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linear models will be given in Theorem 5.3.1.
This example is not an isolated instance of graphical methods affording clarity and

understanding. In fact, the conceptual basis for SEM achieves a new level of precision
through graphs. What makes a set of equations “structural,” what assumptions are
expressed by the authors of such equations, what the testable implications of those
assumptions are, and what policy claims a given set of structural equations advertises
are some of the questions that receive simple and mathematically precise answers via
graphical methods. These and related issues in SEM will be discussed in the following
sections.

5.2 Graphs and Model Testing

In 1919, Wright developed his “method of path coefficients,” which allows researchers
to compute the magnitudes of cause-effect relationships from correlation measure-
ments provided the path diagram represents correctly the causal processes underlying
the data. Wright’s method consists of writing a set of equations, one for each pair of
variables �Xi� Xj�, and equating the (standardized) correlation coefficient �ij with a
sum of products of path coefficients and residual correlations along the various paths
connecting Xi and Xj . One can then attempt to solve these equations for the path
coefficients in terms of the observed correlations. Whenever the resulting equations
give a unique solution to some path coefficient pmn that is independent of the (unob-
served) residual correlations, that coefficient is said to be identifiable. If every set of
correlation coefficients �ij is compatible with some choice of path coefficients then
the model is said to be untestable or unfalsifiable (also called saturated, just identified,
etc.), because it is capable of perfectly fitting any data whatsoever.

Whereas Wright’s method is partly graphical and partly algebraic, the theory of di-
rected graphs permits us to analyze questions of testability and identifiability in purely
graphical terms, prior to data collection, and it also enables us to extend these analyses
from linear to nonlinear or nonparametric models. This section deals with issues of
testability in linear and nonparametric models.

5.2.1 The Testable Implications of Structural Models

When we hypothesize a model of the data-generating process, that model often im-
poses restrictions on the statistics of the data collected. In observational studies, these
restrictions provide the only view under which the hypothesized model can be tested or
falsified. In many cases, such restrictions can be expressed in the form of zero partial
correlations; more significantly, the restrictions are implied by the structure of the path
diagram alone, independent of the numerical values of the parameters, as revealed by
the d-separation criterion.

Preliminary Notation

Before addressing the testable implication of structural models, let us first review some
definitions from Section 1.4 and relate them to the standard notation used in the SEM
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literature.
The graphs we discuss in this chapter represent sets of structural equations of the

form

xi � fi�pai� �i� � i � �� � � � � n� (5.1)

where pai (connoting parents) stands for the set of variables judged to be immediate
causes of Xi and where the �i represent errors due to omitted factors. Equation (5.1) is
a nonlinear, nonparametric generalization of the standard linear equations

xi �
X

k ��i

�ikxk � �i� i � �� � � � � n� (5.2)

in which pai correspond to those variables on the r.h.s. of (5.2) that have nonzero
coefficients. A set of equations in the form of (5.1) will be called a causal model if
each equation represents the process by which the value (not merely the probability)
of variable Xi is selected. The graph G obtained by drawing an arrow from every
member of pai to Xi will be called a causal diagram. In addition to full arrows, a
causal diagram should contain a bidirected (i.e. double-arrowed) arc between any pair
of variables whose corresponding errors are dependent.

It is important to emphasize that causal diagrams (as well as traditional path dia-
grams) should be distinguished from the wide variety of graphical models in the statisti-
cal literature whose construction and interpretation rest solely on properties of the joint
distribution (Kiiveri et al. 1984; Whittaker 1990; Cox and Wermuth 1996; Lauritzen
1996; Andersson et al. 1999). The missing links in those statistical models represent
conditional independencies, whereas the missing links in causal diagrams represent ab-
sence of causal connections (see note 3 and Section 5.4), which may or may not imply
conditional independencies in the distribution.

A causal model will be called Markovian if its graph contains no directed cycles
and if its �i are mutually independent (i.e., if there are no bidirected arcs). A model is
semi-Markovian if its graph is acyclic and if it contains dependent errors.

If the �i are multivariate normal (a common assumption in the SEM literature),
then the Xi in (5.2) will also be multivariate normal and will be fully characterized
by the correlation coefficients �ij . A useful property of multivariate normal distribu-
tions is that the conditional variance ��

Xjz, conditional covariance �XY jz, and con-
ditional correlation coefficient �XY jz, are all independent of the value z. These are
known as partial variance, covariance, and correlation coefficient and are denoted by
�X�Z � �XY �Z , and �XY �Z (respectively), where X and Y are single variables and Z

is a set of variables. Moreover, the partial correlation coefficient �XY �Z is zero if and
only if �X��Y jZ� holds in the distribution.

The partial regression coefficient is given by

rY X�Z � �Y X�Z
�Y �Z

�X�Z
�

it is equal to the coefficient of Y in the linear regression of Y on X and Z (the order
of the subscripts is essential). In other words, the coefficient of x in the regression
equation

y � ax� b�z� � � � �� bkzk
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is given by

a � rY X�Z�Z����Zk
�

These coefficients can therefore be estimated by the method of least squares (Crámer
1946).

d-Separation and Partial Correlations

Markovian models (the parallel term in the SEM literature is recursive models;7 Bollen
1989) satisfy the Markov property of Theorem 1.2.7; as a result, the statistical pa-
rameters of Markovian models can be estimated by ordinary regression analysis. In
particular, the d-separation criterion is valid in such models (here we restate Theorem
1.2.4).

Theorem 5.2.1 (Verma and Pearl 1988; Geiger et al. 1990)
If sets X and Y are d-separated by Z in a DAG G, then X is independent of Y con-
ditional on Z in every Markovian model structured according to G. Conversely, if X
and Y are not d-separated by Z in a DAG G, then X and Y are dependent conditional
on Z in almost all Markovian models structured according to G.

Because conditional independence implies zero partial correlation, Theorem 5.2.1
translates into a graphical test for identifying those partial correlations that must vanish
in the model.

Corollary 5.2.2 In any Markovian model structured according to a DAGG, the partial
correlation �XY �Z vanishes whenever the nodes corresponding to the variables in Z

d-separate nodeX from node Y in G, regardless of the model’s parameters. Moreover,
no other partial correlation would vanish for all the model’s parameters.

Unrestricted semi-Markovian models can always be emulated by Markovian models
that include latent variables, with the latter accounting for all dependencies among
error terms. Consequently, the d-separation criterion remains valid in such models if
we interpret bidirected arcs as emanating from latent common parents. This may not be
possible in some linear semi-Markovian models where each latent variable is restricted
to influence at most two observed variables (Spirtes et al. 1996). However, it has been
shown that the d-separation criterion remains valid in such restricted systems (Spirtes
et al. 1996) and, moreover, that the validity is preserved when the network contains
cycles (Spirtes et al. 1998; Koster 1999). These results are summarized in the next
theorem.

Theorem 5.2.3 (d-Separation in General Linear Models)
For any linear model structured according to a diagram D, which may include cycles
and bidirected arcs, the partial correlation �XY �Z vanishes if the nodes corresponding
to the set of variables Z d-separate node X from node Y in D. �Each bidirected arc
i� � j is interpreted as a latent common parent i� L � j.�

7The term recursive is ambiguous; some authors exclude correlated errors but others do not.
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For linear structural equation models (see (5.2)), Theorem 5.2.3 implies that those (and
only those) partial correlations identified by the d-separation test are guaranteed to van-
ish independent of the model parameters �ik and independent of the error variances.
This suggests a simple and direct method for testing models: rather than going through
the standard exercise of finding a maximum likelihood estimate for the model’s param-
eters and scoring those estimates for fit to the data, we can directly test for each zero
partial correlation implied by the free model. The advantages of using such tests were
noted by Shipley (1997), who also devised implementations of these tests.

However, the question arises of whether it is feasible to test for the vast number
of zero partial correlations entailed by a given model. Fortunately, these partial corre-
lations are not independent of each other; they can be derived from a relatively small
number of partial correlations that constitutes a basis for the entire set (Pearl and Verma
1987).

Definition 5.2.4 (Basis)
Let S be a set of partial correlations. A basisB for S is a set of zero partial correlations
where (i) B implies �using the laws of probability� the zero of every element of S and
(ii) no proper subset of B sustains such implication.

An obvious choice of a basis for the zero partial correlations entailed by a DAG D is
the set of equalities B � f�ij�pai � �ji � jg, where i ranges over all nodes in D and
j ranges over all predecessors of i in any order that agrees with the arrows of D. In
fact, this set of equalities reflects the “parent screening” property of Markovian models
(Theorem 1.2.7), which is the source of all the probabilistic information encoded in a
DAG . Testing for these equalities is therefore sufficient for testing all the statistical
claims of a linear Markovian model. Moreover, when the parent sets PAi are large, it
may be possible to select a more economical basis, as shown in the next theorem.8

Theorem 5.2.5 (Graphical Basis)
Let �i� j� be a pair of nonadjacent nodes in a DAG D, and let Zij be any set of nodes
that are closer to i than j is to i and such that Zij d-separates i from j. The set of
zero partial correlations B � f�ij�Zij

� �ji � jg, consisting of one element per
nonadjacent pair, constitutes a basis for the set of all zero partial correlations entailed
by D.

Theorem 5.2.5 states that the set of zero partial correlations corresponding to any sep-
aration between nonadjacent nodes in the diagram encapsulates all the statistical infor-
mation conveyed by a linear Markovian model. A proof of Theorem 5.2.5 is given in
Pearl and Meshkat (1999).

Examining Figure 5.1, we see that each of following two sets forms a basis for the
model in the figure:

B� � f����� � �� ����� � �� ����� � �� ������ � �� ������ � �g�
B� � f����� � �� ����� � �� ����� � �� ����� � �� ����� � �g�

(5.3)

The basis B� employs the parent set PAi for separating i from j� �i � j�. Basis

8The possibility that linear models may possess more economical bases came to my awareness during a
conversation with Rod McDonald.
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Figure 5.1: Model testable with two regressors for each missing link (equation (5.3)).

B�, on the other hand, employs smaller separating sets and thus leads to tests involve
fewer regressors. Note that each member of a basis corresponds to a missing arrow
in the DAG; therefore, the number of tests required to validate a DAG is equal to the
number of missing arrows it contains. The sparser the graph, the more it constrains the
covariance matrix and more tests are required to verify those constraints.

5.2.2 Testing the Testable

In linear structural equation models, the hypothesized causal relationships between
variables can be expressed in the form of a directed graph annotated with coefficients,
some fixed a priori (usually to zero) and some free to vary. The conventional method for
testing such a model against the data involves two stages. First, the free parameters are
estimated by iteratively maximizing a fitness measure such as the likelihood function.
Second, the covariance matrix implied by the estimated parameters is compared to the
sample covariances and a statistical test is applied to decide whether the latter could
originate from the former (Bollen 1989; Chou and Bentler 1995).

There are two major weaknesses to this approach:

1. if some parameters are not identifiable, then the first phase may fail to reach
stable estimates for the parameters and the investigator must simply abandon the
test;

2. if the model fails to pass the data fitness test, the investigator receives very little
guidance about which modeling assumptions are wrong.

For example, Figure 5.2 shows a path model in which the parameter� is not identifiable
if cov���� ��� is assumed to be unknown, which means that the maximum likelihood
method may fail to find a suitable estimate for �, thus precluding the second phase of
the test. Still, this model is no less testable than the one in which cov���� ��� � �� �
is identifiable, and the test can proceed. These models impose the same restrictions
on the covariance matrix—namely, that the partial correlation �XZ�Y should vanish
(i.e., �XZ � �XY �Y Z )—yet the model with free cov���� ���, by virtue of � being
nonidentifiable, cannot be tested for this restriction.
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Figure 5.2: A testable model containing unidentified parameter (�).

Figure 5.3 illustrates the weakness associated with model diagnosis. Suppose the
true data-generating model has a direct causal connection betweenX andW , as shown
in Figure 5.3(a), while the hypothesized model (Figure 5.3(b)) has no such connection.
Statistically, the two models differ in the term �XW �Z , which should vanish accord-
ing to Figure 5.3(b) and is left free according to Figure 5.3(a). Once the nature of the

(a) (b)

X

Z W Z W

X

YY

Figure 5.3: Models differing in one local test, �XW �Z � �.

discrepancy is clear, the investigator must decide whether substantive knowledge justi-
fies alteration of the model by adding either a link or a curved arc between X and W .
However, because the effect of the discrepancy will be spread over several covariance
terms, global fitness tests will not be able to isolate the discrepancy easily. Even multi-
ple fitness tests on various local modifications of the model (such tests are provided by
LISREL) may not help much, because the results may be skewed by other discrepan-
cies in different parts of the model, such as the subgraph rooted at Y . Thus, testing for
global fitness is often of only minor use in model debugging.

An attractive alternative to global fitness testing is local fitness testing, which in-
volves listing the restrictions implied by the model and testing them one by one. A
restriction such as �XW �Z � �, for example, can be tested locally without measuring
Y or any of its descendants, thus keeping errors associated with those measurements
from interfering with the test for �XW �Z � �, which is the real source of the lack of
fit. More generally, typical SEM models are often close to being “saturated,” claiming
but a few restrictions in the form of a few edges missing from large, otherwise unre-
strictive diagrams. Local and direct tests for those restrictions are more reliable than
global tests, since they involve fewer degrees of freedom and are not contaminated
with irrelevant measurement errors. The missing edges approach described in Section
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5.2.1 provides a systematic way of detecting and enumerating the local tests needed for
testing a given model.

5.2.3 Model Equivalence

In Section 2.3 (Definition 2.3.3) we defined two structural equation models to be ob-
servationally equivalent if every probability distribution that is generated by one of the
models can also be generated by the other. In standard SEM, models are assumed to
be linear and data are characterized by covariance matrices. Thus, two such models
are observationally indistinguishable if they are covariance equivalent, that is, if every
covariance matrix generated by one model (through some choice of parameters) can
also be generated by the other. It can be easily verified that the equivalence criterion of
Theorem 1.2.8 extends to covariance equivalence.

Theorem 5.2.6 Two Markovian linear-normal models are covariance equivalent if
and only if they entail the same sets of zero partial correlations. Moreover, two such
models are covariance equivalent if and only if their corresponding graphs have the
same sets of edges and the same sets of v-structures.

The first part of Theorem 5.2.6 defines the testable implications of Markovian models.
It states that, in nonmanipulative studies, Markovian structural equation models cannot
be tested for any feature other than those zero partial correlations that the d-separation
test reveals. It also provides a simple test for equivalence that requires, instead of
checking all the d-separation conditions, merely a comparison of corresponding edges
and their directionalities.

In semi-Markovian models (DAGs with correlated errors), the d-separation crite-
rion is still valid for testing independencies (see Theorem 5.2.3), but independence
equivalence no longer implies observational equivalence.9 Two models that entail the
same set of zero partial correlations among the observed variables may yet impose dif-
ferent inequality constraints on the covariance matrix. Nevertheless, Theorems 5.2.3
and 5.2.6 still provide necessary conditions for testing equivalence.

Generating Equivalent Models

By permitting arrows to be reversed as long as no v-structures are destroyed or cre-
ated, we can use Theorem 5.2.6 to generate equivalent alternatives to any Markovian
model. Meek (1995) and Chickering (1995) showed that X �

Y can be replaced by
X � Y if and only if all parents of X are also parents of Y . They also showed that,
for any two equivalent models, there is always some sequence of such edge reversals
that takes one model into the other. This simple rule for edge reversal coincides with
those proposed by Stelzl (1986) and Lee and Hershberger (1990).

In semi-Markovian models, the rules for generating equivalent models are more
complicated. Nevertheless, Theorem 5.2.6 yields convenient graphical principles
for testing the correctness of edge-replacement rules. The basic principle is that if

9Verma and Pearl (1990) presented an example using a nonparametric model, and Richardson devised an
example using linear models with correlated errors (Spirtes and Richardson 1996).
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we regard each bidirected arc X � � Y as representing a latent common cause
X � L � Y , then the “if” part of Theorem 5.2.6 remains valid; that is, any
edge-replacement transformation that does not destroy or create a v-structure is al-
lowed. Thus, for example, an edge X � Y can be replaced by a bidirected arc
X � � Y whenever X and Y have no other parents, latent or observed. Likewise,
an edge X � Y can be replaced by a bidirected arc X � � Y whenever (1) X
and Y have no latent parents and (2) every parent of X or Y is a parent of both. Such
replacements do not introduce new v-structures. However, since v-structures may now
involve latent variables, we can tolerate the creation or destruction of some v-structures
as long as this does not affect partial correlations among the observed variables. Figure
5.4(a) demonstrates that the creation of certain v-structures can be tolerated. By re-
versing the arrowX � Y we create two converging arrows Z �X � Y whose
tails are connected, not directly, but through a latent common cause. This is tolerated
because, although the new convergence at X blocks the path �Z�X� Y �, the connec-
tion between Z and Y (through the arc Z � � Y ) remains unblocked and, in fact,
cannot be blocked by any set of observed variables.

We can carry this principle further by generalizing the concept of v-structure.
Whereas in Markovian models a v-structure is defined as two converging arrows whose
tails are not connected by a link, we now define v-structure as any two converging ar-
rowheads whose tails are “separable.” By separable we mean that there exists a con-
ditioning set S capable of d-separating the two tails. Clearly, the two tails will not
be separable if they are connected by an arrow or by a bidirected arc. But a pair of
nodes in a semi-Markovian model can be inseparable even when not connected by an
edge (Verma and Pearl 1990). With this generalization in mind, we can state necessary
conditions for edge replacement as follows.

Rule 1: An arrowX � Y is interchangeable with X � � Y only if every neigh-
bor or parent of X is inseparable from Y . (By neighbor we mean a node con-
nected (to X) through a bidirected arc.)

Rule 2: An arrow X � Y can be reversed into X � Y only if, before reversal,
(i) every neighbor or parent of Y (excluding X) is inseparable from X and (ii)
every neighbor or parent of X is inseparable from Y .

For example, consider the model Z � � X � Y . The arrow X � Y

cannot be replaced with a bidirected arc X � � Y because Z (a neighbor of X) is
separable from Y by the set S � fXg. Indeed, the new v-structure created at X would
renderX and Y marginally independent, contrary to the original model.

As another example, consider the graph in Figure 5.4(a). Here, it is legitimate to
replace X � Y with X � � Y or with a reversed arrow X � Y because
X has no neighbors and Z, the only parent of X , is inseparable from Y . The same
considerations apply to Figure 5.4(b); variables Z and Y , though nonadjacent, are
inseparable, because the paths going from Z to Y throughW cannot be blocked.

A more complicated example, one that demonstrates that rules 1 and 2 are not suf-
ficient to ensure the legitimacy of a transformation, is shown in Figure 5.4(c). Here, it
appears that replacing X � Y with X � � Y would be legitimate because the
(latent) v-structure atX is shunted by the arrowZ � Y . However, the original model
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Figure 5.4: Models permitting ((a) and (b)) and forbidding (c) the reversal of XY .

shows the path from W to Y to be d-connected given Z, whereas the postreplacement
model shows the same path d-separated given Z. Consequently, the partial correlation
�WY �Z vanishes in the postreplacement model but not in the prereplacement model. A
similar disparity also occurs relative to the partial correlation �WY �ZX . The original
model shows that the path fromW to Y is blocked, given fZ�Xg, but the postreplace-
ment model shows that path to be d-connected, given fZ�Xg. Consequently, the partial
correlation �WY �ZX vanishes in the prereplacement model but is unconstrained in the
postreplacement model.10 Evidently, it is not enough to impose rules on the parents
and neighbors of X ; remote ancestors (e.g. W ) should be considered, too.

These rules are just a few of the implications of the d-separation criterion when
applied to semi-Markovian models. A necessary and sufficient criterion for testing the
d-separation equivalence of two semi-Markovian models was devised by Spirtes and
Verma (1992). Spirtes and Richardson (1996) extended that criterion to include mod-
els with feedback cycles. However, we should keep in mind that, because two semi-
Markovian models can be zero-partial-correlation equivalent and yet not covariance
equivalent, criteria based on d-separation can provide merely the necessary conditions
for model equivalence.

The Significance of Equivalent Models

Theorem 5.2.6 is methodologically significant because it clarifies what it means to
claim that structural models are “testable” (Bollen 1989, p. 78).11 It asserts that we
never test a model but rather a whole class of observationally equivalent models from
which the hypothesized model cannot be distinguished by any statistical means. It
asserts as well that this equivalence class can be constructed (by inspection) from the
graph, which thus provides the investigator with a vivid representation of competing
alternatives for consideration. Graphs representing all models in a given equivalence
class have been devised by Verma and Pearl (1990) (see Section 2.6), Spirtes et al.
(1993), and Andersson et al. (1999). Richardson (1996) discusses the representation of
equivalence classes of models with cycles.

10This example was brought to my attention by Jin Tian, and a similar one by two anonymous reviewers.
11In response to an allegation that “path analysis does not derive the causal theory from the data, or test

any major part of it against the data” (Freedman 1987, p. 112), Bollen (1989, p. 78) stated, “we can test and
reject structural models.... Thus the assertion that these models cannot be falsified has little basis.”
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Although it is true that (overidentified) structural equation models have testable
implications, those implications are but a small part of what the model represents:
a set of claims, assumptions, and implications. Failure to distinguish among causal
assumptions, statistical implications, and policy claims has been one of the main rea-
sons for the suspicion and confusion surrounding quantitative methods in the social
sciences (Freedman 1987, p. 112; Goldberger 1992; Wermuth 1992). However, be-
cause they make the distinctions among these components vivid and crisp, graphical
methods promise to make SEM more acceptable to researchers from a wide variety of
disciplines.

By and large, the SEM literature has ignored the explicit analysis of equivalent
models. Breckler (1990), for example, found that only one of 72 articles in the areas of
social and personality psychology even acknowledged the existence of an equivalent
model. The general attitude has been that the combination of data fitness and model
over-identification is sufficient to confirm the hypothesized model. Recently, however,
the existence of multiple equivalent models seems to have jangled the nerves of some
SEM researchers. MacCallum et al. (1993, p. 198) concluded that “the phenomenon of
equivalent models represents a serious problem for empirical researchers using CSM”
and “a threat to the validity of interpretation of CSM results” (CSM denotes “cxo-
variance structure modeling”; this does not differ from SEM, but the term is used by
some social scientists to disquise euphemistically the causal content of their models).
Breckler (1990, p. 262) reckoned that “if one model is supported, so too are all of its
equivalent models” and hence ventured that “the term causal modeling is a misnomer.”

Such extremes are not justifiable. The existence of equivalent models is logically
inevitable if we accept the fact that causal relations cannot be inferred from statistical
data alone; as Wright (1921) stated, “prior knowledge of the causal relations is assumed
as prerequisite” in SEM. But this does not make SEM useless as a tool for causal mod-
eling. The move from the qualitative causal premises represented by the structure of a
path diagram (see note 3) to the quantitative causal conclusions advertised by the coef-
ficients in the diagram is neither useless nor trivial. Consider, for example, the model
depicted in Figure 5.5, which Bagozzi and Burnkrant (1979) used to illustrate problems
associated with equivalent models. Although this model is saturated (i.e., just identi-
fied) and although it has (at least) 27 semi-Markovian equivalent models, finding that
the influence of AFFECT on BEHAVIOR is almost three times stronger (on a standard-
ized scale) than the influence of COGNITION on BEHAVIOR is still very illuminating—
it tells us about the relative effectiveness of different behavior modification policies if
some are known to influence AFFECT and others COGNITION. The significance of this
quantitative analysis on policy analysis may be more dramatic when a path coefficient
turns negative while the corresponding correlation coefficient measures positive. Such
quantitative results may have profound impact on policy decisions, and learning that
these results are logically implied by the data and the qualitative premises embedded
in the diagram should make the basis for policy decisions more transparent to defend
or to criticize.

In summary, social scientists need not abandon SEM altogether; they need only
abandon the notion that SEM is a method of testing causal models. Structural equation
modeling is a method of testing a tiny fraction of the premises that make up a causal
model and, in cases where that fraction is found to be compatible with the data, the
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Figure 5.5: Untestable model displaying quantitative causal information derived.

method elucidates the necessary quantitative consequences of both the premises and
the data. It follows, then, that users of SEM should concentrate on examining the
implicit theoretical premises that enter into a model. As we will see in Section 5.4,
graphical methods make these premises vivid and precise.

5.3 Graphs and Identifiability

5.3.1 Parameter Identification in Linear Models

Consider a directed edge X � Y embedded in a path diagram G, and let � stand
for the path coefficient associated with that edge. It is well known that the regression
coefficient rY X � �XY �Y ��X can be decomposed into the sum

rY X � �� IY X �

where IY X is not a function of �, since it is computed (e.g., using Wright’s rules) from
other paths connecting X and Y excluding the edge X � Y . (Such paths traverse
both unidirected and bidirected arcs.) Thus, if we remove the edge X � Y from
the path diagram and find that the resulting subgraph entails zero correlation between
X and Y , then we know that IY X � � and � � rY X ; hence, � is identified. Such
entailment can be established graphically by testing whether X is d-separated from
Y (by the empty set Z � f�g) in the subgraph. Figure 5.6 illustrates this simple
test for identification: all paths between X and Y in the subgraph G� are blocked by
converging arrows, and � can immediately be equated with rY X .

We can extend this basic idea to cases where IY X is not zero but can be made
zero by adjusting for a set of variables Z � fZ�� Z�� � � � � Zkg that lie on vari-
ous d-connected paths between X and Y . Consider the partial regression coefficient
rY X�Z � �Y X�Z�Y �Z��X�Z , which represents the residual correlation between Y and
X after Z is “partialled out.” If Z contains no descendant of Y , then again we can


