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3.5 Graphical Tests of Identifiability

Figure 3.7 shows simple diagrams in which P(y|%) cannot be identified
owing to the presence of a “bow” pattern—a confounding arc (dashed)
embracing a causal link between X and Y. A confounding arc repre-
sents the existence in the diagram of a back-door path that contains
only unobserved variables and has no converging arrows. For example,
the path X, Z,, B, Z3 in Figure 3.1 can be represented as a con-
founding arc between X and Z3. A bow pattern represents an equation
y = fy(x,u, ey), where U is unobserved and dependent on X. Such an
equation does not permit the identification of causal effects, since any
portion of the observed dependence between X and Y may always be
attributed to spurious dependencies mediated by U.

The presence of a bow pattern prevents the identification of P(y|z)
even when it is found in the context of a larger graph, as in Figure
3.7(b). This is in contrast to linear models, where the addition of an
arc to a bow pattern can render P(y|Z) identifiable (see Chapter 5,
Figure 5.9). For example, if Y is related to X via a linear relation
y = bx 4+ u, where U is an unobserved disturbance possibly correlated
with X, then b = 2 F(Y'|2) is not identifiable. However, adding an arc
Z — X to the structure (i.e., finding a variable Z that is correlated
with X but not with U) would facilitate the computation of E(Y|Z)
via the instrumental variable formula (Bowden and Turkington 1984;
see also Chapter 5):
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(3.48)

In nonparametric models, adding an instrumental variable Z to
a bow pattern (Figure 3.7(b)) does not permit the identification of
P(y|%). This is a familiar problem in the analysis of clinical trials in
which treatment assignment (Z) is randomized (hence, no link enters
Z) but compliance is imperfect (see Chapter 8). The confounding arc
between X and Y in Figure 3.7(b) represents unmeasurable factors that
influence subjects’ choice of treatment (X') as well as subjects’ response
to treatment (Y). In such trials, it is not possible to obtain an unbi-
ased estimate of the treatment effect P(y|z) without making additional
assumptions on the nature of the interactions between compliance and
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response (as is done, for example, in the potential-outcome approach
to instrumental variables developed in Imbens and Angrist 1994 and
Angrist et al. 1996. Although the added arc Z — X permits us to
calculate bounds on P(y|Z) (Robins 1989; sec. 1g; Manski 1990; Balke
and Pearl 1997) and the upper and lower bounds may even coincide
for certain types of distributions P(z,y, 2) (Section 8.2.4), there is no
way of computing P(y|z) for every positive distribution P(z,y, z), as
required by Definition 3.2.4.

In general, the addition of arcs to a causal diagram can impede, but
never assist, the identification of causal effects in nonparametric models.
This is because such addition reduces the set of d-separation conditions
carried by the diagram; hence, if a causal effect derivation fails in the
original diagram, it is bound to fail in the augmented diagram as well.
Conversely, any causal effect derivation that succeeds in the augmented
diagram (by a sequence of symbolic transformations, as in Corollary
3.4.2) would succeed in the original diagram.
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Figure 3.7: (a) A bow pattern: a confounding arc embracing a causal
link X — Y, thus preventing the identification of P(y|Z) even in the
presence of an instrumental variable Z, as in (b). (¢) A bowless graph
that still prohibits the identification of P(y|z).

Our ability to compute P(y;|%) and P(ys|z) for pairs (Y1,Y2) of
singleton variables does not ensure our ability to compute joint distri-
butions, such as P(y1,y2|%). Figure 3.7(c), for example, shows a causal
diagram where both P(z;|%) and P(zs|%) are computable yet P(zq, zo|Z)
is not. Consequently, we cannot compute P(y|z). It is interesting to
note that this diagram is the smallest graph that does not contain a
bow pattern and still presents an uncomputable causal effect.

Another interesting feature demonstrated by Figure 3.7(c) is that
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computing the effect of a joint intervention is often easier than com-
puting the effects of its constituent singleton interventions.® Here, it
is possible to compute P(y|Z,Z) and P(y|z, Z1), yet there is no way
of computing P(y|Z). For example, the former can be evaluated by
invoking Rule 2 in GYZZ, giving

P(y|£: zA?) = ZP(y|ZlaiaéZ)P(Zl‘£552) = ZP(yLZlavaZ)P(Zl‘x)
21 Z1

(3.49)
However, Rule 2 cannot be used to convert P(z1|Z, z2) into P(z1|z, 22)
because, when conditioned on Z;, X and Z; are d-connected in Gx
(through the dashed lines). A general approach to computing the effect
of joint interventions is developed in Pearl and Robins (1995); this is
described in Chapter 4 (Section 4.4).

3.5.1 Identifying Models

Figure 3.8 shows simple diagrams in which the causal effect of X on Y
is identifiable (where X and Y are single variables). Such models are
called “identifying” because their structures communicate a sufficient
number of assumptions (missing links) to permit the identification of
the target quantity P(y|z). Latent variables are not shown explicitly in
these diagrams; rather, such variables are implicit in the confounding
arcs (dashed). Every causal diagram with latent variables can be con-
verted to an equivalent diagram involving measured variables intercon-
nected by arrows and confounding arcs. This conversion corresponds
to substituting out all latent variables from the structural equations of
(3.3) and then constructing a new diagram by connecting any two vari-
ables X; and X, by (i) an arrow from X, to X; whenever X, appears
in the equation for X; and (ii) a confounding arc whenever the same €
term appears in both f; and f;. The result is a diagram in which all
unmeasured variables are exogenous and mutually independent.

Several features should be noted from examining the diagrams in
Figure 3.8.

6This was brought to my attention by James Robins, who has worked out many
of these computations in the context of sequential treatment management (Robins
1986, p. 1423).
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Figure 3.8: Typical models in which the effect of X on Y is identifiable.
Dashed arcs represent confounding paths, and Z represents observed
covariates.

1. Since the removal of any arc or arrow from a causal diagram can
only assist the identifiability of causal effects, P(y|Z) will still be
identified in any edge subgraph of the diagrams shown in Figure
3.8. Likewise, the introduction of mediating observed variables
onto any edge in a causal graph can assist, but never impede, the
identifiability of any causal effect. Therefore, P(y|z) will still be
identified from any graph obtained by adding mediating nodes to
the diagrams shown in Figure 3.8.

2. The diagrams in Figure 3.8 are maximal in the sense that the
introduction of any additional arc or arrow onto an existing pair
of nodes would render P(y|Z) no longer identifiable.

3. Although most of the diagrams in Figure 3.8 contain bow pat-
terns, none of these patterns emanates from X (as is the case in
Figures 3.9(a) and (b) to follow). In general, a necessary condition
for the identifiability of P(y|Z) is the absence of a confounding
arc between X and any child of X that is an ancestor of Y.
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4. Diagrams (a) and (b) in Figure 3.8 contain no back-door paths be-
tween X and Y and thus represent experimental designs in which
there is no confounding bias between the treatment (X) and the
response (Y); hence, P(y|z) = P(y|x). Likewise, diagrams (c)
and (d) in Figure 3.8 represent designs in which observed covari-
ates Z block every back-door path between X and YV (i.e., X
is “conditionally ignorable” given Z, in the language of Rosen-
baum and Rubin 1983); hence, P(y|Z) is obtained by standard
adjustment for Z (as in (3.21)):

P(y|z) =Y P(ylz, z) P(2).

5. For each of the diagrams in Figure 3.8, we readily obtain a formula
for P(y|%) by using symbolic derivations patterned after those
in Section 3.4.3. The derivation is often guided by the graph
topology. For example, diagram (f) in Figure 3.8 dictates the
following derivation. Writing

P(y|i‘) = Z P(y|217227£)P(Z17Z2|§))7

21,22

we see that the subgraph containing {X, Z;, Z»} is identical in
structure to that of diagram (e), with (77, Z5) replacing (Z,Y),
respectively. Thus, P(z, 29|%) can be obtained from (3.45). Like-
wise, the term P(y|21, 29,2) can be reduced to P(y|z1, 22, 2) by
Rule 2, since (Y 1L X|Z1, Z5)c, - We therefore have

P(y|z) = Y P(ylz1, 20, 2) P(21]2) Y P(22]21,2")P(a"). (3.50)

21,22 x’

Applying a similar derivation to diagram (g) of Figure 3.8 yields

P(ylz) =33 > P(yla, 2z, «')P(2'|22) P(21|22, )P (22)

z1 22 g
(3.51)
Note that the variable Z3 does not appear in (3.50), expression
above, which means that Z5 need not be measured if all one wants
to learn is the causal effect of X on Y.
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6. In diagrams (e), (f), and (g) of Figure 3.8, the identifiability of
P(y|%) is rendered feasible through observed covariates Z that
are affected by the treatment X (since members of Z are descen-
dants of X). This stands contrary to the warning—repeated in
most of the literature on statistical experimentation—to refrain
from adjusting for concomitant observations that are affected by
the treatment (Cox 1958; Rosenbaum 1984; Pratt and Schlaifer
1988; Wainer 1989). It is commonly believed that a concomitant
Z that is affected by the treatment must be excluded from the
analysis of the total effect of the treatment (Pratt and Schlaifer
1988). The reason given for the exclusion is that the calculation
of total effects amounts to integrating out Z, which is functionally
equivalent to omitting Z to begin with. Diagrams (e), (f), and
(g) show cases where the total effects of X are indeed the target
of investigation and, even so, the measurement of concomitants
that are affected by X (e.g., Z or Z7) is still necessary. However,
the adjustment needed for such concomitants is nonstandard, in-
volving two or more stages of the standard adjustment of (3.21)

(see (3.30), (3.50), and (3.51)).

7. In diagrams (b), (c), and (f) of Figure 3.8, Y has a parent whose
effect on Y is not identifiable; even so, the effect of X on Y is
identifiable. This demonstrates that local identifiability is not a
necessary condition for global identifiability. In other words, to
identify the effect of X on Y we need not insist on identifying
each and every link along the paths from X to Y.

3.5.2 Nonidentifying Models

Figure 3.9 presents typical diagrams in which the total effect of X on
Y, P(y|%), is not identifiable. Noteworthy features of these diagrams
are as follows.

1. All graphs in Figure 3.9 contain unblockable back-door paths be-
tween X and Y, that is, paths ending with arrows pointing to X
that cannot be blocked by observed nondescendants of X. The
presence of such a path in a graph is, indeed, a necessary test
for nonidentifiability (see Theorem 3.3.2). That is not a sufficient
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Figure 3.9: Typical models in which P(y|%) is not identifiable.

test is demonstrated by Figure 3.8(e), in which the back-door
path (dashed) is unblockable and yet P(y|Z) is identifiable.

2. A sufficient condition for the nonidentifiability of P(y|Z) is the
existence of a confounding path between X and any of its children
on a path from X to Y, as shown in Figures 3.9(b) and (c). A
stronger sufficient condition is that the graph contain any of the
patterns shown in Figure 3.9 as an edge subgraph.

3. Graph (g) in Figure 3.9 (same as Figure 3.7(c)) demonstrates that
local identifiability is not sufficient for global identifiability. For
example, we can identify P(z1|%), P(zs|%), P(y|21), and P(y|Z2)
but not P(y|Z). This is one of the main differences between non-
parametric and linear models; in the latter, all causal effects can
be determined from the structural coefficients and each coeffi-
cient represents the causal effect of one variable on its immediate
successor.



