1.3. CAUSAL BAYESIAN NETWORKS 39

1.3 Causal Bayesian Networks

The interpretation of directed acyclic graphs as carriers of indepen-
dence assumptions does not necessarily imply causation; in fact, it will
be valid for any set of recursive independencies along any ordering of
the variables, not necessarily causal or chronological. However, the
ubiquity of DAG models in statistical and Al applications stems (often
unwittingly) primarily from their causal interpretation—that is, as a
system of processes, one per family, that could account for the genera-
tion of the observed data. It is this causal interpretation that explains
why DAG models are rarely used in any variable ordering other than
those which respect the direction of time and causation.

The advantages of building DAG models around causal rather than
associational information are several. First, the judgments required
in the construction of the model are more meaningful, more accessi-
ble, and hence more reliable. The reader may appreciate this point by
attempting to construct a DAG representation for the associations in
Figure 1.2 along the ordering (X5, X1, X3, X2, X4). Such exercises illus-
trate not only that some independencies are more vividly accessible to
the mind than others but also that conditional independence judgments
are accessible (hence reliable) only when they are anchored onto more
fundamental building blocks of our knowledge, such as causal relation-
ships. In the example of Figure 1.2, our willingness to assert that Xj
is independent of X, and X3 once we know X, (i.e., whether the pave-
ment is wet) is defensible because we can easily translate the assertion
into one involving causal relationships: that the influence of rain and
sprinkler on slipperiness is mediated by the wetness of the pavement.
Dependencies that are not supported by causal links are considered odd
or spurious and are even branded “paradoxical” (see the discussion of
Berkson’s paradox, Section 1.2.3).

We will have several opportunities throughout this book to demon-
strate the primacy of causal over associational knowledge. In extreme
cases, we will see that people tend to ignore probabilistic information al-
together and attend to causal information instead (see Section 6.1.4).%
This puts into question the ruling paradigm of graphical models in

8Tversky and Kahneman (1980) experiments with causal biases in probability
judgment constitute another body of evidence supporting this observation. For
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statistics (Wermuth and Lauritzen 1990; Cox and Wermuth 1996), ac-
cording to which conditional independence assumptions are the primary
vehicle for expressing substantive knowledge.® It seems that if condi-
tional independence judgments are byproducts of stored causal rela-
tionships, then tapping and representing those relationships directly
would be a more natural and more reliable way of expressing what we
know or believe about the world. This is indeed the philosophy behind
causal Bayesian networks.

The second advantage of building Bayesian networks on causal
relationships—one that is basic to the understanding of causal
organizations—is the ability to represent and respond to external or
spontaneous changes. Any local reconfiguration of the mechanisms in
the environment can be translated, with only minor modification, into
an isomorphic reconfiguration of the network topology. For example,
to represent a disabled sprinkler in the story of Figure 1.2, we simply
delete from the network all links incident to the node Sprinkler. To
represent the policy of turning the sprinkler off if it rains, we simply
add a link between Rain and Sprinkler and revise P(x3|z1,z2). Such
changes would require much greater remodeling efforts if the network
were not constructed along the causal direction but instead along (say)
the order (X5, X1, X3, Xo, X4). This remodeling flexibility may well be
cited as the ingredient that marks the division between deliberative and
reactive agents and that enables the former to manage novel situations
instantaneously, without requiring training or adaptation.

1.3.1 Causal Networks as Oracles for Interventions

The source of this flexibility rests on the assumption that each parent-
child relationship in the network represents a stable and autonomous
physical mechanism—in other words, that it is conceivable to change
one such relationship without changing the others. Organizing one’s
knowledge in such modular configurations permits one to predict the

example, most people believe that it is more likely for a girl to have blue eyes, given
that her mother has blue eyes, than the other way around; the two probabilities are
in fact equal.

9The author was as guilty of advocating the centrality of conditional indepen-
dence as were his colleagues in statistics; see Pearl (1988b, p. 79).
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effect of external interventions with minimum of extra information. In-
deed, causal models (assuming they are valid) are much more informa-
tive than probability models. A joint distribution tells us how probable
events are and how probabilities would change with subsequent obser-
vations, but a causal model also tells us how these probabilities would
change as a result of external interventions—such as those encountered
in policy analysis, treatment management, or planning everyday activ-
ity. Such changes cannot be deduced from a join distribution, even if
fully specified.

The connection between modularity and interventions is as follows.
Instead of specifying a new probability function for each of the many
possible interventions, we specify merely the immediate change implied
by the intervention and, by virtue of autonomy, we assume that the
change is local, and does not spread over to mechanisms other than
those specified. Once we know the identity of the mechanism altered
by an intervention and the nature of the alteration, the overall effect of
an intervention can be predicted by modifying the corresponding factors
in (1.33) and using the modified product to compute a new probability
function. For example, to represent the action “turning the sprinkler
On” in the network of Figure 1.2, we delete the link X; — X3 and
assign X3 the value On. The graph resulting from this operation is
shown in Figure 1.4, and the resulting joint distribution on the remain-
ing variables will be

PX3:On($17x2; .’E4,£E5) = P(./El)P(x2‘x1)P(x4‘x2’X3 = OII)P(.’E5|.T4),
(1.36)
in which all the factors on the right-hand side (r.h.s.), by virtue of
autonomy, are the same as in (1.34).

The deletion of the factor P(z3|z;) represents the understanding
that, whatever relationship existed between seasons and sprinklers prior
to the action, that relationship is no longer in effect while we perform
the action. Once we physically turn the sprinkler on and keep it on, a
new mechanism (in which the season has no say) determines the state
of the sprinkler.

Note the difference between the action do(X3 = On) and the ob-
servation X3 = On. The effect of the latter is obtained by ordinary
Bayesian conditioning, that is, P(z1, Z2, 24, T5| X3 = On), while that of
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Figure 1.4: Network representation of the action “turning the sprinkler
On.”

the former by conditioning a mutilated graph, with the link X; — X3
removed. This mirrors indeed the difference between seeing and doing:
after observing that the sprinkler is on, we wish to infer that the season
is dry, that it probably did not rain, and so on; no such inferences should
be drawn in evaluating the effects of a contemplated action “turning
the sprinkler On.”

The ability of causal networks to predict the effects of actions re-
quires of course a stronger set of assumptions in the construction of
those networks, assumptions that rest on causal (not merely associa-
tional) knowledge and that ensure the system would respond to inter-
ventions in accordance with the principle of autonomy. These assump-
tions are encapsulated in the following definition of causal Bayesian
networks.

Definition 1.3.1 (Causal Bayesian Network)

Let P(v) be a probability distribution on a set V of variables, and let
P,(v) denote the distribution resulting from the intervention do(X = z)
that sets a subset X of variables to constants x.'° Denote by P, the
set of all interventional distributions Py(v), X C V, including P(v),
which represents no intervention (i.e., X = (). A DAG G is said to be a
causal Bayesian network compatible with P, if and only if the following
three conditions hold for every P, € Piy:

10The notation P,(v) will be replaced in subsequent chapters with P(v|do(z))
and P(v|Z) to facilitate algebraic manipulations.
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(i) Py(v) is Markov relative to G;
(ii) Py(v;) =1 for all V; € X whenever v; is consistent with X = z;

(iii) Py(vilpa;) = P(vilpa;) for all V; ¢ X whenever pa; is consistent
with X = .

Definition 1.3.1 imposes constraints on the interventional space P, that
permit us to encode this vast space economically, in the form of a
single Bayesian network (G. These constraints enable us to compute
the distribution P,(v) resulting from any intervention do(X = z) as a
truncated factorization

P,(v)= [[ P(vilpa;) for all v consistent with z, (1.37)
{ilvVigXx}

which follows from Definition 1.3.1 and justifies the family deletion
procedure on G, as in (1.36). It is not hard to show that, whenever
G is a causal Bayes network with respect to P,, the following two
properties must hold.

Property 1 For all i,

P(vilpas) = Ppa; (vi)- (1.38)

Property 2 For all i and for every subset S of variables disjoint of
{Vi, PA;}, we have
Ppai,s(vi) = P, (UZ) (1'39)

Property 1 renders every parent set PA; exogenous relative to its child
Vi, ensuring that the conditional probability P(v;|pa;) coincides with
the effect (on V;) of setting PA; to pa, by external control. Property
2 expresses the notion of invariance; once we control its direct causes
PA;, no other interventions will affect the probability of V;.
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1.3.2 Causal Relationships and Their Stability

This mechanism-based conception of interventions provides a semanti-
cal basis for notions such as “causal effects” or “causal influence,” to be
defined formally and analyzed in Chapters 3 and 4. For example, to test
whether a variable X; has a causal influence on another variable X,
we compute (using the truncated factorization formula of (1.37)) the
(marginal) distribution of X; under the actions do(X; = z;)—namely,
Py, (z;) for all values z; of X;—and test whether that distribution is
sensitive to z;. It is easy to see from our previous examples that only
variables that are descendants of X; in the causal network can be influ-
enced by X;; deleting the factor P(z;|pa;) from the joint distribution
turns X; into a root node in the mutilated graph, and root variables
(as the d-separation criterion dictates) are independent of all other vari-
ables except their descendants.

This understanding of causal influence permits us to see precisely
why, and in what way, causal relationships are more “stable” than
probabilistic relationships. We expect such difference in stability be-
cause causal relationships are ontological, describing objective physical
constraints in our world, whereas probabilistic relationships are epis-
temic, reflecting what we know or believe about the world. Therefore,
causal relationships should remain unaltered as long as no change has
taken place in the environment, even when our knowledge about the
environment undergoes changes. To demonstrate, consider the causal
relationship Sy, “Turning the sprinkler on would not affect the rain,”
and compare it to its probabilistic counterpart Sy, “The state of the
sprinkler is independent of (or unassociated with) the state of the rain.”
Figure 1.2 illustrates two obvious ways in which S, will change while
S remains intact. First, S5 changes from false to true when we learn
what season it is (X;). Second, given that we know the season, S,
changes from true to false once we observe that the pavement is wet
(X4 = true). On the other hand, S; remains true regardless of what
we learn or know about the season or about the pavement.

The example reveals a stronger sense in which causal relationships
are more stable than the corresponding probabilistic relationships, a
sense that goes beyond their basic ontological-epistemological differ-
ence. The relationship S; will remain invariant to changes in the mech-
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anism that regulates how seasons affect sprinklers. In fact, it remains
invariant to changes in all mechanisms shown in this causal graph. We
thus see that causal relationships exhibit greater robustness to ontolog-
ical changes as well; they are sensitive to a smaller set of mechanisms.
More specifically, and in marked contrast to probabilistic relationships,
causal relationships remain invariant to changes in the mechanism that
governs the causal variables (X3 in our example).

In view of this stability, it is no wonder that people prefer to encode
knowledge in causal rather than probabilistic structures. Probabilistic
relationships, such as marginal and conditional independencies, may
be helpful in hypothesizing initial causal structures from uncontrolled
observations. However, once knowledge is cast in causal structure, those
probabilistic relationships tend to be forgotten; whatever judgments
people express about conditional independencies in a given domain are
derived from the causal structure acquired. This explains why people
feel confident asserting certain conditional independencies (e.g., that
the price of beans in China is independent on the traffic in Los Angeles)
having no idea whatsoever about the numerical probabilities involved
(e.g., whether the price of beans will exceed $10 per bushel).

The element of stability (of mechanisms) is also at the heart of the
so-called explanatory accounts of causality, according to which causal
models need not encode behavior under intervention but instead aim
primarily to provide an “explanation” or “understanding” of how data
are generated.!! Regardless of what use is eventually made of our
“understanding” of things, we surely would prefer an understanding
in terms of durable relationships, transportable across situations, over
those based on transitory relationships. The sense of “comprehensibil-
ity” that accompanies an adequate explanation is a natural byproduct
of the transportability of (and hence of our familiarity with) the causal
relationships used in the explanation. It is for reasons of stability that
we regard the falling barometer as predicting but not explaining the
rain; those predictions are not transportable to situations where the
pressure surrounding the barometer is controlled by artificial means.
True understanding enables predictions in such novel situations, where

1 Elements of this explanatory account can be found in the writings of Dempster
(1990), Cox (1992), and Shafer (1996a); see also King et al. (1994, p. 75).
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some mechanisms change and others are added. It thus seems reason-
able to suggest that, in the final analysis, the explanatory account of
causation is merely a variant of the manipulative account, albeit one
where interventions are dormant. Accordingly, we may as well view our
unsatiated quest for understanding “how data is generated” or “how
things work” as a quest for acquiring the ability to make predictions
under wider range of circumstances, including circumstances in which
things are taken apart, reconfigured, or undergo spontaneous change.



