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3.6 Discussion

3.6.1 Qualifications and Extensions

The methods developed in this chapter facilitate the drawing of quan-
titative causal inferences from a combination of qualitative causal as-
sumptions (encoded in the diagram) and nonexperimental observations.
The causal assumptions in themselves cannot generally be tested in
nonexperimental studies, unless they impose constraints on the ob-
served distributions. The most common type of constraints appears in
the form of conditional independencies, as communicated through the
d-separation conditions in the diagrams. Another type of constraints
takes the form of numerical inequalities. In Chapter 8, for example,
we show that the assumptions associated with instrumental variables
(Figure 3.7(b)) are subject to falsification tests in the form of inequal-
ities on conditional probabilities [Pearl, 1995b]. Still, such constraints
permit the testing of merely a small fraction of the causal assumptions
embodied in the diagrams; the bulk of those assumptions must be sub-
stantiated from domain knowledge as obtained from either theoretical
considerations (e.g., that falling barometers do not cause rain) or re-
lated experimental studies. For example, the experimental study of
Moertel et al. (1985), which refuted the hypothesis that vitamin C is
effective against cancer, can be used as a substantive assumption in
observational studies involving vitamin C and cancer patients; it would
be represented as a missing link (between vitamin C and cancer) in
the associated diagram. In summary, the primary use of the methods
described in this chapter lies not in testing causal assumptions but in
providing an effective language for making those assumptions precise
and explicit. Assumptions can thereby be isolated for deliberation or
experimentation and then (once validated) be integrated with statisti-
cal data to yield quantitative estimates of causal effects.

An important issue that will be considered only briefly in this book
(see Section 8.5) is sampling variability. The mathematical deriva-
tion of causal effect estimands should be considered a first step toward
supplementing these estimands with confidence intervals and signifi-
cance levels, as in traditional analysis of controlled experiments. We
should remark, though, that having obtained nonparametric estimands
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for causal effects does not imply that one should refrain from using
parametric forms in the estimation phase of the study. For example, if
the assumptions of Gaussian, zero-mean disturbances and additive in-
teractions are deemed reasonable, then the estimand given in (3.30) can
be converted to the product E(Y|Z) = rzxryz.xx, where ryz.x is the
standardized regression coefficient (Section 5.3.1); the estimation prob-
lem then reduces to that of estimating regression coefficients (e.g., by
least squares). More sophisticated estimation techniques can be found
in Rosenbaum and Rubin (1983), Robins (1989, Sec. 17), and Robins
et al. (1992, pp. 331-3). For example, the “propensity score” method
of Rosenbaum and Rubin (1983) was found to be quite useful when
the dimensionality of the adjusted covariates is high. In a more recent
scheme called “marginal models,” Robins (1999) shows that, rather
than estimating individual factors in the adjustment formula of (3.21),
it is often more advantageous to use P(y|%) = 3, P;m?, where the
preintervention distribution remains unfactorized. One can then sepa-
rately estimate the denominator P(z|z), weigh individual samples by
the inverse of this estimate, and treat the weighted samples as if they
were drawn at random from the postintervention distribution P(y|Z).
Postintervention parameters, such as > E(Y|2), can then be estimated
by ordinary least squares. This method is especially advantageous in
longitudinal studies with time-varying covariates, as in the process con-
trol problem discussed in Section 3.2.3 (see (3.20)).

Several extensions of the methods proposed in this chapter are note-
worthy. First, the identification analysis for atomic interventions can
be generalized to complex policies in which a set X of controlled vari-
ables is made to respond in a specified way to some set Z of covariates
via functional or stochastic strategies, as in Section 3.2.3. In Chapter
4 (Section 4.2), it is shown that identifying the effect of such policies is
equivalent to computing the expression P(y|Z, z).

A second extension concerns the use of the intervention calculus
(Theorem 3.4.1) in nonrecursive models, that is, in causal diagrams
involving directed cycles or feedback loops. The basic definition of
causal effects in term of “wiping out” equations from the model (Defi-
nition 3.2.1) still carries over to nonrecursive systems [Strotz and Wold,
1960; Sobel, 1990], but then two issues must be addressed. First,
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the analysis of identification must ensure the stability of the remain-
ing submodels [Fisher, 1970]. Second, the d-separation criterion for
DAGs must be extended to cover cyclic graphs as well. The valid-
ity of d-separation has been established for nonrecursive linear models
[Spirtes, 1995] as well as for nonlinear systems involving discrete vari-
ables [Pearl and Dechter, 1996]. However, the computation of causal
effect estimands will be harder in cyclic nonlinear systems, because
symbolic reduction of P(y|%#) to hat-free expressions may require the
solution of nonlinear equations. In Chapter 7 (Section 7.2.1) we demon-
strate the evaluation of policies and counterfactuals in nonrecursive
linear systems (see also Balke and Pearl (1995)).

A third extension concerns generalizations of intervention calculus
(Theorem 3.4.1) to situations where the data available is not obtained
under independent and identically distributted) i.i.d sampling. One can
imagine, for instance, a physician who prescribes a certain treatment
to patients only when the fraction of survivors among previous patients
drops below some threshold. In such cases, it is required to estimate
the causal effect P(y|Z) from non-independent samples. Vladimir Vovk
(1996) gave conditions under which the rules of Theorem 3.4.1 will be
applicable when sampling is not i.i.d., and he went on to cast the three
inference rules as a logical production system.

3.6.2 Diagrams as a Mathematical Language

The benefit of incorporating substantive background knowledge into
probabilistic inference was recognized as far back as Thomas Bayes
(1763) and Pierre Laplace (1814), and its crucial role in the analysis
and interpretation of complex statistical studies is generally acknowl-
edged by most modern statisticians. However, the mathematical lan-
guage available for expressing background knowledge has remained in
a rather pitiful state of development. Traditionally, statisticians have
approved of only one way of combining substantive knowledge with
statistical data: the Bayesian method of assigning subjective priors to
distributional parameters. To incorporate causal information within
this framework, plain causal statements such as “Y is not affected by
X” must be converted into sentences or events capable of receiving
probability values (e.g. counterfactuals). For instance, to communicate
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the innocent assumption that mud does not cause rain, we would have
to use a rather unnatural expression and say that the probability of
the counterfactual event “rain if it were not muddy” is the same as the
probability of “rain if it were muddy.” Indeed, this is how the potential-
outcome approach of Neyman and Rubin has achieved statistical legit-
imacy: causal judgments are expressed as constraints on probability
functions involving counterfactual variables (see Section 3.6.3).

Causal diagrams offer an alternative language for combining data
with causal information. This language simplifies the Bayesian route
by accepting plain causal statements as its basic primitives. Such state-
ments, which merely indicate whether a causal connection between two
variables of interest exists, are commonly used in ordinary discourse
and provide a natural way for scientists to communicate experience
and organize knowledge.” It can be anticipated, therefore, that the
language of causal graphs will find applications in problems requiring
substantial domain knowledge.

The language is not new. The use of diagrams and structural equa-
tions models to convey causal information has been quite popular in
the social sciences and econometrics. Statisticians, however, have gen-
erally found these models suspect, perhaps because social scientists
and econometricians have failed to provide an unambiguous definition
of the empirical content of their models—that is, to specify the ex-
perimental conditions, however hypothetical, whose outcomes would
be constrained by a given structural equation. (Chapter 5 discusses
the bizarre history of structural equations in the social sciences and
economics). As a result, even such basic notions as “structural co-
efficients” or “missing links” become the object of serious controversy
[Freedman, 1987; Goldberger, 1992] and misinterpretations [Whittaker,
1990, p. 302; Wermuth, 1992; Cox and Wermuth, 1993].

To a large extent, this history of controversy and miscommunica-
tion stems from the absence of an adequate mathematical notation for

"Remarkably, many readers of this chapter (including two referees of this book)
classified the methods presented here as belonging to the “Bayesian camp” and as
depending on a “good prior.” This classification is misleading. The method does
depend on subjective assumptions (e.g., mud does not cause rain), but such as-
sumptions are causal, not statistical. and cannot be expressed as prior probabilities
on parameters of joint distributions.
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defining basic notions of causal modeling. For example, standard prob-
abilistic notation cannot express the empirical content of the coefficient
b in the structural equation y = bz + €y, even if one is prepared to as-
sume that €y (an unobserved quantity) is uncorrelated with X.# Nor
can any probabilistic meaning be attached to the analyst’s excluding
from the equation variables that are highly correlated with X or Y but
do not “directly affect” YV.?

The notation developed in this chapter gives these (causal) notions
a clear empirical interpretation, because it permits one to specify pre-
cisely what is being held constant and what is merely measured in
a given experiment. (The need for this distinction was recognized
by many researchers, most notably Pratt and Schlaifer 1988 and Cox
1992). The meaning of b is simply 2 F(Y'|2), that is, the rate of change
(in z) of the expectation of Y in an experiment where X is held at z
by external control. This interpretation holds regardless of whether €y
and X are correlated (e.g., via another equation z = ay + €x). Like-
wise, the analyst’s decision as to which variables should be included in
a given equation can be based on a hypothetical controlled experiment:
A variable Z is excluded from the equation for Y if (for every level of
€y) Z has no influence on Y when all other variables (Syz), are held
constant; this implies P(y|Z, Syz) = P(y|Syz). Specifically, variables
that are excluded from the equation y = bx + €y are not conditionally
independent of Y given measurements of X but instead are causally
irrelevant to Y given settings of X. The operational meaning of the
“disturbance term” ey is likewise demystified: €y is defined as the dif-
ference Y — E(Y'|$y) Two disturbance terms, ex and ey, are correlated
if P(y|Z, $xvy) # P(y|z, 5xy), and so on (see Chapter 5, Section 5.4 for
further elaboration).

The distinctions provided by the hat notation clarify the empirical
basis of structural equations and should make causal models more ac-

8Voluminous literature on the subject of “exogeneity” (e.g. Richard, 1980; Engle
et al. 1983; Hendry, 1995) has emerged from economists’ struggle to give statistical
interpretation to the causal assertion “X and ey are uncorrelated” (Aldrich 1993;
see Section 5.4.3).

9The bitter controversy between Goldberger (1992) and Wermuth (1992) re-
volves around Wermuth’s insistence on giving a statistical interpretation to the
zero coefficients in structural equations (see Section 5.4.1).
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ceptable to empirical researchers. Moreover, since most scientific knowl-
edge is organized around the operation of “holding X fixed” rather than
“conditioning on X,” the notation and calculus developed in this chap-
ter should provide an effective means for scientists to communicate
substantive information and to infer its logical consequences.

3.6.3 Translation from Graphs to Potential Out-
comes

This chapter uses two representations of causal information: graphs
and structural equations, where the former is an abstraction of the lat-
ter. Both representations have been controversial for almost a century.
On the one hand, economists and social scientists have embraced these
modeling tools, but they continue to question and debate the causal
content of the parameters they estimate (see Sections 5.1 and 5.4 for de-
tails); as a result, the use of structural models in policy-making contexts
is often viewed with suspicion. Statisticians, on the other hand, reject
both representations as problematic [Freedman, 1987] if not meaning-
less [Wermuth, 1992; Holland, 1995], and they sometimes resort to the
Neyman-Rubin potential-outcome notation when pressed to commu-
nicate causal information [Rubin, 1990].1% A detailed formal analysis
of the relationships between the structural and potential-outcome ap-
proaches is offered in Chapter 7 (Section 7.4.4) and proves their math-
ematical equivalence. In this section we highlight commonalities and
differences between the two approaches as they pertain to the elicitation
of causal assumptions.

The primitive object of analysis in the potential-outcome framework
is the unit-based response variable, denoted Y (z, u) or Y;(u), read: “the
value that Y would obtain in unit u, had X been z.” This counterfac-
tual entity has natural interpretation in structural equations models.
Consider a general structural model M that contains a set of equations

x; = filpa;,ui), i=1,...,n, (3.52)

10A parallel framework was developed in the econometrics literature under the
rubric “switching regression” [Manski, 1995, p. 38], which Heckman (1996) at-
tributed to Roy (1951) and Quandt (1958).
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as in (3.5). Let U stand for the vector (Uy,...,U,) of background vari-
ables, let X and Y be two disjoint subsets of observed variables, and let
M, be the submodel created by replacing the equations corresponding
to variables in X with X = z, as in Definition 3.2.1. The structural
interpretation of Y (z,u) is given by

Y(z,u) £ Yy, (u). (3.53)

That is, Y (z,u) is the (unique) solution of Y under the realization
U = u in the submodel M, of M. Although the term wnit in the
potential-outcome literature normally stands for the identity of a spe-
cific individual in a population, a unit may also be thought of as the
set. of attributes that characterize that individual, the experimental
conditions under study, the time of day, and so on—all of which are
represented as components of the vector u in structural modeling. In
fact, the only requirements on U are (i) that it represent as many back-
ground factors as needed to render the relations among endogenous
variables deterministic and (ii) that the data consist of independent
samples drawn from P(u). The identity of an individual person in an
experiment is often sufficient for this purpose because it represents the
anatomical and genetic makings of that individual, which are often suf-
ficient for determining that individual’s response to treatments or other
programs of interest.

(3.53) forms a connection between the opaque English phrase “the
value that Y would obtain in unit u, had X been z” and the physical
processes that transfer changes in X into changes in Y. The formation
of the submodel M, explicates precisely how the hypothetical phrase
“had X been x” could be realized, as well as what process must give in
to make X = x a reality.

Given this interpretation of Y'(x, u), it is instructive to contrast the
methodologies of causal inference in the counterfactual versus struc-
tural frameworks. If U is treated as a random variable then the value of
the counterfactual Y (x,u) becomes a random variable as well, denoted
as Y(z) or Y. The potential-outcome analysis proceeds by imagining
the observed distribution P(z1,...,z,) as the marginal distribution
of an augmented probability function P* defined over both observed
and counterfactual variables. Queries about causal effects (written
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P(y|Z) in our structural analysis) are phrased as queries about the
marginal distribution of the counterfactual variable of interest, writ-
ten P*(Y(z) = y). The new hypothetical entities Y (x) are treated
as ordinary random variables; e.g., they are assumed to obey the ax-
ioms of probability calculus, the laws of conditioning, and the axioms of
conditional independence. Moreover, these hypothetical entities are as-
sumed to be connected to observed variables via consistency constraints
[Robins, 1986] such as'!

X=2z = Y(@)=Y (3.54)

which states that, for every wu, if the actual value of X turns out to
be x, then the value that Y would take on if X were x is equal to the
actual value of Y. Thus, whereas the structural approach views the
intervention do(x) as an operation that changes the model (and the
distribution) but keeps all variables the same, the potential-outcome
approach views the variable Y under do(z) to be a different variable,
Y (z), loosely connected to Y through relations such as (3.54). In Chap-
ter 7 we show, using the structural interpretation of Y (z,u), that it is
indeed legitimate to treat counterfactuals as random variables in all
respects and, moreover, that consistency constraints like (3.54) follow
as theorems from the structural interpretation.

To communicate substantive causal knowledge, the potential-
outcome analyst must express causal assumptions as constraints on
P~ usually in the form of conditional independence assertions involving
counterfactual variables. For example, to communicate the understand-
ing that—in a randomized clinical trial with imperfect compliance (see
Figure 3.7(b))—the way subjects react (Y') to treatments (X) is sta-
tistically independent of the treatment assignment (Z), the potential-
outcome analyst would write Y (z)lLZ. Likewise, to convey the un-
derstanding that the assignment is randomized and hence independent
of how subjects comply with the assignment, the potential-outcome
analyst would use the independence constraint Z_lL X (z).

A collection of constraints of this type might sometimes be sufficient
to permit a unique solution to the query of interest; in other cases,

" Gibbard and Harper (1976, p. 156) expressed this constraint as A D [(AO—
S)=39].
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only bounds on the solution can be obtained. For example, if one can
plausibly assume that a set Z of covariates satisfies the conditional
independence

Y(z)lLX|Z (3.55)

(an assumption that was termed “conditional ignorability” by
[Rosenbaum and Rubin, 1983], then the causal effect P*(Y(z) = y)
can readily be evaluated, using (3.54), to yield?

P(Y(z)=y) = Y P'(Y(z) =yl2)P(2)
= 2 P(Y(z) =ylz,2)P(2)
= ) P'(Y =y|z,2)P(2)

= > P(ylz,2)P(2). (3.56)

The last expression contains no counterfactual quantities (thus permit-
ting us to drop the asterisk from P*) and coincides precisely with the
adjustment formula of (3.21), which obtains from the back-door crite-
rion. However, the assumption of conditional ignorability (3.55)—the
key to the derivation of (3.56)—is not straightforward to comprehend
or ascertain. Paraphrased in experimental metaphors, this assumption
reads: The way an individual with attributes Z would react to treat-
ment X = z is independent of the treatment actually received by that
individual.

Section 3.6.2 explains why this approach may appeal to some statis-
ticians, even though the process of eliciting judgments about coun-
terfactual dependencies has been extremely difficult and error-prone;
instead of constructing new vocabulary and new logic for causal ex-
pressions, all mathematical operations in the potential-outcome frame-
work are conducted within the safe confines of probability calculus.
The drawback lies in the requirement of using independencies among
counterfactual variables to express plain causal knowledge. When coun-
terfactual variables are not viewed as byproducts of a deeper, process-
based model, it is hard to ascertain whether all relevant counterfactual

12Gibbard and Harper (1976, p. 157) used the “ignorability assumption”
Y(z)1LX to derive the equality P(Y (z) = y) = P(y|z).
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independence judgments have been articulated'®, whether the judg-
ments articulated are redundant, or whether those judgments are self-
consistent. The elicitation of such counterfactual judgments can be
systematized by using the following translation from graphs (see Sec-
tion 7.1.4 for additional relationships).

Graphs encode substantive information in both the equations and
the probability function P(u); the former is encoded as missing arrows,
the latter as missing dashed arcs. Each parent-child family (PA;, X;)
in a causal diagram G corresponds to an equation in the model M of
(3.52). Hence, missing arrows encode exclusion assumptions, that is,
claims that adding excluded variables to an equation will not change
the outcome of the hypothetical experiment described by that equa-
tion. Missing dashed arcs encode independencies among disturbance
terms in two or more equations. For example, the absence of dashed
arcs between a node Y and a set of nodes {Z1,..., Zx} implies that
the corresponding background variables, Uy and {Uyg,,...,Uyz,}, are
independent in P(u).

These assumptions can be translated into the potential-outcome no-
tation using two simple rules [Pearl, 1995a, p. 704]; the first interprets
the missing arrows in the graph, the second, the missing dashed arcs.

1. Ezclusion restrictions: For every variable Y having parents PA,,
and for every set of variables S disjoint of PA,, we have

Y(pa,) =Y (pay,s). (3.57)

2. Independence restrictions: It Z,...,Zy is any set of nodes not
connected to Y via dashed arcs, we have'*

Y(pa,)1L{Z:(pa,,),. .., Zk(pa, )} (3.58)

I3 A typical oversight in the example of Figure 3.7(b) has been to write Z 1LY (z)
and Z 11 X (z) instead of Z 1L {Y (z), X (2)}, as dictated by (3.58).

4The restriction is in fact stronger, jointly applying to all instantiations
of the PA wvariables. For example, X 1Y (paz) should be interpreted as
X 1u{Y(pay),Y (pa}),Y (pa),...}, where pal,,pa’,, pay, ... are the values that the
set PAz may take on.
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The independence restriction translates the independence between
Uy and {Uy,,...,Uz.} into independence between the corresponding
potential-outcome variables. This follows from the observation that,
once we set their parents, the variablesin {Y, Z1, ..., Z;} stand in func-
tional relationships to the U terms in their corresponding equations.

As an example, the model shown in Figure 3.5 displays the following
parent sets:

PA, ={0}, PA, ={X}, PA, ={Z}. (3.59)

Consequently, the exclusion restrictions translate into:

Z(z) = Z(y, ), (3.60)
X(y) = X(zy) =X(z) =X, (3.61)
Y(z) = Y(zu1); (3.62)

the absence of a dashed arc between Z and {Y, X} translates into the
independence restriction

Z(z)1L{Y (2), X}. (3.63)

Given a sufficient number of such restrictions on P*, the analyst
attempts to compute causal effects P*(Y(z) = y) using standard
probability calculus together with the logical constraints (e.g. (3.54))
that couple counterfactual variables with their measurable counter-
parts. These constraints can be used as axioms, or rules of infer-
ence, in attempting to transform causal effect expressions of the form
P*(Y(x) = y) into expressions involving only measurable variables.
When such a transformation is found, the corresponding causal effect
is identifiable, since P* then reduces to P.

The question naturally arises of whether the constraints used by
potential-outcome analysts are complete—that is, whether they are suf-
ficient for deriving every valid statement about causal processes, inter-
ventions, and counterfactuals. To answer this question, the validity of
counterfactual statements need be defined relative to more basic math-
ematical objects, such as possible worlds (Section 1.4.4) or structural
equations (equation (3.53)). In the standard potential-outcome frame-
work, however, the question of completeness remains open, because
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Y (z,u) is taken as a primitive notion and because consistency con-
straints such as (3.54) although they appear plausible for the English
expression “had X been z”—are not derived from a deeper mathemati-
cal object. This question of completeness is settled in Chapter 7, where
a necessary and sufficient set of axioms is derived from the structural
semantics given to Y (z,u) by (3.53).

In assessing the historical development of structural equations and
potential-outcome models, one cannot overemphasize the importance
of the conceptual clarity that structural equations offer vis-a-vis the
potential-outcome model. The reader may appreciate this importance
by attempting to judge whether the condition of (3.63) holds in a given
familiar situation. This condition reads: “the value that Z would ob-
tain had X been z is jointly independent of both X and the value that
Y would obtain had Z been z.” (In the structural representation, the
sentence reads: “Z shares no cause with either X or Y, except for X
itself, as shown in Figure 3.5.”) The thought of having to express, de-
fend, and manage formidable counterfactual relationships of this type
may explain why the enterprise of causal inference is currently viewed
with such awe and despair among rank-and-file epidemiologists and
statisticians—and why economists and social scientists continue to use
structural equations instead of the potential-outcome alternatives ad-
vocated in Holland 1988, Angrist et al. 1996, and Sobel 1998. On the
other hand, the algebraic machinery offered by the potential-outcome
notation, once a problem is properly formalized, can be quite power-
ful in refining assumptions, deriving probabilities of counterfactuals,
and verifying whether conclusions follow from premises—as we demon-
strate in Chapter 9. The translation given in (3.53)—(3.58) should help
researchers combine the best features of the two approaches.

3.6.4 Relations to Robins’s G-Estimation

Among the investigations conducted in the potential-outcome frame-
work, the one closest in spirit to the structural analysis described in
this chapter is Robins’s work on “causally interpreted structured tree
graphs” (Robins 1986, 1987). Robins was the first to realize the po-
tential of Neyman’s counterfactual notation Y (z) as a general mathe-
matical language for causal inference, and he used it to extend Rubin’s
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(1978) “time-independent treatment” model to studies with direct and
indirect effects and time-varying treatments, concomitants, and out-
comes.

Robins considered a set V= {Vi,...,Vy} of temporally ordered
discrete random variables (as in Figure 3.3) and asked under what
conditions one can identify the effect of control policy g : X = z on
outcomes Y C V\ X, where X = {X,..., Xk} C V are the temporally
ordered and potentially manipulable treatment variables of interest.
The causal effect of X =z on Y was expressed as the probability

P(ylg =) 2 P{Y(z) =y},

where the counterfactual variable Y'(z) stands for the value that out-
come variables Y would take had the treatment variables X been z.
Robins showed that P(y|g = z) is identified from the distribution
P(v) if each component X of X is “assigned at random, given the
past,” a notion explicated as follows: Let L, be the variables occur-
ring between X, ; and X, with L; being the variables preceding X;.
Write Ly, = (Ly,...,Ly), L = Lg, and X; = (X1,...,X}), and define
Xo, Ly, Vj to be identically zero. The treatment X, = z is said to
be assigned at random, given the past, if the following relation holds:

(Y (2) LLXg | Lg, Xp—1 = Tp—1)- (3.64)

Robins further proved that, if (3.64) holds for every k, then the
causal effect is given by

K

P(ylg=z) =3 P(yllx, Txc) [T PUlellk-1, Tr-1), (3.65)

1% k=1

an expression he called the “G-computation algorithm formula.” This
expression can be derived by applying condition (3.64) iteratively, as in
the derivation of (3.56). If X is univariate, then (3.65) reduces to the
standard adjustment formula

P(ylg=1z) = ZPylml (h),

paralleling (3.56). Likewise, in the special structure of Figure 3.3, (3.65)
reduces to (3.20).



160CHAPTER 3. CAUSAL DIAGRAMS AND THE IDENTIFICATION OF CAUSAL I

To place this result in the context of our analysis in this chapter,
we note that the class of semi-Markovian models satisfying assumption
(3.64) corresponds to complete DAGs in which all arrowheads pointing
to Xy originate from observed variables. Indeed, in such models, the
parents PA, = Ly, X;_; of variable X}, satisfy the back-door condition
of Definition 3.3.1,

(XkJ_LY|PAk)G£k,

which implies (3.64).'° This class of models falls under Theorem 3.2.5,
which states that all causal effects in this class are identifiable and are
given by the truncated factorization formula of (3.16); the formula co-
incides with (3.65) after marginalizing over the uncontrolled covariates.

The structural analysis introduced in this chapter supports and gen-
eralizes Robins’ result from a new theoretical perspective. First, on the
technical front, this analysis offers systematic ways of managing models
with unmeasured confounders (i.e., unobserved parents of control vari-
ables, as in Figures 3.8(d)—(g)), where Robins’s starting assumption
(ch3-robins:eql) is inapplicable. Second, on the conceptual front, the
structural framework represents a fundamental shift from the vocabu-
lary of counterfactual independencies (e.g., (3.64)) to the vocabulary
of processes and mechanisms, from which human judgment of coun-
terfactuals originates. Although expressions of counterfactual indepen-
dencies can be engineered to facilitate algebraic derivations of causal
effects (as in (3.56)), articulating the right independencies for a prob-
lem or assessing the assumptions behind such independencies may often
be the hardest part of the problem. In the structural framework, the
counterfactual expressions themselves are derived (if needed) from a
mathematical theory (as in (3.58) and (3.63)). Still, Robins’s pioneer-
ing research has proven (i) that algebraic methods can handle causal
analysis in complex multistage problems and (ii) that causal effects in
such problems can be reduced to estimable quantities (see also Sections
3.6.1 and 4.4).

15 Alternatively, (3.64) can be obtained by applying the translation rule of (3.58)
to graphs with no confounding arcs between X, and {Y, PA;}. Note, however, that
the implication goes only one way; Robins’s condition is the weakest assumption
needed for identifying the causal effect.



