Contents

1 Introduction to Probabilities, Graphs, and Causal Models
 1.1 Introduction to Probability Theory ... 11
 1.1.1 Why Probabilities? .. 11
 1.1.2 Basic concepts in probability theory 12
 1.1.3 Combining Predictive and Diagnostic Supports 17
 1.1.4 Random Variables and Expectations .. 18
 1.1.5 Conditional independence and graphoids 21
 1.2 Graphs and Probabilities ... 22
 1.2.1 Graphical Notation and Terminology 22
 1.2.2 Bayesian Networks .. 23
 1.2.3 The \(d \)-Separation Criterion ... 26
 1.2.4 Inference with Bayesian Networks ... 30
 1.3 Causal Bayesian Networks .. 31
 1.3.1 Causal Networks as Oracles for Interventions 33
 1.3.2 Causal Relationships and Their Stability 35
 1.4 Functional Causal Models ... 36
 1.4.1 Structural Equations ... 37
 1.4.2 Probabilistic Predictions in Causal Models 40
 1.4.3 Interventions and Causal Effects in Functional Models 42
 1.4.4 Counterfactuals in Functional Models 44
 1.5 Causal versus Statistical Terminology 49

2 A Theory of Inferred Causation ... 53
 2.1 Introduction – The basic intuitions ... 54
 2.2 The Causal Discovery Framework ... 56
 2.3 Model Preference (Occam’s razor) ... 57
 2.4 Stable Distributions ... 60
 2.5 Recovering DAG Structures ... 62
 2.6 Recovering Latent Structures .. 64
 2.7 Local Criteria for Inferring Causal Relations 66
 2.8 Nontemporal Causation and Statistical Time 70
 2.9 Conclusions .. 72
 2.9.1 On Minimality, Markov, and Stability 73
5 Causality and Structural Models in Social Science and Economics 157
5.1 Introduction 158
 5.1.1 Causality in Search of a Language 158
 5.1.2 SEM: How its Meaning Became Obscured 159
 5.1.3 Graphs as a Mathematical Language 162
5.2 Graphs and Model Testing 164
 5.2.1 The Testable Implications of Structural Models ... 164
 5.2.2 Testing the Testable 168
 5.2.3 Model Equivalence 170
5.3 Graphs and Identifiability 174
 5.3.1 Parameter Identification in Linear Models ... 174
 5.3.2 Comparison to Nonparametric Identification ... 180
 5.3.3 Causal Effects: The Interventional Interpretation of Structural Equation Models ... 183
5.4 Some Conceptual Underpinnings 185
 5.4.1 What Do Structural Parameters Really Mean? ... 185
 5.4.2 Interpretation of Effect Decomposition ... 189
 5.4.3 Exogeneity, Superexogeneity, and Other Frills ... 191
5.5 Conclusion 196
 5.5.1 An Econometric Awakening? 197
 5.5.2 Identification in Linear Models 198
 5.5.3 Robustness of Causal Claims 198

6 SIMPSON’S PARADOX, CONFOUNDING, AND COLLAPSI-
BILITY 199
6.1 Simpson’s Paradox: An Anatomy 200
 6.1.1 A Tale of a Non-Paradox 200
 6.1.2 A Tale of Statistical Agony 202
 6.1.3 Causality versus Exchangeability 203
 6.1.4 A Paradox Resolved (Or: What Kind of Machine is Man) ... 206
6.2 Why There Is No Statistical Test For Confounding, Why Many Think There Is, and Why They Are Almost Right 209
 6.2.1 Introduction 209
 6.2.2 Causal and Associational Definitions 210
6.3 How the Associational Criterion Fails 211
 6.3.1 Failing Sufficiency via Marginality 211
 6.3.2 Failing Sufficiency via Closed-World Assumptions ... 212
 6.3.3 Failing Necessity via Barren Proxies 212
8 Imperfect Experiments: Bounding Effects and Counterfactuals
8.1 Introduction .. 288
8.1.1 Imperfect and Indirect Experiments 288
8.1.2 Noncompliance and Intent to Treat 289
8.2 Bounding Causal Effects with Instrumental Variables ... 290
8.2.1 Problem Formulation: Constrained Optimization ... 290
8.2.2 Canonical Partitions: The Evolution of Finite-Response Variables ... 292
8.2.3 Linear Programming Formulation 294
8.2.4 The Natural Bounds 296
8.2.5 Effect of Treatment on the Treated 297
8.2.6 Example: The Effect of Cholestyramine 298
8.3 Counterfactuals and Legal Responsibility 299
8.4 A Test for Instruments 302
8.5 A Bayesian Approach to Noncompliance 304
8.5.1 Gibbs Sampling 304
8.5.2 The Effects of Sample Size and Prior Distribution ... 305
8.5.3 Causal effects from clinical data with imperfect compliance ... 306
8.5.4 Bayesian Estimate of Single-Event Causation 308
8.6 Conclusion .. 309
9 Probability of Causation: Interpretation and Identification
9.1 Introduction .. 311
9.2 Necessary and Sufficient Causes: Conditions of Identification ... 314
9.2.1 Definitions, Notation, and Basic Relationships ... 314
9.2.2 Bounds and Basic Relationships under Exogeneity ... 317
9.2.3 Identifiability under Monotonicity and Exogeneity ... 319
9.2.4 Identifiability under Monotonicity and Nonexogeneity ... 321
9.3 Examples and Applications 323
9.3.1 Example 1: Betting against a Fair Coin 323
9.3.2 Example 2: The Firing Squad 325
9.3.3 Example 3: The Effect of Radiation on Leukemia ... 327
9.3.4 Example 4: Legal Responsibility from Experimental and Nonexperimen- tial Data ... 330
9.3.5 Summary of results 331
9.4 Identification in Nonmonotonic Models 332
9.5 Conclusions .. 335
10 The Actual Cause
10.1 Introduction: The Insufficiency of Necessary Causation ... 338
10.1.1 Singular Causes Revisited 338
10.1.2 Preemption and the Role of Structural Information ... 339
10.1.3 Over-determination and Quasi-Dependence 341
10.1.4 Mackie’s INUS Condition 342
10.2 Production, Dependence, and Sustenance 344
10.3 Causal Beams and Sustenance-Based Causation .. 346
 10.3.1 Causal Beams: Definitions and Implications 346
 10.3.2 Examples: From Disjunction to General Formulas 349
 10.3.3 Beams, Preemption, and the Probability of Single-Event Causation . . 351
 10.3.4 Path-Switching Causation .. 353
 10.3.5 Temporal Preemption .. 354
10.4 Conclusions ... 356

Epilogue: The Art and Science of Cause and Effect
(A public lecture delivered November 1996 as part of the UCLA Faculty Research Lectureship Program.) 361

11 Reflections, Elaborations, and Discussions with Readers 383
 11.1 CAUSAL, STATISTICAL, AND GRAPHICAL VOCABULARY 384
 11.1.1 Is the Causal-Statistical Dichotomy Necessary? 384
 11.1.2 d-Separation without Tears (Chapter 1, pp. 16–18) 388
 11.2 REVERSING STATISTICAL TIME (CHAPTER 2, pp. 58-9) 391
 11.3 ESTIMATING CAUSAL EFFECTS ... 393
 11.3.1 The Intuition behind the Back-Door Criterion (Chapter 3, p. 79) . 393
 11.3.2 Demystifying “strong ignorability” .. 397
 11.3.3 Alternative proof of the back-door criterion 400
 11.3.4 Data vs. knowledge in covariate selection 403
 11.3.5 Understanding Propensity Scores .. 406
 11.3.6 The Intuition behind do-Calculus .. 410
 11.3.7 The Validity of G-estimation .. 411
 11.4 POLICY EVALUATION AND THE _do_-OPERATOR 413
 11.4.1 Identifying conditional plans (Section 4.2, p. 113) 413
 11.4.2 The meaning of indirect effects ... 414
 11.4.3 Can do(x) represent practical experiments? 417
 11.4.4 Is the do(x) operator universal? 418
 11.4.5 Causation Without Manipulation!!! 420
 11.4.6 Hunting Causes with Cartwright 421
 11.4.7 The Illusion of Nonmodularity 423
 11.5 Causal Analysis in Linear Structural Models 425
 11.5.1 General criterion for parameter identification (Chapter 5, pp. 149-54) 425
 11.5.2 The causal interpretation of structural coefficients 426
 11.5.3 Defending the Causal Interpretation of SEM (or, SEM Survival Kit) 429
 11.5.4 Where Is Economic Modeling Today? – Courting Causes with Heckman ... 435
 11.5.5 External Variation vs. Surgery .. 437
 11.6 DECISIONS AND CONFOUNDING (CHAPTER 6) 442
 11.6.1 Simpson’s paradox and decision trees 442
 11.6.2 Is Chronological Information Sufficient for Decision Trees? 444
 11.6.3 Lindley on Causality, Decision Trees, and Bayesianism 446