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2.2 The Causal Modeling Framework

We view the task of causal modeling as an induction game that scien-
tists play against Nature. Nature possesses stable causal mechanisms
that, on a detailed level of descriptions, are deterministic functional re-
lationships between variables, some of which are unobservable. These
mechanisms are organized in the form of an acyclic structure, which
the scientist attempts to identify from the available observations.

Definition 2.2.1 (Causal Structure)

A causal structure of a set of variables V' is a directed acyclic graph
(DAG) in which each node corresponds to a distinct element of V,
and each link represents direct functional relationship among the corre-
sponding variables.

A causal structure serves as a blueprint for forming a “causal model” —
a precise specification of how each variable is influenced by its parents
in the DAG, as in the structural equation model of (1.40). Here we
assume that Nature is at liberty to impose arbitrary functional rela-
tionships between each effect and its causes and then to perturb these
relationships by introducing arbitrary (yet mutually independent) dis-
turbances. These disturbances reflect “hidden” or unmeasurable condi-
tions and exceptions that Nature chooses to govern by some undisclosed
probability function.

Definition 2.2.2 (Causal Model)

A causal model is a pair M = <D, ©p> consisting of a causal structure
D and a set of parameters ©p compatible with D. The parameters ©p
assign a function z; = fi(pa;,u;) to each X; € V and a probability
measure P(u;) to each u;, where PA; are the parents of X; in D and
where each U; is a random disturbance distributed according to P(u;),
independently of all other u.

As we have seen in Chapter 1 (Theorem 1.4.1), the assumption of in-
dependent disturbances renders the model Markovian in the sense that
each variable is independent of all its nondescendants, conditional on
its parents. This Markov assumption is more a convention than an as-
sumption; for it merely defines the granularity of the models we wish



2.2. THE CAUSAL MODELING FRAMEWORK 75

to consider as candidates before we begin the search. We can start
in the deterministic extreme, where all variables are explicated in mi-
croscopic details and where the Markov condition certainly holds. As
we move up to macroscopic abstractions by aggregating variables and
introducing probabilities to summarize omitted variables, we need to
decide at what stage the abstraction has gone too far and where useful
properties of causation are lost. Evidently, the Markov condition has
been recognized by our ancestors (the authors of our causal thoughts)
as a property worth protecting in this abstraction; correlations that are
not explained by common causes are considered spurious, and models
containing such correlations are considered incomplete. The Markov
condition guides us in deciding when a set of parents P A; is considered
complete in the sense that it include all the relevant immediate causes
of variable X;. It permits us to leave some of these causes out of PA;
(and be summarized by probabilities), but not if they also affect other
variables modeled in the system. If a set PA; in a model is too narrow,
there will be disturbance terms that influence several variables simul-
taneously and the Markov property will be lost. Such disturbances
will be treated explicitly as “latent” variables (see Definition 2.3.2).
Once we acknowledge the existence of latent variables and represent
their existence explicitly as nodes in a graph, the Markov property is
restored.

Once a causal model M is formed, it defines a joint probability
distribution P(M) over the variables in the system. This distribution
reflects some features of the causal structure (e.g., each variable must
be independent of its grandparents, given the values of its parents).
Nature then permits the scientist to inspect a select subset O C V' of
“observed” variables and to ask questions about Po, the probability
distribution over the observables, but it hides the underlying causal
model as well as the causal structure. We investigate the feasibility of
recovering the topology D of the DAG, from features of the probability
distribution Pyp;.2

2This formulation invokes several idealizations of the actual task of scientific dis-
covery. It assumes, for example, that the scientist obtains the distribution directly,
rather than events sampled from the distribution. Additionally, we assume that the
observed variables actually appear in the original causal model and are not some
aggregate thereof. Aggregation might result in feedback loops, which we do not



