (i) Z
contains no descendant of Y and (ii) Z d-separates X fromY in G,. If Z satisfies
these two conditions, then « is equal to the regression coefficient ry x.z. Conversely,
if Z does not satisfy these conditions, then ry x. is not a consistent estimand of «
(except in rare instances of measure zero).

12This can be seen when the relation between Y and its parents, Y = ax +)_, Biw; + ¢, is substituted
into the expression for ry x .z, which yields a plus an expression Iy x.z involving partial correlations
among the variables {X, W1, ..., Wy, Z, e}. Because Y is assumed not to be an ancestor of any of these
variables, their joint density is unaffected by the equation for Y'; hence, £ x . is independent of a.

13This result is presented in Pearl (1998a) and Spirtes et al. (1998).
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The use of Theorem 5.3.1 can be illustrated as follows. Consider the graphs G and
G, in Figure 5.7. The only path connecting X and Y in G, is the one traversing Z,

T~ | G o7~ | Gy
Z X Y Z X Y

Figure 5.7: The identification of « (Theorem 5.3.1) in confirmed by G ,,.

and since that path is d-separated (blocked) by Z, « is identifiable and is given by
a = ryx.z. The coefficient 3 is identifiable, of course, since Z is d-separated from X
in G (by the empty set () and thus 3 = rx z. Note that this “single-door” test differs
slightly from the back-door criterion for total effects (Definition 3.3.1); the set Z here
must block all indirect paths from X to Y, not only back-door paths. Condition (i) is
identical to both cases, because if X is a parent of Y then every descendant of Y must
also be a descendant of X.

We now extend the identification of structural parameters through the identification
of total effects (rather than direct effects). Consider the graph G in Figure 5.8. If we
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Figure 5.8: Graphical identification of the total effect of X on Y, yielding o + 8y =
Ty X.Zs-

form the graph G, by removing the link X — Y", we observe that there is no set
7 of nodes that d-separates all paths from X to Y. If Z contains Zy, then the path
X — 7, <——» Y will be unblocked through the converging arrows at Z,. If Z
does not contain Z;, the path X — Z; — Y is unblocked. Thus we conclude that
« cannot be identified using our previous method. However, suppose we are interested
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in the total effect of X on Y, which is given by o+ 3+. For this sum to be identified by
ry x, there should be no contribution to ry x from paths other than those leading from
X to Y. However, we see that two such paths, called confounding or back-door paths,
exist in the graph—namely, X <— Z, — Y and X <- —» Z, — Y. Fortunately,
these paths are blocked by Z» and so we may conclude that adjusting for Z would
render a + S identifiable; thus we have

Oz-i-ﬂ’)/ =TYX.Zs-

This line of reasoning is captured by the back-door criterion of Definition 3.3.1,
which we restate here for completeness.

Theorem 5.3.2 (Back-Door Criterion)
For any two variables X and Y in a causal diagram G, the total effect of X on Y is
identifiable if there exists a set of measurements Z such that:

1. no member of Z is a descendant of X ; and

2. Z d-separates X from Y in the subgraph G'x formed by deleting from G all
arrows emanating from X.

Moreover, if the two conditions are satisfied, then the total effect of X on Y isgiven by
ryx.-z-

The two conditions of Theorem 5.3.2, as we have seen in Section 3.3.1, are also valid
in nonlinear non-Gaussian models as well as in models with discrete variables. The test
ensures that, after adjustment for Z, the variables X and Y are not associated through
confounding paths, which means that the regression coefficient ry x.z is equal to the
total effect. In fact, we can view Theorems 5.3.1 and 5.3.2 as special cases of a more
general scheme: In order to identify any partial effect, as defined by a select bundle of
causal paths from X to Y, we ought to find a set Z of measured variables that block all
nonselected paths between X and Y. The partial effect will then equal the regression
coefficient ry x. .

Figure 5.8 demonstrates that some total effects can be determined directly from the
graphs without having to identify their individual components. Standard SEM methods
(Bollen 1989; Chou and Bentler 1995) that focus on the identification and estimation of
individual parameters may miss the identification and estimation of effects such as the
one in Figure 5.8, which can be estimated reliably even though some of the constituents
remain unidentified.

Some total effects cannot be determined directly as a unit but instead require the
determination of each component separately. In Figure 5.7, for example, the effect of Z
onY (= af) does not meet the back-door criterion, yet this effect can be determined
from its constituents « and 3, which meet the back-door criterion individually and
evaluate to

B=rxz, O =TyX.zZ-

There is yet a third kind of causal parameter: one that cannot be determined either
directly or through its constituents but rather requires the evaluation of a broader causal
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Figure 5.9: Graphical identification of « using instrumental variable Z.

effect of which it is a part. The structure shown in Figure 5.9 represents an example of
this case. The parameter . cannot be identified either directly or from its constituents
(it has none), yet it can be determined from a3 and 3, which represent the effect of
Z onY and of Z on X, respectively. These two effects can be identified directly,
since there are no back-door paths from Z to either Y or X; therefore, a3 = ry z and
B = rxz. It follows that

a=ryz/rxz,

which is familiar to us as the instrumental variable formula (Bowden and Turkington
1984; see also Section 3.5, equation (3.46)).

The example shown in Figure 5.10 combines all three methods considered thus far.
The total effect of X on Y is given by a3 + ~d, which is not identifiable because it
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Figure 5.10: Graphical identification of o, 3, and .

does not meet the back-door criterion and is not part of another identifiable structure.
However, suppose we wish to estimate 5. By conditioning on Z, we block all paths
going through Z and obtain a8 = ry x.z, which is the effect of X on Y mediated by
W . Because there are no back-door paths from X to W, « itself evaluates directly to
a = ryx. We therefore obtain

B=ryx.z/rwx.
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On the other hand, -y can be evaluated directly by conditioning on X (thus blocking all
back-door paths from Z to Y through X)), which gives

Y=TyzXx

The methods that we have been using suggest the following systematic procedure
for recognizing identifiable coefficients in a graph.

1. Start by searching for identifiable causal effects among pairs of variables in the
graph, using the back-door criterion and Theorem 5.3.1. These can be either
direct effects, total effects, or partial effects (i.e., effects mediated by specific
sets of variables).

2. For any such identified effect, collect the path coefficients involved and put them
in a bucket.

3. Begin labeling the coefficients in the buckets according to the following proce-
dure:

(a) if a bucket is a singleton, label its coefficient I (denoting identifiable).

(b) If a bucket is not a singleton but contains only a single unlabeled element,
label that element 1.

4. Repeat this process until no new labeling is possible.
5. List all labeled coefficients; these are identifiable.

The process just described is not complete, because our insistence on labeling co-
efficients one at a time may cause us to miss certain opportunities. This is shown in
Figure 5.11. Starting with the pairs (X, Z), (X, W), (X', Z), and (X', W), we dis-

X X’

Figure 5.11: Identifying 3 and § using two instrumental variables.

cover that a, 7y, ', and +' are identifiable. Going to (X,Y"), we find that a3 + v
is identifiable; likewise, from (X', Y") we see that o/ 3 + +'d is identifiable. This does
not yet enable us to label 3 or §, but we can solve two equations for the unknowns

la 7]
[ and § as long as the determinant |o'+’| is nonzero. Since we are not interested in
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identifiability at a point but rather in identifiability “almost everywhere” (Koopmans et
al. 1950; Simon 1953), we need not compute this determinant. We merely inspect the
symbolic form of the determinant’s rows to make sure that the equations are nonredun-
dant; each imposes a new constraint on the unlabeled coefficients for at least one value
of the labeled coefficients.

With a facility to detect redundancies, we can increase the power of our procedure
by adding the following rule:

3*. If there are k£ nonredundant buckets that contain at most & unlabeled coefficients,
label these coefficients and continue.

Another way to increase the power of our procedure is to list not only identifiable
effects but also expressions involving correlations due to bidirected arcs, in accordance
with Wright’s rules. Finally, one can endeavor to list effects of several variables jointly
as is done in Section 4.4. However, such enrichments tend to make the procedure
more complex and might compromise our main objective of providing investigators
with a way to immediately recognize the identified coefficients in a given model and
immediately understand those features in the model that influence the identifiability of
the target quantity. We now relate these results to the identification in nonparametric
models, such as those treated in Section 3.3.

5.3.2 Comparison to Nonparametric Identification

The identification results of the previous section are significantly more powerful than
those obtained in Chapters 3 and 4 for nonparametric models. Nonparametric models
should nevertheless be studied by parametric modelers for both practical and concep-
tual reasons. On the practical side, investigators often find it hard to defend the as-
sumptions of linearity and normality (or other functional-distributional assumptions),
especially when categorical variables are involved. Because nonparametric results are
valid for nonlinear functions and for any distribution of errors, having such results al-
lows us to gauge how sensitive standard techniques are to assumptions of linearity and
normality. On the conceptual side, nonparametric models illuminate the distinctions
between structural and algebraic equations. The search for nonparametric quantities
analogous to path coefficients forces explication of what path coefficients really mean,
why one should labor at their identification, and why structural models are not merely
a convenient way of encoding covariance information.

In this section we cast the problem of nonparametric causal effect identification
(Chapter 3) in the context of parameter identification in linear models.

Parametric versus Nonparametric Models: An Example

Consider the set of structural equations

r = fl(U’,el), (54)
z = fa(z,€), (5.5)
Yy = f3(Z,U,€3), (56)
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where X, Z, Y are observed variables, f1, f», f3 are unknown arbitrary functions,
and U, €1, ey, €3 are unobservables that we can regard either as latent variables or as
disturbances. For the sake of this discussion, we will assume that U, €1, €2, and e3 are
mutually independent and arbitrarily distributed. Graphically, these influences can be
represented by the path diagram of Figure 5.12.

Figure 5.12: Path diagram corresponding to equations (5.4)—(5.6), where {X, Z, Y}
are observed and {U, €1, €2, €3} are unobserved.

The problem is as follows. We have drawn a long stream of independent samples
of the process defined by (5.4)-(5.6) and have recorded the values of the observed
variables X, Z, Y'; we now wish to estimate the unspecified quantities of the model to
the greatest extent possible.

To clarify the scope of the problem, we consider its linear version, which is given

by

T = u-+e€p, (5.7)
z = ar+ e, (5.8)
y = Pztyu+tes, (5.9)

where U, €1, €2, €3 are uncorrelated, zero-mean disturbances.'* It is not hard to show
that parameters «, 3, and ~ can be determined uniquely from the correlations among
the observed quantities X, Z, and Y. This identification was demonstrated already in
the example of Figure 5.7, where the back-door criterion yielded

B=ryzx, «a=rzx, (5.10)
and hence
y=ryx —af. (5.11)

Thus, returning to the nonparametric version of the model, it is tempting to gen-
eralize that, for the model to be identifiable, the functions { f1, f2, f3} must be deter-
mined uniquely from the data. However, the prospect of this happening is unlikely,

14 An equivalent version of this model is obtained by eliminating U from the equations and allowing ¢
and e3 to be correlated, as in Figure 5.7.
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because the mapping between functions and distributions is known to be many-to-one.
In other words, given any nonparametric model M, if there exists one set of functions
{f1, f2, f3} compatible with a given distribution P(z,y, z), then there are infinitely
many such functions (see Figure 1.6). Thus, it seems that nothing useful can be in-
ferred from loosely specified models such as the one given by (5.4)—(5.6).

Identification is not an end in itself, however, even in linear models. Rather, it
serves to answer practical questions of prediction and control. At issue is not whether
the data permit us to identify the form of the equations but, instead, whether the data
permit us to provide unambiguous answers to questions of the kind traditionally an-
swered by parametric models.

When the model given by (5.4)—(5.6) is used strictly for prediction (i.e., to deter-
mine the probabilities of some variables given a set of observations on other variables),
the question of identification loses much (if not all) of its importance; all the predictions
can be estimated directly from either the covariance matrices or the sample estimates
of those covariances. If dimensionality reduction is needed (e.g., to improve estima-
tion accuracy) then the covariance matrix can be encoded in a variety of simultaneous
equation models, all of the same dimensionality. For example, the correlations among
X, Y, and Z in the linear model M of (5.7)—(5.9) might well be represented by the
model M’ (Figure 5.13):

r = €, (5.12)
= o'z +e, (5.13)
y = fB'2406x+es. (5.14)

This model is as compact as (5.7)—(5.9) and is covariance equivalent to M with respect
to the observed variables X, Y, Z. Upon setting o’ = o, 8’ = 3, and 6 = ~, model
M will yield the same probabilistic predictions as those of the model of (5.7)—(5.9).
Still, when viewed as data-generating mechanisms, the two models are not equivalent.
Each tells a different story about the processes generating X, Y, and Z, so naturally
their predictions differ concerning the changes that would result from subjecting these
processes to external interventions.

o
o '
X 1z %%
I I I
o o o
€1 €2 €3

Figure 5.13: Diagram representing model M’ of (5.12)—(5.14).
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5.3.3 Causal Effects: The Interventional Interpretation of Struc-
tural Equation Models

The differences between models M and M illustrate precisely where the structural
reading of simultaneous equation models comes into play, and why even causally shy
researchers consider structural parameters more “meaningful” than covariances and
other statistical parameters. Model M, defined by (5.12)—(5.14), regards X as a direct
participant in the process that determines the value of Y, whereas model M, defined
by (5.7)-(5.9), views X as an indirect factor whose effect on Y is mediated by Z.
This difference is not manifested in the data itself but rather in the way the data would
change in response to outside interventions. For example, suppose we wish to predict
the expectation of Y after we intervene and fix the value of X to some constant x; this
is denoted E(Y |do(X = x)). After X = z is substituted into (5.13) and (5.14), model
M’ yields

E[Y|do(X =x)] = E[f'dx+ ('es + 0z + €3] (5.15)
(B'a’ +0)z; (5.16)
model M yields
ElY|do(X =z)] = E[Bazr+ fes +yu+ €3] (5.17)
= fazx. (5.18)

Upon setting o' = «, ' = 3, and § = ~ (as required for covariance equivalence;
see (5.10) and (5.11)), we see clearly that the two models assign different magnitudes
to the (total) causal effect of X on Y: model M predicts that a unit change in z will
change E(Y") by the amount S«, wheras model M’ puts this amount at Sa + .

At this point, it is tempting to ask whether we should substitute  — ¢; for u in
(5.9) prior to taking expectations in (5.17). If we permit the substitution of (5.8) into
(5.9), as we did in deriving (5.17), why not permit the substitution of (5.7) into (5.9)
as well? After all (the argument runs), there is no harm in upholding a mathemati-
cal equality, u = = — €, that the modeler deems valid. This argument is fallacious,
however.'® Structural equations are not meant to be treated as immutable mathematical
equalities. Rather, they are meant to define a state of equilibrium—one that is violated
when the equilibrium is perturbed by outside interventions. In fact, the power of struc-
tural equation models is that they encode not only the initial equilibrium state but also
the information necessary for determining which equations must be violated in order
to account for a new state of equilibrium. For example, if the intervention consists
merely of holding X constant at z, then the equation x = u + €1, which represents
the preintervention process determining X, should be overruled and replaced with the
equation X = xz. The solution to the new set of equations then represents the new
equilibrium. Thus, the essential characteristic of structural equations that sets them
apart from ordinary mathematical equations is that the former stand not for one but
for many sets of equations, each corresponding to a subset of equations taken from the

153uch arguments have led to Newcomb’s paradox in the so-called evidential decision theory (see Section
4.1.1).
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original model. Every such subset represents some hypothetical physical reality that
would prevail under a given intervention.

If we take the stand that the value of structural equations lies not in summarizing
distribution functions but in encoding causal information for predicting the effects of
policies (Haavelmo 1943; Marschak 1950; Simon 1953), it is natural to view such
predictions as the proper generalization of structural coefficients. For example, the
proper generalization of the coefficient 3 in the linear model A/ would be the answer
to the control query, “What would be the change in the expected value of Y if we were
to intervene and change the value of Z from z to z 4+ 1,” which is different, of course,
from the observational query, “What would be the difference in the expected value of
Y if we were to find Z at level z + 1 instead of level z.” Observational queries, as we
discussed in Chapter 1, can be answered directly from the joint distribution P(z,y, 2),
while control queries require causal information as well. Structural equations encode
this causal information in their syntax by treating the variable on the left-hand side of
the equality sign as the effect and treating those on the right as causes. In Chapter 3 we
distinguished between the two types of queries through the symbol do(-). For example,
we wrote

E(Y|do(z)) 2 E[Y|do(X = z)] (5.19)
for the controlled expectation and
E(Y|z) 2 BY|X =2) (5.20)

for the standard conditional or observational expectation. That E(Y|do(z)) does not
equal E(Y|z) can easily be seen in the model of (5.7)-(5.9), where E(Y'|do(z)) =
afz but E(Y|z) = ryxx = (af + v)z. Indeed, the passive observation X = z
should not violate any of the equations, and this is the justification for substituting both
(5.7) and (5.8) into (5.9) before taking the expectation.

In linear models, the answers to questions of direct control are encoded in the
path (or structural) coefficients, which can be used to derive the total effect of any
variable on another. For example, the value of E(Y'|do(z)) in the model defined by
(5.7)—(5.9) is apx, that is, x times the product of the path coefficients along the path
X —= Z — Y. Computation of E(Y|do(x)) would be more complicated in the
nonparametric case, even if we knew the functions fi, fs, and f3. Nevertheless, this
computation is well-defined; it requires the solution (for the expectation of ') of a
modified set of equations in which f; is “wiped out” and X is replaced by the constant
X

z = faz,€), (5.21)
y = f3(27U’,€3)' (522)

Thus, computation of E(Y'|do(x)) requires evaluation of
E(Y|d0($)) = E{f3 [f?(‘ra 62)7 u, 63]}7

where the expectation is taken over U, e, and e3. Graphical methods for performing
this computation were discussed in Section 3.3.2.
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What, then, is an appropriate definition of identifiability for nonparametric mod-
els? One reasonable definition is that answers to interventional queries are unique, and
this is precisely how Definition 3.2.3 interprets the identification of the causal effect
P(y|do(z)). As we have seen in Chapters 3 and 4, many aspects of nonparametric
identification can be determined graphically, almost by inspection, from the diagrams
that accompany the equations. These include tests for deciding whether a given inter-
ventional query is identifiable as well as formulas for estimating such queries.



