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2.5 Recovering DAG Structures

With the added assumption of stability, every distribution has a unique
minimal causal structure (up to d-separation equivalence), as long as
there are no hidden variables. This uniqueness follows from Theorem
1.2.8, which states that two causal structures are equivalent (i.e. they
can mimic each other) if and only if they relay the same dependency
information—namely, they have the same skeleton and same set of v-
structures.

In the absence of unmeasured variables, the search for the minimal
model then boils down to reconstructing the structure of a DAG D from
queries about conditional independencies, assuming that those indepen-
dencies reflect d-separation conditions in some undisclosed underlying
DAG D,. Naturally, since Dy may have equivalent structures, the re-
constructed DAG will not be unique, and the best we can do is to find
a graphical representation for the equivalence class of Dy. Such graphi-
cal representation was introduced in Verma and Pearl (1990) under the
name pattern. A pattern is a partially directed DAG, in particular, a
graph in which some edges are directed and some are nondirected. The
directed edges represent arrows that are common to every member in
the equivalence class of Dy, while the undirected edges represent am-
bivalence; they are directed one way in some equivalent structures and
another way in others.

The following algorithm, introduced in Verma dna Pearl (1990),
takes as input a stable probability distribution P generated by some
underlying DAG Dg and outputs a pattern that represents the equiva-
lence class of D,.”

IC Algorithm (Inductive Causation)

Input: P, a stable distribution on a set V' of variables.
Output: a pattern H(P) compatible with P.

1. For each pair of variables a and b in V, search for a set S,; such

"The IC algorithm, as introduced in Verma and Pearl (1990), was designed
to operate on latent structures. For clarity, we here present the algorithm in two
separate parts, IC and IC*, with IC restricted to DAGs and IC* operating on latent
structures.
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that (a_Lb|S,;) holds in P—in other words, a and b should be inde-
pendent in P, conditioned on Sap. Construct an undirected graph G
such that vertices a and b are connected with an edge if and only if
no set Sy can be found.

2. For each pair of nonadjacent variables a and b with a common neigh-
bor ¢, check if ¢ € Sy.
If it is, then continue.
If it is not, then add arrowheads pointing at ¢ (i.e., a — ¢ < b).

3. In the partially directed graph that results, orient as many of the
undirected edges as possible subject to two conditions: (i) the orien-
tation should not create a new v-structure; and (ii) the orientation
should not create a directed cycle.

The IC algorithm leaves the details of steps 1 and 3 unspecified, and
several refinements have been proposed for optimizing these two steps.
Verma and Pearl (1990) noted that, in sparse graphs, the search can
be trimmed substantially if commenced with the Markov network of
15, namely, the undirected graph formed by linking only pairs that
are dependent conditionally on all other variables. In linear Gaussian
models, the Markov network can be found in polynomial time, through
matrix inversion, by assigning edges to pairs that correspond to the
nonzero entries of the inverse covariance matrix. Spirtes and Glymour
(1991) proposed a general systematic way of searching for the sets Sg,
in step 1. Starting with sets S, of cardinality 0, then cardinality 1, and
so on, edges are recursively removed from a complete graph as soon as
separation is found. This refinement, called the PC algorithm (after its
sauthors, Peter and Clark), enjoys polynomial time in graphs of finite
degree because, at every stage, the search for a separating set Sy, can
be limited to nodes that are adjacent to a and b.

Step 3 of the IC algorithm can be systematized in several ways.
Verma and Pearl (1992) showed that, starting with any pattern, the
following four rules are required for obtaining a maximally oriented
pattern.

R;: Orient b—c into b — ¢ whenever there is an arrow a — b such that
a and c are non adjacent.



86 CHAPTER 2. A THEORY OF INFERRED CAUSATION

Ry: Orient a—b into a — b whenever there is chain ¢ — ¢ — b.

Rj3: Orient a—b into @ — b whenever there are two chains a—c — b and
a—d — b such that ¢ and d are nonadjacent.

R,: Orient a-b into a — b whenever there are two chains a—c — d
and ¢ — d — b such that ¢ and b are nonadjacent.

Meek (1995) showed that these four rules are also sufficient, so that
repeated application will eventually orient all arrows that are common
to the equivalence class of Dy. Moreover, R, is not required if the
starting orientation is limited to v-structures.

Another systematization is offered by an algorithm due to Dor and
Tarsi (1992) that tests (in polynomial time) if a given partially oriented
acyclic graph can be fully oriented without creating a new wv-structure
or a directed cycle. The test is based on recursively removing any vertex
v that has the following two properties:

1. no edge is directed outward from v;

2. every neighbor of v that is connected to v through an undirected
edge is also adjacent to all the other neighbors of v.

A partially oriented acyclic graph has an admissible extension in a DAG
if and only if all its vertices can be removed in this fashion. Thus, to
find the maximally oriented pattern, we can (i) separately try the two
orientations, a — b and a < b, for every undirected edge a—b, and (ii)
test whether both orientations, or just one, have extensions. The set of
uniquely orientable arrows constitutes the desired maximally oriented
pattern. Additional refinements can be found in Chickering (1995),
Andersson et al. (1997), and Moole (1997).

Latent structures, however, require special treatment, because the
constraints that a latent structure imposes upon the distribution cannot
be completely characterized by any set of conditional independence
statements. Fortunately, certain sets of those independence constraints
can be identified [Verma and Pearl, 1990]; permits us to recover valid
fragments of latent structures.



