2.4. STABLE DISTRIBUTIONS 81

2.4 Stable Distributions

Although the minimality principle is sufficient for forming a normative
theory of inferred causation, it does not guarantee that the structure of
the actual data-generating model would be minimal, or that the search
through the vast space of minimal structures would be computationally
practical. Some structures may admit peculiar parameterizations that
would render them indistinguishable from many other minimal models
that have totally disparate structures. For example, consider a binary
variable C' that takes the value 1 whenever the outcomes of two fair
coins (A and B) are the same and takes the value 0 otherwise. In the
trivariate distribution generated by this parameterization, each pair of
variables is marginally independent yet is dependent conditional on the
third variable. Such a dependence pattern may in fact be generated
by three minimal causal structures, each depicting one of the variables
as causally dependent on the other two, but there is no way to decide
among the three. In order to rule out such “pathological” parame-
terizations, we impose a restriction on the distribution called stability,
also known as DAG-isomorphism (Pearl 1998b, p. 128) and faithful-
ness Spirtes et al. 1993). This restriction conveys the assumption that
all the independencies embedded in P are stable; that is, they are en-
tailed by the structure of the model D and hence remain invariant to
any change in the parameters ©p. In our example, only the correct
structure (namely, A — C < B) will retain its independence pattern
in the face of changing parameterizations—say, when one of the coins
becomes slightly biased.

Definition 2.4.1 (Stability)

Let I(P) denote the set of all conditional independence relation-
ships embodied in P. A causal model M = <D,Op> gener-
ates a stable distribution if and only if P(<D,Op>) contains no ex-
traneous independences—that is, if and only if I(P(<D,©p>)) C
I(P(<D,©",>)) for any set of parameters O,.

The stability condition states that, as we vary the parameters from © to
©', no independence in P can be destroyed; hence the name “stability.”
Succinctly, P is a stable distribution if there exists a DAG D such that
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(X1Y|Z)p & (X 1LY |Z)p for any three sets of variables X,Y, and Z
(see Theorem 1.2.5).

The relationship between minimality and stability can be illustrated
using the following analogy. Suppose we see a picture of a chair and
that we need to decide between two theories as follows.

Ti: The object in the picture is a chair.

T5: The object in the picture is either a chair or two chairs positioned
such that one hides the other.

Our preference for 77 over 71, can be justified on two principles, one
based on minimality and the other on stability. The minimality princi-
ple argues that 7} is preferred to 75 because the set of scenes composed
of single objects is a proper subset of scenes composed of two or fewer
objects and, unless we have evidence to the contrary, we should prefer
the more specific theory. The stability principle rules out 75 a priori,
arguing that it would be rather unlikely for two objects to align them-
selves so as to have one perfectly hide the other. Such an alignment
would be unstable relative to slight changes in environmental conditions
or viewing angle.

The analogy with independencies is clear. Some independencies are
structural, that is, they would persist for every functional-distributional
parameterization of the graph. Others are sensitive to the precise nu-
merical values of the functions and distributions. For example, in the
structure Z < X — Y, which stands for the relations

z = fi(z,u), y = fa(z,uz), (2.1)

the variables Z and Y will be independent, conditional on X, for all
functions f; and fy. In contrast, if we add an arrow Z — Y to the
structure and use a linear model

z = yr + ug, y = azx + Bz + ug, (2.2)

with @« = —f7, then Y and X will be independent. However, the
independence between Y and X is unstable because it disappears as
soon as the equality @« = —f7 is violated. The stability assumption
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presumes that this type of independence is unlikely to occur in the
data, that all independencies are structural.

To further illustrate the relations between stability and minimality,
consider the causal structure depicted in Figure 2.1(c). The minimality
principle rejects this structure on the ground that it fits a broader
set of distributions than those fitted by structure (a). The stability
principle rejects this structure on the ground that, in order to fit the
data (specifically, the independence (a_Lb)), the association produced
by the arrow a — b must cancel precisely the one produced by the path
a < ¢ — b. Such precise cancelation cannot be stable, for it cannot be
sustained for all functions connecting variables a, b, and ¢. In structure
(a), by contrast, the independence (a_lLb) is stable.



