Chapter 2

A THEORY OF INFERRED
CAUSATION

I would rather discover one causal
law than be King of Persia.
Democritus (460-370 B.C.)

Preface

The possibility of learning causal relationships from raw data has been
on philosophers’ dream lists since the time of Hume (1711-1776). That
possibility entered the realm of formal treatment and feasible compu-
tation in the mid-1980s, when the mathematical relationships between
graphs and probabilistic dependencies came into light. The approach
described herein is an outgrowth of Pearl (1998b, Chap. 8), which de-
scribes how causal relationships can be inferred from nontemporal sta-
tistical data if one makes certain assumptions about the underlying pro-
cess of data generation (e.g., that it has a tree structure). The prospect
of inferring causal relationships from weaker structural assumptions
(e.g., general directed acyclic graphs) has motivated parallel research ef-
forts at three universities: UCLA, Carnegie Mellon University (CMU),
and Stanford. The UCLA and CMU teams pursued an approach based
on searching the data for patterns of conditional independencies that
reveal fragments of the underlying structure and then piecing those
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fragments together to form a coherent causal model (or a set of such
models). On the other hand, the Stanford group pursued a Bayesian
approach, where data are used to update the posterior probabilities as-
signed to candidate causal structures [Cooper and Herskovits, 1991].
The UCLA and CMU efforts have led to similar theories and al-
most identical discovery algorithms, which were implemented in the
TETRAD II program [Spirtes et al., 1993]. The Bayesian approach has
since been pursued by a number of research teams [Singh and Valtorta,
1995; Heckerman et al., 1994] and now serves as the basis for several
graph-based learning methods [Jordan, 1998]. This chapter describes
the approach pursued by Tom Verma and me in the period 1988-1992,
and it briefly summarizes related extensions, refinements, and improve-
ments that have been advanced by the CMU team and others. Some
of the philosophical rationale behind this development, primarily the
assumption of minimality, are implicit in the Bayesian approach as well
(Section 2.9.1).

The basic idea of automating the discovery of causes—and the spe-
cific implementation of this idea in computer programs—came under
fierce debate in a number of forums [Cartwright, 1995a; Humphreys and
Freedman, 1996; Cartwright, 1997; Korb and Wallace, 1997; McKim
and Turner, 1997; Robins and Wasserman, 1999]. Selected aspects of
this debate will be addressed in the discussion section at the end of this
chapter (Section 2.9.1).

Acknowledging that statistical associations do not logically imply
causation, this chapter asks whether weaker relationships exist between
the two. In particular, we ask:

1. What clues prompt people to perceive causal relationships in un-
controlled observations?

2. Is it feasible to infer causal models from these clues?

3. Would the models inferred tell us anything useful about the causal
mechanisms that underly the observations?

In Section 2.2 we define the notions of causal models and causal
structures and then describe the task of causal modeling as an inductive
game that scientists play against Nature. In Section 2.3 we formalize
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the inductive game by introducing “minimal model” semantics—the
semantical version of Occam’s razor—and exemplify how, contrary to
common folklore, causal relationships can be distinguished from spu-
rious covariations following this standard norm of inductive reasoning.
Section 2.4 identifies a condition, called stability (or faithfulness), under
which effective algorithms exist that uncover structures of casual influ-
ences as defined here. One such algorithm (called IC), introduced in
Section 2.5, uncovers the set of all causal models compatible with the
data, assuming all variables are observed. Another algorithm (IC*),
described in Section 2.6, is shown to uncover many (though not all)
valid causal relationships when some variables are not observable. In
Section 2.7 we extract from the IC* algorithm the essential conditions
under which causal influences are identified, and we offer these as in-
dependent definitions of genuine influences and spurious associations,
with and without temporal information. Section 2.8 offers an expla-
nation for the puzzling yet universal agreement between the temporal
and statistical aspects of causation. Finally, Section 2.9 summarizes the
claims made in this chapter, re-explicates the assumptions that leads to
these claims, and offers new justifications of these assumption in light
of ongoing debates.



