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3.2 Intervention in Markovian Models

3.2.1 Graphs as Models of Interventions

In Chapter 1 (Section 1.3) we saw how causal models, unlike probabilis-
tic models, can serve to predict the effect of interventions. This added
feature requires that the joint distribution P be supplemented with a
causal diagram—that is, a directed acyclic graph G that identifies the
causal connections among the variables of interest. In this section we
elaborate on the nature of interventions and give explicit formulas for
their effects.

The connection between the causal and associational readings of
DAGs is formed through the mechanism-based account of causation,
which owes its roots to early works in econometrics (Frisch 1938;
Haavelmo 1943; Simon 1953). In this account, assertions about causal
influences, such as those specified by the links in Figure 3.1, stand for
autonomous physical mechanisms among the corresponding quantities;
these mechanisms are represented as functional relationships perturbed
by random disturbances. Echoing this tradition, Pearl and Verma
(1991) interpreted the causal reading of a DAG in terms of functional,
rather than probabilistic, relationships (see (1.40) and Definition 2.2.2);
in other words, each child-parent family in a DAG G represents a de-
terministic function

z; = fi(pa,, €), i=1,..,n, (3.2)

where pa, are the parents of variable X; in G; the ¢; (1 < ¢ < n)
are mutually independent, arbitrarily distributed random disturbances.
These disturbance terms represent independent background factors that
the investigator chooses not to include in the analysis. If any of these
factors is judged to be influencing two or more variables (thus violating
the independence assumption), then that factor must enter the analysis
as an unmeasured (or latent) variable and be represented in the graph
by a hollow node, such as Zy and B in Figure 3.1. For example, the
causal assumptions conveyed by the model in Figure 3.1 correspond to
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the following set of equations:

Zy = fO(GO)a B = fB(Z()aeB)’
A :fl(Zanl)a X :fX(ZO’GX)’ (3 3)
Z2 = fQ(X, Z1,€2), Y = fy(X, ZQ,Zg,Gy), )

Z3 = f3(B: Z2: 63)-

More generally, we may lump together all unobserved factors (in-
cluding the ¢;) into a set U of background variables and then summa-
rize their characteristics by a distribution function P(u)—or by some
aspects (e.g. independencies) of P(u). Thus, a full specification of a
causal model would entail two components: a set of functional rela-
tionships

ZT; :fi(pai,ui), 1= 1,...,n, (34)

and a joint distribution function P(u) on the background factors. If
the diagram G(M) associated with a causal model M is acyclic, then
M is called semi-Markovian. If, in addition, the background variables
are independent, M is called Markovian, since the resulting distribu-
tion of the observed variables would then be Markov relative to G(M)
(see Theorem 1.4.1). Thus, the model described in Figure 3.1 is semi-
Markovian if the observed variables are { X, Y, Z1, Z5, Z3}; it would turn
Markovian if Z; and B were observed as well. In Chapter 7 we will pur-
sue the analysis of general non-Markovian models, but in this chapter
all models are assumed to be either Markovian or Markovian with un-
observed variables (i.e. semi-Markovian).

Needless to state, we would seldom be in possession of P(u) or even
fi. It is important nevertheless to explicate the mathematical content
of a fully specified model in order to draw valid inferences from partially
specified models, such as the one described in Figure 3.1.

The equational model (3.2) is the nonparametric analog of the so-
called structural equations model (Wright 1921; Goldberger 1973), ex-
cept that: the functional form of the equations (as well as the distri-
bution of the disturbance terms) will remain unspecified. The equality
signs in structural equations convey the asymmetrical counterfactual
relation of “is determined by,” and each equation represents a stable
autonomous mechanism. For example, the equation for Y states that,
regardless of what we currently observe about Y and regardless of any
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changes that might occur in other equations, if variables (X, Zs, Z3, €y)
were to assume the values (z, 29, 23, €y ), respectively, then Y would take
on the value dictated by the function fy.

Recalling our discussion in Section 1.4, the functional characteriza-
tion of each child-parent relationship leads to the same recursive decom-
position of the joint distribution that characterizes Bayesian networks:

P(xq, ..., Ty) = HP(.%‘Z | pa,), (3.5)

which, in our example of Figure 3.1, yields

P(ZOa‘Tazlaba 22,2'3,3/) = P(ZO)P(x|ZO)P(Zl|ZO)P(b‘Z0)
X P(23|x, 21) P(23| 22, b) P(y|x, 22, 23)(3.6)

Moreover, the functional characterization provides a convenient lan-
guage for specifying how the resulting distribution would change in
response to external interventions. This is accomplished by encoding
each intervention as an alteration on a select subset of functions while
keeping the other functions intact. Once we know the identity of the
mechanisms altered by the intervention and the nature of the alteration,
the overall effect of the intervention can be predicted by modifying the
corresponding equations in the model and using the modified model to
compute a new probability function.

The simplest type of external intervention is one in which a single
variable, say Xj;, is forced to take on some fixed value z;. Such an
intervention, which we call “atomic,” amounts to lifting X; from the
influence of the old functional mechanism z; = f;(pa;, u;) and placing
it under the influence of a new mechanism that sets the value z; while
keeping all other mechanisms unperturbed. Formally, this atomic inter-
vention, which we denote by do(X; = x;), or do(z;) for short,? amounts

2 An equivalent notation, using set(z) instead of do(z), was used in Pearl (1995a).
The do(z) notation was first used in Goldszmidt and Pearl (1992) and is gaining in
popular support. The expression P(y|do(z)) is equivalent in intent to P(Y, = y) in
the potential-outcome model introduced by Neyman (1923) and Rubin (1974) and
to the expression P[(X = z) O— (Y = y)] in the counterfactual theory of Lewis
(1973b). The semantical differences among these notions are discussed in Section
3.6.3 and in Chapter 7.
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to removing the equation z; = f;(pa;, u;) from the model and substitut-
ing X; = x; in the remaining equations. The new model thus created
represents the system’s behavior under the intervention do(X; = ;)
and, when solved for the distribution of X, yields the causal effect of
X; on Xj, which is denoted P(z;|Z;). More generally, when an inter-
vention forces a subset X of variables to attain fixed values z, then a
subset of equations is to be pruned from the model given in (3.4), one for
each member of X, thus defining a new distribution over the remaining
variables, that completely characterizes the effect of the intervention.?

Definition 3.2.1 (Causal Effect)

Given two disjoint sets of variables, X and Y, the causal effect of X
on Y, denoted either as P(y|Z) or as P(y|do(z)), is a function from
X to the space of probability distributions on Y. For each realization
xz of X, P(y|z) gives the probability of Y =y induced by deleting from
the model of (3.4) all equations corresponding to variables in X and
substituting X = x n the remaining equations.

Clearly, the graph corresponding to the reduced set of equations is
a subgraph of G from which all arrows entering X have been pruned
(Spirtes et al. 1993). The difference E(Y |do(z'))— E (Y |do(z")) is some-
times taken as the definition of “causal effect” (Rosenbaum and Rubin
1983), where 2’ and z" are two distinct realizations of X. This dif-
ference can always be computed from the general function P(y|do(z)),
which is defined for every level x of X and provides a more refined
characterization of the effect of interventions.

3.2.2 Interventions as Variables

An alternative (but sometimes more appealing) account of intervention
treats the force responsible for the intervention as a variable within the

3The basic view of interventions as equation modifiers originates with Marschak
(1950) and Simon (1953). An explicit translation of interventions to “wiping out”
equations from the model was first proposed by Strotz and Wold (1960) and later
used in Fisher (1970) and Sobel (1990). Graphical ramifications of this translation
were explicated first in Spirtes et al. (1993) and later in Pearl (1993b).
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system (Pearl 1993b). This is facilitated by representing the function
fi itself as a value of a variable, F; and then writing (3.2) as

Z; = I(paiafiaui)’ (37)
where [ is a three-argument function satisfying
I(a,b,c) = fi(a,c) whenever b = f;.

This amounts to conceptualizing the intervention as an external force
F; that alters the function f; between X; and its parents. Graphically,
we can represent F; as an added parent node of X;, and the effect of
such an intervention can be analyzed by standard conditionalization—
that is, by conditioning our probability on the event that variable F;
attains the value f;.

Figure 3.2: Representing external intervention F; by an augmented
network G' = GU{F; — X;}.

!

The effect of an atomic intervention do(X; = z}) is encoded by
adding to G a link F; — X, (see Figure 3.2), where F; is a new
variable taking values in {do(z}), idle}, z ranges over the domain of
X;, and “idle” represents no intervention. Thus, the new parent set of
X; in the augmented network is PA, = PA; U {F;}, and it is related to

X, by the conditional probability
P(z; | pa;) if F; =idle,
P(z; | pa}) =< 0 if F;=do(z}) and z; #x},  (3.8)
1 if F;=do(z}) and z; = .

The effect of the intervention do(x}) is to transform the original
probability function P(x1,...,z,) into a new probability function
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P(zy,...,x,|Z}), given by
P(x1, ..., y|3,) = P'(x1, .o, Ty | F; = do(})), (3.9)

where P’ is the distribution specified by the augmented network G’ =
G U {F, — X;} and (3.8), with an arbitrary prior distribution on
F;. In general, by adding a hypothetical intervention link F; — X;
to each node in GG, we can construct an augmented probability function
P'(x1,...,zn; F1, ..., F},) that contains information about richer types of
interventions. Multiple interventions would be represented by condi-
tioning P’ on a subset of the F; (taking values in their respective do(z?})
domains), and the preintervention probability function P would be
viewed as the posterior distribution induced by conditioning each F;
in P’ on the value “idle.”

One advantage of the augmented network representation is that it
is applicable to any change in the functional relationship f; and not
merely to the replacement of f; by a constant. It also displays clearly
the ramifications of spontaneous changes in f;, unmediated by external
control. Figure 3.2 predicts, for example, that only descendants of X;
would be effected by changes in f; and hence the marginal probability
P(z) will remain unaltered for every set Z of nondescendants of Xj.
Likewise, Figure 3.2 dictates that the conditional probability P(y|z;)
remains invariant to changes in f; for any set Y of descendants of X,
provided X; d-separates F; from Y. Kevin Hoover (1990, 1999) used
such invariant features to determine the direction of causal influences
among economic variables (e.g., employment and money supply) by ob-
serving the changes induced by sudden modifications in the processes
that govern these variables (e.g., tax reform, labor dispute). Indeed,
whenever we obtain reliable information (e.g., from historical or insti-
tutional knowledge) that an abrupt local change has taken place in a
specific mechanism f; that constrains a given family (X;, PA;) of vari-
ables, we can use the observed changes in the marginal and conditional
probabilities surrounding those variables to determine whether X is in-
deed the child (or dependent variable) of that family, thus determining
the direction of causal influences in the domain. The statistical fea-
tures that remain invariant under such changes, as well as the causal
assumptions underlying this invariance, are displayed in the augmented
network G'.
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3.2.3 Computing the Effect of Interventions

Regardless of whether we represent interventions as a modification of
an existing model (Definition 3.2.1) or as a conditionalization in an
augmented model (equation (3.9)), the result is a well-defined transfor-
mation between the preintervention and postintervention distributions.
In the case of an atomic intervention do(X; = z}), this transforma-
tion can be expressed in a simple truncated-factorization formula that
follows immediately from (3.2) and Definition 3.2.1:*

N H#iP(:rj\paj) if z; =,

Pz, ..., x,|Z}) —{ 0 if 2 1 (3.10)
Equation (3.10) reflects the removal of the term P(z; | pa,;) from the
product of (3.5), since pa; no longer influence X;. For example, the
intervention do(X = z') will transform the pre-intervention distribution
given in (3.6) into the product

P(zﬂazlab’ 227Z3ay|§:,) = P(ZO)P(Z1|ZO)P(b|ZO)
XP(z2|x,aZI)P(Z3|Z23b)P(y|$I: 223Z3)'

Graphically, the removal of the term P(z;|pa;) is equivalent to remov-
ing the links between PA; and X; while keeping the rest of the network
intact. Clearly, the transformation defined in (3.10) satisfies the condi-
tion of Definition 1.3.1 as well as the properties of (1.38)—(1.39).
Multiplying and dividing (3.10) by P(z}|pa;), the relationship to the
preintervention distribution becomes more transparent:

{ P(xy,...,2,) if 3= 1,

P(l“l,---axnm) = P(ac; |Pai)

0 if x; # ).

(3.11)

If we regard a joint distribution as an assignment of mass to a collec-
tion of abstract points (z1,...,x,), each representing a possible state

“Equation (3.10) can also be obtained from the G-computation formula of Robins
(1986, p. 1423; see Section 3.6.4) and the manipulation theorem of Spirtes et
al. (1993) (according to this source, said formula was “independently conjectured
by Fienberg in a seminar in 1991”). Additional properties of the transformation
defined in (3.10) and (3.11) are given in Goldszmidt and Pearl (1992) and Pearl
(1993b).
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of the world, then the transformation described in (3.11) reveals some
interesting properties of the change in mass distribution that take place
as a result of an intervention do(X; = ) (Goldszmidt and Pearl 1992).
Each point (z1,...,x,) is seen to increase its mass by a factor equal
to the inverse of the conditional probability P(z}|pa;) corresponding
to that point. Points for which this conditional probability is low
would boost their mass value substantially, while those possessing a
pa; value that anticipates a natural (noninterventional) realization of

z} (i.e., P(zi|pa;) ~ 1) will keep their mass unaltered. In standard

(2
Bayes conditionalization, each excluded point (z; # x}) transfers its
mass to the entire set of preserved points through a renormalization
constant. However, (3.11) describes a different transformation: each
excluded point (z; # z}) transfers its mass to a select set of points
that share the same value of pa;. This can be seen from the constancy
of both the total mass assigned to each stratum pa; and the relative

masses of points within each such stratum:
P(pa;|do(z})) = P(pa;);

P(si,pai|do(z;)) _ P(si, pai)
P(s;,paildo(z)) — P(s},pa;)

Here S; denotes the set of all variables excluding {PA; U X;}. This
select set of mass-receiving points can be regarded as “closest” to the
point excluded by virtue of sharing the same history, as summarized
by pa; (see Sections 4.1.3 and 7.4.3).

Another interesting form of (3.11) obtains when we interpret the
division by P(x}|pa;) as conditionalization on z} and pa;:

0 if x; # ..

3

' oo AT
P($1,---,$n|53;-)={ P(zy,...,2,|2, pa;) P(pa;) if x; = x, (3.12)

This formula becomes familiar when used to compute the effect of an
intervention do(X; = z}) on a set of variables Y disjoint of (X; U PA;).
Summing (3.12) over all variables except Y U X; yields the following
theorem.

Theorem 3.2.2 (Adjustment for Direct Causes)
Let PA; denote the set of direct causes of variable X;, and let Y be any
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set of variables disjoint of {X; U PA;}. The effect of the intervention
do(X; =) on'Y is given by
P(y|2;) = >_ P(yla}, pai) P(pai), (3.13)
pa;

where P(y|x}, pa;) and P(pa;) represent preintervention probabilities.

Equation (3.13) calls for conditioning P(y|z}) on the parents of X;
and then averaging the result, weighted by the prior probability of
PA; = pa;. The operation defined by this conditioning and averaging
is known as “adjusting for PA;.”

Variations of this adjustment have been advanced by many philoso-
phers as probabilistic definitions of causality and causal effect (see Sec-
tion 7.5). Good (1961), for example, calls for conditioning on “the state
of the universe just before” the occurrence of the cause. Suppes (1970)
calls for conditioning on the entire past, up to the occurrence of the
cause. Skyrms (1980, p. 133) calls for conditioning on “maximally spe-
cific specifications of the factors outside of our influence at the time of
the decision which are causally relevant to the outcome of our actions
...”. The aim of conditioning in these proposals is, of course, to elim-
inate spurious correlations between the cause (in our case, X; = z})
and the effect (Y = y); clearly, the set of parents PA; can accom-
plish this aim with great economy. In the structural account that we
pursue in this book, causal effects are defined in a radically different
way. The conditioning operator is not introduced into (3.13) as a reme-
dial “adjustment” aimed at eradicating spurious correlations. Rather,
it emerges formally from the deeper principle represented in (3.10)—
that of preserving all the invariant information that the preintervention
distribution can provide.

The transformation of (3.10) can easily be extended to more elabo-
rate interventions in which several variables are manipulated simultane-
ously. For example, if we consider the compound intervention do(S = s)
where S is a subset of variables, then (echoing (1.37)) we should delete
from the product of (3.5) all factors P(z;|pa;) corresponding to vari-
ables in S and obtain the more general truncated factorization

II P(zilpa;) for z4,...,=, consistent with s,
P(x1,...,2,|8) = ¢ iX:¢sS (3.14)
0 otherwise.
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Likewise, we need not limit ourselves to simple interventions that set
variables to constants. Instead, we may consider a more general modifi-
cation of the causal model whereby some mechanisms are replaced. For
example, if we replace the mechanism that determines the value of X;
by another equation, one that involves perhaps a new set PA; of vari-
ables, then the resultant distribution would obtain by replacing the fac-
tor P(x;|pa;) with the conditional probability P*(z;|pa}) induced by the
new equation. The modified joint distribution would then be given by
P*(zy,...,2,) = P(x1,...,2,)P*(xi|pa}) /| P(xi|pa;).

An Example: Process Control

To illustrate these operations, let us consider an example involving pro-
cess control; analogous applications in the areas of health management,
economic policy making, product marketing, or robot motion planning
should follow in a straightforward way. Let the variable Z; stand for
the state of a production process at time ¢, and let X} stand for a
set of variables (at time ¢;) that is used to control that process (see
Figure 3.3). For example, Z; could stand for such measurements as

X X X Xn
CONTROLS

STATES

Y OUTCOME

Figure 3.3: Dynamic causal diagram illustrating typical dependencies
among the control variables X1, ..., X,,, the state variables 71, ..., Z,,
and the outcome variable Y of a sequential process.

temperature and pressure at various location in the plant, and X could
stand for the rate at which various chemicals are permitted to flow in
strategic conduits. Assume that data are gathered while the process is
controlled by a strategy S in which each Xj is determined by (i) moni-
toring three previous variables (X;_1, Zx, and Zx_1), and (ii) choosing
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X}, = x with probability P(xy|xk_1, 2k, 2k_1). The performance of S is
monitored and summarized in the form of a joint probability function
P(y, 21,29, ., 2n,%1, 22, ..., Ty), where Y is an outcome variable (e.g.,
the quality of the final product). Finally, let us assume (for simplicity)
that the state Z; of the process depends only on the previous state
Z_1 and on the previous control X, ;. We wish to evaluate the merit
of replacing S with a new strategy, S*, in which X} is chosen according
to a new conditional probability P*(xg|zk 1, 2k, 2k_1)-

Based on our previous analysis (equation (3.14)), the performance
P*(y) of the new strategy S* will be governed by the distribution

Py, 21,20, -y Zny X1, Ty« oy Tpy) (3.15)
= P*(ylz1, 22,y 20, X1, T2y - - -, Tp)
X [T P* (2| 2k—1, Tk—1) [Tx P*(xk| k-1, 2, 26-1)-

Because the first two terms remain invariant and the third one is
known, we have

P*(y) = Z P*(yazlaZZ)'"az’naxlax%"'amn)
Z1ye 20y Tlye- Ty

= Z P(y‘ZbZQ,---,Zn,.'lfl,xQ,---,xn)

2150009203 T 1500y Tn

X H P(Zk|Zk_1, :ck_l) H P*(.’L‘k|$k_1, Zky Z]c—l)- (316)
k k

In the special case where S* is deterministic and time-invariant, X
becomes a function of X;_1, Z;, and Z;_q:

T = 9($k—1, 2k Zk—l)-

Then the summation over x4, ..., x, can be performed, yielding
P*(y) = Z P(y‘zlazb'"7Zn791792a"'7gn)
21 yeeyZn,
X H P(Zk|2’k,1, gk,l), (317)
k

where g is defined recursively as

g1 = Q(Zl) and gy = g(gk—l, Rk Zk—1)-
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In the special case of a strategy X* composed of elementary actions
do(Xy = xy), the function g degenerates into a constant, x, and we
obtain

P*(y) = P(y|§71,§32,...,§1'n)
= Y Pyla, 2,020, &1, o, - ., Tn) [ P2k] 26—1, T—1)

213320 k

(3.18)

which can also be obtained from (3.14).

The planning problem illustrated by this example is typical of
Markov decision processes (MDPs) (Howard 1960; Dean and Wellman
1991; Bertsekas and Tsitsiklis 1996), where the target of analysis is find-
ing the best next action do(Xy = ), given the current state Z; and
past actions. In MDPs, we are normally given the transition functions
P(2k41|2x, k) and the cost function to be minimized. In the problem
we have just analyzed, neither function is given; instead, they must
be learned from data gathered under past (presumably suboptimal)
strategies. Fortunately, because all variables in the model were mea-
sured, both functions were identifiable and could be estimated directly
from the corresponding conditional probabilities as follows:

P(zpq1|2k, x) = P(2k41|2k, Tr);
P(y|21, 22y ey Znaj:l: jj?a e 7§7n) = P(y‘zla B2y eveyZny, T1,L2y- - - ax’n)-

In Chapter 4 (Section 4.4) we will deal with partially observable Markov
decision processes (POMDPs), where some states Zj are unobserved;
learning the transition and cost functions in those problems will require
a more intricate method of identification.

It is worth noting that, in this example, to predict the effect of a new
strategy it is necessary first to measure variables (Z;) that are affected
by some control variables (X;_1). Such measurements are generally
shunned in the classical literature on experimental design (Cox 1958,
p. 48) because they lie on the causal pathways between treatment and
outcome and thus tend to confound the desired effect estimate. How-
ever, our analysis shows that, when properly processed, such measure-
ments may be indispensable in predicting the effect of certain control
programs. This will be especially true in semi-Markovian models (i.e.,
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DAGs involving unmeasured variables), which are analyzed in Section
3.3.2.

Summary

The immediate implication of the analysis provided in this section is
that—given a causal diagram in which all direct causes (i.e. parents)
of intervened variables are observable—one can infer postintervention
distributions from preintervention distributions; hence, under such as-
sumptions we can estimate the effects of interventions from passive
(i.e. nonexperimental) observations, using the truncated factorization
of (3.14). Yet the more challenging problem is to derive causal effects
in situations like Figure 3.1, where some members of PA; are unobserv-
able and so prevent estimation of P(z}|pa;). In Sections 3.3 and 3.4 we
provide simple graphical tests for deciding when P(z;|%;) is estimable in
such models. But first we need to define more formally what it means
for a causal quantity () to be estimable from passive observations, a
question that falls under the technical term identification.

3.2.4 Identification of Causal Quantities

Causal quantities, unlike statistical parameters, are defined relative to
a causal model M and not relative to a joint distribution Ps(v) over
the set V of observed variables. Since nonexperimental data provides
information about Pjs(v) alone, and since several models can generate
the same distribution, the danger exists that the desired quantity will
not be discernible unambiguously from the data—even when infinitely
many samples are taken. Identifiability ensures that the added assump-
tions we make about M (e.g., the causal graph or the zero coefficients
in structural equations) will supply the missing information without
explicating M in full detail.

Definition 3.2.3 (Identifiability)

Let Q(M) be any computable quantity of a model M. We say that Q
is identifiable in a class M of models if, for any pairs of models M,
and My from M, Q(M;) = Q(Ms) whenever Py, (v) = Py, (v). If our
observations are limited, and permit only a partial set Fy of features
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(of Py (v)) to be estimated, we define @ to be identifiable from Fj; if
Q(M,y) = Q(Ms) whenever Fy, = Fyy,.

Identifiability is essential for integrating statistical data (summarized
by P(v)) with incomplete causal knowledge of {f;}, as it enables us
to estimate quantities () consistently from large samples of P without
specifying the details of M; the general characteristics of the class M
suffice. For the purpose of our analysis, the quantity () of interest is the
causal effect Py/(y|Z), which is certainly computable from a given model
M (using Definition 3.2.1) but which we often need to compute from
an incomplete specification of M—in the form of general characteristics
portrayed in the graph G associated with M. We will therefore consider
a class M of models that have the following characteristics in common:

(i) they share the same parent-child families (i.e., the same causal
graph G); and

(ii) they induce positive distributions on the observed variables (i.e.,
P(v) > 0).

Relative to such classes, we now have the following.

Definition 3.2.4 (Causal-Effect Identifiability)

The causal effect of X on Y 1is said to be identifiable from a graph
G if the quantity P(y|Z) can be computed uniquely from any positive
probability of the observed variables—that is, if Py, (y|Z) = Pa,(y|2)
for every pair of models My and My with Py, (v) = Puy,(v) > 0 and

The identifiability of P(y|Z) ensures that it is possible to infer the effect
of action do(X = z) on Y from two sources of information:

(i) passive observations, as summarized by the probability function
P(v); and

(ii) the causal graph G, which specifies (qualitatively) which variables
make up the stable mechanisms in the domain or, alternatively,
which variables participate in the determination of each variable
in the domain.
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Restricting identifiability to positive distributions assures us that
the condition X = =z is represented in the data in the appropriate
context, thus avoiding a zero denominator in (3.10). It would be im-
possible to infer the effect of action do(X = z) from data in which X
never attains the value x in the context wherein the action is applied.
Extensions to some nonpositive distributions are feasible but will not
be treated here. Note that, to prove nonidentifiability, it is sufficient to
present two sets of structural equations that induce identical distribu-
tions over observed variables but have different causal effects.

Using the concept of identifiability, we can now summarize the re-
sults of Section 3.2.3 in the following theorem.

Theorem 3.2.5 Given a causal diagram G of any Markovian model in
which a subset V' of variables are measured, the causal effect P(y|Z) is
identifiable whenever {XUYUPAx} CV, that is, whenever X, Y, and
all parents of variables in X are measured. The expression of P(y|Z)
is then obtained by adjusting for PA;, as in (3.13).

A special case of Theorem 3.2.5 holds when all variables are assumed
to be observed.

Corollary 3.2.6 Given the causal diagram G of any Markovian model
in which all variables are measured, the causal effect P(y|z) is identi-
fiable for every two subsets of variables X and Y and is obtained from
the truncated factorization of (3.14).

We now turn our attention to identification problems in semi-Markovian
models.



