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Figure 4.8: Causal diagram G in which proper ordering of the control
variables X; and X is important.

4.5 Direct Effects and Their Identifica-
tion

4.5.1 Direct versus Total Effects:

The causal effect we have analyzed so far, P(y|z), measures the total
effect of a variable (or a set of variables) X on a response variable Y.
In many cases, this quantity does not adequately represent the target
of investigation and attention is focused instead on the direct effect of
X on Y. The term “direct effect” is meant to quantify an effect that is
not mediated by other variables in the model or, more accurately, the
sensitivity of Y to changes in X while all other factors in the analysis
are held fixed. Naturally, holding those factors fixed would sever all
causal paths from X to Y with the exception of the direct link X — Y,
which is not intercepted by any intermediaries.

A classical example of the ubiquity of direct effects (see Hesslow
1976; Cartwright 1989) tells the story of a birth-control pill that is sus-
pect of producing thrombosis in women and, at the same time, has a
negative indirect effect on thrombosis by reducing the rate of pregnan-
cies (pregnancy is known to encourage thrombosis). In this example,



194 CHAPTER 4. ACTIONS, PLANS, AND DIRECT EFFECTS

interest is focused on the direct effect of the pill because it represents a
stable biological relationship that, unlike the total effect, is invariant to
marital status and other social factors that may affect women’s chances
of getting pregnant or of sustaining pregnancy.

Another class of examples involves legal disputes over race or sex
discrimination in hiring. Here, neither the effect of sex or race on
applicants’ qualification nor the effect of qualification on hiring are
targets of litigation. Rather, defendants must prove that sex and race
do not directly influence hiring decisions, whatever indirect effects they
might have on hiring by way of applicant qualification.

In all these examples, the requirement of holding the mediating vari-
ables fixed must be interpreted as (hypothetically) setting these vari-
ables to constants by physical intervention, not by analytical means
such as selection, conditioning, or adjustment. For example, it will not
be sufficient to measure the association between the birth-control pill
and thrombosis separately among pregnant and nonpregnant women
and then aggregate the results. Instead, we must perform the study
among women who became pregnant before the use of the pill and
among women who prevented pregnancy by means other than the drug.
The reason is that, by conditioning on an intermediate variable (preg-
nancy in the example), we may create spurious associations between X
and Y even when there is no direct effect of X on Y. This can easily
be illustrated in the model X — Z <~ U — Y, where X has no direct
effect on Y. Physically holding Z constant would permit no association
between X and Y, as can be seen by deleting all arrows entering Z. But
if we were to condition on 7, a spurious association would be created
through U (unobserved) that might be construed as a direct effect of
XonY.

4.5.2 Direct Effects, Definition, and Identification

Controlling all variables in a problem is obviously a major undertaking,
if not an impossibility. The analysis of identification tells us under what
conditions direct effects can be estimated from nonexperimental data
even without such control. Using our do(z) notation (or & for short),
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we can express the direct effect as follows.

Definition 4.5.1 (Direct Effect)
The direct effect of X on'Y is given by P(y|z, $xy), where Sxy is the
set of all endogenous variables except X and Y in the system.

We see that the measurement of direct effects is ascribed to an ideal
laboratory; the scientist controls for all possible conditions Sxy and
need not be aware of the structure of the diagram or of which variables
are truly intermediaries between X and Y. Much of the experimental
control can be eliminated, however, if we know the structure of the
diagram. For one thing, there is no need to actually hold all other
variables constant; holding constant the direct parents of Y (excluding
X)) should suffice. Thus, we obtain the following equivalent definition
of a direct effect.

Corollary 4.5.2 The direct effect of X on Y s given by
P(y|2, pay\x), where pay\ x stands for any realization of the parents
of Y, excluding X.

Clearly, if X does not appear in the equation for Y (equivalently, if X is
not a parent of V), then P(y|Z, pdy x) defines a constant distribution
on Y that is independent of x, thus matching our understanding of
“having no direct effect.” In general, assuming that X is a parent of Y/,
Corollary 4.5.2 implies that the direct effect of X on Y is identifiable
whenever P(y|pa, ) is identifiable. Moreover, since the conditioning
part of this expression corresponds to a plan in which the parents of Y
are the control variables, we conclude that a direct effect is identifiable
whenever the effect of the corresponding parents’ plan is identifiable.
We can now use the analysis of Section 4.4 and apply the graphical
criteria of Theorems 4.4.1 and 4.4.6 to the analysis of direct effects. In
particular, we can state our next theorem.

Theorem 4.5.3 Let PAy = {Xi,..., Xk,..., Xm}. The direct effect
of any X on Y is identifiable whenever the conditions of Corollary
4.4.5 hold for the plan (Z1, T, ..., %m) in some admissible ordering of
the variables. The direct effect is then given by (4.9).
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Theorem 4.5.3 implies that if the effect of one parent of Y is identifiable
then the effect of every parent of Y is identifiable as well. Of course,
the magnitude of the effect would differ from parent to parent, as seen
in (4.9).

The following corollary is immediate.

Corollary 4.5.4 Let X; be a parent of Y. The direct effect of X; on
Y is, in general, nonidentifiable if there exists a confounding arc that
embraces any link X, — Y.

4.5.3 Example: Sex Discrimination in College Ad-
mission

To illustrate the use of this result, consider the study of Berkeley’s al-
leged sex bias in graduate admission (Bickel et al. 1975), where data
showed a higher rate of admission for male applicants overall but, when
broken down by departments, a slight bias toward female applicants.
The explanation was that female applicants tend to apply to the more
competitive departments, where rejection rates are high; based on this
finding, Berkeley was exonerated from charges of discrimination. The
philosophical aspects of such reversals, known as Simpson’s paradox,
will be discussed more fully in Chapter 6. Here we focus on the question
of whether adjustment for department is appropriate for assessing sex
discrimination in college admission. Conventional wisdom has it that
such adjustment is appropriate because “We know that applying to a
popular department (one with considerably more applicants than posi-
tions) is just the kind of thing that causes rejection” [Cartwright, 1983,
p. 38|, but we will soon see that additional factors should be considered.

Let us assume that the relevant factors in the Berkeley example
are configured as in Figure 4.9, with the following interpretation of the
variables:

X, = applicant’s gender;
Xy = applicant’s choice of department;

Z = applicant’s career objectives;
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Figure 4.9: Causal relationships relevant to Berkeley’s sex-
discrimination study; adjusting for department choice (X3) or career
objective (Z) (or both) would be inappropriate in estimating the direct
effect of gender on admission. The appropriate adjustment is given in
(4.11).

Y = admission outcome (accept/reject);

U = applicant’s aptitude (unrecorded).

Note that U affects applicant’s career objective and also the admis-
sion outcome (say, through verbal skills (unrecorded)). Adjusting for
department choice amounts to computing the following expression:

E.,P(y|21,22) = > P(y|z1, 2)P(x2). (4.10)

In contrast, the direct effect of X; on Y, as given by (4.8), reads
P(y|21,42) = Y _ P(y|z, z1, 32) P(z|z1). (4.11)

It is clear that the two expressions may differ substantially. The first
measures the (average) effect of sex on admission among applicants to
a given department, a quantitiy that is sensitive to the fact that some
gender-department combinations may be associated with high admis-
sion rates merely because such combinations are indicative of certain
aptitude (U) that was left unrecorded. The second expression elimi-
nates such spurious associations by separately adjusting for career ob-
jectives (Z) in each of the two genders.
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To verify that (4.10) does not properly measure the direct effect of
X7 on Y, we note that the expression depends on the value of X; even
in cases where the arrow between X; and Y is absent. (4.11), on the
other hand, becomes insensitive to z; in such cases—an exercise that
we leave for the reader to verify.

To cast this analysis in a concrete numerical setting, let us imagine
a college consisting of two departments, A and B, both admitting stu-
dents on the basis of qualification, @), alone. Let us further assume (i)
that the applicant pool consists of 100 males and 100 females and (ii)
that 50 applicants in each gender have high qualifications (hence are
admitted) and 50 have low qualifications (hence are rejected). Clearly,
this college cannot be accused of sex discrimination.

A different result would surface, however, if we adjust for depart-
ments while ignoring qualifications, which amounts to using (4.10) to
estimate the effect of gender on admission. Assume that the nature
of the departments is such that all and only qualified male applicants
apply to department A, while all females apply to department B (see
Table 4.1).

Males Females Total
Admitted | Applied | Admitted | Applied | Admitted | Applied
Dept. A 50 50 0 0 50 50
Dept. B 0 50 50 100 50 150
Unadjusted 50% 50% 50%
Adjusted 25% 37.5%

Table 4.1: Admission rate among males and females in each depart-
ment.

We see from the table that adjusting for department would falsely
indicate a bias of 37.5 : 25 (= 3 : 2) in favor of female applicants. An
unadjusted (sometimes called “crude”) analysis happens to give the cor-
rect result in this example—50% admission rate for males and females

8Hint: Factorize P(y, u, 2|21, ¥2) using the independencies in the graph and elim-
inate u as in the derivation of (3.29).
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alike—thus exonerating the school from charges of sex discrimination.

Our analysis is not meant to imply that the Berkeley study of Bickel
et al. (1975) is defective, or that adjustment for department was not
justified in that study. The purpose is to emphasize that no adjustment
is guaranteed to give an unbiased estimate of causal effects, direct or
indirect, absent a careful examination of the causal assumptions that
ensure identification. Theorem 4.5.3 provides us with the understand-
ing of those assumptions and with a mathematical means of expressing
them. We note that if applicants’ qualifications were not recorded in
the data, then the direct effect of gender on admission will not be iden-
tifiable unless we can measure some proxy variable that stands in the
same relation to Q as Z stands to U in Figure 4.9.

4.5.4 Average Direct Effects

Readers versed in structural equation models (SEMs) will note that,
in linear systems, the direct effect P(Y[2, pay x) is fully specified by
the path coefficient attached to the link from X to Y (see (5.24) for
mathematical definition); therefore, the direct effect is independent of
the values pay\ x at which we hold the other parents of Y. In nonlinear
systems, those values would, in general, modify the effect of X on
Y and thus should be chosen carefully to represent the target policy
under analysis. For example, the direct effect of a pill on thrombosis
would most likely be different for pregnant and nonpregnant women.
Epidemiologists call such differences “effect modification” and insist on
separately reporting the effect in each subpopulation.

Although the direct effect is sensitive to the levels at which we
hold the parents of the outcome variable, it is sometimes meaningful to
average the direct effect over those levels. For example, if we wish to
assess the degree of discrimination in a given school without reference
to specific departments, we can compute the difference

P(admission|male, dept) — P(admission|female, dept)

and average this difference over all departments. This average measures
the increase in admission rate in a hypothetical experiment in which
we instruct all female candidates to retain their department preferences



200 CHAPTER 4. ACTIONS, PLANS, AND DIRECT EFFECTS

but change their gender identification (on the application form) from
female to male.

In general, the average direct effect can be defined as a set of prob-
abilities

Z P(ZU‘@@Y\X)P(FGY\X);
Pay\x
one for each level of X.

Several variants of this definition may be used when X affects other
parents of Y. For example, we may wish to assess the average change
in E(Y) induced by changing X from x to 2’ while keeping the other
parents of ¥ constant at whatever value they obtain under do(z). The
appropriate expression for this change is

Npw(Y) = > [E(Y|do(2'), do(payx))

pay\x

—E(Y|do(x), do(pay x))| P (pay\x|do(z)).

This expression represents what we actually wish to measure in race or
sex discrimination cases, where we are instructed to assess the effect of
one factor (X) while keeping “all other factors constant.”
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