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2.3 Model Preference (Occam’s razor)

In principle, since V' is unknown, there is an unbounded number of
models that would fit a given distribution, each invoking a different
set, of “hidden” variables and each connecting the observed variables
through different causal relationships. Therefore, with no restriction
on the type of models considered, the scientist is unable to make any
meaningful assertions about the structure underlying the phenomena.
For example, every probability distribution P can be generated by a
structure in which no observed variable is a cause of another but in-
stead all variables are consequences of one latent common cause, U.3
Likewise, assuming V' = O but lacking temporal information, the sci-
entist can never rule out the possibility that the underlying structure
is a complete, acyclic, and arbitrarily ordered graph—a structure that
(with the right choice of parameters) can mimic the behavior of any
model, regardless of the variable ordering. However, following standard
norms of scientific induction, it is reasonable to rule out any theory for
which we find a simpler, less elaborate theory that is equally consistent
with the data (see Definition 2.3.5). Theories that survive this selec-
tion process are called minimal. With this notion, we can construct
our (preliminary) definition of inferred causation as follows.

Definition 2.3.1 (Inferred Causation (Preliminary))

A wariable X is said to have a causal influence on a variable Y if a
directed path from X to'Y exists in every minimal structure consistent
with the data.

Here we equate a causal structure with a scientific theory, since both
contain a set of free parameters that can be adjusted to fit the data.
We regard Definition 2.3.1 as preliminary because it assumes that all
variables are observed. The next few definitions generalize the concept
of minimality to structures with unobserved variables.

discuss in this chapter.

3This can be realized by letting U have as many states as O, assigning to U
the prior distribution P(u) = P(o(u)) (where o(u) is the cell of O corresponding to
state u), and letting each observed variable O; take on its corresponding value in

o(u).
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Definition 2.3.2 (Latent Structure)
A latent structure is a pair L = <D, 0>, where D is a causal structure
over V and where O C 'V 1is a set of observed variables.

Definition 2.3.3 (Structure Preference)

One latent structure L = <D,0O> is preferred to another L' =
<D',O> (written L < L') if and only if D' can mimic D over O—
that is, if and only if for every ©p there exists a O such that
Po)(<D',0p>) = Po)(<D,0p>). Two latent structures are equiv-
alent, written L' = L, if and only if L < L' and L = L' *

Note that the preference for simplicity imposed by Definition 2.3.3 is
gauged by the expressive power of a structure, not by its syntactic de-
scription. For example, one latent structure L; may invoke many more
parameters than Lo and still be preferred if L, can accommodate a
richer set of probability distributions over the observables. One reason
scientists prefer simpler theories is that such theories are more con-
straining and thus more falsifiable; they provide the scientist with less
opportunities to overfit the data “hindsightedly” and therefore com-
mand greater credibility if a fit is found (Popper 1959; Pearl 1978;
Blumer et al. 1987).

We also note that the set of independencies entailed by a causal
structure imposes limits on its expressive power, i.e., its power to mimic
other structures. Indeed, L; cannot be preferred to Ly if there is even
one observable dependency that is permitted by L; and forbidden by
Ly. Thus, tests for preference and equivalence can sometimes be re-
duced to tests of induced dependencies, which in turn can be deter-
mined directly from the topology of the DAGs without ever concerning
ourselves with the set of parameters. This is the case in the absence
of hidden variables (see Theorem 1.2.8) but does not hold generally in
all latent structures. Verma and Pearl (1990) showed that some latent
structures impose numerical rather than independence constraints on
the observed distribution (see e.g. Section 8.4, equations (8.21)—(8.23));
this makes the task of verifying model preference complicated but does

4We use the succinct term “preferred to” to mean “preferred or equivalent to,”
a relation that has also been named “a submodel of.”
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still permit us to extend the semantical definition of inferred causation
(Definition 2.3.1) to latent structures.

Definition 2.3.4 (Minimality)

A latent structure L is minimal with respect to a class L of latent struc-
tures if and only if there is no member of L that is strictly preferred to
L—that is, if and only if for every L' € L we have L = L' whenever
L'<L.

Definition 2.3.5 (Consistency)

A latent structure L = <D,0O> is consistent with a distribution P
over O if D can accommodate some model that generates P—that 18, if
there exists a parameterization Op such that Po)(<D,0p>) = P.

Clearly, a necessary (and sometimes sufficient) condition for L to be
consistent with P is that L can account for all the dependencies em-
bodied in P.

Definition 2.3.6 (Inferred Causation)

Given P, a variable C has a causal influence on variable E if and only
iof there exists a directed path from C to E in every minimal latent
structure consistent with P.

We view this definition as normative because it is based on one of the
least disputed norms of scientific investigation: Occam’s razor in its se-
mantical casting. However, as with any scientific inquiry, we make no
claims that this definition is guaranteed to always identify stable phys-
ical mechanisms in nature. It identifies the mechanisms we can plausi-
bly infer from nonexperimental data; moreover, it guarantees that any
alternative mechanism will be less trustworthy than the one inferred
because the alternative would require more contrived, hindsighted ad-
justment of parameters (i.e. functions) to fit the data.

As an example of a causal relation that is identified by Definition
2.3.6, imagine that observations taken over four variables {a,b,c, d}
reveal two independencies: “a is independent of b” and “d is indepen-
dent of {a, b} given ¢.” Assume further that the data reveals no other
independence besides those that logically follow from these two. This
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Figure 2.1: Causal structures illustrating the minimality of (a) and (b)
and the justification for inferring the relationship ¢ — d. Asterics (x)
represent hidden variables with any number of states.

dependence pattern would be typical, for example, of the following vari-
ables: a = having a cold, b = having hay fever, ¢ = having to sneeze,
d = having to wipe one’s nose. It is not hard to see that structures (a)
and (b) in Figure 2.1 are minimal, for they entail the observed indepen-
dencies and none other.® Furthermore, any structure that explains the
observed dependence between ¢ and d by an arrow from d to ¢, or by
a hidden common cause (x) between the two, cannot be minimal, be-
cause any such structure would be able to “out-mimic” the one shown
in Figure 2.1(a) (or the one in Figure 2.1(b)), which reflects all observed
independencies. For example, the structure of Figure 2.1(c), unlike that
of Figure 2.1(a), accommodates distributions with arbitrary relations
between a and b. Similarly, Figure 2.1(d) is not minimal because it fails
to impose the conditional independence between d and {a, b} given ¢
and will therefore accommodate distributions in which d and {a, b} are
dependent given c. In contrast, Figure 2.1(e) is not consistent with the
data since it imposes an unobserved marginal independence between

5To verify that (a) and (b) are equivalent, we note that (b) can mimic (a) if we
let the link a « * impose equality between the two variables. Conversely, (a) can
mimic (b), since it is capable of generating every distribution that possesses the in-
dependencies entailed by (b). (For theory and methods of “reading off” conditional
independencies from graphs, see Section 1.2.3 or [Pearl, 1988b].)
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{a, b} and d.

This example (taken from Pearl and Verma 1991) illustrates a re-
markable connection between causality and probability: certain pat-
terns of probabilistic dependencies (in our case, all dependencies except
(allb) and (dL1L{a,b}|c)) imply unambiguous causal dependencies (in
our case, ¢ — d) without making any assumption about the presence
or absence of latent variables.® The only assumption invoked in this
implication is minimality—models that overfit the data are ruled out.

6Standard probabilistic definitions of causality (e.g. Suppes 1970; Eells 1991)
invariably require knowledge of all relevant factors that may influence the observed
variables (see Section 7.5.3).



