2.6. RECOVERING LATENT STRUCTURES 87

2.6 Recovering Latent Structures

When Nature decides to “hide” some variables, the observed distribu-
tion P need no longer be stable relative to the observable set O. That is,
we are no longer guaranteed that, among the minimal latent structures
compatible with ]5, there exists one that has a DAG structure. For-
tunately, rather then having to search through this unbounded space
of latent structures, the search can be confined to graphs with finite
and well-defined structures. For every latent structure L, there is a
dependency-equivalent latent structure (the projection) of L on O in
which every unobserved node is a root node with exactly two observed
children. We characterize this notion explicitly as follows.

Definition 2.6.1 (Projection)
A latent structure Lig) = <Djo;, 0> is a projection of another latent
structure L if and only if:

1. every unobservable variable of Do) is a parentless common cause
of exactly two non-adjacent observable variables.

2. for every stable distribution P generated by L, there exists a stable
distribution P' generated by Lio) such that I(Po)) = I(P,)-

Theorem 2.6.2 (Verma 1993)
Any latent structure has at least one projection.

It is convenient to represent projections using a bidirectional graph with
only the observed variables as vertices (i.e., leaving the hidden variables
implicit). Each bidirected link in such a graph represents a common
hidden cause of the variables corresponding to the link’s endpoints.
Theorem 2.6.2 renders our definition of inferred causation (Defini-
tion 2.3.6) operational; it can be shown (Verma 1993) that the existence
of a certain link in a distinguished projection of any minimal model of
P must indicate the existence of a causal path in every minimal model
of P. Thus, our search reduces to finding the distinguished protection
of any minimal model of P and identifying the appropriate links. Re-
markably, these links can be identified by a simple variant of the IC
algorithm, here called IC*, that takes a distribution P and returns a
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marked pattern, which is a partially directed acyclic graph that contains
four types of edges:

1. a marked arrow a — b, signifying a directed path from a to b in
the underlying model;

2. an unmarked arrow a — b, signifying either a directed path from
a to b or a latent common cause a < L — b in the underlying
model;

3. a bidirected edge a <+— b, signifying a latent common cause
a < L — b in the underlying model; and

4. an undirected edge a-b, standing for either a <— b or a — b or
a < L — b in the underlying model.®

IC* Algorithm (Inductive Causation with Latent Vari-
ables)

Input: P, a sampled distribution.

A

Output: core(P), a marked pattern.

1. For each pair of variables a and b, search for a set Sy, such that a
and b are independent in P, conditioned on Sab-
If there is no such Sy, place an undirected link between the two
variables, a — b.

2. For each pair of nonadjacent variables a and b with a common neigh-
bor ¢, check if ¢ € Sg.
If it is, then continue.
If it is not, then add arrowheads pointing at ¢ (i.e., a — ¢ < b).

3. In the partially directed graph that results, add (recursively) as many
arrowheads as possible, and mark as many edges as possible, accord-
ing to the following two rules:

8Spirtes et al. (1993) used a o— b to represent uncertainty about the arrowhead
at node a. Several errors in the original proof of IC* were pointed out to us by Peter
Spirtes and were corrected in Verma (1993). Alternative proofs of correctness, as
well as refinements in the algorithm, are given in Spirtes et al. (1993).
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Figure 2.2: Illustration Ry in step 3 of the IC* Algorithm.

e R;: For each pair of non-adjacent nodes a and b with a com-
mon neighbor c, if the link between @ and ¢ has an arrowhead
into ¢ and if the link between ¢ and b has no arrowhead into c,
then add an arrowhead on the link between ¢ and b pointing at
b and mark that link to obtain ¢ = b.

e Ry: If a and b are adjacent and there is a directed path (com-
posed strictly of marked links) from a to b (as in Figure 2.2),
then add an arrowhead pointing toward b on the link between
a and b.

Steps 1 and 2 of IC* are identical to those of IC, but the rules in step 3
are different; they do not orient edges but rather add arrowheads to the
individual endpoints of the edges, thus accommodating bidirectional
edges.

Figure 2.3 illustrates the operation of the IC* Algorithm on the
sprinkler example of Figure 1.2. (shown schematically in Figure 2.3(a)).

1. The conditional independencies entailed by this structure
can be read off wusing the d-separation criterion
(Definition 1.2.3), and the smallest conditioning sets correspond-
ing to these independencies are given by S,q = {b,c}, See =
{d}, Spe = {a}, Spe = {d}, and S, = {d}. Thus, step 1 of IC*
yields the undirected graph of Figure 2.3(b).

2. The triplet (b,d,c) is the only one that satisfies the condition of
step 2, since d is not in Sy.. Accordingly, we obtain the partially
directed graph of Figure 2.3(c).
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Figure 2.3: Graphs constructed by the IC* Algorithm. (a) Underlying
structure. (b) After step 1. (c) After step 2. (d) Output of IC*.
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Figure 2.4: Latent structures equivalent to those of Figure 2.3(a).

3. Rule R; of step 3 is applicable to the triplet (b,d,e) (and to
(c,d,e)), since b and e are nonadjacent and there is an arrowhead
at d from b but not from e. We therefore add an arrowhead at e,
and mark the link, to obtain Figure 2.3(d). This is also the final
output of IC*, because R; and Ry are no longer applicable.

The absence of arrowheads on a — b and a — ¢, and the absence of
markings on b — d and ¢ — d, correctly represent the ambiguities pre-
sented by P. Indeed, each of the latent structures shown in Figure 2.4
is observationally equivalent to that of Figure 2.3(a). Marking the link
d — e in Figure 2.3(d) advertises the existence of a directed link d — e
in each and every latent structure that is independence-equivalent to
the one in Figure 2.3(a).



