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5.1 Introduction

5.1.1 Causality in Search of a Language

The word cause is not in the vocabulary of standard probability the-
ory. It is an embarrassing yet inescapable fact that probability theory,
the official mathematical language of many empirical sciences, does not
permit us to express sentences such as “Mud does not cause rain”; all
we can say is that the two events are mutually correlated, or dependent
— meaning that if we find one, we can expect to encounter the other.
Scientists seeking causal explanations for complex phenomena or ratio-
nales for policy decisions must therefore supplement the language of
probability with a vocabulary for causality, one in which the symbolic
representation for the causal relationship “Mud does not cause rain”
is distinct from the symbolic representation for “Mud is independent
of rain.” Oddly, such distinctions have yet to be incorporated into
standard scientific analysis.

Two languages for causality have been proposed: path analysis or
structural equation modeling (SEM) (Wright 1921; Haavelmo 1943);
and the Neyman-Rubin potential-outcome model (Neyman 1923; Ru-
bin 1974). The former has been adopted by economists and social
scientists (Goldberger 1972; Duncan 1975), while a group of statis-
ticians champion the latter (Rubin 1974; Robins 1986; Holland 1988).
These two languages are mathematically equivalent (see Chapter 7, Sec-
tion 7.4.4), yet neither has become standard in causal modeling—the
structural equation framework because it has been greatly misused and
inadequately formalized (Freedman 1987) and the potential-outcome
framework because it has been only partially formalized and (more sig-
nificantly) because it rests on an esoteric and seemingly metaphysical
vocabulary of counterfactual variables that bears no apparent relation
to ordinary understanding of cause-effect processes (see Section 3.6.3).

Currently, potential-outcome models are understood by few and
used by even fewer. Structural equation models are used by many,
but their causal interpretation is generally questioned or avoided, even
by their leading practitioners. In Chapters 3 and 4 we described how

LA summary of attempts by philosophers to reduce causality to probabilities is
given in Chapter 7 (Section 7.5).
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structural equation models, in nonparametric form, can provide the se-
mantic basis for theories of interventions. In Section 1.4 we outlined
how these models provide the semantical basis for a theory of coun-
terfactuals as well. It is somewhat embarrassing that, these distinctive
features are hardly recognized and rarely utilized in the modern SEM
literature. The current dominating philosophy treats SEM as just a
convenient way to encode density functions (in economics) or covari-
ance information (in social science). Ironically, we are witnessing one
of the most bizarre circles in the history of science: causality in search
of a language and, simultaneously, the language of causality in search
of its meaning.

The purpose of this chapter is to formulate the causal interpretation
and outline the proper use of structural equation models, thereby re-
instating confidence in SEM as the primary formal language for causal
analysis in the social and behavioral sciences. First, however, we
present a brief analysis of the current crisis in SEM research in light of
its historical development.

5.1.2 SEM: How its Meaning Became Obscured

Structural equation modeling was developed by geneticists (Wright
1921) and economists (Haavelmo 1943; Koopmans 1950, 1953) so that
qualitative cause-effect information could be combined with statistical
data to provide quantitative assessment of cause-effect relationships
among variables of interest. Thus, to the often asked question, “Under
what conditions can we give causal interpretation to structural coeffi-
cients?” Wright and Haavelmo would have answered, “Always!” Ac-
cording to the founding fathers of SEM, the conditions that make the
equation y = [z + € structural are precisely those that make the causal
connection between X and Y have no other value but # and ensure
that nothing about the statistical relationship between x and e can
ever change this interpretation of 3. Amazingly, this basic understand-
ing of SEM has all but disappeared from the literature, leaving modern
econometricians and social scientists in a quandary over .

Most SEM researchers today are of the opinion that extra ingre-
dients are necessary for structural equations to qualify as carriers of
causal claims. Among social scientists, James, Mulaik, and Brett (1982,
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p. 45), for example, stated that a condition called self-containment is
necessary for consecrating the equation y = fBx + € with causal mean-
ing, where self-containment stands for cov(z,e) = 0. According to
James et al. (1982), if self-containment does not hold then “neither
the equation nor the functional relation represents a causal relation.”
Bollen (1989, p. 44) reiterated the necessity of self-containment (under
the rubric isolation or pseudo-isolation)—contrary to the understand-
ing that structural equations attain their causal interpretation prior
to, and independently of, any statistical relationships among their con-
stituents. Since the early 1980s, it has become exceedingly rare to find
an open endorsement of the original SEM logic: that 3 defines the sen-
sitivity of E(Y') to experimental manipulations of X; that € is defined
in terms of 3, not the other way around; and that the orthogonality
condition cov(z, €) = 0 is neither necessary nor sufficient for the causal
interpretation of 3 (see Sections 3.6.2 and 5.4.1).2 It is therefore, not
surprising that many SEM textbooks have given up on causal inter-
pretation altogether: “We often see the terms cause, effect, and causal
modeling used in the research literature. We do not endorse this prac-
tice and therefore do not use these terms here” (Schumaker and Lomax
1996, p. 90).

Econometricians have just as much difficulty with the causal read-
ing of structural parameters. Leamer (1985, p. 258) observed, “It is
my surprising conclusion that economists know very well what they
mean when they use the words ‘exogenous,” ‘structural,” and ‘causal,’
yet no textbook author has written adequate definitions.” There has
been little change since Leamer made these observations. Econometric
textbooks invariably devote most of their analysis to estimating struc-
tural parameters, but they rarely discuss the role of these parameters
in policy evaluation. The few books that deal with policy analysis (e.g.
Goldberger 1991; Intriligator et al. 1996, p. 28) assume that policy
variables satisfy the orthogonality condition by their very nature, thus
rendering structural information superfluous. Hendry (1995, p. 62),
for instance, explicitly tied the interpretation of 3 to the orthogonality
condition, stating as follows:

2Tn fact, this condition is not necessary even for the identification of 3, once 3
is interpreted (see the identification of « in Figures 5.7 and 5.9).
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the status of # may be unclear until the conditions needed to
estimate the postulated model are specified. For example,
in the model:

y; = 28 + u; where u; ~ IN[0, 02,

until the relationship between 2z, and wu; is specified the
meaning of 3 is uncertain since E[z;u,] could be either zero
or nonzero on the information provided.

LeRoy (1995, p. 211) goes even further: “It is a commonplace of el-
ementary instruction in economics that endogenous variables are not
generally causally ordered, implying that the question ‘What is the ef-
fect of y; on yo’ where y; and y, are endogenous variables is generally
meaningless.” According to LeRoy, causal relationships cannot be at-
tributed to any variable whose causes have separate influence on the
effect variable, a position that denies any causal reading to most of
the structural parameters that economists and social scientists labor to
estimate.

Cartwright (1995b, p. 49), a renowned philosopher of science, ad-
dresses these difficulties by initiating a renewed attack on the torment-
ing question, “Why can we assume that we can read off causes, including
causal order, from the parameters in equations whose exogenous vari-
ables are uncorrelated?” Cartwright, like SEM’s founders, recognizes
that causes cannot be derived from statistical or functional relationships
alone and that causal assumptions are prerequisite for validating any
causal conclusion. Unlike Wright and Haavelmo, however, she launches
an all-out search for the assumptions that would endow the parameter
(3 in the regression equation y = Sz -+e€ with a legitimate causal meaning
and endeavors to prove that the assumptions she proposes are indeed
sufficient. What is revealing in Cartwright’s analysis is that she does
not consider the answer Haavelmo would have provided—namely, that
the assumptions needed for drawing causal conclusions from parame-
ters are communicated to us by the scientist who declared the equation
“structural”; they are already encoded in the syntaz of the equations
and can be read off the associated graph as easily as a shopping list;

3These assumptions are explicated and operationalized in Section 5.4. Briefly,
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they need not be searched for elsewhere, nor do they require new proofs
of sufficiency. Again, Haavelmo’s answer applies to models of any size
and shape, including models with correlated exogenous variables.

These examples bespeak an alarming tendency among economists
and social scientists to view a structural equation as an algebraic object
that carries functional and statistical assumptions but is void of causal
content. This statement from one leading social scientist is typical: “It
would be very healthy if more researchers abandoned thinking of and
using terms such as cause and effect” (Muthen 1987, p. 180). Perhaps
the boldest expression of this tendency was voiced by Holland (1995,
p. 54): “I am speaking, of course, about the equation: {y = a+bx +€}.
What does it mean? The only meaning I have ever determined for such
an equation is that it is a shorthand way of describing the conditional
distribution of {y} given {z}.”*

The founders of SEM had an entirely different conception of struc-
tures and models. Wright (1923, p. 240) declared that “prior knowl-
edge of the causal relations is assumed as prerequisite” in the theory
of path coefficients, and Haavelmo (1943) explicitly interpreted each
structural equation as a statement about a hypothetical controlled ex-
periment. Likewise, Marschak (1950), Koopmans (1953), and Simon
(1953) stated that the purpose of postulating a structure behind the
probability distribution is to cope with the hypothetical changes that
can be brought about by policy. One wonders, therefore, what has hap-

if G is the graph associated with a causal model that renders a certain parameter
identifiable, then two assumptions are sufficient for authenticating the causal read-
ing of that parameter: (1) every missing arrow, say between X and Y, represents
the assumption that X has no effect on Y once we intervene and hold the parents of
Y fixed; and (2) every missing bidirected arc X <— —» Y represents the assump-
tion that all omitted factors that affect Y are uncorrelated with those that affect X.
Each of these assumptions is testable in experimental settings, where interventions
are feasible (Section 5.4.1).

4 All but forgotten, the structural interpretation of the equation (Haavelmo 1943)
poses no restriction whatsoever on the conditional distribution of {y} given {z}.
Paraphrased in our vocabulary, it reads: “In an ideal experiment where we con-
trol X to z and any other set Z of variables (not containing X or Y) to z, Y
will attain a value y given by a + bz + €, where € is a random variable that is
(pointwise) independent of the settings x and z” (see Section 5.4.1). This implies
E[Y|do(z),do(z)] = a + bz + ¢ but says nothing about E(Y|X = x).
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pened to SEM over the past 50 years, and why the basic (and still valid)
teachings of Wright, Haavelmo, Marschak, Koopmans, and Simon have
been forgotten.

Some economists attribute the decline in the understanding of struc-
tural equations to Lucas’s (1976) critique, according to which economic
agents anticipating policy interventions would tend to act contrary to
SEM’s predictions, which often ignore such anticipations. However,
since this critique merely shifts the model’s invariants and the bur-
den of structural modeling—from the behavioral level to a deeper level
that involves agents’ motivations and expectations—it does not exon-
erate economists from defining and representing the causal content of
structural equations at some level of discourse.

I believe that the causal content of SEM has gradually escaped the
consciousness of SEM practitioners mainly for the following reasons:

1. SEM practitioners have sought to gain respectability for SEM
by keeping causal assumptions implicit, since statisticians, the
arbiters of respectability, abhor assumptions that are not directly
testable.

2. The algebraic language that has dominated SEM lacks the nota-
tional facility needed to make causal assumptions, as distinct from
statistical assumptions, explicit. By failing to equip causal rela-
tions with precise mathematical notation, the founding fathers in
fact committed the causal foundations of SEM to oblivion. Their
disciples today are seeking foundational answers elsewhere.

Let me elaborate on the latter point. The founders of SEM under-
stood quite well that, in structural models, the equality sign conveys
the asymmetrical relation “is determined by” and hence behaves more
like an assignment symbol (:=) in programming languages than like
an algebraic equality. However, perhaps for reasons of mathematical
purity, they refrained from introducing a symbol to represent the asym-
metry. According to Epstein (1987), in the 1940s Wright gave a semi-
nar on path diagrams to the Cowles Commission (the breeding ground
for SEM), but neither side saw particular merit in the other’s meth-
ods. Why? After all, a diagram is nothing but a set of nonparametric
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structural equations in which, to avoid confusion, the equality signs are
replaced with arrows.

My explanation is that the early econometricians were extremely
careful mathematicians who thought they could keep the mathematics
in purely equational-statistical form and just reason about structure in
their heads. Indeed, they managed to do so surprisingly well, because
they were truly remarkable individuals who could do it in their heads.
The consequences surfaced in the early 1980s, when their disciples be-
gan to mistake the equality sign for an algebraic equality. The upshot
was that suddenly the “so-called disturbance terms” did not make any
sense at all (Richard 1980, p. 3). We are living with the sad end to
this tale. By failing to express their insights in mathematical notation,
the founders of SEM brought about the current difficulties surrounding
the interpretation of structural equations, as summarized by Holland’s
“What does it mean?”

5.1.3 Graphs as a Mathematical Language

Recent developments in graphical methods promise to bring causality
back into the mainstream of scientific modeling and analysis. These
developments involve an improved understanding of the relationships
between graphs and probabilities, on the one hand, and graphs and
causality, on the other. But the crucial change has been the emer-
gence of graphs as a mathematical language. This mathematical lan-
guage is not simply a heuristic mnemonic device for displaying alge-
braic relationships, as in the writings of Blalock (1962) and Duncan
(1975). Rather, graphs provide a fundamental notational system for
concepts and relationships that are not easily expressed in the stan-
dard mathematical languages of algebraic equations and probability
calculus. Moreover, graphical methods now provide a powerful sym-
bolic machinery for deriving the consequences of causal assumptions
when such assumptions are combined with statistical data.

A concrete example that illustrates the power of the graphical
language—and that will set the stage for the discussions in Sections
5.2 and 5.3—is Simpson’s paradox, discussed in Section 3.3 and further
analyzed in Section 6.1. This paradox concerns the reversal of an as-
sociation between two variables (e.g., gender and admission to school)
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that occurs when we partition a population into finer groups, (e.g.,
departments). Simpson’s reversal has been the topic of much statisti-
cal research since its discovery in 1899. This research has focused on
conditions for escaping the reversal instead of addressing the practi-
cal questions posed by the reversal: “Which association is more valid,
before or after partitioning?” In linear analysis, the problem surfaces
through the choice of regressors—for example, determining whether a
variate Z can be added to a regression equation without biasing the
result. Such an addition may easily reverse the sign of the coefficients
of the other regressors, a phenomenon known as “suppressor effect”
(Darlington 1990).

Despite a century of analysis, questions of regressor selection or
adjustment for covariates continue to be decided informally, case-by-
case, with the decision resting on folklore and intuition rather than on
hard mathematics. The standard statistical literature is remarkably
silent on this issue. Aside from noting that one should not adjust for
a covariate that is affected by the putative cause (X),° the literature
provides no guidelines as to what covariates might be admissible for
adjustment and what assumptions would be needed for making such a
determination formally. The reason for this silence is clear: the solution
to Simpson’s paradox and the covariate selection problem (as we have
seen in Sections 3.3.1 and 4.5.3), rests on causal assumptions, and such
assumptions cannot be expressed formally in the standard language of
statistics.®

In contrast, formulating the covariate selection problem in the lan-
guage of graphs immediately yields a general solution that is both nat-
ural and formal. The investigator expresses causal knowledge (or as-
sumptions) in the familiar qualitative terminology of path diagrams,
and once the diagram is complete, a simple procedure decides whether
a proposed adjustment (or regression) is appropriate relative to the
quantity under evaluation. This procedure, which we called the back-

5This advice, which rests on the causal relationship “not affected by,” is (to the
best of my knowledge) the only causal notion that has found a place in statistics
textbooks. The advice is neither necessary nor sufficient, as readers can verify from
the discussion of Chapter 3.

6Simpson’s reversal, as well as the supressor effect, are paradoxical only when
we attach causal reading to the associations involved; see Section 6.1.
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door criterion in Definition 3.3.1, was applicable when the quantity of
interest is the total effect of X on Y. If instead the direct effect is to
be evaluated, then the graphical criterion of Theorem 4.5.3 is appli-
cable. A modified criterion for identifying direct effects (i.e., a path
coefficient) in linear models will be given in Theorem 5.3.1.

This example is not an isolated instance of graphical methods afford-
ing clarity and understanding. In fact, the conceptual basis for SEM
achieves a new level of precision through graphs. What makes a set of
equations “structural,” what assumptions are expressed by the authors
of such equations, what the testable implications of those assumptions
are, and what policy claims a given set of structural equations adver-
tises are some of the questions that receive simple and mathematically
precise answers via graphical methods. These and related issues in
SEM will be discussed in the following sections.



