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4.1 Introduction

4.1.1 Actions, Acts, and Probabilities

Actions admit two interpretations: reactive and deliberative. The re-
active interpretation sees action as a consequence of an agent’s beliefs,
disposition, and environmental inputs, as in “Adam ate the apple be-
cause Eve handed it to him.” The deliberative interpretation sees action
as an option of choice in contemplated decision making, usually involv-
ing comparison of consequences, as in “Adam was wondering what God
would do if he ate the apple.” We shall distinguish the two views by
calling the first “act” and the second “action.” An act is viewed from
the outside, an action from the inside. Therefore, an act can be pre-
dicted and can serve as evidence for the actor’s stimuli and motivations
(provided the actor is part of our model). Actions, in contrast, can
neither be predicted nor provide evidence since (by definition) they are
pending deliberation and turn into acts once executed.

The confusion between actions and acts has led to Newcomb’s para-
dox (Novick 1969) and other oddities in the so-called evidential decision
theory, which encourages decision makers to take into consideration the
evidence that an action would provide, if enacted. This bizarre theory
seems to have loomed from Jeffrey’s influential book The Logic of De-
cision (Jeffrey 1965), in which actions are treated as ordinary events
(rather than interventions) and, accordingly, the effects of actions are
obtained through conditionalization rather than through a mechanism-
modifying operation like do(z). (See Stalnaker 1972; Gibbard and
Harper 1976; Skyrms 1980; Meek and Glymour 1994; Hitchcock 1996]).

Traditional decision theory ! instructs rational agents to choose the

T purposely avoid the common title “causal decision theory” in order to suppress
even the slightest hint that any alternative, non-causal theory can be used to guide
decisions.
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option z that maximizes expected utility,?
Ulz) =) P(y|do(z))u(y)
Y

where u(y) is the utility of outcome y; in contrast, “evidential decision”
theory calls for maximizing the conditional expectation

Ue(z) = ZP(y‘x)u(y)’

in which z is (improperly) treated as an observed proposition.

The paradoxes that emerge from this fallacy are obvious: patients
should avoid going to the doctor “to reduce the probability that one
is seriously ill” (Skyrms 1980, p. 130); workers should never hurry to
work, to reduce the probability of having overslept; students should not
prepare for exams, lest this would prove them behind in their studies;
and so on. In short, all remedial actions should be banished lest they
increase the probability that a remedy is indeed needed.

The oddity in this kind of logic stems from treating actions as acts
that are governed by past associations instead of as objects of free
choice, as dictated by the semantics of the do(x) operator. This “evi-
dential” decision theory preaches that one should never ignore genuine
statistical evidence (in our case, the evidence that an act normally pro-
vides regarding whether the act is needed), but decision theory proper
reminds us that actions—Dby their very definition—render such evidence
irrelevant to the decision at hand, for actions change the probabilities
that acts normally obey.?

The moral of this story can be summarized in the following
mnemonic rhymes:

2Following a suggestion of Stalnaker (1972), Gibbard and Harper (1976) used
P(z0— y) in U(z), rather than P(y|do(x)), where z0— y stands for the subjunctive
conditional “y if it were 2”. The semantics of the two operators are closely related
(see Section 7.4), but the equation-removal interpretation of the do(x) operator is
less ambiguous and clearly suppresses inference from effect to cause.

3Such evidence is rendered irrelevant within the actor’s own probability space; in
multiagent decision situations, however, each agent should definitely be cognizant
of how other agents might interpret each of his pending “would-be” acts.
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Whatever evidence an act might provide
On facts that preceded the act,

Should never be used to help one decide
On whether to choose that same act.

Evidential decision theory was a passing episode in the philosoph-
ical literature, and no philosopher today takes the original version of
this theory seriously. Still, some recent attempts have been made to
revive interest in Jeffrey’s expected utility by replacing P(y|z) with
P(y|z, K), where K stands for various background contexts, chosen
to suppress spurious associations (as in (3.15)) (Price 1991; Hitch-
cock 1996). Such attempts echo an overly restrictive empiricist tra-
dition, according to which rational agents live and die by one source
of information—statistical associations—and hence expected utilities
should admit no other operation but Bayes’s conditionalization. This
tradition is rapidly giving way to a more accommodating conception:
rational agents should act according to theories of actions; naturally,
such theories demand action-specific conditionalization, (e.g., do(z),
while reserving Bayes’s conditionalization for representing passive ob-
servations (see Goldszmidt and Pearl 1992; Meek and Glymour 1994;
Woodward 1995).

In principle, actions are not part of probability theory, and under-
standably so: probabilities capture normal relationships in the world,
whereas actions represent interventions that perturb those relation-
ships. It is no wonder, then, that actions are treated as foreign en-
tities throughout the literature on probability and statistics; they serve
neither as arguments of probability expressions nor as events for con-
ditioning such expressions.

Even in the statistical decision-theoretic literature (e.g. Savage
1954), where actions are the main target of analysis, the symbols given
to actions serve merely as indices for distinguishing one probability
function from another, not as entities that stand in logical relation-
ships to the variables on which probabilities are defined. Savage (1954,
p. 14) defined “act” as a “function attaching a consequence to each
state of the world,” and he treated a chain of decisions, one leading
to other, as a single decision. However, the logic that leads us to in-
fer the consequences of actions and strategies from more elementary
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considerations is left out of the formalism. For example, consider the
actions: “raise taxes,” “lower taxes,” and “raise interest rates.” The
consequences of all three actions must be specified separately, prior to
analysis, none can be inferred from the others. As a result, if we are
given two probabilities, P4 and Ppg, denoting the probabilities prevail-
ing under actions A or B, respectively, there is no way we can deduce
from this input the probability P4,p corresponding to the joint action
AN B or indeed any Boolean combination of the propositions A and B.
This means that, in principle, the impact of all anticipated joint actions
would need to be specified in advance—an insurmountable task.

The peculiar status of actions in probability theory can be seen
most clearly in comparison to the status of observations. By speci-
fying a probability function P(s) on the possible states of the world,
we automatically specify how probabilities should change with every
conceivable observation e, since P(s) permits us to compute (by condi-
tioning on e) the posterior probabilities P(F|e) for every pair of events
E and e. However, specifying P(s) tells us nothing about how probabil-
ities should change in response to an external action do(A). In general,
if an action do(A) is to be described as a function that takes P(s) and
transforms it to P4(s), then P(s) tells us nothing about the nature
of P4(s), even when A is an elementary event for which P(A) is well-
defined (e.g., “raise the temperature by 1 degree” or “turn the sprinkler
on”). With the exception of the trivial requirement that P4(s) be zero
if s implies A, a requirement that applies uniformly to every P(s),
probability theory does not tell us how Py4(s) should differ from P/(s),
where P’(s) is some other preaction probability function. Condition-
ing on A is clearly inadequate for capturing this transformation, as we
have seen in many examples in Chapters 1 and 3 (see e.g. Section 1.3.1),
because conditioning represents passive observations in an unchanging
world whereas actions change the world.

Drawing analogy to visual perception, we may say that the infor-
mation contained in P(s) is analogous to a precise description of a
three-dimensional object; it is sufficient for predicting how that object
will be viewed from any angle outside the object, but it is insufficient for
predicting how the object will be viewed if manipulated and squeezed
by external forces. Additional information about the physical prop-
erties of the object must be supplied for making such predictions. By
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analogy, the additional information required for describing the transfor-
mation from P(s) to P4(s) should identify those elements of the world
that remain invariant under the action do(A). This extra information is
provided by causal knowledge, and the do(-) operator enables us to cap-
ture the invariant elements (thus defining P4(s)) by locally modifying
the graph or the structural equations. The next section will compare
this device to the way actions are handled in standard decision theory.

4.1.2 Actions in Decision Analysis

Instead of introducing new operators into probability calculus, the tra-
ditional approach has been to attribute the differences between seeing
and doing to differences in the total evidence available. Consider the
statements: “the barometer reading was observed to be z” and “the
barometer reading was set to level £.” The former helps us predict
the weather, the latter does not. While the evidence described in the
first statement is limited to the reading of the barometer, the second
statement also tells us that the barometer was manipulated by some
agent, and conditioning on this additional evidence should render the
barometer reading irrelevant to predicting the rain.

The practical aspects of this approach amount to embracing the
acting agents as variables in the analysis, constructing an augmented
distribution function including the decisions of those agents, and in-
ferring the effect of actions by conditioning those decision variables
to particular values. Thus, for example, the agent manipulating the
barometer might enter the system as a decision variable “squeezing
the barometer”; after incorporating this variable into the probability
distribution, we could infer the impact of manipulating the barometer
simply by conditioning the augmented distribution on the event “the
barometer was squeezed by force y and has reached level x.”

For this conditioning method to work properly in evaluating the
effect of future actions, the manipulating agent must be treated as
an ideal experimenter acting out of free will, and the associated de-
cision variables must be treated as exogenous—causally unaffected by
other variables in the system. For example, if the augmented probabil-
ity function encodes the fact that the current owner of the barometer
tends to squeeze the barometer each time she feels arthritis pain, we
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will be unable to use that function for evaluating the effects of delib-
erate squeezing of the barometer, even by the same owner. Recalling
the difference between acts and actions, whenever we set out to cal-
culate the effect of a pending action, we must ignore all mechanisms
that constrained or triggered the execution of that action in the past.
Accordingly, the event “The barometer was squeezed” must enter the
augmented probability function as independent of all events that oc-
curred prior to the time of manipulation, similar to the way action
variable F' entered the augmented network in Figure 3.2.

This solution corresponds precisely to the way actions are treated
in decision analysis, as depicted in the literature on influence diagrams
(IDs) (Howard and Matheson 1981; Shachter 1986; Pearl 1988b, chap.
6). Each decision variable is represented as exogenous variable (a par-
entless node in the diagram), and its impact on other variables is as-
sessed and encoded in terms of conditional probabilities, similar to the
impact of any other parent node in the diagram.*

The difficulty with this approach is that we need to anticipate in
advance, and represent explicitly, all actions whose effects we might
wish to evaluate in the future. This renders the modeling process un-
duly cumbersome, if not totally unmanageable. In circuit diagnosis,
for example, it would be awkward to represent every conceivable act
of component replacement (similarly, every conceivable connection to a
voltage source, current source, etc.) as a node in the diagram. Instead,
the effects of such replacements are implicit in the circuit diagram itself
and can be deduced from the diagram, given its causal interpretation.
In econometric modeling likewise, it would be awkward to represent
every conceivable variant of policy intervention as a new variable in the
economic equations. Instead, the effects of such interventions can be
deduced from the structural interpretation of those equations, if only we
can tie the immediate effects of each policy to the corresponding vari-
ables and parameters in the equations. The compound action “raise
taxes and lower interest rates,” for example, need not be introduced as
a new variable in the equations, because the effect of that action can be

4The ID literature’s insistence on divorcing the links in the ID from any causal
interpretation (Howard and Matheson 1981; Howard 1990) is at odds with prevailing
practice. The causal interpretation is what allows us to treat decision variables as
root nodes, unassociated with all other nodes (except their descendants).
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deduced if we have the quantities “taxation level” and “interest rates”
already represented as (either exogenous or endogenous) variables in
the equations.

The ability to predict the effect of interventions without enumer-
ating those interventions in advance is one of the main advantages we
draw from causal modeling and one of the main functions served by the
notion of causation. Since the number of actions or action combinations
is enormous, they cannot be represented explicitly in the model but
rather must be indexed by the propositions that each action enforces
directly. Indirect consequences of enforcing those propositions are then
inferred from the causal relationships among the variables represented
in the model. We will return to this theme in Chapter 7 (Section 7.2.4),
where we further explore the invariance assumptions that must be met
for this encoding scheme to work.

4.1.3 Actions and Counterfactuals

As an alternative to Bayesian conditioning, philosophers (Lewis 1976;
Gardenfors 1988) have studied another probability transformation
called “imaging,” which was deemed useful in the analysis of subjunc-
tive conditionals and which more adequately represents the transfor-
mations associated with actions. Whereas Bayes conditioning of P(s|e)
transfers the entire probability mass from states excluded by e to the
remaining states (in proportion to their current probabilities, P(s)),
imaging works differently: each excluded state s transfers its mass
individually to a select set of states S*(s) that are considered to be
“closest” to s (see Section 7.4.3). Although providing a more adequate
and general framework for actions (Gibbard and Harper 1976), imag-
ing leaves the precise specification of the selection function S*(s) almost
unconstrained. Consequently, the problem of enumerating future ac-
tions is replaced by the problem of encoding distances among states in
a way that would be both economical and respectful of common un-
derstanding of the causal laws that operate in the domain. The second
requirement is not trivial, considering that indirect ramifications of ac-
tions often result in worlds that are quite dissimilar to the one from
which we start (Fine 1975).

The difficulties associated with making the closest-world approach
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conform to causal laws will be further elaborated in Chapter 7 (Section
7.4). The structural approach pursued in this book escapes these dif-
ficulties by basing the notion of interventions directly on causal mech-
anisms and by capitalizing on the properties of invariance and auton-
omy that accompany these mechanisms. This mechanism-modification
approach can be viewed as a special instance of the closest-world ap-
proach, where the closeness measure is crafted so as to respect the
causal mechanisms in the domain; the selection function S*(s) that
ensues is represented in (3.13) (see discussion that follows).

The operationality of this mechanism-modification semantics was
demonstrated in Chapter 3 and led to the quantitative predictions of
the effects of actions, including actions that were not contemplated
during the model’s construction. The do calculus that emerged (The-
orem 3.4.1) extends this prediction facility to cases where some of the
variables are unobserved. In Chapter 7 we further use the mechanism-
modification interpretation to provide semantics for counterfactual
statements, as outlined in Section 1.4.4. In this chapter, we will extend
the applications of the do calculus in several directions, as outlined in
the Preface.



