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4.4 The Identification of Plans

This section, based on Pearl and Robins (1995), concerns the probabilis-
tic evaluation of plans in the presence of unmeasured variables, where
each plan consists of several concurrent or sequential actions and each
action may be influenced by its predecessors in the plan. We establish
a graphical criterion for recognizing when the effects of a given plan
can be predicted from passive observations on measured variables only.
When the criterion is satisfied, a closed-form expression is provided for
the probability that the plan will achieve a specified goal.

4.4.1 Motivation

To motivate the discussion, consider an example discussed in Robins
(1993, apx. 2), as depicted in Figure 4.4. The variables X; and X, stand

Figure 4.4: The problem of evaluating the effect of the plan
(do(x1), do(xs)) on Y, from nonexperimental data taken on X7, Z, Xo,
and Y.

for treatments that physicians prescribe to a patient at two different
times, Z represents observations that the second physician consults
to determine X5, and Y represents the patient’s survival. The hidden
variables U; and U, represent, respectively, part of the patient’s history
and the patient’s disposition to recover. A simple realization of such
structure could be found among AIDS patients, where Z represents



4.4. THE IDENTIFICATION OF PLANS 183

episodes of PCP. This is a common opportunistic infection of AIDS
patients that (as the diagram shows) does not have a direct effect on
survival Y because it can be treated effectively, but it is an indicator
of the patient’s underlying immune status (Us), which can cause death.
The terms X; and X, stand for bactrim, a drug that prevents PCP (Z)
and may also prevent death by other mechanisms. Doctors used the
patient’s earlier PCP history (U;) to prescribe X, but its value was
not recorded for data analysis.

The problem we face is as follows. Assume we have collected a
large amount of data on the behavior of many patients and physicians,
which is summarized in the form of (an estimated) joint distribution P
of the observed four variables (X7, Z, X5, Y). A new patient comes
in, and we wish to determine the impact of the (unconditional) plan
(do(x1), do(z3)) on survival, where x; and x5 are two predetermined
dosages of bactrim to be administered at two prespecified times.

In general, our problem amounts to that of evaluating a new plan
by watching the performance of other planners whose decision strate-
gies are indiscernible. Physicians do not provide a description of all
inputs that prompted them to prescribe a given treatment; all they
communicate to us is that U; was consulted in determining X; and
that Z and X; were consulted in determining X5. But U, unfortu-
nately, was not recorded. In epidemiology, the plan evaluation problem
is known as “time-varying treatment with time-varying confounders”
(Robins 1993). In artificial intelligence applications, the evaluation of
such plans enables one agent to learn to act by observing the perfor-
mance of another agent, even in cases where the actions of the other
agent are predicated on factors that are not visible to the learner. If the
learner is permitted to act as well as observe, then the task becomes
much easier: the topology of the causal diagram could also be inferred
(at least partially), and the effects of some previously unidentifiable
actions could be determined.

As in the identification of actions (Section 4.3), the main problem
in plan identification is the control of “confounders,” that is, unob-
served factors that trigger actions and simultaneously affect the re-
sponse. However, unlike the problem treated in Section 4.3, plan iden-
tification is further complicated by the fact that some of the confounders
(e.g. Z) are affected by control variables. As we remarked in Chapter
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3, one of the deadliest sins in the design of statistical experiments (Cox
1958, p. 48) is to adjust for such variables, because the adjustment
would simulate holding a variable constant; holding constant a variable
that stands between an action and its consequence interferes with the
very quantity we wish to estimate—the total effect of that action.

Two other features of Figure 4.4 are worth noting. First, the quan-
tity P(y|Z1, Z2) cannot be computed if we treat the control variables X
and X, as a single compound variable X. The graph corresponding to
such compounding would depict X as connected to Y by both an arrow
and a curved arc (through U) and thus would form a bow pattern (see
Figure 3.9), which is indicative of nonidentifiability. Second, the causal
effect P(y|Z1) in isolation is not identifiable because U; creates a bow
pattern around the link X — Z, which lies on a directed path from X
to Y (see the discussion in Section 3.5).

The feature that facilitates the identifiability of P(y|Zi,Z5) is the
identifiability of P(y|zy, z, Z2)—the causal effect of the action do(Xs =
x9) alone, conditional on the observations available at the time of this
action. This can be verified using the back-door criterion, observing
that { X1, Z} blocks all back-door paths between X5 and Y. Thus, the
identifiability of P(y|Z1,22) can be readily proven by writing

P(y|@1,22) = P(ylz1,22) (4.1)
> P(y|z, 1, 22) P(2|z1) (4.2)
= Y P(yl|z,z1,22)P(z]21), (4.3)

where (4.1) and (4.3) follow from Rule 2, and (4.2) follows from Rule
3. The subgraphs that permit the application of these rules are shown
in Figure 4.5 (in Section 4.4.3).

This derivation also highlights how conditional plans can be eval-
uated. Assume we wish to evaluate the effect of the plan {do(X; =
x1), do(Xy = g(z1,2))}. Following the analysis of Section 4.2, we write

P(y|do(Xy = x1),do(Xo= g(x1,2))) = P(ylzi,do(Xe = g(z1,2)))
= ZP(y‘Zaxbdo(XQ = g(xl,z)))P(z|x1)

= ZP(y‘zv'Th$2)P(z|x1)|22:g(11,2)' (4'4)
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Again, the identifiability of this conditional plan rests on the identifi-
ability of the expression P(y|z,z1,Z2), which reduces to P(y|z, z1, z2)
because {X1, Z} blocks all back-door paths between X5 and Y.

The criterion developed in the next section will enable us to recog-
nize in general, by graphical means, whether a proposed plan can be
evaluated from the joint distribution on the observables and, if so, to
identify which covariates should be measured and how they should be
adjusted.

4.4.2 Plan Identification: Notation and Assump-
tions

Our starting point is a knowledge specification scheme in the form
of a causal diagram, like the one shown in Figure 4.4, that provides
a qualitative summary of the analyst’s understanding of the relevant
data-generating processes.’

Notation:

A control problem consists of a directed acyclic graph (DAG) G with
vertex set V, partitioned into four disjoint sets V = {X, Z, U, Y},
where

X = the set of control variables (exposures, interventions, treatments,
etc.);

Z = the set of observed variables, often called covariates;
U = the set of unobserved (latent) variables; and

Y = an outcome variable.

We let the control variables be ordered X = X, X,,..., X,
such that every Xj is a nondescendant of X,.; (j > 0) in G,
and we let the outcome Y be a descendant of X,. Let N, stand
for the set of observed nodes that are nondescendants of any ele-
ment in the set { X, Xxi1,...,Xn}. A plan is an ordered sequence
(%1, Z9,-..,T,) of value assignments to the control variables, where Zj

5An alternative specification scheme using counterfactual statements was devel-
oped by Robins (1986, 1987), as described in Section 3.6.4.
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means “Xj is set to x;.” A conditional plan is an ordered sequence

(91(21), 92(22), - - -, gn(2n)) where each gy, is a function from a set Zj to
X, and where gi(zy) stands for the statement “set X to gx(zx) when-
ever Zj, attains the value z;.” The support Z; of each gx(zx) function
must not contain any variables that are descendants of X in G.

Our problem is to evaluate an unconditional plan® by com-
puting P(y|Zi, Zo,...,Z,), which represents the impact of the
plan (Z,...,%,) on the outcome variable Y.  The expression
P(y|z1, Zo,...,2,) is said to be identifiable in G if, for every assign-
ment (%1, Z,...,%,), the expression can be determined uniquely from
the joint distribution of the observables {X,Y, Z}. A control problem
is identifiable whenever P(y|Z1, Zo,...,Z,) is identifiable.

Our main identifiability criteria are presented in Theorems 4.4.1
and 4.4.6. These invoke d-separation tests on various subgraphs of
G, defined in the same manner as in Section 4.3. We denote by Gy
(and Gy, respectively) the graphs obtained by deleting from G all
arrows pointing to (emerging from) nodes in X. To represent the

deletion of both incoming and outgoing arrows, we use the notation
Gx- Finally, the expression P(y|Z,z) 2 P(y, z|z)/P(z|%) stands for
the probability of Y = y given that Z = z is observed and X is held

constant at x.

4.4.3 Plan Identification: A General Criterion

Theorem 4.4.1 (Pearl and Robins 1995)
The probability P(y|1,...,%,) is identifiable if, for every 1 < k < n,
there exists a set 7, of covariates satisfying

Zy C Ny, (4.5)
(i.e., Zy consists of nondescendants of {Xg, Xki1,-.-,Xn}) and

(YL Xk| Xy, oo, Xi1, Z1, 2oy - -, Zk)a (4.6)

6Tdentification of conditional plans can be obtained from Theorem 4.4.1 using
the method described in Section 4.2 and exemplified in Section 4.4.1.
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When these conditions are satisfied, the effect of the plan is given by

P(ylzy,....4n) = > PWlz,--. 20,21, ,Tn)

213320

I PGzelzs - - oy zbmts @1, ..oy mm1). (47)
k=1

Before presenting its proof, let us demonstrate how Theorem 4.4.1 can
be used to test the identifiability of the control problem shown in Figure
4.4. First, we will show that P(y|Zi,Z2) cannot be identified without
measuring Z; in other words, that the sequence Z; = 0, Z, = () would
not satisfy conditions (4.5)—(4.6). The two d-separation tests encoded
in (4.6) are

(Y 1LX,) and (Y 1LX5[X))cy, -

G£1’72
The two subgraphs associated with these tests are shown in Figure 4.5.
We see that (Y 1LX;) holds in Gy =, but that (YL X5|X;) fails to

U
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Figure 4.5: The two subgraphs of G used in testing the identifiability
of the plan (%1, Z3) in Figure 4.4.

hold in Gx,. Thus, in order to pass the test, we must have either
Zy = {Z} or Zy = {Z}; since Z is a descendant of X;, only the
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second alternative satisfies (4.5). The tests applicable to the sequence
Z1 = @, Z2 = {Z} are (Y_LLXI)GXI,Yz and (Y_J_LX2|X1, Z)Gﬁz' Figure
4.5 shows that both tests are now satisfied, because { X1, Z} d-separates
Y from X, in Gx,. Having satisfied conditions (4.5)—(4.6), equation
(4.7) provides a formula for the effect of plan (&1, Z2) on Y

P(y|21,22) =Y P(yl|z, 1, z2) P(z|z1), (4.8)

which coincides with (4.3).

The question naturally arises of whether the sequence Z; = (), Z, =

{Z} can be identified without exhaustive search. This question will be
answered in Corollary 4.4.5 and Theorem 4.4.6.
Proof of Theorem 4.4.1: The proof given here is based on the infer-
ence rules of do calculus (Theorem 3.4.1), which facilitate the reduction
of causal effect formulas to hat-free expressions. An alternative proof,
using latent variable elimination, is given in Pearl and Robins 1995).

Step 1: The condition Z; C N implies Z;, C N; for all j > k. There-
fore, we have

P(Zk-|Zl, sy RE—1,T1y - axk—laika j\‘/‘k:—l—la SRR i‘n)
= P(2k|21, oy Zb—1, L1y -+, T—1)-
This is so because no node in {Z1,..., Zy, X1,..., X 1} can be
a descendant of any node in {Xj,..., X, }. Hence, Rule 3 allows

us to delete the hat variables from the expression.

Step 2: The condition in (4.5) permits us to invoke Rule 2 and write:

P(y'Zb o5 Rk L1y ey T—1, Thy ThA1y - - - axn)

= P(y|217 vy Rky X1y ey =1, They Tt 1y - - - 7xn)-

Thus, we have

P(yldr, ... 4n)
= ZP(y'Zl,C/ﬁl,i’Q,...,in)P(Zl‘fl,...,.f?n)
21

= ZP(y|z1,x1,i2,...,in)P(zl)
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= Zzp(mzl,szﬂhim---,ﬂf?n)P(zﬂ

zo 21
P(zo|21, 21, %9, ..., &p)

= S5 Plylzy, 20,31, %o, B3, - - -, )
Z2 21

P(21)P (22|21, 1)

= Z---ZZP(y\zl,...,zn,xl,...,xn)

22 ZR1
X P(21)P(z2|21,21) - .. P(2n|21, 21, 20, T2y - -+, Zp 1, T 1)
n
= > PWla,--eszm @1, xn) [I Ploslzr, .o s k1,215 - Tom).
Z1y-a5m k—l

O

Definition 4.4.2 Any sequence Z1, ..., 7Z, of covariates satisfying the
conditions in (4.5)—(4.6) will be called admissible, and any erpression
P(y|%1, Zo,...,Z,) that is identifiable by the criterion of Theorem 4.4.1
will be called G-identifiable.”

The following corollary is immediate.

Corollary 4.4.3 A control problem is G-identifiable if and only if it
has an admissible sequence.

G-identifiability is sufficient but not necessary for general plan identi-
fiability as defined in Section 4.4.2. The reasons are twofold. First, the
completeness of the three inference rules of do calculus is still a pend-
ing conjecture. Second, the kth step in the reduction of (4.7) refrains
from conditioning on variables Zj that are descendants of X;—mnamely,
variables that may be affected by the action do(Xy = xi). In certain
causal structures, the identifiability of causal effects requires that we
condition on such variables, as demonstrated by the front-door criterion
(Theorem 3.3.4).

"The term “G-admissibility” was used in Pearl and Robins (1995) to evoke two
associations: (1) Robins’s G-estimation formula (equation (3.65)), which coincides
with (4.7) when G is complete and contains no unobserved confounders; and (2)
the graphical nature of the conditions in (4.5)—(4.6).
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4.4.4 Plan Identification: A Procedure

Theorem 4.4.1 provides a declarative condition for plan identifiability.
It can be used to ratify that a proposed formula is valid for a given
plan, but it does not provide an effective procedure for deriving such
formulas because the choice of each Zy is not spelled out procedurally.
The possibility exists that some unfortunate choice of Z; satisfying
(4.5) and (4.6) might prevent us from continuing the reduction process
even through another reduction sequence is feasible.

This is illustrated in Figure 4.6. Here W is an admissible choice
for Z;, but if we make this choice then we will not be able to com-
plete the reduction, since no set Z, can be found that satisfies condi-
tion (4.6): (V. ILX5[X1, W, Z5)Gy,- In this example it would be wiser
to choose Z; = Zy = (), which satisfies both (Y 1LX;| ()

(Y AL X |X1, B)gy, -

G£1 X and

Figure 4.6: An admissible choice Z; = W that rules out any admissible
choice for Zs.

The obvious way to avoid bad choices of covariates, like the one
illustrated in Figure 4.6, is to insist on always choosing a “minimal”
Zy, namely, a set of covariates satisfying (4.6) that has no proper subset
satisfying (4.6). However, since there are usually many such minimal
sets (see Figure 4.7), the question remains of whether every choice of
a minimal 7, is “safe:” Can we be sure that no choice of a minimal
subsequence 71, ..., Z; will ever prevent us from finding an admissible
Zi+1, when some admissible sequence Z7, ..., Z" exists?
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Figure 4.7: Illustrating non-uniqueness of minimal admissible sets: Z;
and Z] are each minimal and admissible.

The next result guarantees the safety of every minimal subsequence
Zy, ..., Z and hence provides an effective test for G-identifiability.

Theorem 4.4.4 If there exists an admissible sequence Z7, ..., Z) then,
for every minimally admissible subsequence Z1, ..., Zx_1 of covariates,
there is an admissible set Zj,.

A proof is given in [Pearl and Robins, 1995|Pear]l and Robins (1995).
Theorem 4.4.4 now yields an effective decision procedure for testing
G-identifiability as follows.

Corollary 4.4.5 A control problem is G-identifiable if and only if the
following algorithm exits with success:

1. Setk=1.
2. Choose any minimal Z, C Ny, satisfying (4.6).
3. If no such Z, exists then exit with failure; else set k =k + 1.

4. If k =n+1 then exit with success, else return to step 2.

A further variant of Theorem 4.4.4 can be stated that avoids the search
for minimal sets Z,. This follows from the realization that, if an ad-
missible sequence exists, we can rewrite Theorem 4.4.1 in terms of an
explicit sequence of covariates Wy, W, ..., W, that can easily be iden-
tified in G.
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Theorem 4.4.6 The probability P(y|Zi,...,%T,) is G-identifiable if
and only if the following condition holds for every 1 < k < n:1

(YL Xk Xy, oo, Xpmy, Wi, W, o, W)

where Wy, 1s the set of all covariates in G that are both nondescen-
dants of { Xk, Xki1,---, Xn} and have either Y or Xy as descendant
n Gy Xy, X, Moreover, if this condition is satisfied then the plan
evaluates as

P(y|lz1,...,2,) = Z P(ylwy, ..., wn, 21, ..., Tp)
W1 yeeeyWn,
n
I P(wilws, ..., we—1, 21, ..y zp—1). (4.9)
k=1

A proof of Theorem 4.4.6, together with several generalizations can be
found in Pearl and Robins (1995). Extensions to G-identifiability are
reported in Kuroki and Miyakawa (1999).

The reader should note that, although Corollary 4.4.5 and Theorem
4.4.6 are procedural in the sense of offering systematic tests for plan
identifiability, they are still order-dependent. It is quite possible that
an admissible sequence exists in one ordering of the control variables
and not in another when both orderings are consistent with the arrows
in G. The graph G in Figure 4.8 illustrates such a case. It is obtained
from Figure 4.4 by deleting the arrows X; — X, and X; — Z, so
that the two control variables (X; and X5) can be ordered arbitrarily.
The ordering (X1, X5) would still admit the admissible sequence ((, Z)
as before, but no admissible sequence can be found for the ordering
(X3, X1). This can be seen immediately from the graph Gx , in which
(according to (4.6) with & = 1) we need to find a set Z such that
{Xs, Z} d-separates Y from X;. No such set exists.

The implication of this order sensitivity is that, whenever G permits
several orderings of the control variables, all orderings need be examined
before we can be sure that a plan is not G-identifiable. Whether an
effective search exists through the space of such orderings remains an
open question.



