
4. Repeat this process until no new labeling is possible.

5. List all labeled coefficients; these are identifiable.

The process just described is not complete, because our insistence on labeling co-
efficients one at a time may cause us to miss certain opportunities. This is shown in
Figure 5.11. Starting with the pairs (X, Z), (X, W ), (X�, Z), and we discover
that and are identifiable. Going to (X, Y), we find that is identifi-
able; likewise, from we see that is identifiable. This does not yet enable
us to label or but we can solve two equations for the unknowns and as long as

the determinant is nonzero. Since we are not interested in identifiability at a point but

rather in identifiability “almost everywhere” (Koopmans et al. 1950; Simon 1953),
we need not compute this determinant. We merely inspect the symbolic form of the de-
terminant’s rows to make sure that the equations are nonredundant; each imposes a new
constraint on the unlabeled coefficients for at least one value of the labeled coefficients.

With a facility to detect redundancies, we can increase the power of our procedure by
adding the following rule:

3*. If there are k nonredundant buckets that contain at most k unlabeled coefficients,
label these coefficients and continue.

Another way to increase the power of our procedure is to list not only identifiable
effects but also expressions involving correlations due to bidirected arcs, in accordance
with Wright’s rules. Finally, one can endeavor to list effects of several variables jointly
as is done in Section 4.4. However, such enrichments tend to make the procedure more
complex and might compromise our main objective of providing investigators with a way
to immediately recognize the identified coefficients in a given model and immediately
understand those features in the model that influence the identifiability of the target quan-
tity. We now relate these results to the identification in nonparametric models, such as
those treated in Section 3.3. 

5.3.2 Comparison to Nonparametric Identification

The identification results of the previous section are significantly more powerful than
those obtained in Chapters 3 and 4 for nonparametric models. Nonparametric models
should nevertheless be studied by parametric modelers for both practical and conceptual

`� g

�� g�
`

d�d,�

��� � g�d(X�, Y)
�� � dgg��, g, ��,

(X�, W),

154 Causality and Structural Models in Social Science and Economics

Figure 5.11 Identifying and using two instrumental
variables.
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From Causality, pages 154-163 (Sections 5.3.2 - 5.4.1)
Important Topic: On the meaning of structural equations

[Author's note: This topic, which I often call "The Confusion
of the Century" has been lingering in the literatures of
statistics, econometrics, social science and psychology
since the early 1900's. With the exception of very few,
researchers using structural equations models are still
debating the meaning of the equations, what makes them
different from regression equations, the assumptions
embodied in each equation, and the utility of the parameters
they labor to estimate.

A major contributor to this lingering confusion has been the
lack of mathematical notation to define structural concepts;
the answers to the questions above cannot be articulated in
the language of textbook statistics. The sections posted
below resolve, so I hope, one of the most embarrassing
confusion in the history of data analysis.]

(Scroll down to start of Section 5.3.2)



reasons. On the practical side, investigators often find it hard to defend the assumptions of
linearity and normality (or other functional-distributional assumptions), especially when
categorical variables are involved. Because nonparametric results are valid for nonlin-
ear functions and for any distribution of errors, having such results allows us to gauge
how sensitive standard techniques are to assumptions of linearity and normality. On the
conceptual side, nonparametric models illuminate the distinctions between structural and
algebraic equations. The search for nonparametric quantities analogous to path coeffi-
cients forces explication of what path coefficients really mean, why one should labor at
their identification, and why structural models are not merely a convenient way of encod-
ing covariance information.

In this section we cast the problem of nonparametric causal effect identification (Chap-
ter 3) in the context of parameter identification in linear models.

Parametric versus Nonparametric Models: An Example

Consider the set of structural equations

(5.4)

(5.5)

(5.6)

where X, Z, Y are observed variables, f1, f2, f3 are unknown arbitrary functions, and
U, are unobservables that we can regard either as latent variables or as distur-
bances. For the sake of this discussion, we will assume that U, are mutually
independent and arbitrarily distributed. Graphically, these influences can be represented
by the path diagram of Figure 5.12.

The problem is as follows. We have drawn a long stream of independent samples
of the process defined by (5.4) – (5.6) and have recorded the values of the observed vari-
ables X, Z, and Y; we now wish to estimate the unspecified quantities of the model to
the greatest extent possible. 

To clarify the scope of the problem, we consider its linear version, which is given by

(5.7)

(5.8)

(5.9)y � �z � gu � e3,

z � �x � e2,

x � u � e1,

e1, e2, e3

e1, e2, e3

y � f3(z, u, e3),

z � f2(x, e2),

x � f1(u, e1),
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Figure 5.12 Path diagram corresponding to equations (5.4)–(5.6),
where 5X, Z, Y6 are observed and are unobserved.5U, e1, e2, e36



where U, are uncorrelated, zero-mean disturbances.14 It is not hard to show
that parameters , and can be determined uniquely from the correlations among
the observed quantities X, Z, and Y. This identification was demonstrated already in the
example of Figure 5.7, where the back-door criterion yielded

(5.10)

and hence

. (5.11)

Thus, returning to the nonparametric version of the model, it is tempting to general-
ize that, for the model to be identifiable, the functions 5f1, f2, f36 must be determined
uniquely from the data. However, the prospect of this happening is unlikely, because
the mapping between functions and distributions is known to be many-to-one. In other
words, given any nonparametric model M, if there exists one set of functions 5f1, f2, f36
compatible with a given distribution P(x, y, z), then there are infinitely many such func-
tions (see Figure 1.6). Thus, it seems that nothing useful can be inferred from loosely
specified models such as the one given by (5.4)–(5.6).

Identification is not an end in itself, however, even in linear models. Rather, it serves
to answer practical questions of prediction and control. At issue is not whether the data
permit us to identify the form of the equations but, instead, whether the data permit us
to provide unambiguous answers to questions of the kind traditionally answered by para-
metric models.

When the model given by (5.4)–(5.6) is used strictly for prediction (i.e., to determine
the probabilities of some variables given a set of observations on other variables), the
question of identification loses much (if not all) of its importance; all predictions can be
estimated directly from either the covariance matrices or the sample estimates of those
covariances. If dimensionality reduction is needed (e.g., to improve estimation accuracy)
then the covariance matrix can be encoded in a variety of simultaneous equation models,
all of the same dimensionality. For example, the correlations among X, Y, and Z in the
linear model M of (5.7)–(5.9) might well be represented by the model (Figure 5.13):

(5.12)

(5.13)

(5.14)y � ��z � dx � e3.

z � ��x � e2,

x � e1,

M�

g � rYX � ��

� � rZX,� � rYZ #X,

g�, �
e1, e2, e3
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14 An equivalent version of this model is obtained by eliminating U from the equations and allow-
ing and to be correlated, as in Figure 5.7.e3e1

Figure 5.13 Diagram representing model of (5.12)–(5.14).M�



This model is as compact as (5.7)–(5.9) and is covariance equivalent to M with respect
to the observed variables X, Y, Z. Upon setting and model 
will yield the same probabilistic predictions as those of the model of (5.7)–(5.9). Still,
when viewed as data-generating mechanisms, the two models are not equivalent. Each
tells a different story about the processes generating X, Y, and Z, so naturally their pre-
dictions differ concerning the changes that would result from subjecting these processes
to external interventions. 

5.3.3 Causal Effects: The Interventional Interpretation of Structural
Equation Models

The differences between models M and illustrate precisely where the structural read-
ing of simultaneous equation models comes into play, and why even causally shy re-
searchers consider structural parameters more “meaningful” than covariances and other
statistical parameters. Model defined by (5.12)–(5.14), regards X as a direct par-
ticipant in the process that determines the value of Y, whereas model M, defined by
(5.7)–(5.9), views X as an indirect factor whose effect on Y is mediated by Z. This dif-
ference is not manifested in the data itself but rather in the way the data would change in
response to outside interventions. For example, suppose we wish to predict the expecta-
tion of Y after we intervene and fix the value of X to some constant x; this is denoted
E(Y ƒ do(X � x)). After X � x is substituted into (5.13) and (5.14), model yields

(5.15)

(5.16)

model M yields

(5.17)

(5.18)

Upon setting and (as required for covariance equivalence; see
(5.10) and (5.11)), we see clearly that the two models assign different magnitudes to the
(total) causal effect of X on Y: model M predicts that a unit change in x will change
E(Y) by the amount whereas model puts this amount at 

At this point, it is tempting to ask whether we should substitute for u in (5.9)
prior to taking expectations in (5.17). If we permit the substitution of (5.8) into (5.9), as
we did in deriving (5.17), why not permit the substitution of (5.7) into (5.9) as well? Af-
ter all (the argument runs), there is no harm in upholding a mathematical equality,

that the modeler deems valid. This argument is fallacious, however.15 Structural
equations are not meant to be treated as immutable mathematical equalities. Rather, they
are meant to define a state of equilibrium – one that is violated when the equilibrium is
perturbed by outside interventions. In fact, the power of structural equation models is

x � e1,
u �

x � e1

�� � g.M���,

d � g�� � �, �� � �,

� ��x.

E [Y � do(X � x)] � E [��x � �e2 � gu � e3]

� (���� � d)x;

E[Y � do(X � x)] � E [����x � ��e2 � dx � e3]

M�

M�,

M�

M�d � g,�� � �, �� � �,
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15 Such arguments have led to Newcomb’s paradox in the so-called evidential decision theory (see
Section 4.1.1).
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that they encode not only the initial equilibrium state but also the information necessary
for determining which equations must be violated in order to account for a new state of
equilibrium. For example, if the intervention consists merely of holding X constant at
x, then the equation which represents the preintervention process determin-
ing X, should be overruled and replaced with the equation X � x. The solution to the
new set of equations then represents the new equilibrium. Thus, the essential character-
istic of structural equations that sets them apart from ordinary mathematical equations is
that the former stand not for one but for many sets of equations, each corresponding to
a subset of equations taken from the original model. Every such subset represents some
hypothetical physical reality that would prevail under a given intervention.

If we take the stand that the value of structural equations lies not in summarizing dis-
tribution functions but in encoding causal information for predicting the effects of policies
(Haavelmo 1943; Marschak 1950; Simon 1953), it is natural to view such predictions as
the proper generalization of structural coefficients. For example, the proper generaliza-
tion of the coefficient in the linear model M would be the answer to the control query,
“What would be the change in the expected value of Y if we were to intervene and change
the value of Z from z to z � 1?”, which is different, of course, from the observational
query, “What would be the difference in the expected value of Y if we were to find Z
at level z � 1 instead of level z?” Observational queries, as we discussed in Chapter 1,
can be answered directly from the joint distribution P(x, y, z), while control queries re-
quire causal information as well. Structural equations encode this causal information in
their syntax by treating the variable on the left-hand side of the equality sign as the effect
and treating those on the right as causes. In Chapter 3 we distinguished between the two
types of queries through the symbol do(.). For example, we wrote

(5.19)

for the controlled expectation and

(5.20)

for the standard conditional or observational expectation. That E(Y ƒ do(x)) does not
equal E(Y ƒ x) can easily be seen in the model of (5.7)–(5.9), where 

but Indeed, the passive observation X � x should
not violate any of the equations, and this is the justification for substituting both (5.7) and
(5.8) into (5.9) before taking the expectation. 

In linear models, the answers to questions of direct control are encoded in the path
(or structural) coefficients, which can be used to derive the total effect of any variable on
another. For example, the value of E(Y ƒ do(x)) in the model defined by (5.7)–(5.9) is

that is, x times the product of the path coefficients along the path 
Computation of E(Y ƒ do(x)) would be more complicated in the nonparametric case,
even if we knew the functions f1, f2, and f3. Nevertheless, this computation is well
defined; it requires the solution (for the expectation of Y) of a modified set of equations
in which f1 is “wiped out” and X is replaced by the constant x:

(5.21)

(5.22)y � f3(z, u, e3).

z � f2(x, e2),

X S  Z S  Y.��x,

E(Y � x) � rYX x � (�� � y) x.��x
E(Y � do(x)) �

E(Y � x) � E(Y � X � x)

E(Y � do(x)) � E [Y � do(X � x)]

�

x � u � e1,
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Thus, computation of E(Y ƒ do(x)) requires evaluation of

where the expectation is taken over U, and Remarkably, graphical methods perform
this computation without knowledge of f2, f3, and P(�2, �3, u) (Section 3.3.2).

This is indeed the essence of identifiability in nonparametric models. The ability to
answer interventional queries uniquely, from the data and the graph, is precisely how
Definition 3.2.3 interprets the identification of the causal effect P(y ƒ do(x)). As we have seen
in Chapters 3 and 4, that ability can be discerned graphically, almost by inspection, from the
diagrams that accompany the equations.

5.4 SOME CONCEPTUAL UNDERPINNINGS

5.4.1 What Do Structural Parameters Really Mean?

Every student of SEM has stumbled on the following paradox at some point in his or her
career. If we interpret the coefficient in the equation

as the change in E(Y ) per unit change of X, then, after rewriting the equation as

we ought to interpret as the change in E(X) per unit change of Y. But this conflicts
both with intuition and with the prediction of the model: the change in E(X) per unit
change of Y ought to be zero if Y does not appear as an independent variable in the orig-
inal, structural equation for X.

Teachers of SEM generally evade this dilemma via one of two escape routes. One
route involves denying that has any causal reading and settling for a purely statistical
interpretation, in which measures the reduction in the variance of Y explained by X
(see, e.g., Muthen 1987). The other route permits causal reading of only those coeffi-
cients that meet the “isolation” restriction (Bollen 1989; James et al. 1982): the explana-
tory variable must be uncorrelated with the error in the equation. Because cannot be
uncorrelated with both X and Y (or so the argument goes), and cannot both have
causal meaning, and the paradox dissolves.

The first route is self-consistent, but it compromises the founders’ intent that SEM
function as an aid to policy making and clashes with the intuition of most SEM users.
The second is vulnerable to attack logically. It is well known that every pair of bivariate
normal variables, X and Y, can be expressed in two equivalent ways,

and

where and Thus, if the condition
endows with causal meaning, then ought to endow 

with causal meaning as well. But this too conflicts with both intuition and the intentions
�cov(Y, e2) � 0�cov(X, e1) � 0

� � rXY � �s2
X>s2

Y.cov(X, e1) � cov(Y, e2) � 0

x � �y � e2,y � �x � e1

1>��

e

�

�

1>�
x � (y � e)>�,

y � �x � e

�

e3.e2,

E(Y � do(x)) � E 5 f3 [ f2 (x, e2), u, e3]6,
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behind SEM; the change in E(X) per unit change of Y ought to be zero, not rXY, if there
is no causal path from Y to X.

What then is the meaning of a structural coefficient? Or a structural equation? Or an
error term? The interventional interpretation of causal effects, when coupled with the
do(x) notation, provides simple answers to these questions. The answers explicate the
operational meaning of structural equations and thus should end, I hope, an era of con-
troversy and confusion regarding these entities.

Structural Equations: Operational Definition

Definition 5.4.1 (Structural Equations)
An equation is said to be structural if it is to be interpreted as follows: In
an ideal experiment where we control X to x and any other set Z of variables (not con-
taining X or Y) to z, the value y of Y is given by where is not a function of the
settings x and z.

This definition is operational because all quantities are observable, albeit under conditions
of controlled manipulation. That manipulations cannot be performed in most observa-
tional studies does not negate the operationality of the definition, much as our inability
to observe bacteria with the naked eye does not negate their observability under a micro-
scope. The challenge of SEM is to extract the maximum information concerning what
we wish to observe from the little we actually can observe.

Note that the operational reading just given makes no claim about how X (or any
other variable) will behave when we control Y. This asymmetry makes the equality signs
in structural equations different from algebraic equality signs; the former act symmetri-
cally in relating observations on X and Y (e.g., observing Y � 0 implies but
they act asymmetrically when it comes to interventions (e.g., setting Y to zero tells us
nothing about the relation between x and The arrows in path diagrams make this dual
role explicit, and this may account for the insight and inferential power gained through
the use of diagrams.

The strongest empirical claim of the equation is made by excluding other
variables from the r.h.s. of the equation, thus proclaiming X the only immediate cause
of Y. This translates into a testable claim of invariance: the statistics of Y under condi-
tion do(x) should remain invariant to the manipulation of any other variable in the model
(see Section 1.3.2).16 This claim can be written symbolically as

(5.23)

for all Z disjoint of 17 In contrast, regression equations make no empirical claims
whatsoever.

5X�Y6.
P(y � do(x), do(z)) � P(y � do(x))

y � �x � e

e).

�x � �e),

e�x � e,

y � �x � e
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16 The basic notion that structural equations remain invariant to certain changes in the system goes
back to Marschak (1950) and Simon (1953), and it has received mathematical formulation at var-
ious levels of abstraction in Hurwicz (1962), Mesarovic (1969), Sims (1977), Cartwright (1989),
Hoover (1990), and Woodward (1995). The simplicity, precision, and clarity of (5.23) is unsur-
passed, however.

17 This claim is, in fact, only part of the message conveyed by the equation; the other part consists of
a dynamic or counterfactual claim: If we were to control X to instead of x, then Y would attain x�



Note that this invariance holds relative to manipulations, not observations, of Z. The
statistics of Y under condition do(x) given the measurement Z � z, written P(y ƒ
do(x), z), would certainly depend on z if the measurement were taken on a consequence
(i.e., descendant) of Y. Note also that the ordinary conditional probability P(y ƒ x) does
not enjoy such a strong property of invariance, since P(y ƒ x) is generally sensitive to
manipulations of variables other than X in the model (unless X and are independent).
Equation (5.23), in contrast, remains valid regardless of the statistical relationship be-
tween and X.

Generalized to a set of several structural equations, (5.23) explicates the assumptions
underlying a given causal diagram. If G is the graph associated with a set of structural
equations, then the assumptions are embodied in G as follows: (1) every missing arrow –
say, between X and Y – represents the assumption that X has no causal effect on Y once
we intervene and hold the parents of Y fixed; and (2) every missing bidirected link be-
tween X and Y represents the assumption that the omitted factors that (directly) influence
X are uncorrected with those that (directly) influence Y. We shall define the operational
meaning of the latter assumption in (5.25)–(5.27).

The Structural Parameters: Operational Definition

The interpretation of a structural equation as a statement about the behavior of Y under
a hypothetical intervention yields a simple definition for the structural parameters. The
meaning of in the equation is simply

(5.24)

that is, the rate of change (relative to x) of the expectation of Y in an experiment where
X is held at x by external control. This interpretation holds regardless of whether and
X are correlated in nonexperimental studies (e.g., via another equation 

We hardly need to add at this point that has nothing to do with the regression co-
efficient rYX or, equivalently, with the conditional expectation E(Y ƒ x), as suggested in
many textbooks. The conditions under which coincides with the regression coefficient
are spelled out in Theorem 5.3.1.

It is important nevertheless to compare the definition of (5.24) with theories that ac-
knowledge the invariant character of but have difficulties explicating which changes is
invariant to. Cartwright (1989, p. 194), for example, characterizes as an invariant of na-
ture that she calls “capacity.” She states correctly that remains constant under change
but explains that, as the statistics of X changes, “it is the ratio 
which remains fixed no matter how the variances shift.” This characterization is impre-
cise on two accounts. First, may in general not be equal to the stated ratio nor to any
other combination of statistical parameters. Second – and this is the main point of Def-
inition 5.4.1 – structural parameters are invariant to local interventions (i.e., changes in

�

[� � E(YX)>E(X2)]
�

�

��

�

�

x � �y � d).
e

� �
0
0x

 E[Y � do(x)],

y � �x � e�

e

e
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the value In other words, plotting the value of Y under various hypothetical controls of X,
and under the same external conditions should result in a straight line with slope Such de-
terministic dynamic claims concerning system behavior under successive control conditions can be
tested only under the assumption that representing external conditions or properties of experi-
mental units, remains unaltered as we switch from x to Such counterfactual claims constitute the
empirical content of every scientific law (see Section 7.2.2).

x�.
e,

�.(e),
�x� � e.



specific equations in the system) and not to general changes in the statistics of the vari-
ables. If we start with and the variance of X changes because we (or
Nature) locally modify the process that generates X, then Cartwright is correct; the ra-
tio will remain constant. However, if the variance of X changes for
any other reason – say, because we observed some evidence Z � z that depends on both
X and Y or because the process generating X becomes dependent on a wider set of vari-
ables – then that ratio will not remain constant.

The Mystical Error Term: Operational Definition 

The interpretations given in Definition 5.4.1 and (5.24) provide an operational definition
for that mystical error term 

(5.25)

which, despite being unobserved in nonmanipulative studies, is far from being metaphys-
ical or definitional as suggested by some researchers (e.g. Richard 1980; Holland 1988,
p. 460; Hendry 1995, p. 62). Unlike errors in regression equations, � measures the de-
viation of Y from its controlled expectation E[Y ƒ do(x)] and not from its conditional
expectation E[Y ƒ x]. The statistics of � can therefore be measured from observations on
Y once X is controlled. Alternatively, because remains the same regardless of whether
X is manipulated or observed, the statistics of can be measured in observa-
tional studies if we know 

Likewise, correlations among errors can be estimated empirically. For any two non-
adjacent variables X and Y, (5.25) yields

(5.26)

Once we have determined the structural coefficients, the controlled expectations E[Y ƒ
do(paY)], E[X ƒ do(paX)], and E[YX ƒ do(paY, paX)] become known linear functions
of the observed variables paY and paX; hence, the expectations on the r.h.s. of (5.26) can
be estimated in observational studies. Alternatively, if the coefficients are not deter-
mined, then the expression can be assessed directly in interventional studies by holding
paX and paY fixed (assuming X and Y are not in parent–child relationship) and estimat-
ing the covariance of X and Y from data obtained under such conditions.

Finally, we are often interested not in assessing the numerical value of but
rather in determining whether and can be assumed to be uncorrected. For this de-
termination, it suffices to test whether the equality 

(5.27)

holds true, where sXY stands for (any setting of) all variables in the model excluding X
and Y. This test can be applied to any two variables in the model except when Y is a parent
of X, in which case the symmetrical equation (with X and Y interchanged) is applicable.

The Mystical Error Term: Conceptual Interpretation

The authors of SEM textbooks usually interpret error terms as representing the influence
of omitted factors. Many SEM researchers are reluctant to accept this interpretation,

E[Y � x, do(sXY)] � E[Y � do(x), do(sXY)]

eXeY

E[eYeX]

E[eY eX] � E[YX � do( paY, paX)] � E[Y � do(paY)]E[X � do(paX)].

�.
e � y � �x
�

e � y � E[Y � do(x)],

� � E(YX)>E(X2)

cov(X, e) � 0
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however, partly because unspecified omitted factors open the door to metaphysical spec-
ulations and partly because arguments based on such factors were improperly used as a
generic, substance-free license to omit bidirected arcs from path diagrams (McDonald
1997). Such concerns are answered by the operational interpretation of error terms, (5.25),
since it prescribes how errors are measured, not how they originate.

It is important to note, though, that this operational definition is no substitute for the
omitted-factors conception when it comes to deciding whether pairs of error terms can
be assumed to be uncorrected. Because such decisions are needed at a stage when the
model’s parameters are still “free,” they cannot be made on the basis of numerical as-
sessments of correlations but must rest instead on qualitative structural knowledge about
how mechanisms are tied together and how variables affect each other. Such judgmen-
tal decisions are hardly aided by the operational criterion of (5.26), which instructs the
investigator to assess whether two deviations – taken on two different variables under
complex experimental conditions – would be correlated or uncorrected. Such assess-
ments are cognitively unfeasible.

In contrast, the omitted-factors conception instructs the investigator to judge whether
there could be factors that simultaneously influence several observed variables. Such
judgments are cognitively manageable because they are qualitative and rest on purely
structural knowledge – the only knowledge available during this phase of modeling.

Another source of error correlation that should be considered by investigators is se-
lection bias. If two uncorrected unobserved factors have a common effect that is omitted
from the analysis but influences the selection of samples for the study, then the corre-
sponding error terms will be correlated in the sampled population; hence, the expectation
in (5.26) will not vanish when taken over the sampled population (see discussion of Berk-
son’s paradox in Section 1.2.3).

We should emphasize, however, that the arcs missing from the diagram, not those in
the diagram, demand the most attention and careful substantive justification. Adding an
extra bidirected arc can at worst compromise the identifiability of parameters, but delet-
ing an existing bidirected arc may produce erroneous conclusions as well as a false sense
of model testability. Thus, bidirected arcs should be assumed to exist, by default, be-
tween any two nodes in the diagram. They should be deleted only by well-motivated
justifications, such as the unlikely existence of a common cause for the two variables and
the unlikely existence of selection bias. Although we can never be cognizant of all the
factors that may affect our variables, substantive knowledge sometimes permits us to state
that the influence of a possible common factor is not likely to be significant.

Thus, as often happens in the sciences, the way we measure physical entities does
not offer the best way of thinking about them. The omitted-factor conception of errors,
because it rests on structural knowledge, is a more useful guide than the operational def-
inition when building, evaluating, and thinking about causal models.

5.4.2 Interpretation of Effect Decomposition

Structural equation modeling prides itself, and rightly so, on providing principled method-
ology for distinguishing direct from indirect effects. We have seen in Section 4.5 that such
distinction is important in many applications, ranging from process control to legal dis-
putes, and that SEM indeed provides a coherent methodology of defining, identifying, and
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