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1.2 Graphs and Probabilities

1.2.1 Graphical Notation and Terminology

A graph consists of a set V' of vertices (or nodes) and a set E of edges (or
links) that connect some pairs of vertices. The vertices in our graphs
will correspond to variables (whence the common symbol V') and the
edges will denote a certain relationship that holds in pairs of variables,
the interpretation of which will vary with the application. Two vari-
ables connected by an edge are called adjacent.

Each edge in a graph can be either directed (marked by a single ar-
rowhead on the edge), or undirected (unmarked links). In some appli-
cations we will also use “bidirected” edges to denote the existence of un-
observed common causes (sometimes called confounders). These edges
will be marked as dotted curved arcs with two arrowheads (see Figure
1.1(a)). If all edges are directed (see Figure 1.1(b)), we then have a di-
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Figure 1.1: (a) A graph containing both directed and bidirected edges.
(b) A directed acyclic graph (DAG) with the same skeleton as (a).

rected graph. If we strip away all arrowheads from the edges in a graph
(G, the resultant undirected graph is called the skeleton of G. A path
in a graph is a sequence of edges (e.g., (W, 2),(Z,Y), (Y, X), (X, Z))
in Figure 1.1(a)) such that each edge starts with the vertex ending the
preceding edge. In other words, a path is any unbroken, nonintersecting
route traced out along the edges in a graph, which may go either along
or against the arrows. If every edge in a path is an arrow that points
from the first to the second vertex of the pair, we have a directed path.
In Figure 1.1(a), for example, the path (W, Z),(Z,Y)) is directed but
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the paths (W, Z2), (Z,Y), (Y, X)) and (W, Z),(Z, X)) are not. If there
exists a path between two vertices in a graph then the two vertices are
said to be connected; else they are disconnected.

Directed graphs may include directed cycles (e.g., X — Y,
Y — X)), representing mutual causation or feedback processes, but
not self-loops (e.g., X — X). A graph (like the two in Figure 1.1)
that contains no directed cycles is called acyclic. A graph that is both
directed and acyclic (Figure 1.1(b)) is called a directed acyclic graph
(DAG), and such graphs will occupy much of our discussion of causal-
ity. We make free use of the terminology of kinship (e.g., parents, chil-
dren, descendants, ancestors, spouses) to denote various relationships
in a graph. These kinship relations are defined along the full arrows in
the graph, including arrows that form directed cycles but ignoring bidi-
rected and undirected edges. In Figure 1.1(a), for example, Y has two
parents (X and Z), three ancestors (X, Z, and W), and no children,
while X has no parents (hence, no ancestors), one spouse (Z), and one
child (Y). A family in a graph is a set of nodes containing a node and
all its parents. For example, {W}, {Z, W}, {X}, and {Y, Z, X} are the
families in the graph of Figure 1.1(a).

A node in a directed graph is called a root if it has no parents and
a sink if it has no children. Every DAG has at least one root and at
least one sink. A connected DAG in which every node has at most
one parent is called a tree, and a tree in which every node has at most
one child is called a chain. A graph in which every pair of nodes is
connected by an edge is called complete. The graph in Figure 1.1(a),
for instance, is connected but not complete, because the pairs (W, X)
and (W,Y") are not adjacent.

1.2.2 Bayesian Networks

The role of graphs in probabilistic and statistical modeling is threefold:

1. to provide convenient means of expressing substantive assump-
tions;

2. to facilitate economical representation of joint probability func-
tions; and
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3. to facilitate efficient inferences from observations.

We will begin our discussion with item 2.

Consider the task of specifying an arbitrary joint distribution,
P(z4,...,x,), for n dichotomous variables. To store P(z1,...,x,) ex-
plicitly would require a table with 2" entries, an unthinkably large
number by any standard. Substantial economy can be achieved when
each variable depends on just a small subset of other variables. Such de-
pendence information permits us to decompose large distribution func-
tions into several small distributions—each involving a small subset of
variables—and then to piece them together coherently to answer ques-
tions of global nature. Graphs play an essential role in such decompo-
sition, for they provide a vivid representation of the sets of variables
that are relevant to each other in any given state of knowledge.

Both directed and undirected graphs have been used by researchers
to facilitate such decomposition. Undirected graphs, sometimes called
Markov networks (Pearl 1988b), are used primarily to represent sym-
metrical spatial relationships (Isham 1981; Cox and Wermuth 1996;
Lauritzen 1996). Directed graphs, especially DAGs, have been used to
represent causal or temporal relationships (Lauritzen 1982; Wermuth
and Lauritzen 1983; Kiiveri et al. 1984) and came to be known as
Bayesian networks, a term coined in Pearl (1985) to emphasize three
aspects: (1) the subjective nature of the input information; (2) the
reliance on Bayes’s conditioning as the basis for updating information;
and (3) the distinction between causal and evidential modes of rea-
soning, a distinction that underscores Thomas Bayes’s paper of 1763.
Hybrid graphs (involving both directed and undirected edges) have also
been proposed for statistical modeling (Wermuth and Lauritzen 1990),
but in this book our main interest will focus on directed acyclic graphs,
with occasional use of directed cyclic graphs to represent feedback cy-
cles.

The basic decomposition scheme offered by directed acyclic graphs
can be illustrated as follows. Suppose we have a distribution P
defined on n discrete variables, which we may order arbitrarily as
X1, X9, ..., Xp. The chain rule of probability calculus (equation (1.12))
always permits us to decompose P as a product of n conditional distri-
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butions:

P(z1,...,2,) = [[ P(zjlz1, ..., 2j-1)- (1.30)

j

Now suppose that the conditional probability of some variable X; is
not sensitive to all the predecessors of X; but only to a small subset
of those predecessors. In other words, suppose that X, is independent
of all other predecessors, once we know the value of a select group of
predecessors called PA;. We can then write

P(zj|zq,...,zj_1) = P(zj|pa;) (1.31)

in the product of (1.30), which will considerably simplify the input
information required. Instead of specifying the probability of X; con-
ditional on all possible realizations of its predecessors X;,..., X; 1, we
need only concern ourselves with the possible realizations of the set
PA;. The set PA; is called the Markovian parents of X;, or parents for
short. The reason for the name becomes clear when we build graphs
around this concept.

Definition 1.2.1 (Markovian Parents)

LetV ={Xy,..., X,} be an ordered set of variables, and let P(v) be the
joint probability distribution on these variables. A set of variables PA;
is said to be Markovian parents of X; if PA; is a minimal set of prede-
cessors of X; that renders X; independent of all its other predecessors.
In other words, PA; is any subset of {X1,...,X; 1} satisfying

P(zjlpa;) = P(zjlz1, ... xj-1) (1.32)
and such that no proper subset of PA; satisfies (1.32).°

Definition 1.2.1 assigns to each variable X; a select set PA; of preced-
ing variables that are sufficient for determining the probability of Xj;
knowing the values of other preceding variables is redundant once we
know the values pa; of the parent set PA;. This assignment can be
represented in the form of a DAG in which variables are represented

®Lowercase symbols (e.g., z;, pa;) denote particular realizations of the corre-
sponding variables (e.g., X;, PA;).
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by nodes and arrows are drawn from each node of the parent set PA;
toward the child node X;. Definition 1.2.1 also suggests a simple re-
cursive method for constructing such a DAG: Starting with the pair
(X1, X5), we draw an arrow from X; to X, if and only if the two vari-
ables are dependent. Continuing to X3, we draw no arrow in case X3
is independent of { X, Xy}; otherwise, we examine whether X, screens
off X3 from X; or X; screens off X3 from Xs. In the first case, we draw
an arrow from X, to Xj; in the second, we draw an arrow from X;
to X3. If no screening condition is found, we draw arrows to X3 from
both X; and X5. In general: at the jth stage of the construction, we
select any minimal set of X;’s predecessors that screens off X; from its
other predecessors (as in equation (1.32)), call this set PA;, and draw
an arrow from each member in PA; to X;. The result is a directed
acyclic graph, called a Bayesian network, in which an arrow from X, to
X assigns X; as a Markovian parent of X;, consistent with Definition
1.2.1.

It can be shown (Pearl 1988b) that the set PA, is unique whenever
the distribution P(v) is strictly positive (i.e., involving no logical or
definitional constraints), so that every configuration v of variables, no
matter how unlikely, has some finite probability of occurring. Under
such conditions, the Bayesian network associated with P(v) is unique,
given the ordering of the variables.

Figure 1.2 illustrates a simple yet typical Bayesian network. It de-
scribes relationships among the season of the year (X;), whether rain
falls (X3), whether the sprinkler is on (X3), whether the pavement
would get wet (X4), and whether the pavement would be slippery (X5).
All variables in this figure are binary (taking a value of either true or
false) except for the root variable X, which can take one of four val-
ues: spring, summer, fall, or winter. The network was constructed
in accordance with Definition 1.2.1, using causal intuition as a guide.
The absence of a direct link between X; and Xj, for example, cap-
tures our understanding that the influence of seasonal variations on the
slipperiness of the pavement is mediated by other conditions (e.g., the
wetness of the pavement). This intuition coincides with the indepen-
dence condition of (1.32), since knowing X, renders X5 independent of
{Xl, XQ, Xg}
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Figure 1.2: A Bayesian network representing dependencies among five
variables.

The construction implied by Definition 1.2.1 defines a Bayesian net-
work as a carrier of conditional independence relationships along the
order of construction. Clearly, every distribution satisfying (1.32) must
decompose (using the chain rule of (1.30)) into the product

P(zy,..yxy) = l_IP(a:2 | pa;). (1.33)

For example, the DAG in Figure 1.2 induces the decomposition

P(z1, 29,3, 24, x5) = P(x1) P(x2]21) P(x3|21) P(24|T0, 23) P(25|24).
(1.34)
The product decomposition in (1.33) is no longer order-specific
since, given P and (G, we can test whether P decomposes into the
product given by (1.33) without making any reference to variable or-
dering. We therefore conclude that a necessary condition for a DAG
G to be a Bayesian network of probability distribution P is for P to

admit the product decomposition dictated by G, as given in (1.33).

Definition 1.2.2 (Markov Compatibility)

If a probability function P admits the factorization of (1.33) relative to
DAG G, we say that G represents P, that G and P are compatible, or
that P is Markov relative to G.5

6The latter expression seems to gain strength in recent literature (e.g. Spirtes et
al. 1993; Lauritzen 1996). Pearl (1988b, p. 116) used “G is an I-map of P.”
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Ascertaining compatibility between DAGs and probabilities is impor-
tant in statistical modeling primarily because compatibility is a neces-
sary and sufficient condition for a DAG G to explain a body of empirical
data represented by P, that is, to describe a stochastic process capa-
ble of generating P (e.g. Pearl, 1988b, pp. 210-23). If the value of each
variable X; is chosen at random with some probability P;(x;|pa;), based
solely on the values pa; previously chosen for PA;, then the overall dis-
tribution P of the generated instances zi,zs,...,x, will be Markov
relative to G. Conversely, if P is Markov relative to G' then there exists
a set of probabilities P;(z;|pa;) according to which we can choose the
value of each variable X; such that the distribution of the generated
instances 1, T, . .., Z, Will be equal to P. (In fact, the correct choice
of P;(z;|pa;) would be simply P(z;|pa;).)

A convenient way of characterizing the set of distributions compati-
ble with a DAG G is to list the set of (conditional) independencies that
each such distribution must satisfy. These independencies can be read
off the DAG by using a graphical criterion called d-separation (Pearl
1988b; the d denotes directional), which will play a major role in many
discussions in this book.

1.2.3 The d-Separation Criterion

Consider three disjoint sets of variables, X, Y, and Z, which are rep-
resented as nodes in a directed acyclic graph G. To test whether X is
independent of Y given Z in any distribution compatible with G, we
need to test whether the nodes corresponding to variables Z “block” all
paths from nodes in X to nodes in Y. By path we mean a sequence of
consecutive edges (of any directionality) in the graph, and blocking is
to be interpreted as stopping the flow of information (or of dependency)
between the variables that are connected by such paths, as defined next.

Definition 1.2.3 (d-Separation)
A path p is said to be d-separated (or blocked) by a set of nodes Z if
and only if

1. p contains a chain i — m — j or a fork i <— m — j such
that the middle node m s in Z, or
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2. p contains an inverted fork (or collider) i — m <— j such that
the middle node m is not in Z and such that no descendant of m
s 4.
A set Z is said to d-separate X from Y if and only if Z blocks every
path from a node in X to a node inY .

The intuition behind d-separation is simple and can best be recognized
if we attribute causal meaning to the arrows in the graph. In causal
chains ¢ —= m — j and causal forks i <— m — j, the two extreme
variables are marginally dependent but become independent of each
other (i.e., blocked) once we condition on (i.e., know the value of) the
middle variable. Figuratively, conditioning on m appears to “block”
the flow of information along the path, since learning about ¢ has no
effect on the probability of j, given m. Inverted forks i — m <— j,
representing two causes having a common effect, act the opposite way;
if the two extreme variables are (marginally) independent, they will
become dependent (i.e., connected through unblocked path) once we
condition on the middle variable (i.e., the common effect) or any of
its descendants. This can be confirmed in the context of Figure 1.2.
Once we know the season, X3 and X, are independent, (assuming that
sprinklers are set in advance, according to the season); whereas finding
that the pavement is wet or slippery renders X, and X3 dependent,
because refuting one of these explanations increases the probability of
the other.

In Figure 1.2, X = {X,} and Y = {X3} are d-separated by Z =
{X1}, because both paths connecting X, and X3 are blocked by Z.
The path Xy, <— X; — X3 is blocked because it is a fork in which the
middle node X is in Z, while the path Xy — X, <— X3 is blocked
because it is an inverted fork in which the middle node X, and all its
descendants are outside Z. However, X and Y are not d-separated by
the set Z' = { X1, X5}: the path Xy — X, <— X3 (an inverted fork) is
not blocked by Z’, since X5, a descendant of the middle node X}, is in
Z'. Metaphorically, learning the value of the consequence X5 renders
its causes X, and X3 dependent, as if a pathway were opened along the
arrows converging at Xjy.

At first glance, readers might find it a bit odd that conditioning on a
node not lying on a blocked path may unblock the path. However, this
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corresponds to a general pattern of causal relationships: observations on
a common consequence of two independent causes tend to render those
causes dependent, because information about one of the causes tends
to make the other more or less likely, given that the consequence has
occurred. This pattern is known as selection bias or Berkson’s paradoz
in the statistical literature (Berkson 1946) and as the explaining away
effect in artificial intelligence (Kim and Pearl 1983). For example, if
the admission criteria to a certain graduate school call for either high
grades as an undergraduate or special musical talents, then these two
attributes will be found to be correlated (negatively) in the student
population of that school, even if these attributes are uncorrelated in
the population at large. Indeed, students with low grades are likely
to be exceptionally gifted in music, which explains their admission to
graduate school.

/’—5‘\ Zl
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Figure 1.3: Graphs illustrating d-separation. In (a), X and Y are d-
separated given Z; and d-connected given Z;. In (b), X and Y cannot
be d-separated by any set of nodes.

Figure 1.3 illustrates more elaborate examples of d-separation: ex-
ample (a) contains a bidirected arc Z; <--» Z3 and (b) involves a
directed cycle X — Zy —= Z; — X. In Figure 1.3(a), the two paths
between X and Y are blocked when none of {Z1, Z,, Z3} is measured.
However, the path X — Z; <- -» 73 <— Y becomes unblocked when
Z1 is measured. This is so because Z; unblocks the “colliders” at both
71 and Zj3; the first because Z; is the collision node of the collider,
the second because 7 is a descendant of the collision node Z3 through
the path 7, <— Zy; <— Z;. In Figure 1.3(b), X and Y cannot be
d-separated by any set of nodes, including the empty set. If we con-
dition on Zj, we block the path X <-— 7, <— 7, <— Y yet unblock
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the path X — Z; <— Y. If we condition on Z;, we again block the
path X <— Z; <— Z; <— Y and unblock the path X — Z, <— Y,
because Z; is a descendant of the collision node Z,.

The connection between d-separation and conditional independence
is established through the following theorem due to Verma and Pearl
(1988; see also Geiger et al. 1990).

Theorem 1.2.4 (Probabilistic Implications of d-Separation)

If sets X and Y are d-separated by Z in a DAG G, then X 1is inde-
pendent of Y conditional on Z in every distribution compatible with G.
Conversely, if X and Y are not d-separated by Z in a DAG G, then
X and Y are dependent conditional on Z in at least one distribution
compatible with G.

The converse part of Theorem 1.2.4 is in fact much stronger—the ab-
sence of d-separation implies dependence in almost all distributions
compatible with G. The reason is that a precise tuning of parameters
is required to generate independency along an unblocked path in the
diagram, and such tuning is unlikely to occur in practice (see Spirtes
et al. 1993 and Sections 2.4 and 2.9.1).

In order to distinguish between the probabilistic notion of con-
ditional independence (X 1LY|Z)p and the graphical notion of d-
separation, for the latter we will use the notation (X_1Y|Z)g. We
can thereby express Theorem 1.2.4 more succinctly as follows.

Theorem 1.2.5 For any three disjoint subsets of nodes (X,Y,Z) in a
DAG G and for all probability functions P, we have:

(i) (XUY|Z)eg = (X LY |Z)p whenever G and P are compatible,
and

(ii) of (XLLY|Z)p holds in all distributions compatible with G, it fol-
lows that (X 1LY|Z)¢.

An alternative test for d-separation has been devised by Lauritzen
et al. (1990), based on the notion of ancestral graphs. To test for
(X1LY|Z)g, delete from G all nodes except those in {X, Y, Z} and
their ancestors, connect by an edge every pair of nodes that share a
common child, and remove all arrows from the arcs. Then (X 1LY|Z)¢g
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holds if and only if Z intercepts all paths between X and Y in the
resulting undirected graph.

Note that the ordering with which the graph was constructed does
not enter into the d-separation criterion; it is only the topology of
the resulting graph that determines the set of independencies that the
probability P must satisfy. Indeed, the following theorem can be proven
(Pear] 1988b, p. 120).

Theorem 1.2.6 (Ordered Markov Condition)

A necessary and sufficient condition for a probability distribution P to
be Markov relative a DAG G is that, conditional on its parents in G,
each variable be independent of all its predecessors in some ordering of
the variables that agrees with the arrows of G.

A consequence of this theorem is an order-independent criterion for

determining whether a given probability P is Markov relative to a given
DAG G.

Theorem 1.2.7 (Parental Markov Condition)

A necessary and sufficient condition for a probability distribution P to
be Markov relative a DAG G 1is that every variable be independent of
all its nondescendants (in G), conditional on its parents.

This condition, which Kiiveri et al. (1984) and Lauritzen (1996) called
the “local” Markov condition, is sometimes taken as the definition of
Bayesian networks (Howard and Matheson 1981). In practice, however,
the ordered Markov condition is easier to use.

Another important property that follows from d-separation is a cri-
terion for determining whether two given DAGs are observationally
equivalent—that is, whether every probability distribution that is com-
patible with one of the DAGs is also compatible with the other.

Theorem 1.2.8 (Observational Equivalence)

Two DAGs are observationally equivalent if and only if they have the
same skeletons and the same sets of v-structures, that is, two converging
arrows whose tails are not connected by an arrow (Verma and Pearl
1990).7

"An identical criterion was independently derived by Frydenberg (1990) in the
context of chain graphs, where strict positivity is assumed.
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Observational equivalence places a limit on our ability to infer direction-
ality from probabilities alone. Two networks that are observationally
equivalent cannot be distinguished without resorting to manipulative
experimentation or temporal information. For example, reversing the
direction of the arrow between X; and X, in Figure 1.2 would neither
introduce nor destroy a v-structure. Therefore, this reversal yields an
observationally equivalent network, and the directionality of the link
X7 — X, cannot be determined from probabilistic information. The
arrows Xo — X, and X, — X5, however, are of different nature;
there is no way of reversing their directionality without creating a new
v-structure. Thus, we see that some probability functions P (such as
the one responsible for the construction of the Bayesian network in Fig-
ure 1.2), when unaccompanied by temporal information, can constrain
the directionality of some arrows in the graph. The precise meaning of
such directionality constraints—and the possibility of using these con-
straints for inferring causal relationships from data—will be formalized
in Chapter 2.

1.2.4 Inference with Bayesian Networks

Bayesian networks were developed in the early 1980s to facilitate the
tasks of prediction and “abduction” in artificial intelligence (AI) sys-
tems. In these tasks, it is necessary to find a coherent interpretation of
incoming observations that is consistent with both the observations and
the prior information at hand. Mathematically, the task boils down to
the computation of P(y|x), where X is a set of observations and Y is a
set of variables that are deemed important for prediction or diagnosis.

Given a joint distribution P, the computation of P(y|z) is concep-
tually trivial and invokes straightforward application of Bayes’s rule to

yield
ZP(y, z,8)
P(ylz) = S P9 (1.35)

where S stands for the set of all variables ezcluding X and Y. Because
every Bayesian network defines a joint probability P (given by the
product in (1.33)) it is clear that P(y|x) can be computed from a DAG
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G and the conditional probabilities P(z;|pa;) defined on the families of
G.

The challenge, however, lies in performing these computations ef-
ficiently and within the representation level provided by the network
topology. The latter is important in systems that generate explanations
for their reasoning processes. Although such inference techniques are
not essential to our discussion of causality, we will nevertheless survey
them briefly, for they demonstrate (i) the effectiveness of organizing
probabilistic knowledge in the form of graphs and (ii) the feasibility
of performing coherent probabilistic calculations (and approximations
thereof) on such organization. Details can be found in the references
cited.

The first algorithms proposed for probabilistic calculations in
Bayesian networks used message-passing architecture and were limited
to trees (Pearl 1982; Kim and Pearl 1983). With this technique, each
variable is assigned a simple processor and permitted to pass messages
asynchronously with its neighbors until equilibrium is achieved (in a fi-
nite number of steps). Methods have since been developed that extend
this tree propagation (and some of its synchronous variants) to gen-
eral networks. Among the most popular are Lauritzen and Spiegelhal-
ter’s (1988) method of join-tree propagation and the method of cut-set
conditioning (Pearl 1988b, pp. 204-10; Jensen 1996). In the join-tree
method, we decompose the network into clusters (e.g. cliques) that
form tree structures and then treat the set variables in each cluster as
a compound variable that is capable of passing messages to its neigh-
bors (which are also compound variables). For example, the network
of Figure 1.2 can be structured as a Markov-compatible chain of three
clusters:

{X1, X, X3} — { X5, X3, Xy} — {X4, X5}

In the cut-set conditioning method, a set of variables is instantiated
(given specific values) such that the remaining network forms a tree.
The propagation is then performed on that tree, and a new instantiation
chosen, until all instantiations have been exhausted; the results are then
averaged. In Figure 1.2, for example, if we instantiate X; as any specific
value (say, X; = summer), then we break the pathway between X, and



38CHAPTER 1. INTRODUCTION TO PROBABILITIES, GRAPHS, AND CAUSAL N\

X3 and the remaining network becomes tree-structured. The main
advantage of the cut-set conditioning method is that its storage-space
requirement is minimal (linear in the size of the network), whereas that
of the join-tree method might be exponential. Hybrid combinations
of these two basic algorithms have also been proposed (Shachter et al.
1994; Dechter 1996) to allow flexible trade-off of storage versus time.

Whereas inference in general networks is “NP-hard” (Cooper 1990),
the computational complexity for each of the methods cited here can
be estimated prior to actual processing. When the estimates exceed
reasonable bounds, an approximation method such as stochastic sim-
ulation (Pearl 1988b, pp. 210-23) can be used instead. This method
exploits the topology of the network to perform Gibbs sampling on local
subsets of variables, sequentially as well as concurrently.

Additional properties of DAGs and their applications to evidential
reasoning in expert systems are discussed in Pearl (1988b), Lauritzen
and Spiegelhalter (1988), Pearl (1993a), Spiegelhalter et al. (1993),
Heckerman et al. (1995), and Shafer (1996b, 1997).



