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3.4 A Calculus of Intervention

This section establishes a set of inference rules by which probabilistic
sentences involving interventions and observations can be transformed
into other such sentences, thus providing a syntactic method of deriv-
ing (or verifying) claims about interventions. Each inference rule will
respect the interpretation of the do(-) operator as an intervention that
modifies a select set of functions in the underlying model. The set
of inference rules that emerge from this interpretation will be called
do-calculus.

We will assume that we are given the structure of a causal dia-
gram G in which some of the nodes are observable while others remain
unobserved. Our objective will be to facilitate the syntactic deriva-
tion of causal effect expressions of the form P(y|Z), where X and Y
stand for any subsets of observed variables. By “derivation” we mean
stepwise reduction of the expression P(y|Z) to an equivalent expression
involving standard probabilities of observed quantities. Whenever such
reduction is feasible, the causal effect of X on Y is identifiable (see
Definition 3.2.4).

3.4.1 Preliminary notation

Let X, Y, and Z be arbitrary disjoint sets of nodes in a causal DAG
G. We denote by G+ the graph obtained by deleting from G all arrows
pointing to nodes in X. Likewise, we denote by G'x the graph obtained
by deleting from G all arrows emerging from nodes in X. To represent
the deletion of both incoming and outgoing arrows, we use the nota-
tion G5, (see Figure 3.6 for an illustration). Finally, the expression

P(y|z, 2) 2 P(y, z|z)/P(z|%) stands for the probability of Y = y given
that X is held constant at = and that (under this condition) Z = z is
observed.

3.4.2 Inference Rules

The following theorem states the three basic inference rules of the pro-
posed calculus. Proofs are provided in Pearl (1995a).
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Theorem 3.4.1 (Rules of d Calculus)

Let G be the directed acyclic graph associated with a causal model as
defined in (3.3), and let P(-) stand for the probability distribution in-
duced by that model. For any disjoint subsets of variables XY, Z, and
W we have the following rules.

Rule 1 (Insertion/deletion of observations):
P(y|z, z,w) = P(y|2,w) if (Y IZ|X, W) (3.33)
Rule 2 (Action/observation exchange):

P(y|z, 2,w) = P(y|z, z,w) if (YIZ|X, W)ze‘ (3.34)

Rule 3 (Insertion/deletion of actions):

ZW)
where Z(W) is the set of Z-nodes that are not ancestors of any
W -node in G%.

Each of these inference rules follows from the basic interpretation of the
“hat” Z operator as a replacement of the causal mechanism that con-
nects X to its preaction parents by a new mechanism X = x introduced
by the intervening force. The result is a submodel characterized by the
subgraph G+ (named “manipulated graph” in Spirtes et al. 1993).

Rule 1 reaffirms d-separation as a valid test for conditional inde-
pendence in the distribution resulting from the intervention do(X = x),
hence the graph G. This rule follows from the fact that deleting equa-
tions from the system does not introduce any dependencies among the
remaining disturbance terms (see (3.3)).

Rule 2 provides a condition for an external intervention do(Z = z)
to have the same effect on Y as the passive observation Z = z. The
condition amounts to {X U W} blocking all back-door paths from Z to
Y (in G), since G, retains all (and only) such paths.

Rule 3 provides conditions for introducing (or deleting) an external
intervention do(Z = z) without affecting the probability of ¥ = y.
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The validity of this rule stems, again, from simulating the intervention
do(Z = z) by the deletion of all equations corresponding to the variables
in Z (hence the graph Gw5). The reason for limiting the deletion to
nonancestors of W-nodes is provided with the proofs of Rules 1-3 in
Pearl (1995a).

Corollary 3.4.2 A causal effect ¢ = P(y1, ..., Yk|Z1, vy T) 18 identi-
fiable in a model characterized by a graph G if there exists a finite
sequence of transformations, each conforming to one of the inference
rules in Theorem 3.4.1, that reduces q into a standard (i.e. “hat”-free)
probability expression involving observed quantities.

Whether Rules 1-3 are sufficient for deriving all identifiable causal ef-
fects remains an open question. However, the task of finding a sequence
of transformations (if such exists) for reducing an arbitrary causal effect
expression can be systematized and executed by efficient algorithms
(Galles and Pearl 1995; Pearl and Robins 1995), to be discussed in
Chapter 4. As we illustrate in Section 3.4.3, symbolic derivations using
the hat notation are much more convenient than algebraic derivations
that aim at eliminating latent variables from standard probability ex-
pressions (as in Section 3.3.2, equation(3.26)).

3.4.3 Causal Effects: Symbolic Derivation of an
Example

We will now demonstrate how Rules 1-3 can be used to derive all causal
effect estimands in the structure of Figure 3.5. Figure 3.6 displays the
subgraphs that will be needed for the derivations that follow.

Task 1: Compute P(z|Z)

This task can be accomplished in one step, since G satisfies the appli-
cability condition for Rule 2. That is, X 1L Z in Gx (because the path
X < U =Y « Z is blocked by the converging arrows at Y) and we
can write

P(z|z) = P(z|z). (3.36)

Task 2: Compute P(y|z)
Here we cannot apply Rule 2 to exchange 2z with z because GGz contains
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Figure 3.6: Subgraphs of G used in the derivation of causal effects.

a back-door path from ZtoY: Z < X < U — Y. Naturally, we would
like to block this path by measuring variables (such as X) that reside

on that path. This involves conditioning and summing over all values
of X:

P(y|2) = ZP(y\x,é)P(:ﬂé). (3.37)

We now have to deal with two terms involving Z, P(y|z,Z) and
P(z|Z). The latter can be readily computed by applying Rule 3 for
action deletion:

P(z|3) = P(z) if (Z1LX)e, (3.38)
since X and Z are d-separated in G=. (Intuitively, manipulating Z

should have no effect on X, because Z is a descendant of X in G.) To
reduce the former term, P(y|z, Z), we consult Rule 2:

P(y|z,2) = P(ylz,2) if (Z1Y[X)q,, (3.39)

noting that X d-separates Z from Y in Gz. This allows us to write
(3.37) as
P(y|2) = _ P(ylz, 2)P(z) = E;P(yl, ), (3.40)

which is a special case of the back-door formula (equation (3.21)). The
legitimizing condition, (Z1LY|X)g,, offers yet another graphical test
for a set X to be sufficient for control of confounding (between Y and
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Z) that is equivalent to the ignorability condition of Rosenbaum and
Rubin (1983).
Task 3: Compute P(y|z)
Writing

P(y|z) = 3_ P(ylz, #)P(2|2), (3.41)
we see that the term P(z|Z) was reduced in (3.36) but that no rule

can be applied to eliminate the hat symbol " from the term P(y|z, Z).
However, we can legitimately add this symbol via Rule 2:

P(ylz, &) = P(y|2, %), (3.42)

since the applicability condition (Y 1LZ|X)g_ holds (see Figure 3.6).

We can now delete the action # from P(y|Z,#) using Rule 3, since
Y 1L X|Z holds in G%. Thus, we have

P(y|z, &) = P(y|2), (3.43)

which was calculated in (3.40). Substituting (3.40), (3.43), and (3.36)
back into (3.41) finally yields

P(y|z) =} P(z|z) ZP(ny’, 2)P(x), (3.44)

which is identical to the front-door formula of (3.30).
Task 4: Compute P(y, z|Z)

We have
P(y, z|z) = P(y|z,2)P(2|%).

The two terms on the r.h.s. were derived before in (3.36) and (3.43),
from which we obtain

P(y,z|2) = P(y|2)P(z|z) (3.45)
= P(z|z) >, P(ylz', z) P(z'). '
Task 5: Compute P(z,y|2)

P(z,y|2) = P(ylz,2)P(z|?)
= P(y|z,z)P(x). (3.46)
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The first term on the r.h.s. is obtained by Rule 2 (licensed by Gz) and
the second term by Rule 3 (as in (3.38)).

Note that, in all the derivations, the graph G has provided both the
license for applying the inference rules and the guidance for choosing
the right rule to apply.

3.4.4 Causal Inference by Surrogate Experiments

Suppose we wish to learn the causal effect of X on Y when P(y|Z) is
not identifiable and, for practical reasons of cost or ethics, we cannot
control X by randomized experiment. The question arises of whether
P(y|%) can be identified by randomizing a surrogate variable Z that is
easier to control than X. For example, if we are interested in assessing
the effect of cholesterol levels (X) on heart disease (Y), a reasonable
experiment to conduct would be to control subjects’ diet (Z), rather
than exercising direct control over cholesterol levels in subjects’ blood.

Formally, this problem amounts to transforming P(y|Z) into expres-
sions in which only members of Z obtain the hat symbol. Using The-
orem 3.4.1, it can be shown that the following conditions are sufficient
for admitting a surrogate variable Z:

(i) X intercepts all directed paths from Z to Y; and
(ii) P(y|z) is identifiable in G.

Indeed, if condition (i) holds then we can write P(y|Z) =
P(y|#, 2), because (Y 1L Z|X)g_. But P(y|#, Z) stands for the causal
effect of X on Y in a model governed by G, which—by condition (),
is identifiable. Translated to our cholesterol example, these condition
require that there be no direct effect of diet on heart conditions and
no confounding of cholesterol levels and heart disease, unless we can
neutralize such confounding by additional measurements.

Figures 3.9(e) and 3.9(h) (in Section 3.5.2) illustrate models in
which both conditions hold. With Figure 3.9(e), for example, we obtain
this estimand
Py, =)

P(ylz) = P(y|z, 2) = Pl

(3.47)
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This can be established directly by first applying Rule 3 to add 2,

P(y|z) = P(y|z, z) because (Y 1. Z|X)

Gﬁ’
and then applying Rule 2 to exchange & with z:
P(y|z, 2) = P(ylz, Z) because (Y LLX|Z)q__.

According to (3.47), only one level of Z suffices for the identification
of P(y|z) for any values of y and z. In other words, Z need not be
varied at all; it can simply be held constant by external means and,
if the assumptions embodied in G are valid, the r.h.s. of (3.47) should
attain the same value regardless of the (constant) level at which Z is
being held. In practice, however, several levels of Z will be needed to
ensure that enough samples are obtained for each desired value of X.
For example, if we are interested in the difference E(Y|z) — E(Y|2'),
where z and z' are two treatment levels, then we should choose two
values z and 2’ of Z that maximize the number of samples in = and z’
(respectively) and then estimate

E(Y|2) — E(Y|3) = E(Y|z,2) — E(Y|2', 5').



