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3.1 Introduction

The problems addressed in this chapter can best be illustrated through
a classical example due to Cochran (see Wainer 1989). Consider an ex-
periment in which soil fumigants (X ) are used to increase oat crop yields
(Y) by controlling the eelworm population (Z); the fumigants may also
have direct effects (both beneficial and adverse) on yields beside the
control of eelworms. We wish to assess the total effect of the fumigants
on yields when this typical study is complicated by several factors.
First, controlled randomized experiments are unfeasible—farmers insist
on deciding for themselves which plots are to be fumigated. Second,
farmers’ choice of treatment depends on last year’s eelworm population
(Zy), an unknown quantity that is strongly correlated with this year’s
population. Thus we have a classical case of confounding bias that
interferes with the assessment of treatment effects regardless of sam-
ple size. Fortunately, through laboratory analysis of soil samples, we
can determine the eelworm populations before and after the treatment;
furthermore, because the fumigants are known to be active for a short
period only, we can safely assume that they do not affect the growth of
eelworms surviving the treatment. Instead, eelworms’ growth depends
on the population of birds (and other predators), which is correlated
with last year’s eelworm population and hence with the treatment itself.

The method developed in this chapter permits the investigator to
translate complex considerations of this sort into a formal language and
thereby facilitate the following tasks:

1. explicating the assumptions that underlie the model;

2. deciding whether the assumptions are sufficient to obtain con-
sistent estimates of the target quantity—the total effect of the
fumigants on yields;

3. providing (if the answer to item 2 is affirmative) a closed-form
expression for the target quantity in terms of distributions of
observed quantities; and

4. suggesting (if the answer to item 2 is negative) a set of observa-
tions and experiments that, if performed, would render a consis-
tent estimate feasible.
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The first step in this analysis is to construct a causal diagram like
the one given in Figure 3.1, which represents the investigator’s under-

Figure 3.1: A causal diagram representing the effect of fumigants (X)
on yields (Y).

standing of the major causal influences among measurable quantities
in the domain. For example, the quantities Z;, Z,, Z3 represent the
eelworm population before treatment, after treatment, and at the end
of the season, respectively. The Z; term represents last year’s eelworm
population; because it is an unknown quantity, it is denoted by a hollow
circle, as is the quantity B, the population of birds and other predators.
Links in the diagram are of two kinds: those that connect unmeasured
quantities are designated by dashed arrows, those connecting measured
quantities by solid arrows. The substantive assumptions embodied in
the diagram are negative causal assertions which are conveyed through
the links missing from the diagram. For example, the missing arrow
between Z; and Y signifies the investigator’s understanding that pre-
treatment eelworms can not affect oat plants directly; their entire influ-
ence on oat yields is mediated by the posttreatment conditions, Z5 and
Z3. Our purpose is not to validate or repudiate such domain-specific
assumptions but rather to test whether a given set of assumptions is suf-
ficient for quantifying causal effects from nonexperimental data—here,
estimating the total effect of fumigants on yields.

The causal diagram in Figure 3.1 is similar in many respects to the
path diagrams devised by Wright (1921); both reflect the investigator’s
subjective and qualitative knowledge of causal influences in the domain,
both employ directed acyclic graphs, and both allow for the incorpora-
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tion of latent or unmeasured quantities. The major differences lie in the
method of analysis. First, whereas path diagrams have been analyzed
mostly in the context of linear models with Gaussian noise, causal dia-
grams permit arbitrary nonlinear interactions. In fact, our analysis of
causal effects will be entirely nonparametric, entailing no commitment
to a particular functional form for equations and distributions. Second,
causal diagrams will be used not only as a passive language to commu-
nicate assumptions but also as an active computational device through
which the desired quantities are derived. For example, the method to
be described allows an investigator to inspect the diagram of Figure 3.1
and make the following immediate conclusions.

1. The total effect of X on Y can be estimated consistently from the
observed distribution of X, Z;, Z,, Z3, and Y.

2. The total effect of X on Y (assuming discrete variables through-
out) is given by the formulal

P(ylz) = ZZZP(ZI|22, z3, T)P(2z|21, 1)

Z1 22 23

X Y P(z|z1, 22, 2')P(z1, '), (3.1)

where P(y|Z) stands for the probability of achieving a yield level
of Y = y, given that the treatment is set to level X = z by
external intervention.

3. A consistent estimation of the total effect of X on Y would not
be feasible if Y were confounded with Z3; however, confounding
Zy and Y will not invalidate the formula for P(y|Z).

These conclusions will be obtained either by analyzing the graphical
properties of the diagram or by performing a sequence of symbolic
derivations (governed by the diagram) that gives rise to causal effect
formulas such as (3.1).

1The notation P,(y) was used in Chapter 1; it is changed henceforth to P(y|%)
or P(y|do(x)) because of the inconvenience in handling subscripts. The reader need
not be intimidated if, at this point, (3.1) appears unfamiliar. After reading Section
3.4, the reader should be able to derive such formulas with greater ease than solving
algebraic equations. Note that z' is merely an index of summation that ranges over
the values of X.



