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4.3 When is the Effect of an Action Iden-
tifiable?

In Chapter 3 we developed several graphical criteria for recognizing
when the effect of one variable on another, P(y|do(x)), is identifiable
in the presence of unmeasured variables. These criteria, like the back-
door (Theorem 3.3.2) and front-door (Theorem 3.3.4), are special cases
of a more general class of semi-Markovian models for which repeated
application of the inference rules of do calculus (Theorem 3.4.1) will re-
duce P(y|%) to a hat-free expression, thus rendering it identifiable. The
semi-Markovian model of Figure 3.1 (or Figure 3.8(f)) is an example
where direct application of either the back-door or front-door criterion
would not be sufficient for identifying P(y|Z) and yet the expression is
reducible (hence identifiable) by a sequence of inference rules of The-
orem 3.4.1. In this section we establish a complete characterization of
the class of models in which the causal effect P(y|z) is identifiable in
do calculus.

4.3.1 Graphical Conditions for Identification

Theorem 4.3.1 characterizes the class of “do-identifiable” models in the
form of four graphical conditions, anyone of which is sufficient for the
identification of P(y|%) when X and Y are singleton nodes in the graph.
Theorem 4.3.2 then asserts the completeness (or necessity) of these four
conditions; one of which must hold in the model for P(y|Z) to be iden-
tifiable in do calculus. Whether these four conditions are necessary
in general (in accordance with the semantics of Definition 3.2.4) de-
pends on whether the inference rules of do calculus are complete. This
question, to the best of my knowledge, is still open.

Theorem 4.3.1 (Galles and Pearl 1995)

Let X andY denote two singleton variables in a semi-Markovian model
characterized by graph G. A sufficient condition for the identifiability
of P(y|Z) is that G satisfy one of the following four conditions.

L. There is no back-door path from X toY in G, that is; (X 1LY )q, .
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2. There is no directed path from X toY in G.

3. There exists a set of nodes B that blocks all back-door paths from
X toY so that P(b|Z) is identifiable. (A special case of this
condition occurs when B consists entirely of nondescendants of
X, in which case P(b|Z) reduces immediately to P(b).)

4. There exist sets of nodes Z1 and Zy such that:

(i) Z1 blocks every directed path from X to Y (ie.,
(YiJ_X|Z1)GZ_1 )i

(i) Zy blocks all back-door paths between Zy and Y (i.e.,
(YJ—LZ1|Z2)G}Z1);

(iii) Zy blocks all back-door paths between X and Z; (i.e.,
(XJ_LZ1|Z2)G£),' and

(iv) Zy does not activate any back-door paths from X to'Y (i.e.,
(XLLY|Zy1, Zs)e_- ). (This condition holds if (i)—(iii)

1 X(22)
are met and no member of Zy is a descendant of X.)

(A special case of condition 4 occurs when Zy = () and there is no
back-door path from X to Z; or from Z; to Y.)

Proof

Condition 1. This condition follows directly from Rule 2 (see The-
orem 3.4.1). If (YL X)g, then we can immediately change P(y|Z) to
P(y|z), so the query is identifiable.

Condition 2. If there is no directed path from X to Y in G, then
(Y1 X)g . Hence, by Rule 3, P(y[#) = P(y) and so the query is
identifiable.

Condition 3. If there is a set of nodes B that blocks all back-
door paths from X to Y (ie. (Y1.X|B)g,), then we expand P(y|Z)
as Y, P(y|#,b)P(b|2) and, by Rule 2, rewrite P(y|Z,b) as P(y|z,b).
If the query (b|Z) is identifiable, then the original query must also be
identifiable. See examples in Figure 4.1.

Condition 4. 1If there is a set of nodes Z; that block all di-
rected paths from X to Y and a set of nodes Z, that block all back-
door paths between Y and Z; in G, then we expand P(y|z) =
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@ (b)

Figure 4.1: Condition 3 of Theorem 4.3.1. In (a), the set {B;, By}
blocks all back-door paths from X to Y, and P(by, be|Z) = P(b1, b2). In
(b), the node B blocks all back-door paths from X to Y, and P(b|z) is
identifiable using condition 4.

Y1z P2, 21, 22) P(21, 22|2) and rewrite P(y|z, 21, 22) as P(y|Z, 21, 22)
using Rule 2, since all back-door paths between Z; and Y are blocked
by Z; in Gyx. We can reduce P(y|Z,21,22) to P(y|Z1,22) using
Rule 3, since (YJ_I_X\Zl,Z2)GZ_1 < We can rewrite P(y|21, 22) as
P(y|z1,2) if (Y 1LZ1|Z5)G, - The only way that this independence
cannot hold is if there is a path from Y to Z; through X, since
(YJ_I_Zl\ZQ)GYZI. However, we can block this path by conditioning

and summing over X, and so derive 3, P(y|31, 20, 2') P(2'|21, ). Now
we can rewrite P(y|Z1,292,2') as P(yl|z1, 22, 2') using Rule 2. The
P(x'|21,29) term can be rewritten as P(z'|z2) using Rule 3, since
Zy is a child of X and the graph is acyclic. The query can there-
fore be rewritten as 3, ,, >, P(y|21, 22, 2") P(2| 22) P(21, 22|%), and we
have P(z1,22|%) = P(22|%)P(z1|Z, 22). Since Zs consists of nondescen-
dants of X, we can rewrite P(23|Z) as P(zq) using Rule 3. Since Z,
blocks all back-door paths from X to Z;, we can rewrite P(z|Z, 23)
as P(z|x, z2) using Rule 2. The entire query can thus be rewritten as
Yz 2w P(Y|21, 22, 2") P(2'|22) P(21|2, 22) P(22). See examples in Fig-
ure 4.2. O

Theorem 4.3.2 The four conditions of Theorem 4.3.1 are necessary
for identifiability in do calculus. That s, if all four conditions of The-
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Figure 4.2: Condition 4 of Theorem 4.3.1. In (a), Z; blocks all directed
paths from X to Y, and the empty set blocks all back-door paths from
Zy to Y in G5 and all back-door paths from X to Z; in G. In (b)
and (c), Z; blocks all directed paths from X to Y, and Z, blocks all
back-door paths from Z; to Y in G+ and all back-door paths from X
to Z; in G.

orem 4.3.1 fail in a graph G, then there exists no finite sequence of
inference rules that reduces P(y|Z) to a hat-free expression.

A proof of Theorem 4.3.2 is given in Galles and Pearl (1995).

4.3.2 Remarks on Efficiency

In implementing Theorem 4.3.1 as a systematic method for determining
identifiability, conditions 3 and 4 would seem to require exhaustive
search. In order to prove that condition 3 does not hold, for instance,
we need to prove that no such blocking set B can exist. Fortunately,
the following theorems allow us to significantly prune the search space
so as to render the test tractable.

Theorem 4.3.3 If P(b;|2) is identifiable for one minimal set B;, then
P(b;|z) is identifiable for any other minimal set B;.

Theorem 4.3.3 allows us to test condition 3 with a single minimal block-
ing set B. If B meets the requirements of condition 3 then the query is
identifiable; otherwise, condition 3 cannot be satisfied. In proving this
theorem, we use the following lemma.
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Lemma 4.3.4 If the query P(y|t) is identifiable and if a set of nodes
Z lies on a directed path from X to Y, then the query P(z|Z) is iden-
tifiable.

Theorem 4.3.5 Let Y, and Y5 be two subsets of nodes such that either
(i) no nodes Y1 are descendants of X or (ii) all nodes Y and Yy are
descendants of X and all nodes 'Y, are nondescendants of Y. A reducing
sequence for P(yi,ya|Z) exists (per Corollary 3.4.2) if and only if there
are reducing sequences for both P(y1|Z) and P(y2|Z,y1).

Figure 4.3: Theorem 4.3.1 ensures a reducing sequence for P(ys3|Z, y;)
and P(y;|Z), although none exists for P(y; |, y2)

The probability P(yi,y»|Z) might pass the test in Theorem 4.3.1 if
we apply the procedure to both P(ys|%,y;) and P(y;|%), but if we
try to apply the test to P(yi|%,y2) then we will not find a reducing
sequence of rules. Figure 4.3 shows just such an example. Theorem
4.3.5 guarantees that, if there is a reducing sequence for P(y1,y2|%),
then we should always be able to find such a sequence for both P(y;|%)
and P(y3|Z,y;) by proper choice of Y.

Theorem 4.3.6 If there exists a set Z, that meets all of the require-
ments for Z1 in condition 4, then the set consisting of the children of X
intersected with the ancestors of Y will also meet all of the requirements
for Zy in condition 4.

Theorem 4.3.6 removes the need to search for Z; in condition 4 of
Theorem 4.3.1. Proofs of Theorems 4.3.3-4.3.6 are given in Galles and
Pearl (1995).
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4.3.3 Deriving a Closed-Form Expression for Con-
trol Queries

The algorithm defined by Theorem 4.3.1 not only determines the iden-
tifiability of a control query but also provides a closed-form expression
for P(y|Z) in terms of the observed probability distribution (when such
a closed form exists) as follows.

Function: ClosedForm(P(y|z)).
Input: Control query of the form P(y|z).

Output: Either a closed-form expression for P(y|Z), in terms of observed
variables only, or FAIL when query is not identifiable

L. If (X1Y)g_ then return P(y).
2. Otherwise, if (X 1LY ), then return P(y|z).

3. Otherwise, let B =
BlockingSet(X,Y’), and Pb = ClosedForm(b|%); if Pb # FAIL,
then return >, P(y|b, z) * Pb.

4. Otherwise, let Z; = Children(X) N (Y U Ancestors(Y)),
Zs = BlockingSet(X, Z,), Z, = BlockingSet(Z;,Y), and
Zy = Zs3 U Zy Y & Zy and X & Z; then return

Yz 2w P(yl21, 22, 7' ) P(2'|22) P(21| 2, 22) P(22).
5. Otherwise, return FAIL.

Steps 3 and 4 invoke the function BlockingSet(X,Y’), which selects a
set of nodes Z that d-separate X from Y. Such sets can be found in
polynomial time (Tian et al. 1998). Step 3 contains a recursive call to
the algorithm ClosedForm(b|Z) itself, in order to obtain an expression
for causal effect P(b|z).

4.3.4 Summary

The conditions of Theorem 4.3.1 sharply delineate the boundary be-
tween the class of identifying models (such as those depicted in Figure
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3.8) and nonidentifying models (Figure 3.9). These conditions lead
to an effective algorithm for determining the identifiability of control
queries of the type P(y|%), where X is a single variable. Such queries
are identifiable in do calculus if and only if they meet the conditions of
Theorem 4.3.1. The algorithm further gives a closed-form expression
for the causal effect P(y|Z) in terms of estimable probabilities.

Applications to causal analysis of nonexperimental data in the social
and medical sciences are discussed in Chapter 3 and further elaborated
in Chapters 5 and 6. In Chapter 9 (Corollary 9.2.17) we will apply
these results to problems of causal attribution, that is, to estimate the
probability that a specific observation (e.g., a disease case) is causally
attributable to a given event (e.g., exposure).



