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1.4 Functional Causal Models

The way we have introduced the causal interpretation of Bayesian net-
works represents a fundamental departure from the way causal models
(and causal graphs) were first introduced into genetics (Wright 1921),
econometrics (Haavelmo 1943), and the social sciences (Duncan 1975),
as well as from the way causal models are used routinely in physics and
engineering. In those models, causal relationships are expressed in the
form of deterministic, functional equations, and probabilities are intro-
duced through the assumption that certain variables in the equations
are unobserved. This reflects Laplace’s (1814) conception of natural
phenomena, according to which nature’s laws are deterministic and
randomness surfaces owing merely to our ignorance of the underlying
boundary conditions. In contrast, all relationships in the definition of
causal Bayesian networks were assumed to be inherently stochastic and
thus appeal to the modern (i.e., quantum mechanical) conception of
physics, according to which all nature’s laws are inherently probabilis-
tic and determinism is but a convenient approximation.

In this book, we shall express preference toward Laplace’s quasi-
deterministic conception of causality and will use it, often contrasted
with the stochastic conception, to define and analyze most of the causal
entities that we study. This preference is based on three considerations.
First, the Laplacian conception is more general. Every stochastic model
can be emulated by many functional relationships (with stochastic in-
puts), but not the other way around; functional relationships can only
be approximated, as a limiting case, using stochastic models. Second,
the Laplacian conception is more in tune with human intuition. The
few esoteric quantum mechanical experiments that conflict with the
predictions of the Laplacian conception evoke surprise and disbelief,
and they demand that physicists give up deeply entrenched intuitions
about locality and causality (Maudlin 1994). Our objective is to pre-
serve, explicate, and satisfy—not destroy—those intuitions.!?

12The often heard argument that human intuitions belong in psychology and
not in science or philosophy is inapplicable when it comes to causal intuition—
the original authors of causal thoughts cannot be ignored when the meaning of
the concept is in question. Indeed, compliance with human intuition has been
the ultimate criterion of adequacy in every philosophical study of causation, and
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Finally, certain concepts that are ubiquitous in human discourse can
be defined only in the Laplacian framework. We shall see, for example,
that such simple concepts as “the probability that event B occured
because of event A” and “the probability that event B would have been
different if it were not for event A” cannot be defined in terms of purely
stochastic models. These so-called counterfactual concepts will require
a synthesis of the deterministic and probabilistic components embodied
in the Laplacian model.

1.4.1 Structural Equations

In its general form, a functional causal model consists of a set of equa-
tions of the form

ZT; =fi(pa,~,ui), 7 = 1,...,’/’L, (140)

where pa; (connoting parents) stands for the set of variables judged
to be immediate causes of X; and where the U; represent errors (or
“disturbances”) due to omitted factors. Equation (1.40) is a nonlinear,
nonparametric generalization of the linear structural equation models
(SEMs)
Z; :Zaikmk'i'ui, 1= 1,...,7),, (141)
ki
which have become a standard tool in economics and social science
(see Chapter 5 for a detailed exposition of this enterprise). In linear
models, pa; corresponds to those variables on the r.h.s. of (1.41) that
have nonzero coeflicients.

A set of equations in the form of (1.40) and in which each equation
represents an autonomous mechanism is called structural model; if each
mechanism determines the value of just one distinct variable (called the
dependent variable), then the model is called a structural causal model
or a causal model for short.!> Mathematically, the distinction between
structural and algebraic equations is that the latter are characterized by

the proper incorporation of background information into statistical studies likewise
relies on accurate interpretation of causal judgment.

BFormal treatment of causal models, structural equations, and error terms are
given in Chapter 5 (Section 5.4.1) and Chapter 7 (Sections 7.1 and 7.2.5).
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the set of solutions to the entire system of equations, whereas the former
are characterized by the solutions of each individual equation. The
implication is that any subset of structural equations is, in itself, a valid
model of reality—one that prevails under some set of interventions.

To illustrate, Figure 1.5 depicts a canonical econometric model re-
lating price and demand through the equations

g = bip+dii+u, (1.42)
= boq + dow + uo, (1.43)

where () is the quantity of household demand for a product A, P is the
unit price of product A, I is household income, W is the wage rate for
producing product A, and u; and us represent error terms—unmodeled
factors that affect quantity and price, respectively (Goldberger 1992).
The graph associated with this model is cyclic, and the vertices asso-
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Figure 1.5: Causal diagram illustrating the relationship between price
(P), demand (Q), income (Z), and wages ().

ciated with the variables U;, Uy, I, and W are root nodes, convey-
ing the assumption of mutual independence. The idea of autonomy
(Aldrich 1989), in this context, means that the two equations represent
two loosely coupled segments of the economy, consumers and produc-
ers. Equation (1.42) describes how consumers decide what quantity
@ to buy, and (1.43) describes how manufacturers decide what price
P to charge. Like all feedback systems, this too represents implicit
dynamics; today’s prices are determined on the basis of yesterday’s de-
mand, and these prices will determine the demand in the next period
of transactions. The solution to such equations represents a long-term
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equilibrium under the assumption that the background quantities, U;
and U, remain constant.

The two equations are considered to be “autonomous” relative to
the dynamics of changes in the sense that external changes affecting
one equation do not imply changes to the others. For example, if gov-
ernment decides on price control and sets the price P at py, then (1.43)
will be modified to read p = py but the relationships in (1.42) will
remain intact, yielding ¢ = b1pg + di7 + u;. We thus see that b, the
“demand elasticity,” should be interpreted as the rate of change of @)
per unit controlled change in P. This is different, of course, from the
rate of change of ) per unit observed change in P (under uncontrolled
conditions), which, besides by, is also affected by the parameters of
(1.43) (see Section 7.2.1, equation (7.14)). The difference between con-
trolled and observed changes is essential for the correct interpretation
of structural equation models in social science and economics, and it
will be discussed at length in Chapter 5. If we have reasons to believe
that consumer behavior will also change under a price control policy,
then this modified behavior would need to be modeled explicitly—for
example, by treating the coefficients b; and d; as dependent variables in
auxiliary equations involving P.'* Section 7.2.1 will present an analysis
of policy-related problems using this model.

To illustrate the workings of nonlinear functional models consider
again the causal relationships depicted in Figure 1.2. The causal model
associated with these relationships will consist of five functions, each
representing an autonomous mechanism governing one variable:

Ty = U,

Ty = fol1,u9),

3 = f3(x1,u3),

Ty = fu(T3, T2, ua),

x5 = f5(z4,us5). (1.44)
The error variables Uy, ...,Us are not shown explicitly in the graph;

14Indeed, consumers normally react to price fixing by hoarding goods in antic-
ipation of shortages (Lucas 1976). Such phenomena are not foreign to structural
models, though; they simply call for more elaborate equations to capture consumers’
expectations.
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by convention, this implies that they are assumed to be mutually in-
dependent. When some disturbances are judged to be dependent, it is
customary to encode such dependencies by augmenting the graph with
double-headed arrows, as shown in Figure 1.1(a).

A typical specification of the functions {fi,..., fs} and the distur-
bance terms is given by the following Boolean model:

Ty [(X, = winter) V (X = fall) V uy] A —u,

z3 = [(X; =summer)V (X; = spring) V us] A —us,

Ty = (To Va3V ug) A-ul,

rs = (z4Vus)A-wug, (1.45)

where z; stands for X; = true and where u; and u; stand for triggering
and inhibiting abnormalities, respectively. For example, u, stands for
(unspecified) events that might cause the pavement to get wet (z4)
when the sprinkler is off (—x3) and it does not rain (—z5) (e.g., a broken
water pipe), while v} stands for (unspecified) events that would keep
the pavement dry in spite of the rain (x3), the sprinkler (z3), and uy
(e.g., pavement covered with a plastic sheet).

It is important to emphasize that, in the two models just described,
the variables placed on the left-hand side of the equality sign (the de-
pendent or output variables) act distinctly from the other variables in
each equation. The role of this distinction becomes clear when we dis-
cuss interventions, since it is only through this distinction that we can
identify which equation ought to be modified under local interventions
of the type “fix the price at py” (do(P = py)) or “turn the sprinkler
On” (do(X3 = true)).??

We now compare the features of functional models as defined in
(1.40) with those of causal Bayesian networks defined in Section 1.3. To-
ward this end, we will consider the processing of three types of queries:

predictions (e.g., would the pavement be slippery if we find the sprin-
kler off?);

15Economists who write the supply-demand equations as {¢ = ap + u;, q¢ =
bp + us }, with ¢ appearing on the Lh.s. of both equations, are giving up the option
of analyzing price control policies unless additional symbolic machinery is used to
identify which equation will be modified by the do(P = pg) operator.
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interventions (e.g., would the pavement be slippery if we make sure
that the sprinkler is off?); and

counterfactuals (e.g., would the pavement be slippery had the sprinkler
been off, given that the pavement is in fact not slippery and the
sprinkler is on?).

We shall see that these three types of queries represent a hierarchy of
three fundamentally different types of problems, demanding knowledge
with increasing level of details.

1.4.2 Probabilistic Predictions in Causal Models

Given a causal model (equation (1.40)), if we draw an arrow from each
member of PA; toward X; then the resulting graph G will be called a
causal diagram. If the causal diagram is acyclic, then the corresponding
model is called semi-Markovian and the values of the X variables will
be uniquely determined by those of the U variables. Under such condi-
tions, the joint distribution P(zy,...,z,) is determined uniquely by the
distribution P(u) of the error variables. If, in addition to acyclicity, the
error terms are mutually independent, the model is called Markovian.

A fundamental theorem about Markovian models establishes a con-
nection between causation and probabilities via the parental Markov
condition of Theorem 1.2.7.

Theorem 1.4.1 (Causal Markov Condition)

Every Markovian causal model M induces a distribution P(x1,...,Ty,)
that satisfies the parental Markov condition relative the causal diagram
G associated with M ; that is, each variable X; is independent on all its
non-descendants, given its parents PA; in G (Pearl and Verma 1991).'6

The proof is immediate. Considering that the set { PA;, U;} determines
one unique value of X;, the distribution P(xy, ..., Ty, U1, .., u,) is cer-
tainly Markov relative the augmented DAG G(X,U), in which the U

16 Considering its generality and transparency, I would not be surprised if some
version of this theorem has appeared earlier in the literature.
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variables are represented explicitly. The required Markov condition
of the marginal distribution P(z1,...,z,) follows by d-separation in
G(X,U).

Theorem 1.4.1 shows that the Markov condition of Theorem 1.2.7
follows from two causal assumptions: (1) our commitment to include in
the model (not in the background) every variable that is a cause of two
or more other variables, and (2) Reichenbach’s (1956) common-cause
assumption, also known as “no correlation without causation,” stating
that, if any two variables are dependent, then one is a cause of the other
or there is a third variable causing both. These two assumptions imply
that the background factors in U are mutually independent and hence
that the causal model is Markovian. Theorem 1.4.1 explains both why
Markovian models are so frequently assumed in causal analysis and why
the parental Markov condition (Theorem 1.2.7) is so often regarded as

an inherent feature of causal models (see e.g. Kiiveri et al. 1984; Spirtes
et al. 1993).17

The causal Markov condition implies that characterizing each child-
parent relationship as a deterministic function, instead of the usual con-
ditional probability P(x;|pa;), imposes equivalent independence con-
straints on the resulting distribution and leads to the same recursive de-
composition that characterizes Bayesian networks (see equation (1.33)).
More significantly, this holds regardless of the choice of functions {f;}
and regardless of the error distributions P(u;). Thus, we need not spec-
ify in advance the functional form of {f;} or the distributions P(u;);
once we measure (or estimate) P(z;|pa;), all probabilistic properties of
a Markovian causal model are determined, regardless of the mechanism
that actually generates those conditional probabilities. Druzdzel and
Simon (1993) showed that, for every Bayesian network G characterized
by a distribution P (as in (1.33)), there exists a functional model (as

Kiiveri et al.’s (1984) paper, entitled “Recursive Causal Models,” provides the
first proof (for strictly positive distributions) that the parental Markov condition of
Theorem 1.2.7 follows from the factorization of (1.33). This implication, however,
is purely probabilistic and invokes no aspect of causation. In order to establish
a connection between causation and probability we must first devise a model for
causation, either in terms of manipulations (as in Definition 1.3.1) or in terms of
functional relationships in structural equations (as in Theorem 1.4.1).
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in (1.40)) that generates a distribution identical to P.'® It follows that
in all probabilistic applications of Bayesian networks—including statis-
tical estimation, prediction, and diagnosis—we can use an equivalent
functional model as specified in (1.40), and we can regard functional
models as just another way of encoding joint distribution functions.
Nonetheless, the causal-functional specification has several advan-
tages over the probabilistic specification, even in purely predictive (i.e.
nonmanipulative) tasks. First and foremost, all the conditional inde-
pendencies that are displayed by the causal diagram G are guaranteed
to be stable—that is, invariant to parametric changes in the mecha-
nisms represented by the functions f; and the distributions P(u;). This
means that agents who choose to organize knowledge using Markovian
causal models can make reliable assertions about conditional indepen-
dence relations without assessing numerical probabilities—a common
ability among humanoids'® and a useful feature for inference. Second,
the functional specification is often more meaningful and natural, and
it yields a small number of parameters. Typical examples are the linear
structural equations used in social science and economics (see Chapter
5), and the “noisy OR gate” that has become quite popular in mod-
eling the effect of multiple dichotomous causes (Pearl 1988b, p. 184).
Third (and perhaps hardest for an empiricist to accept), judgmental
assumptions of conditional independence among observable quantities
are simplified and made more reliable in functional models, because
such assumptions are cast directly as judgments about the presence or
absence of unobserved common causes (e.g., why is the price of beans
in China judged to be independent of the traffic in Los Angeles?). In
the construction of Bayesian networks, for example, instead of judging
whether each variable is independent of all its nondescendants (given
its parents), we need to judge whether the parent set contains all rele-
vant immediate causes—in particular, whether no factor omitted from
the parent set is a cause of another observed variable. Such judgments

18In Chapter 9 we will show that, except in some pathological cases, there actually
exist an infinite number of functional models with such a property.

9Gtatisticians who are reluctant to discuss causality yet have no hesitation ex-
pressing background information in the form of conditional independence statements
would probably be shocked to realize that such statements acquire their validity
from none other but the causal Markov condition (Theorem 1.4.1). See note 9.
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are more natural because they are discernible directly from a qualita-
tive causal structure, the very structure that our mind has selected for
storing stable aspects of experience.

Finally, there is an additional advantage to basing prediction models
on causal mechanisms that stems from considerations of stability (Sec-
tion 1.3.2). When some conditions in the environment undergo change,
it is usually only a few causal mechanisms that are affected by the
change; the rest remain unaltered. It is simpler then to reassess (judg-
mentally) or reestimate (statistically) the model parameters knowing
that the corresponding symbolic change is also local, involving just a
few parameters, than to reestimate the entire model from scratch.?

1.4.3 Interventions and Causal Effects in Func-
tional Models

The functional characterization z; = f;(pa;, u;), like its stochastic coun-
terpart, provides a convenient language for specifying how the resulting
distribution would change in response to external interventions. This
is accomplished by encoding each intervention as an alteration on a se-
lect set of functions instead of a select set of conditional probabilities.
The overall effect of the intervention can then be predicted by modify-
ing the corresponding equations in the model and using the modified
model to compute a new probability function. Thus, all features of
causal Bayesian networks (Section 1.3) can be emulated in Markovian
functional models.

For example, to represent the action “turning the sprinkler On” in
the model of (1.44), we delete the equation z3 = f3(z1,u3) and replace
it with z3 = On. The modified model will contain all the information
needed for computing the effect of the action on other variables. For
example, the probability function induced by the modified model will
be equal to that given by (1.36), and the modified diagram will coincide
with that of Figure 1.4.

More generally, when an intervention forces a subset X of variables
to attain fixed values x, then a subset of equations is to be pruned

20To the best of my knowledge, this aspect of causal models has not been studied
formally; it is suggested here as a research topic for students of adaptive systems.



56CHAPTER 1. INTRODUCTION TO PROBABILITIES, GRAPHS, AND CAUSAL

from the model in (1.40), one for each member of X, thus defining
a new distribution over the remaining variables that characterizes the
effect of the intervention and coincides with the truncated factorization
obtained by pruning families from a causal Bayesian network (equation
(1.37)).2

The functional model’s representation of interventions offers greater
flexibility and generality than that of a stochastic model. First, the
analysis of interventions can be extended to cyclic models, like the one
in Figure 1.5, so as to answer policy-related questions® (e.g.: What
would the demand quantity be if we control the price at py?). Second,
interventions involving the modification of equational parameters (like
b, and d; in (1.42)) are more readily comprehended than those described
as modifiers of conditional probabilities, perhaps because stable phys-
ical mechanisms are normally associated with equations and not with
conditional probabilities. Conditional probabilities are perceived to be
derivable from, not generators of, joint distributions. Third, the analy-
sis of causal effects in non-Markovian models will be greatly simplified
using functional models. The reason is: there are infinitely many con-
ditional probabilities P(z;|pa;) but only a finite number of functions
z; = fi(pa;,u;) among discrete variables X; and PA;. This fact will
enable us in Chapter 8 (Section 8.2.2) to use linear programming tech-
niques to obtain sharp bounds on causal effects in studies involving
noncompliance.

Finally, functional models permit the analysis of context-specific
actions and policies. The notion of causal effect was defined so far
is of only minor use in practical policy making. The reason is that
causal effects tell us the general tendency of an action to bring about
a response (as with the tendency of a drug to enhance recovery in the
overall population) but are not specific to actions in a given situation
characterized by a set of particular observations that may themselves be
affected by the action. A physician is usually concerned with the effect

21 An explicit translation of interventions to “wiping out” equations from the
model was first proposed by Strotz and Wold (1960) and later used in Fisher (1970)
and Sobel (1990). More elaborate types of interventions, involving conditional ac-
tions and stochastic strategies, will be formulated in Chapter 4.

22Guch questions, especially those involving the control of endogenous variables,
are conspicuously absent from econometric textbooks (see Chapter 5).
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of a treatment on a patient who has already been examined and found
to have certain symptoms. Some of those symptoms will themselves be
affected by the treatment. Likewise, an economist is concerned with
the effect of taxation in a given economical context characterized by
various economical indicators, which (again) will be affected by taxa-
tion if applied. Such context-specific causal effects cannot be computed
by simulating an intervention in a static Bayesian network, because the
context itself varies with the intervention and so the conditional prob-
abilities P(z;|pa;) are altered in the process. However, the functional
relationships x; = f;(pa;, u;) remain invariant, which enables us to com-
pute context-specific causal effects as outlined in the next section (see
Sections 7.2.1, 8.3, and 9.3.4 for full details).

1.4.4 Counterfactuals in Functional Models

We now turn to the most distinctive characteristic of functional
models—the analysis of counterfactuals. Certain counterfactual sen-
tences, as we remarked before, cannot be defined in the framework
of stochastic causal networks. To see the difficulties, let us consider
the simplest possible causal Bayesian network consisting of a pair of
independent (hence unconnected) binary variables X and Y. Such a
network ensues, for example, in a controlled (i.e. randomized) clinical
trial when we find that a treatment X has no effect on the distribution
of subjects’ response Y, which may stand for either recovery (Y = 0)
or death (Y = 1). Assume that a given subject, Joe, has taken the
treatment and died; we ask whether Joe’s death occurred because of
the treatment, despite the treatment, or regardless of the treatment. In
other words, we ask for the probability () that Joe would have died had
he not been treated.

To highlight the difficulty in answering such counterfactual ques-
tions, let us take an extreme case where 50% of the patients recover
and 50% die in both the treatment and the control groups; assume
further that the sample size approaches infinity, thus yielding

P(y|lx) =1/2 for all z and y. (1.46)

Readers versed in statistical testing will recognize immediately the im-
possibility of answering the counterfactual question from the available
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data, noting that Joe, who took the treatment and died, was never
tested under the no-treatment condition. Moreover, the difficulty does
not stem from addressing the question to a particular individual, Joe,
for which we have only one data point. Rephrasing the question in
terms of population frequencies—asking what percentage @) of subjects
who died under treatment would have recovered had they not taken the
treatment—will encounter the same difficulties because none of those
subjects was tested under the no-treatment condition. Such difficulties
have prompted some statisticians to dismiss counterfactual questions
as metaphysical and to advocate the restriction of statistical analysis
to only those questions that can be answered by direct tests (Dawid
1997).

However, that our scientific, legal, and ordinary languages are
loaded with counterfactual utterances indicates clearly that counterfac-
tuals are far from being metaphysical; they must have definite testable
implications and must carry valuable substantive information. The
analysis of counterfactuals therefore represents an opportunity to any-
one who shares the aims of this book: integrating substantive knowl-
edge with statistical data so as to refine the former and interpret the
latter. Within this framework, the counterfactual issue demands an-
swers to tough, yet manageable technical questions: What is the em-
pirical content of counterfactual queries? What knowledge is required
to answer those queries? How can this knowledge be represented math-
ematically? Given such representation, what mathematical machinery
is needed for deriving the answers?

Chapter 7 (Section 7.2.2) presents an empirical explication of coun-
terfactuals as claims about the temporal persistence of certain mech-
anisms. In our example, the response to treatment of each (surviv-
ing) patient is assumed to be persistent. If the outcome Y were a
reversible condition, rather than death, then the counterfactual claim
would translate directly into predictions about response to future treat-
ments. But even in the case of death, the counterfactual quantity @)
implies not merely a speculation about the hypothetical behavior of
subjects who died but also a testable claim about surviving untreated
subjects under subsequent treatment. We leave it as an exercise for the
reader to prove that, based on (1.46) and barring sampling variations,
the percentage () of deceased subjects from the treatment group who
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would have recovered had they not taken the treatment precisely equals
the percentage @' of surviving subjects in the nontreatment group who
will die if given treatment.?> Whereas (Q is hypothetical, Q' is unques-
tionably testable.

Having sketched the empirical interpretation of counterfactuals, our
next step in this introductory chapter is the question of representation:
What knowledge is required to answer questions about counterfactuals?
And how should this knowledge be formulated so that counterfactual
queries be answered quickly and reliably? That such representation
exists is evident by the swiftness and consistency with which people
distinguish plausible from implausible counterfactual statements. Most
people would agree that President Clinton’s place in history would be
different had he not met Monica Lewinsky, but only a few would as-
sert that his place in history would change had he not eaten breakfast
yesterday. In the cognitive sciences, such consistency of opinion is as
close as one can get to a proof that an effective machinery for represent-
ing and manipulating counterfactuals resides someplace in the human
mind. What then are the building blocks of that machinery?

A straightforward representational scheme would (i) store counter-
factual knowledge in the form of counterfactual premises and (ii) derive
answers to counterfactual queries using some logical rules of inference
capable of taking us from premises to conclusions. This approach has
indeed been taken by the philosophers Robert Stalnaker (1968) and
David Lewis (1973a,b), who constructed logics of counterfactuals us-
ing closest-world semantics (i.e., “B would be true if it were A” just
in case B is true in the closest possible world (to ours) in which A is
true). However, the closest-world semantics still leaves two questions
unanswered. (1) What choice of distance measure would make coun-
terfactual reasoning compatible with ordinary conception of cause and
effect? (2) What mental representation of interworld distances would
render the computation of counterfactuals manageable and practical

BFor example, if ) equals 100% (i.e. all those who took the treatment and died
would have recovered had they not taken the treatment) then all surviving subjects
from the nontreatment group will die if given treatment (again, barring sampling
variations). Such exercises will become routine when we develop the mathematical
machinery for analyzing probabilities of causes (see Chapter 9, Theorem 9.2.11,
equations (9.11)-(9.12)).
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(for both humans and machines)? These two questions are answered
by the structural model approach expanded in Chapter 7.

An approach similar to Lewis’s (though somewhat less formal) has
been pursued by statisticians in the potential-outcome framework (Ru-
bin 1974; Robins 1986; Holland 1988). Here, substantive knowledge is
expressed in terms of probabilistic relationships (e.g. independence)
among counterfactual variables and then used in the estimation of
causal effects. The question of representation shifts from the closest-
world to the potential-outcome approach: How are probabilistic rela-
tionships among counterfactuals stored or inferred in the investigator’s
mind? In Chapter 7 (see also Section 3.6.3) we provide an analysis of
the closest-world and potential-outcome approaches and compare them
to the structural model approach, to be outlined next, in which coun-
terfactuals are derived from (and in fact defined by) a functional causal
model (equation (1.40)).

In order to see the connection between counterfactuals and struc-
tural equations, we should first examine why the information encoded
in a Bayesian network, even in its causal interpretation, is insufficient
to answer counterfactual queries. Consider again our example of the

U Uy
X - g
. X, X,
. U2 . U2
. Ve
Y Y %
@ (b) (c)

Figure 1.6: (a) A causal Bayesian network that represents the distribu-
tion of (1.47). (b) A causal diagram representing the process generating
the distribution in (a), according to model 1. (c¢) Same, according to
model 2. (Both U; and U, are unobserved.)

controlled randomized experiment (equation 1.46), which corresponds
to an edgeless Bayesian network (Figure 1.6(a)) with two independent
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binary variables and a joint probability:
P(y,z) =0.25 for all z and y. (1.47)

We now present two functional models, each generating the joint
probability of (1.47) yet each giving a different value to the quantity of
interest, () = the probability that a subject who died under treatment
(x = 1, y = 1) would have recovered (y = 0) had he or she not
been treated (z = 0).

Model 1 (Figure 1.6(b))
Let

= U,

Uz,

where U; and U, are two independent binary variables with P(u; =

1) = P(uz = 1) = 1 (e.g., random coins).
Model 2 (Figure 1.6(c))

Let

xr = U,

= zus+ (1 —z)(1 — ug), (1.48)

where, as before, U; and U, are two independent binary variables.
Model 1 corresponds to treatment (X) that has no effect on any of
the subjects; in model 2, every subject is affected by treatment. The
reason that the two models yield the same distribution is that model
2 describes a mixture of two subpopulations. In one (uy = 1), each
subject dies (y = 1) if and only if treated; in the other (uy = 0),
each subject recovers (y = 0) if and only if treated. The distributions
P(z,y,us) and P(z,y) corresponding to these two models are shown in
the tables of Figure 1.7.

The value of () differs in these two models. In model 1, @) evaluates
to zero, because subjects who died correspond to us = 1 and, since the
treatment has no effect on y, changing X from 1 to 0 would still yield
y = 1. In model 2, however, () evaluates to unity, because subjects who
died under treatment must correspond to u, =1 (i.e., those who die if
treated), meaning they would recover if and only if not treated.
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Model 1 us =0 uy =1 Marginal
z=1 =0 z=1 x2=0 r=1 =0
y =1 (death) 0 0 0.25 0.25 0.25 0.25
y =0 (recovery) 0.25 0.25 0 0 0.25 0.25
Model 2 us =0 Uy =1 Marginal
z=1 =0 r=1 =0 z=1 =0
y =1 (death) 0 0.25 0.25 0 0.25 0.25
y =0 (recovery) 0.25 0 0 0.25 0.25 0.25

Figure 1.7: Contingency tables showing the distributions P(z,y, us)
and P(z,y) for the two models discussed in the text.

The first lesson of this example is that stochastic causal models are
insufficient for computing probabilities of counterfactuals; knowledge
of the actual process behind P(y|z) is needed for the computation.?*
A second lesson is that a functional causal model constitutes a math-
ematical object sufficient for the computation (and definition) of such
probabilities. Consider, for example, model 2 of (1.48). The way we
concluded that a deceased treated subject (y = 1, = = 1) would have
recovered if not treated involved three mental steps. First, we applied
the evidence at hand, e : {y = 1, z = 1}, to the model and concluded
that e is compatible with only one realization of U; and Uy—namely,
{u; = 1, up = 1}. Second, to simulate the hypothetical condition
“had he or she not been treated,” we substituted x = 0 into (1.48)
while ignoring the first equation x = u;. Finally, we solved (1.48) for
y (assuming x = 0 and uy = 1) and obtained y = 0, from which we
concluded that the probability of recovery (y = 0) is unity under the
hypothetical condition considered.

241n the potential-outcome framework (Sections 3.6.3 and 7.4.4), such knowledge
obtains stochastic appearance by defining distributions over counterfactual variables
Y: and Yj, which stand for the potential response of an individual to treatment and
no treatment, respectively. These hypothetical variables play a role similar to the
functions f;(pa;,u;) in our model; they represent the deterministic assumption that
every individual possesses a definite response to treatment, regardless of whether
that treatment was realized.
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These three steps can be generalized to any causal model M as
follows. Given evidence e, to compute the probability of Y = y under
the hypothetical condition X = x (where X is a subset of variables),
apply the following three steps to M.

Step 1 (abduction): Update the probability P(u) to obtain P(ule).

Step 2 (action): Replace the equations corresponding to variables in
set X by the equations X = x.

Step 8 (prediction): Use the modified model to compute the probability
of Y =y.

In temporal metaphors, this three-step procedure can be interpreted as
follows. Step 1 explains the past (U) in light of the current evidence
e; step 2 bends the course of history (minimally) to comply with the
hypothetical condition X = z; finally, step 3 predicts the future (V)
based on our new understanding of the past and our newly established
condition, X = x.

Recalling that for each value u of U there is a unique solution for
Y, it is clear that step 3 always gives a unique solution for the needed
probability; we simply sum up the probabilities P(ule) assigned to all
those u that yield Y = y as a solution. Chapter 7 develops effective
procedures for computing probabilities of counterfactuals, procedures
that are based on probability propagation in “twin” networks (Balke
and Pearl 1995): one network represents the actual world; the other
the counterfactual world.

Note that the hypothetical condition X = x always stands in con-
tradiction to the prevailing values v of U in the model considered (else
X = x would actually be realized and thus would not be considered
hypothetical). It is for this reason that we invoke (in step 2) an exter-
nal intervention (alternatively, a “theory change” or a “miracle”; Lewis
1973b), which modifies the model and thus explains the contradiction
away. In Chapter 7 we extend this structural-interventional model to
give a full semantical and axiomatic account both for counterfactuals
and the probability of counterfactuals. In contrast with Lewis’s the-
ory, this account is not based on abstract notion of similarity among
hypothetical worlds; rather, it rests on the actual mechanisms involved
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in the production of the hypothetical worlds considered. Likewise, in
contrast with the potential-outcome framework, counterfactuals in the
structural account are not treated as undefined primitives but rather as
quantities to be derived from the more fundamental concepts of causal
mechanisms and their structure.

The three-step model of counterfactual reasoning also uncovers the
real reason why stochastic causal models are insufficient for computing
probabilities of counterfactuals. Because the U variables do not ap-
pear explicitly in stochastic models, we cannot apply step 1 so as to
update P(u) with the evidence e at hand. This implies that several
ubiquitous notions based on counterfactuals—including probabilities of
causes (given the effects), probabilities of explanations, and context-
dependent causal effect—cannot be defined in such models. For these,
we must make some assumptions about the form of the functions f;
and the probabilities of the error terms. For example, the assump-
tions of linearity, normality, and error independence are sufficient for
computing all counterfactual queries in the model of Figure 1.5 (see
Section 7.2.1). In Chapter 9, we will present conditions under which
counterfactual queries concerning probability of causation can be in-
ferred from data when f; and P(u) are unknown, and only general
features (e.g. monotonocity) of these entities are assumed. Likewise,
Chapter 8 (Section 8.3) will present methods of bounding probabilities
of counterfactuals when only stochastic models are available.

The preceding considerations further imply that the three tasks
listed in the beginning of this section—prediction, intervention, and
counterfactuals—form a natural hierarchy of causal reasoning tasks,
with increasing levels of refinement and increasing demands on the
knowledge required for accomplishing these tasks. Prediction is the
simplest of the three, requiring only a specification of a joint distribu-
tion function. The analysis of interventions requires a causal structure
in addition to a joint distribution. Finally, processing counterfactu-
als is the hardest task because it requires some information about the
functional relationships and/or the distribution of the omitted factors.

This hierarchy also defines a natural partitioning of the chapters in
this book. Chapter 2 will deal primarily with the probabilistic aspects
of causal Bayesian networks (though the underlying causal structure
will serve as a conceptual guide). Chapters 3-6 will deal exclusively
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with the interventional aspects of causal models, including the identifi-
cation of causal effects, the clarification of structural equation models,
and the relationships between confounding and collapsibility. Chapters
7-10 will deal with counterfactual analysis, including axiomatic foun-
dation, applications to policy analysis, the bounding of counterfactual
queries, the identification of probabilities of causes, and the explication
of single-event causation.

I wish the reader a smooth and rewarding journey through these
chapters. But first, an important stop for terminological distinctions.



